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First-principles ionized-impurity scattering and charge transport in doped materials
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Scattering of carriers with ionized impurities governs charge transport in doped semiconductors. However,
electron interactions with ionized impurities cannot be fully described with quantitative first-principles calcu-
lations, so their understanding relies primarily on simplified models. Here we show an ab initio approach to
compute the interactions between electrons and ionized impurities or other charged defects. It includes the short-
and long-range electron-defect (e-d) interactions on equal footing and allows for efficient interpolation of the e-d
matrix elements. We combine the e-d and electron-phonon interactions in the Boltzmann transport equation to
compute the carrier mobilities in doped silicon over a wide range of temperature and doping concentrations,
seamlessly spanning the defect- and phonon-limited transport regimes. The individual contributions of the
defect- and phonon-scattering mechanisms to the carrier relaxation times and mean-free paths are analyzed.
Our method provides a powerful tool to study electronic interactions in doped materials. It broadens the scope
of first-principles transport calculations, enabling studies of a wide range of doped semiconductors and oxides
with application to electronics, energy, and quantum technologies.
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I. INTRODUCTION

Scattering of carriers with charged defects is treated pri-
marily using heuristic models. An important example is
calculations of ionized-impurity scattering in doped semicon-
ductors and the resulting defect-limited transport properties.
Widely adopted models neglect the detailed atomic struc-
ture of the defects, employ approximate defect-scattering
potentials, and rely on simplified electronic band structures—
usually, a single isotropic band parametrized by the effective
mass [1–3]. First-principles calculations of electron-defect
(e-d) interactions for ionized impurities and other charged
defects remain an open challenge. Their development would
enable quantitative studies of transport in doped materials
with complex atomic and electronic structures, providing mi-
croscopic insight into the effects of dopants in a wide range of
technological materials and devices.

Recent work has highlighted the computational cost and
difficult workflows for obtaining e-d interactions in the frame-
work on density functional theory (DFT) [4–6], particularly
when using fine Brillouin zone (BZ) grids required for trans-
port calculations [5–8]. Various approximations have been
employed to obviate these bottlenecks, such as treating the
charged-defect perturbation as a Yukawa potential [9,10] or
the Bloch electronic states as plane waves [11]. Recent work
by us [5,6] and Kaasbjerg et al. [12] has developed a fully
ab initio framework, based on DFT, to compute e-d inter-
actions without simplifying approximations, so far focusing
on charge-neutral defects [5,6,12]. Despite these advances,
an efficient ab initio method to compute e-d interactions for
charged defects and study their impact on charge transport
is still missing. Ideally, such an approach would capture
the atomic details of the defect perturbation potential, use
electronic Bloch wave functions, and employ the full band
structure of the material.

Here, we show a first-principles method to efficiently com-
pute the e-d interactions for ionized impurities and other
charged defects. Our approach is based on plane-wave DFT
calculations and satisfies all the ideal characteristics listed
above. To obtain the e-d matrix elements, we develop ap-
proaches for supercell potential-alignment and removal of
spurious image contributions. Both the short- and long-range
perturbations induced by the charged defects are included,
without using any empirical or tuning parameters. We com-
bine the e-d and electron-phonon (e-ph) interactions in the
Boltzmann transport equation (BTE) to compute the car-
rier mobility in a doped material with an accurate account
of ionized-impurity scattering. We apply our method to
silicon doped with phosphorous (P) or boron (B); we com-
pute and analyze state-dependent relaxation times (RTs) for
ionized-impurity scattering, and predict the doping and tem-
perature dependence of the electron and hole mobilities in
quantitative agreement with experiment. Our treatment of
electron-charged defect interactions complements recent ef-
forts to develop quantitative tools to study charge transport in
real materials [6,8,13–18].

II. THEORY AND COMPUTATIONAL METHOD

The e-d matrix element coupling a Bloch state |nk〉, with
band index n and crystal momentum k, to another state
|mk′〉 due to the perturbation potential from a charged defect,
�V cd

e−d, is defined as

Mcd
mn(k′, k) = 〈mk′|�V cd

e−d|nk〉, (1)

where the Bloch states are for the pristine system with-
out any defect [5]. The e-d defect perturbation potential is
obtained from DFT calculations as the difference between
the Kohn-Sham (KS) potential of the pristine system and
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that of the same system containing a defect [5]. We use
two supercells with the same size to simulate the pris-
tine and defect-containing systems. For charged defects, the
difference between the KS Hamiltonians of these two super-
cells, �VKS = H (d)

KS − H (p)
KS , is not equal to the e-d perturbation

and requires a correction that is not needed for charge-neutral
defects [5].

To treat charged defects in plane-wave DFT, the widely
used Jellium model [19] removes the divergence due to the
charge introduced in the supercell by setting to zero the Gsup=
0 component of the Hartree potential (Gsup are reciprocal
lattice vectors of the supercell). Although the divergence has
been removed, the supercell is, in a sense, still charged—since
a uniform electron density is added to the system, the long-
range tail of the Coulomb potential generated by the charged
defect is still present [20]. As a result, the charged-defect per-
turbation potential does not decay to zero inside the supercell,
and therefore is contaminated by the periodic images of the
supercell.

To remove these spurious contributions, we introduce a
supercell-periodic screened-Coulomb potential, V scr

sup , gener-
ated from a point charge +Ze (where e is the electron charge)
in the supercell, which simulates the charge state of the defect:

V scr
sup (r) = 1

�sup

∑
Gsup �=0

Ṽ scr (Gsup)eiGsup·r, (2)

where �sup is the volume of the supercell. The Fourier coef-
ficient at wave vector q of this screened-Coulomb potential is
defined as

Ṽ scr (q) = −Ze2

ε0ε(q) q2
, (3)

where ε0 is the vacuum permittivity and ε(q) is the dielectric
function due to the screening from the valence electrons, de-
scribed here using an isotropic homogeneous electron model.
This work employs an accurate model dielectric function ε(q)
for silicon [21], but our framework is easily generalized to
use a dielectric function computed ab initio, for example,
in the random-phase approximation commonly used in GW
calculations [22]. The spurious image-cell contributions are
then removed by subtracting V src

sup from the KS perturbation
potential. An additional correction is needed to account for
DFT potential-alignment errors due to the different potential
references used in the pristine and defect-containing supercell
calculations [5]. With these corrections, we compute the neu-
tral part of the e-d perturbation potential as

�V np
e−d = �VKS − V scr

sup − Valign, (4)

where the Valign term enforces the potential alignment.
Finally, we obtain the charged-defect perturbation poten-

tial, �V cd
e−d, by adding the screened-Coulomb potential due to

an isolated point charge, V scr
ex (nex); the latter is screened by

both the valence electrons and by any extrinsic free carriers
(with concentration nex) resulting from ionized impurities,

�V cd
e−d = �V np

e−d + V scr
ex (nex), (5)

with the Fourier coefficient of the screened-Coulomb potential
of the isolated defect computed as [23]

Ṽ scr
ex (q, nex) = −Ze2

ε0[ε(q)q2 + ε(0)q2
scr]

. (6)

Above, ε(0) is the dielectric constant and the inverse screen-
ing length qscr due to the free carriers is [24]

qscr =
[

e2

ε0ε(0)

∫ ∞

Ec

dE g(E )

(
−∂ f 0(E )

∂E

)]1/2

, (7)

where g(E ) is the density of states (DOS) at electron energy
E , Ec is the conduction band minimum (CBM), and f 0(E ) is
the Fermi-Dirac distribution. This expression is for electrons,
but a similar one holds for hole carriers [24].

Substituting Eq. (5) into Eq. (1) splits the e-d matrix ele-
ment for a charged defect into two parts:

Mcd
mn(k′, k) = Mnp

mn(k′, k) + Mscr
mn (k′, k). (8)

The first term, Mnp
mn(k′, k)=〈mk′|�V np

e−d|nk〉, is a short-
ranged charge-neutral contribution, while the second term,
Mscr

mn (k′, k)=〈mk′|V scr
ex (nex)|nk〉, accounts for the long-range

screened Coulomb interaction generated by the charged defect
(with the spurious image contributions properly removed).
The relative magnitude of the two contributions, |Mnp

mn|/|Mscr
mn |,

can be estimated as the ratio of the electric dipole moment,
multiplied by the transferred momentum |k − k′|, to the net
defect charge [2]. Here we focus on impurity defects in
silicon with small dipole moments, and thus the long-range
screened-Coulomb contribution is dominant; however, the
neutral contribution is expected to be important for charged
defects with greater dipole moments. In practice, the e-d ma-
trix elements are computed using the approach developed in
Ref. [5], using wave functions from a primitive unit cell (as
opposed to the large supercell) to greatly reduce the compu-
tational cost, together with the defect perturbation potential
from a supercell calculation. The Wannier function (WF) in-
terpolation scheme we recently developed for charge-neutral
defects [6] is then employed to interpolate the neutral part
of the matrix elements, Mnp

mn(k′, k), on ultrafine BZ grids.
For the long-range part, Mscr

mn (k′, k), we develop a different
interpolation approach inspired by recent work on e-ph in-
teractions in polar materials. Briefly, Wannier interpolation
requires a rapid spatial decay of the e-d matrix elements in
the Wigner-Seitz cell associated with the k-point grid [25]. To
address this point, we remove the long-range component of
the screened Coulomb e-d interaction before interpolation and
add it back in reciprocal space after interpolation (for details,
see the Supplemental Material [26]).

With the ab initio ionized-impurity scattering in hand,
we combine e-ph and elastic e-d interactions in the BTE
framework to compute the carrier mobility as a function of
temperature and doping concentration [7,27]. The conductiv-
ity tensor σαβ is computed using [15,28,29]

σαβ = e2
∫

dE
(−∂ f 0/∂E

)
	αβ (E ), (9)

where α and β are Cartesian directions; the mobility is
obtained using μαβ = σαβ/(enc), where nc is the carrier
concentration. The transport distribution function 	αβ (E ) is
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defined as [15]

	αβ (E ) = S

Nk�uc

∑
nk

vα
nkFβ

nkδ(E − Enk), (10)

where S is the spin degeneracy and Nk is the number of k
points in the BZ; Enk and vnk are electron band energies
and velocities, respectively. The vector Fnk is proportional
to the steady-state occupation change of each electronic state
[15] and is obtained by solving the linearized BTE for a
weak electric field. Extending the approach developed in PER-
TURBO [15] to include both e-d and e-ph interactions, the
BTE becomes

Fnk
(
�

e−ph
nk + �e−d

nk

) = vnk + 1

Nq

∑
m,νq

Fmk+qW
νq, e−ph

mk+q,nk

+ 1

Nk′

∑
mk′ �=nk

Fmk′W e−d
mk′,nk, (11)

where Nq and Nk′ are the numbers of q points and k′ points
in the BZ, respectively. The e-ph scattering rate for each
electronic state, �

e−ph
nk , is computed using [15]

�
e−ph
nk = 1

Nq

∑
m,νq

W νq, e−ph
mk+q,nk , (12)

where W νq, e−ph
mk+q,nk is the scattering rate from state |nk〉 to

|mk + q〉 due to the emission or absorption of a phonon with
mode index ν and crystal momentum q [15]. The e-d scatter-
ing rate is defined analogously as

�e−d
nk = 1

Nk′

∑
mk′ �=nk

W e−d
mk′,nk, (13)

where W e−d
mk′,nk

is the elastic e-d scattering rate between two
electronic states due to a charged defect [5]:

W e−d
mk′,nk = 2π

h̄
natCimp|Mmn(k′, k)|2δ(Emk′ − Enk). (14)

In this expression, nat is the number of atoms in the primitive
cell and the scattering rate is proportional to the impurity
concentration Cimp, defined as in Ref. [5] as the dimensionless
ratio of the number of impurities to the total number of atoms
in the crystal. The e-ph and e-d RTs for each electronic state
are obtained as the inverse of the respective scattering rates,
τ

e−ph
nk = (�e−ph

nk )−1 and τ e−d
nk = (�e−d

nk )−1.
The occupation change vector Fnk in Eq. (11) can be

obtained with an iterative approach (ITA) to solve the BTE
[15,30] or, alternatively, by using the relaxation-time approxi-
mation (RTA), where backscattering is neglected by setting to
zero the two summations on the right-hand side of Eq. (11).
For elastic e-d interactions, a widely used approach to approx-
imately account for backscattering is to use the RTA with the
e-d scattering rates multiplied by a cosine factor [29]. These
so-called transport e-d scattering rates are defined as [29]

�e−d, tr
nk = 1

Nk′

∑
mk′ �=nk

W e−d
mk′,nk(1 − cos θmk′,nk), (15)

where θmk′,nk is the angle between the band velocities vmk′ and
vnk. Using these transport e-d scattering rates on the left-hand

FIG. 1. Ab initio e-d scattering rates and RTs in doped Si at
300 K. (a) Scattering rates and DOS as a function of energy for vari-
ous doping concentrations nd. The shaded data points are raw values
while the solid lines are scattering rates averaged over a small energy
window for better visualization. The calculations include multiple
bands—the three highest valence bands for holes and the two lowest
conduction bands for electrons. (b) Electron RTs along different
paths passing through the CBM, obtained for nd =1017 cm−3.

side of Eq. (11), while leaving out the backscattering terms
on the right-hand side, leads to the transport relaxation-time
approximation (tr-RTA), also known as momentum RTA [31].

In this paper, we first obtain the occupation changes Fnk by
solving the BTE in one of the three flavors described above
(ITA, RTA, or tr-RTA). We then compute the conductivity
using Eq. (9) and from it obtain the carrier mobility μ =
σ/(enc). Our approach allows us to include scattering from
both the e-d interactions due to charged defects (here, ionized
impurities) and the e-ph interactions. We can also obtain the
mobility limited by only one of the e-ph or e-d interactions,
by leaving out, respectively, the defect or phonon scattering
terms in the BTE. The formalism discussed above has been
implemented in our open-source code, PERTURBO [15].

III. RESULTS AND DISCUSSION

We apply our approach to Si doped with phosphorous
(P) or boron (B), respectively, to study electron or hole
carriers; for now, we assume that the dopants are fully ion-
ized. We carry out plane-wave DFT calculations [32] with
norm-conserving pseudopotentials [33] using the QUANTUM

ESPRESSO code [34] (numerical details are provided below
[35]). Figure 1(a) shows our computed e-d scattering rates for
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electron and hole majority carriers in doped Si at 300 K for
doping concentrations of 1016 − 1018 cm−3. The e-d scatter-
ing rates decrease for increasing carrier energy, referenced to
the valence band maximum (VBM) for holes and CBM for
electrons. This trend is opposite to neutral-defect scattering
[5], where the scattering rates increase with carrier energy
due to the greater electronic density of states (DOS), which
measures the number of accessible final states for elastic e-d
scattering. Our results show that this phase-space argument
does not hold for charged defects, where the momentum
dependence of the e-d matrix elements plays a dominant
role—since the matrix elements increase rapidly for decreas-
ing transferred momenta |k′ − k|, the e-d scattering rates are
greater near the valence and conduction band edges, despite
the small DOS values. For the same reason, we find a peak
in the electron scattering rates ∼ 150 meV above the CBM
in correspondence with a band crossing. Note also how in-
creasing doping levels lead to stronger e-d scattering (and
thus greater scattering rates), a relevant sanity check for our
calculations.

Our approach can capture the momentum dependence of
the scattering rates. At each given carrier energy, the scat-
tering rates exhibit a range of values due to the anisotropic
character of the band structure and scattering processes. To
highlight this point, Fig. 1(b) shows the state-dependent RTs
for electronic states in the lowest conduction band along three
different paths passing through the CBM. These paths, chosen
to lie in the kx-ky plane, are specified by an angle α measured
from the kx axis (i.e., the �−X direction in the BZ), so α = 0◦
is the longitudinal and α = 90◦ the transverse valley direc-
tion [3]. For a fixed carrier energy—here, 20 meV above the
CBM—the RTs for α = 0◦, 45◦, and 90◦ are ∼10, 20, and
30 fs, respectively, thus demonstrating that electronic states
with the same energy can have a broad distribution of RTs.
Our ability to treat e-d scattering for anisotropic, multivalley
band structures is key for studies of defect-limited transport
in complex materials. Next, we examine the individual and
combined effects of the e-ph and e-d interactions in a doped
material [see Fig. 2(a)]. Different from the ionized-impurity
case, the e-ph scattering rates increase with carrier energy due
to the dominant role of the scattering phase-space. As a con-
sequence, e-d scattering from ionized impurities dominates
at low energy and e-ph scattering at higher carrier energies.
This result shows that different scattering mechanisms can
govern electron dynamics in different electron energy win-
dows, a valuable physical insight for transport and device
physics.

As an example, a key material property in nano- and mi-
croelectronic devices is the electron mean free path (MFP),
namely, the distance traveled by the carriers between scat-
tering events [36–38]. We compute state-dependent electron
MFPs [39], Lnk = τnk|vnk|, using RTs that include both the
e-ph and e-d interactions (via Matthiessen’s rule [28]). The
computed MFPs for doped Si at 300 K, shown in Fig. 2(b),
are minimal near the band edges due to the strong ionized-
impurity scattering and small band velocities, and increase
nonmonotonically within 1 eV of the band edges. The longest
MFPs, of order 10 − 20 nm, are achieved 200 meV above
the CBM for electrons and 300 meV below the VBM for
holes. The ability to find energy windows with optimal MFPs

FIG. 2. (a) Scattering rates due to each of the e-ph and e-d
ionized-impurity interactions, and their combination obtained via
Matthiessen’s rule. (b) The corresponding mean-free paths due to
both e-ph and e-d scattering mapped onto the band structure. All
results are calculated for Si at 300 K for a doping concentration of
1017 cm−3.

can be leveraged to design hot-carrier devices for energy
and sensing applications [40,41]. Predicting the mobility
in doped semiconductors is critical to designing electronic
and energy devices [3,37]. Most first-principles calculations
have so far focused on the phonon-limited mobility [8,18],
in some cases adding ionized-impurity scattering with sim-
ple models [17]. Here our goal is to capture both phonon
and impurity scattering in a fully first-principles quantitative
framework [42].

We first focus on the dependence of the electron and
hole mobilities on doping concentration. Figure 3(a) com-
pares the computed electron mobility with experiments [43]
for P-doped Si at 300 K. The phonon-limited mobility, com-
puted using the ITA without e-d interactions, is independent
of donor concentration and overestimates the experimental
mobility values at all doping concentrations greater than
1015 cm−3. Including both e-ph and e-d ionized-impurity scat-
tering within the ITA allows us to predict the experimental
data with a high accuracy up to nd =1018 cm−3. Greater dop-
ing concentrations that modify the band structure [44] are not
studied here. We also find that using the RTA for e-ph plus
tr-RTA for e-d scattering provides electron mobilities close to
the full-ITA solution (with e-ph plus e-d interactions) for a
greatly reduced computational cost. Conversely, the RTA for
both e-ph and e-d scattering (i.e., without the cosine factors
in the e-d scattering) significantly underestimates the mobility
[45].

L010801-4



FIRST-PRINCIPLES IONIZED-IMPURITY SCATTERING … PHYSICAL REVIEW MATERIALS 6, L010801 (2022)

(a)

(b)

FIG. 3. Carrier mobility in doped Si at 300 K. (a) Electron mo-
bility in P-doped Si as a function of donor concentration. (b) Hole
mobility in B-doped Si as a function of acceptor concentration.

We obtain analogous results for hole carriers in B-doped
Si at 300 K [Fig. 3(b)]. Comparing the computed hole mo-
bility with experimental data [43] again shows that full
ITA calculations can correctly predict the dependence of the
mobility on doping, providing results in agreement with ex-
periment. Similar results are obtained with e-ph RTA plus
e-d tr-RTA calculations. For hole carriers, we find a greater
discrepancy with experiment (a factor of 1.2−2x) than for
electrons. Improving the effective masses (for example, using
GW or experimental values [17]) and accounting for spin-orbit
coupling would refine the results. Finally, we analyze the
temperature dependence of the mobility for a fixed doping
concentration. For shallow donors, the impurities are fully
ionized at higher temperatures, but only partially ionized or
in their charge-neutral state at lower temperatures, posing
additional challenges to our calculations. Figure 4 shows the
temperature-dependent electron mobility in P-doped Si; one
set of results assumes fully ionized impurities and the other
takes into account partial impurity ionization as described in
the Supplemental Material [26]. When accounting for partial
ionization, our full ITA calculations with both e-ph and e-d
scattering can accurately predict the experimental mobility
[46] above 50 K. However, scattering from the neutral P donor
in our calculations is too weak to reproduce the measured
residual mobility below ∼50 K. This result suggests that the
mobility below 50 K may be limited by scattering mechanisms

FIG. 4. Electron mobility as a function of temperature in
P-doped Si with a doping concentration nd = 9.5 × 1015 cm−3.

not included here. In particular, higher-order neutral-impurity
scattering, which is usually neglected in the interpretation of
transport experiments, has been shown to be important at low
temperature [47]. Our results reinforce the hypothesis that
low-temperature transport may be governed by higher-order
e-d interactions with impurities in their charge-neutral state.
A recent quantitative study using the T-matrix approach [48]
concluded that higher-order e-d scattering rates for neutral
defects can differ by orders of magnitude from the lowest-
order e-d interactions employed here. More work is needed to
include such higher-order effects in our transport calculations.

Our results highlight the need to carefully take into account
partial dopant ionization. In Fig. 4, our full-ITA calculation
assuming fully ionized donors gives electron mobilities well
below the experimental values between 50 − 100 K, and sat-
urate to a residual mobility an order of magnitude lower than
experiment below 100 K. The temperature trend of the mobil-
ity betweeen 50 − 100 K, where partial ionization is essential,
is completely missed.

The framework presented in this paper lends itself to vari-
ous applications beyond our proof-of-concept study of doped
Si. Although we focused on shallow defects, our method can
also be applied to deep-level defects, a topic of great rele-
vance for halide perovskites and narrow-gap semiconductors.
Both bulk and two-dimensional (2D) materials can be treated,
provided the Coulomb potential in the 2D material is modi-
fied to account for the different dimensionality. Among other
systems, van der Waals materials and heterostructures [49],
as well as interfaces between bulk materials, would greatly
benefit from detailed studies of how defects impact charge
transport. Extensions to include higher-order neutral impurity
scattering, for example with the T-matrix approach, will be
considered in future work.

In summary, we developed a rigorous and practical first-
principles approach to compute e-d interactions due to ionized
impurities or other charged defects. Our method can take into
account the atomic structure of the defects, the spatially vary-
ing Bloch wave functions, and an arbitrary, anisotropic, and
multivalley band structure. This framework makes it possible
to capture important defect physics in ab initio calculations
of electron dynamics. Our work enables studies of transport
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from low to high temperatures in doped semiconductors and
oxides without any fitting or empirical parameters.
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