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Scattering mechanisms in state-of-the-art GaAs/AlGaAs quantum wells
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Motivated by recent breakthroughs in molecular beam epitaxy of GaAs/AlGaAs quantum wells [Y. J.
Chung et al., Nat. Mater. 20, 632 (2021)], we examine contributions to mobility and quantum mobility from
various scattering mechanisms and their dependencies on the electron density. We find that at lower electron
densities, ne � 1 × 1011 cm−2, both transport and quantum mobility are limited by unintentional background
impurities and follow a power-law dependence, ∝nα

e , with α ≈ 0.85. Our predictions for quantum mobility are
in reasonable agreement with an estimate obtained from the resistivity at filling factor ν = 1/2 in a sample of
Y. J. Chung et al. with ne = 1 × 1011 cm−2. Consideration of other scattering mechanisms indicates that interface
roughness (remote donors) is likely a limiting factor of transport (quantum) mobility at higher electron densities.
Future measurements of quantum mobility should yield information on the distribution of background impurities
in GaAs and AlGaAs.
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Advances in molecular beam epitaxy, particularly the
purification of source materials and improved vacuum
conditions, have recently lead to another generation of
GaAs/AlGaAs quantum wells [1] in which the mobility
reached a record value of μ = 4.4 × 107 cm2 V−1 s−1 at
electron density ne = 2.0 × 1011 cm−2. The increase in mo-
bility was especially pronounced at lower densities (ne � 1 ×
1011 cm−2), where μ was twice the previously reported record
values. At higher densities (ne � 2 × 1011 cm−2), however,
the mobility has decreased to μ ≈ 3.5 × 107 cm2 V−1 s−1

at ne ≈ 2.7 × 1011 cm−2, approaching previously reported
values. While the increase of μ at low ne could be readily
attributed to a reduced concentration of unintentional back-
ground impurities, subsequent reduction of μ at higher ne calls
for revisiting other scattering sources.

In this Letter, we theoretically examine both transport and
quantum mobility (μq) considering scattering by background
impurities (BIs), remote ionized donors in the doping layers
(RI), interface roughness (IR), and alloy disorder (AD). We
find that both μ and μq are limited by BI scattering at low
ne, as expected. With increasing ne, however, scattering on
IR (and eventually on AD) becomes important, as far as μ is
concerned, whereas μq becomes limited by RI scattering [2].

Modern GaAs-based heterostructures, such as those re-
ported in Ref. [1], consist of a GaAs quantum well of width
w surrounded by AlxGa1−xAs barriers of thickness d . A
two-dimensional electron gas (2DEG) with a concentration
ne is supplied by two remote doping layers, each located
at a distance dw = d + w/2 from the center of the GaAs
quantum well. These layers have a sophisticated doping well
design, which helps to substantially reduce the scattering by
ionized donors owing to excess electron screening [3–6]. In
this design, a δ − layer of silicon atoms with concentration
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n � ne is implanted into a narrow (≈3 nm) GaAs quantum
well, which is sandwiched between thin (≈2 nm) AlAs layers
[7]. In our calculations, we use n ≈ 1.5 × 1012 cm−2, Al mole
fraction x = 0.12, and take into account the electron density
dependencies of the effective spacer thickness dw and of the
quantum well width w. More specifically, we use kF w = 3.9,
where kF = √

2πne is the Fermi wave number and d−1
w =

ane, where a = 3.55 nm [8]. These constraints were obtained
by fitting samples parameters of Ref. [1], as detailed in the
Supplemental Material [9].

We start with transport mobility, μ = eτ/m�, where m� =
0.067 m0 is the effective mass of an electron in GaAs [10], m0

is the free electron mass,

1

τ
= 4m�

π h̄3

∫ 2kF

0

dq√
4k2

F − q2

(
q

2kF

)2

〈|U (q)|2〉, (1)

is the transport scattering rate, and U (q) is the screened po-
tential of a given scattering source.

Coulomb background impurities. The screened potential
squared averaged over impurity positions is given by

〈|UBI(q)|2〉 =
∫ +∞

−∞
dz N (z)U 2

1 (q, z), (2)

where U 2
1 (q, z) is the screened potential squared from a sin-

gle Coulomb impurity, and N (z) is the 3D concentration
of impurities at a distance z from the center of the 2DEG.
Since the main contribution to momentum relaxation comes
from impurities located close to the quantum well, for which
excess electron screening [3] is not important and U1(q, z)
can be obtained taking into account screening by electrons
in the quantum well only. Using Thomas-Fermi (TF) ap-
proximation [3], and following Refs. [11–15], we can write
(more detailed discussion can be found in the Supplemental
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FIG. 1. Mobility μ versus electron density ne. Circles are ex-
perimental data from Ref. [1]. Solid (dashed) line represents
μBI calculated for N1 = 1.4 × 1014 cm−3, N2 = 0 (N1 = N2 = 5 ×
1012 cm−3).

Material [9])

U1(q, z) = 2πe2

κqε(q)

∫ +∞

−∞
dz′ |ψ (z′)|2e−q|z−z′ |, (3)

where ψ (z) is the wave function along z direction and the
dielectric function is given by

ε(q) = 1 + (qTF/q)Fc(qw)[1 − G(q)]. (4)

Here, qTF = 2/aB, aB = κ h̄2/m�e2 is the effective Bohr ra-
dius, κ = 12.9 is the dielectric constant of GaAs, G(q) =
q/(2

√
q2 + k2

F ) is the local field correction using Hubbard
approximation [11], and the form factor Fc(qw) is given by

Fc(qw) =
∫∫ +∞

−∞
dzdz′|ψ (z)|2|ψ (z′)|2 exp(−q|z − z′|). (5)

For small concentration ne < 1 × 1011 cm−2, it suffices
to use an infinite-potential-well approximation and ψ (z) =√

2/w cos (zπ/w)�(w/2 − |z|) in both Eqs. (3) and (5).
Following Ref. [3], we define BI density as

N (z) =
{

N1, w/2 < |z| < dw

N2, |z| < w/2,
(6)

where N1 (N2) represents the 3D concentration of impurities
in AlGaAs (GaAs). The results of our calculations for uniform
impurity distribution (N1 = N2) and for no impurities in GaAs
(N2 = 0) are shown in Fig. 1 along with the experimental
data of Ref. [1] (circles). We find that the data at ne � 1 ×
1011 cm−2 can be better described by N1 = 1.4 × 1014 cm−3

and N2 = 0 (solid line). Assuming uniform distribution of
impurities (dashed curve) yields N1 = N2 = 5 × 1012 cm−3,
which is close to an estimate 1 × 1013 cm−3 of Ref. [1]
([16]). We also note that μBI(N2 = 0) is well described
by μBI = 38.3 nα

e , where α ≈ 0.85, whereas μBI(N1 = N2)
follows μBI = 43.1 nα

e , where α ≈ 1.12. Here and in what

follows we assume that the electron density is in units of
1011 cm−2 and the mobility is in units of 106 cm2 V−1 s−1.

While BI scattering can describe the experimental data
reasonably well at ne � 1, it is clear that BI scattering alone
cannot explain experimental μ at higher ne. Indeed, obtained
power laws represent crossovers from μBI ∝ n1/2

e at low ne [3]
to μBI ∝ n3/2

e at higher ne [18]. To explain the experimental μ

at higher ne, one needs to examine other scattering sources.
Remote impurities. One obvious candidate for reduced μ at

higher ne is RI impurity scattering. For electron densities ne <

10 and for a given doping concentration n = 1.5 × 1012 cm−2,
the fraction of ionized donors in each doping layer is small,
1 − f = ne/2n < 0.5, and we can use Eq. (22) from Ref. [3]
([19]),

μRI = 7.7
e

h̄

nk3
F d5

w

ne
= 1.6 × 106 n−9/2

e , (7)

where in the final expression of Eq. (7) we used n = 15, kF =√
2πne, and d−1

w = ane [8]. Equation (7) gives μRI ∼ 104 at
ne = 3, which is more than 300 times larger than experimental
μ, so the RI scattering is still irrelevant in this regime. We
note, however, that additional mechanisms of disorder in the
doping layers may lead to an increase of RI scattering, as
discussed in Sec. V of Ref. [3], although quantitative under-
standing of these mechanisms is still lacking.

Interface roughness. Scattering on IR originates from fluc-
tuations of the ground-state energy due to 1 − 2 monolayer
local variations of the quantum well width w. For the in-
finite barrier height (V → ∞), the corresponding transport
scattering rate τ−1

IR ∝ w−6 [12,13] and such dependence was
confirmed in narrow w < 10 nm GaAs quantum wells with
AlAs barriers [20,21]. However, in AlxGa1−xAs/GaAs quan-
tum wells, the barrier height is significantly reduced (V ≈
0.75x eV for x < 0.45), and fluctuations of the ground-state
energy are diminished due to finite penetration of the electron
wave function into the barrier [14,22]. As a result, τ−1

IR is
considerably suppressed compared to the case V → ∞, and
its dependence on w weakens [21–24].

We calculate the IR-limited scattering rates following the
approach of Refs. [14,22]. We use the barrier height for
x = 0.12 and take into account the difference in the elec-
tron effective mass in the GaAs well (m� = 0.067 m0) and
in the Al0.12Ga0.88As barriers (mB = (0.067 + 0.083x)m0 =
0.077m0). At the end, we also impose a constraint kF w = 3.9
[8].

Using the correlator of local well-width variations
〈�(r)�(r′)〉 = �2 exp(−|r − r′|2/
2), where � is the
roughness height and 
 is the roughness lateral size, the
scattering potential due to interface roughness is given by

〈|UIR(q)|2〉 = π

ε2(q)
�2
2

(
∂E

∂w

)2

e−q2
2/4, (8)

where E is the ground-state energy for the finite potential well.
Here, the dielectric function ε(q), see Eq. (4), is computed
with the form factor Fc(qw), see Eq. (5), using finite-potential-
well wave function. (See Supplemental Material for details
[9].)

By substituting Eq. (8) into Eq. (1), we obtain the mo-
bility due to interface roughness μIR as shown in Fig. 2. To
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FIG. 2. Mobility μ versus electron density ne. Circles are exper-
imental data from Ref. [1]. Thin lines marked by BI, IR, AD, and RI
represent μBI (N1 = 1.4 × 1014 cm−3, N2 = 0), μIR (� = 0.283 nm,

 = 8 nm, x = 0.12), μAD (x = 0.12), and μRI [Eq. (7)], respec-
tively. Thick line represents μ limited by all contributions.

reproduce the experimental data at ne > 2, we arrived at � =
2.83 Å and 
 = 80 Å. With these roughness parameters, μIR

becomes equal to μBI(N2 = 0) at ne ≈ 2.4 and, in the vicinity
of this density, can be described by μIR � 4.7 × 102 n−2

e . We
have also examined the effect of x on the mobility limited by
IR. By raising x from 0.12 to 0.24, a value which is common
for previous generation of samples, μIR at ne = 3 becomes
smaller by 24%, although this effect weakens at lower ne.

Alloy disorder. AD scatters electrons due to the wave func-
tion tails extending into the AlxGa1−xAs barriers. Usually,
in typical high mobility samples, this scattering mechanism
is deemed irrelevant, see e.g., Refs. [22,25]. However, in
light of lower x used in the new generation of samples [1],
it is important to revisit this scattering source. Following
Refs. [15,22,26], we write the scattering potential as

〈|UAD(q)|2〉 = (�Ec)2

ε2(q)
�x(1 − x)

∫
|z|>w/2

|ψ (z)|4dz, (9)

where � = a3/4, a = 5.67 Å is the lattice constant and
�Ec � 1 eV is the conduction band discontinuity at the �-
point of GaAs/AlAs interface. As for the case of IR, we use a
finite-potential-well wave function to calculate the form factor
in ε(q) (see Supplemental Material [9]). Substituting Eq. (9)
into Eq. (1) and applying the constraint kF w = 3.9 [8], we
obtain the mobility limited by AD scattering μAD as shown
in Fig. 2. We note that μAD can be well described by μAD �
7.1 × 103 n−3

e and that it becomes equal to μBI at ne ≈ 3.7 and
to μIR at ne ≈ 7. We thus conclude that AD scattering cannot
be ignored at higher densities. We have also examined the
effect of x on mobility limited by AD. By increasing x from
0.12 to 0.24, μAD increases by a factor of 2.4 for ne < 10.

We now turn to the effects of different scattering mecha-
nisms on quantum mobility μq = eτq/m�, where the quantum

FIG. 3. Quantum mobility μq versus electron density ne. Thin
solid lines marked by BI, IR, AD, and RI represent μq,BI (N1 = 1.4 ×
1014 cm−3, N2 = 0), μq,IR [� = 0.283 nm, 
 = 8 nm, x = 0.12),
μq,AD (x = 0.12), and μq,RI (Eq. (11)], respectively. Thick solid line
represents μq limited by all contributions. Thick dashed line is μq

limited by all contributions but with μq,BI computed for N1 = N2 =
5 × 1012 cm−3. Solid circle shows quantum mobility obtained from
the resistivity at filling factor ν = 1/2 measured in Ref. [1].

scattering rate is given by

1

τq
= 2m�

π h̄3

∫ 2kF

0

dq√
4k2

F − q2
〈|U (q)|2〉. (10)

Background impurities. Since BIs far away from the
quantum well contribute to μq significantly, excess electron
screening cannot be ignored and the scattering potential is
no longer given by Eq. (3). As a very good approximation,
we can think of a perfect screening, such that the excess
electron screening length is zero. However, the expression
of scattering potential U (q) in this approximation is still
cumbersome so we leave it to the Supplemental Material [9]
as a reference for an interested reader. As discussed above,
two different impurity distributions, N2 = 0 and N1 = N2,
can describe the experimental μ reasonably well at ne < 1.
However, these distributions give very different values for
μq, as shown in Fig. 3. Indeed, we find that μq,BI(N2 = 0)
(solid curve marked BI) is an order of magnitude smaller
than μq,BI(N1 = N2) (dashed curve marked “BIBI More
specifically, we find that μq,BI(N2 = 0) � 1.4 n0.85

e , whereas
μq,BI(N1 = N2) � 13.3 n0.87

e . As a result, future experiments
measuring quantum mobility should be able to distinguish
between these two distributions.

Remote donors. For quantum mobility limited by RI scat-
tering, we use Eq. (23) from Ref. [3] valid at 1 − f = ne/2n <

0.5 for ne < 10 [19],

μq,RI = 6.5
e

h̄

nkF d3
w

ne
= 2.6 × 103 n−7/2

e , (11)

where in the final expression we used n = 15, kF = √
2πne,

and d−1
w = ane [8]. Even though Eq. (11) yields very large
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μq,RI � 56 at ne = 3, RI scattering is still expected to limit
μq at higher ne, see Fig. 3.

Interface roughness and alloy disorder. Contributions from
IR and AD can be calculated using Eqs. (8)–(10). In particular,
we find that μq,IR � 1.2μIR and μq,AD � 1.3μAD. As shown
in Fig. 3, these contributions are considerably smaller than
the RI contribution at all relevant ne. As a result, one expects
a crossover from BI-limited to RI-limited quantum mobility
for either model of BI distribution. The value and position of
the maximum at the quantum mobility crossover should yield
information on the BI distribution.

Next, we comment on the relation between the quantum
mobility and the mobility of composite fermions μCF at filling
factor ν = 1/2. By comparing the expression of the longitu-
dinal resistivity at ν = 1/2, Eq. (5.11) of Ref. [27],

ρ1/2 = ni

ne

1

kF z

2
√

2π h̄

e2
, (12)

and the expression for quantum mobility, Eq. (6) in Ref. [3],

μq = 2e

π h̄

kF z

ni
, (13)

one can conclude that

μq = 4
√

2

eneρ1/2
, (14)

which implies that μq = 4
√

2μCF. Here, ni is the 2D concen-
tration of random impurities in a thin layer at a distance z away
from the center of the quantum well. To obtain ρ1/2 and μ−1

q
for impurities with 3D concentration N (z), one should replace
ni by N (z)dz and integrate over z [28]. This integration does
not change the relation Eq. (14) between μq and ρ1/2, so it
holds for both BI and RI scattering [29].

From the experimental data in Ref. [1], the longitudinal
resistance is R1/2 = 35 � at ν = 1/2 and ne = 1. Using the
geometry of experiments in Ref. [1], we estimate ρ1/2 ≈
2.5R1/2. As a result, the quantum mobility at ne = 1 is esti-
mated as μq = 4.0. This data point, filled circle in Fig. 3, falls
in between our predictions for N2 = 0 and N1 = N2. To fit this
point, while keeping μ the same as shown in Figs. 1 and 2, we
need N1 ≈ 4 × 1013 cm−3 and N2 ≈ 4 × 1012 cm−3.

Finally, we mention that hydrodynamics [30] or scattering
on oval defects [31] might affect the zero-field resistivity and,
as a result, the inferred mobility. Both mechanisms manifest
as negative magnetoresistance in weak magnetic field [31–37]
which can also be seen in Fig. 3(b) of Ref. [1]. However,
since no experimental studies of this magnetoresistance are
yet available, we cannot comment on its origin.

In summary, we have examined roles of different scattering
sources on the transport and quantum mobilities in the gener-
ation of ultrahigh mobility GaAs/Al0.12As0.88 quantum wells
[1]. While at lower electron densities, both mobilities are
limited by BI scattering, IR (remote impurity) scattering is the
likely source limiting transport (quantum) mobility at large
electron densities. Our predictions for quantum mobility are
in agreement with the value estimated from the mobility of the
composite fermions at filling factor ν = 1/2 in a sample with
ne = 1 × 1011 cm−2 [1]. Future measurements of quantum
mobility should provide insight on the distribution of BIs in
the GaAs quantum well and in the AlGaAs barriers.
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