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Quantifying nanoscale charge density features of contact-charged surfaces with an
FEM/KPFM-hybrid approach
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Kelvin probe force microscopy (KPFM) is a powerful tool for studying contact electrification (CE) at the
nanoscale, but converting KPFM voltage maps to charge density maps is nontrivial due to long-range forces
and complex system geometry. Here we present a strategy using finite-element method (FEM) simulations to
determine the Green’s function of the KPFM probe/insulator/ground system, which allows us to quantitatively

extract surface charge. Testing our approach with synthetic data, we find that accounting for the atomic force
microscope (AFM) tip, cone, and cantilever is necessary to recover a known input and that existing methods lead
to gross miscalculation or even the incorrect sign of the underlying charge. Applying it to experimental data,
we demonstrate its capacity to extract realistic surface charge densities and fine details from contact-charged

surfaces. Our method gives a straightforward recipe to convert qualitative KPFM voltage data into quantitative
charge data over a range of experimental conditions, enabling quantitative CE at the nanoscale.
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I. INTRODUCTION

Contact electrification (CE), the transfer of electric charge
between objects during contact, is a ubiquitous and widely
studied phenomenon, yet it is poorly understood [1]. Sur-
prisingly, the surface charge left on insulators after CE is
heterogeneous, with correlated charge features spanning from
nanometers to centimeters [2—6]. Kelvin probe force mi-
croscopy (KPFM) is the state-of-the-art tool for addressing
such features at the nanoscale, having revealed polarity-
inverting “mosaics” [5], diffusive surface dynamics [7], and
correlations between charge polarity and mechanical defor-
mation [8]. Yet there is a catch—KPFM measures a voltage
related to surface charge, but not the charge itself, and con-
version between the two is an unresolved issue. The challenge
is twofold. First, although the necessary insights are peppered
throughout the literature [9-13], there is no widespread un-
derstanding of what the physical relationship between surface
charge and KPFM voltage is. Second, even if that relationship
is understood, one must account for long-range electrostatic
forces that act over the many scales of complex atomic force
microscope (AFM) geometry, including spherical tips with
radii on the order of 10 nm, conical probes with lengths on
the order of 10 um, suspending cantilevers with dimensions
of hundreds of microns, and sample thicknesses ranging from
nanometers to millimeters. Many experiments, if not most, do
not attempt to extract charge and instead just report the KPFM
voltage as a proxy [5,7,14,15]. Unfortunately, doing so leaves
quantitative models for the origin of surface charge hetero-
geneity untestable [6]. In some cases [16—18], the charged
surface and ground plane are thought of as a capacitor, and
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the KPFM signal is presumed to be the voltage across this, but
this intuitive approach has no rigorous physical backing and
cannot be expected at all to work for small charge features.
Analytical approaches to convert voltage to charge have relied
on aggressive simplifications, e.g., approximating the entire
micron-scale AFM probe/cantilever by a nanoscale sphere
[9,11]. In other cases, charge has been estimated with brute
force numerics, e.g., discretizing the surface into point charges
and adjusting their values until the KPFM voltage at one
single location is reached [8,19].

In this work, we present a method to convert KPFM
voltage maps to surface charge density maps that is built
on a rigorous physical basis and takes into account long-
range electrostatic forces and the complex AFM geometry
[Figs. 1(a) and 1(b)]. We focus on amplitude-modulated (AM)
KPFM as it better suits our situation of interest, but in the
Supplemental Material we explain how to implement it for
frequency-modulated (FM) KPFM. Guided by insights from
Refs. [9,11], we first clarify that the key to the problem is
to find the appropriate Green’s function, which neatly casts
the voltage map as a convolution over the surface charge.
We show how this Green’s function is related to different
force terms of the system and leverage this to construct
it in finite-element method (FEM) simulations. With the
Green’s function, converting from voltage to surface charge
is a straightforward matter of deconvolution. We test our
method with synthetic data and confirm it recovers the cor-
rect charge density when the input is known. These tests
further reveal that existing methods can grossly miscalculate
the charge magnitude and, in certain circumstances, can even
produce an incorrect sign of the charge. Applying our method
to experimental data, we demonstrate its capacity to ex-
tract realistic values for charge density from contact-charged
surfaces.

©2022 American Physical Society
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FIG. 1. (a) An AFM probe of tip radius a, cone length ¢, and half
angle 0 is suspended by a cantilever of length L, width W, thickness
T, and inclination 8. The probe and cantilever are conductors at
adjustable potential V. The tip is at distance d above an insulator
of thickness § and relative permittivity «. The bottom of the insulator
is at ground, and the top has a varying surface charge density o (r,).
(b) In KPFM, one measures a potential map Vam/rm that is caused by
the surface charge but in a highly nontrivial way. Here we present a
strategy for the inverse problem; that is, from a KPFM voltage map,
we extract the underlying charge density.

II. THEORETICAL BASIS

The geometry we consider is illustrated in Fig. 1(a). An
AFM probe with tip radius a, cone length ¢, and half angle 6
is separated by height d from an insulator layer of thickness §
and relative permittivity x. The probe is held by a cantilever
of length L, width W, thickness 7', and inclination 8. The
electrode below the insulator is at ground, while the probe
and cantilever are at an adjustable potential V. Regarding
charges in the system, we must make assumptions about what
is present before and after CE and where. Before CE, we
assume trapped charges may be present in the bulk and at the
surface, but (1) they are homogeneously distributed, and (2)
the net charge is zero. As we will show, we can ensure these
conditions experimentally. After and as a consequence of CE,
we assume a thin layer of spatially varying surface charge
o(ry) is present. By “thin,” we mean confined to a region
near the surface whose thickness is small compared to the
tip-sample distance d. For materials similar to ours, this as-
sumption is validated by the stability of charges on extremely
thin substrates [20] and by the observance of dominant lateral
diffusion [7].

Guided by Refs. [9-12], we first consider the electrostatic
energy of the system when a single point charge ¢ is on the
surface. Without loss of generality, this can be written as

U = uog® + u1gV + uV>2. (1)

The first term, uog’, comes from the charge interacting
with its images in the cantilever/probe/insulator/ground
capacitor (hence o ¢?) and depends on the lateral dis-
tance from the tip |r; —r,| and geometric parameters G =
(6,k,a,0,¢,L,W, T, B}, ie., up = up(|ry —rql, G). The sec-
ond term comes from the charge’s interaction with the
capacitor field (o ¢V), and thus, it can be reasoned as u; =
ui(Jry —rgl, G). The final term is the energy of the capacitor
itself (o« V?), and because it is independent of the charge,
uy = uz(G).

We now let V = Vg — Vpc + Vac sin wt, where W, is any
background potential difference in the absence of charge
added from CE (e.g., related to the contact potential differ-
ences or vertically separated bulk charges) and Vpc/ac are
the DC/AC driving voltages. We remark that the sign of Vpc
may change depending on the convention of a particular AFM.
Taking the negative derivative of Eq. (1) with respect to the tip
deflection z gives the vertical force, which can be separated
into a DC component, a component at @, and a component at
2w. Denoting z derivatives with a prime, the @ component is

F, = —u/l qVac sin wt — 214/2 (ng — Vbc)Vac sin wt. 2)

In AM-KPFM, the quantity measured is the value of Vpc that
minimizes the oscillation amplitude, or, equivalently, nullifies
the force, at w. Setting F,, = 0 and solving for Vay = Vpc, we
have

/!

g
2 u

Vam = + Vog. 3)

Thus, the presence of a point charge modifies the AM-KPFM
voltage of a neutral insulator surface by the addition of the
term 3 u|q/u.

We now extend Eq. (3) to account for a continuous
surface charge density o(r,). Considering Eq. (1), a term
like uog* will be present but now encapsulates all surface
charge parcels o (ry)dx,dy,, interacting with all their im-
ages. This term falls out of the analysis as it does not
contribute anything to F,. Second, the u,V? term is present
and remains unchanged since it does not depend on the
surface charge. Third, the u;qV term becomes the sum
of the energies of each charge parcel interacting with the
field of the capacitor, i.e., ui([ry —rql, G)qgV — [[ui(lr; —
rql, G)o(ry)Vdx,dy,. Replacing u}q in Eq. (3) with this inte-
gral form and defining Gamlry —ryl, G) = %u’l/u’2 yield

Vant(re) — Vog = / f o (r)Gani(Ir: — ryl, G)dx,dy,. (&)

As this equation shows, the background-corrected voltage
measured at tip position r; is given by the convolution of the
surface charge density with the appropriate Green’s function
governed by the system geometry.

The inverse problem can be solved by making use of the
convolution theorem [11]. Taking the Fourier transform of
Eq. (4) and assuming the background is zero or corrected, we
have

Vamk) = 6 (k)Gam(k). &)
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Solving for 6 (k) and taking the inverse Fourier transform
results in the charge density,

(6)

o(ry) = ;—I{M}.

Gam(k)

As we mentioned earlier, a similar analysis can be done for
FM-KPFM, which we explain in the Supplemental Mate-
rial [21]. In either case, the key to the problem is finding
the Green’s function. With the Green’s function in hand, re-
covering the surface charge density is as straightforward as
performing three Fourier transforms.

III. DETERMINING THE GREEN’S FUNCTION WITH
FEM SIMULATIONS

Obtaining Gaym amounts to knowing what the functions
uy(|ry — rql, G) and w)(|ry — ryl, G) are, but long-range elec-
trostatics and geometric complexities make this exceptionally
difficult. As previously mentioned, a common heuristic
approach is to assume the charged surface and ground
plane form a parallel plate capacitor and that Vay is the
(probe/cantilever free) voltage difference across this, yielding
o ~ Vamkeg/8 [16,17]. Although this relationship is intu-
itively appealing, we cannot find any reference that provides
a rigorous derivation for it, and in the best case scenario it
would apply only when the lateral extent of charged features
is much larger than the thickness of the insulator, which for
the heterogeneous charge features in nanoscale CE is almost
never the case [5]. More rigorously, Ref. [9] made analytical
headway by approximating the probe/cantilever with just the
spherical tip and the insulator layer being infinitely thick.
They then used the method of images to determine u; and
w, from an infinite series of point charges, thus obtaining a
Green’s function. However, this method is necessarily inaccu-
rate because it ignores the vast majority of the AFM geometry
[13,22].

We overcome geometrical complexity by obtaining the
Green’s function in FEM simulations, using COMSOL to solve
Poisson’s equation in the two-dimensional (2D) axisymmetric
geometry shown in Fig. 2(a). The features of the insulator
layer, tip, and cone are the same as in Fig. 1. Instead of a
continuous charge distribution o (r,), we consider a “point”
charge at a distance relative to the tip [r; — rg|. Due to the axis
symmetry, our point is actually a ring of charge, but superpo-
sition renders the two equivalent. The one departure we make
from Fig. 1 is approximating the (potentially tilted) cantilever
as a disk of radius R. As we will show, this is justified because
the cantilever almost exclusively affects the magnitude of the
Green’s function, but not spatial information. We limit the
simulation volume to a radial distance D >> R and use infinite-
element domains on the lateral /top boundaries.

As we will show momentarily, Gay can be extracted
from our simulations by considering different forces in the
system. We calculate the vertical force on the simulated
probe/cantilever by integrating the Maxwell stress tensor
over the surface. Without magnetic fields, the tensor reduces
to T = ey(EE; — %8,- iE 2). Furthermore, since the cantilever
and probe are conductors, the field is always normal to their
surfaces; hence, the integral for the total vertical force reduces

(a) (b)
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FIG. 2. (a) We perform axisymmetric simulations in COMSOL to
solve Poisson’s equation with a point charge g at |, — r,| and voltage
V at the probe/cantilever and zero at the bottom plane. We approx-
imate the cantilever as a disk of radius R. We integrate Maxwell’s
stress tensor over the probe/cantilever surface to calculate the force.
For a particular {|r, — r,|, G}, we obtain (b) F, in a simulation with
q =0, (c) Fy in a simulation with V = 0, and then (d) F in a simula-
tion with both ¢ and V' being nonzero to calculate F| = F — Fy — F>.
We use ¢, V, Fi and F, in Eq. (7) to determine the Green’s function.

toF —e; - 95 %Eo|E|2n da [Fig. 2(a)]. Referring to Eq. (1), we
can decompose the total force as F = Fy + F| + F>, where
Fy = —uyq’, Fi = —u\qV, and F, = —u,V?. Hence, for a
particular ¢ and V, the Green’s function can be written in
forces (instead of u/, u}) as
1V FR 7
Gam(lre —rgl, G) = E;Fz @)
We can isolate F] and F; as illustrated in Figs. 2(b)-2(d). First,
we perform a simulation with ¢ = 0 and V # 0. In this case,
the force on the probe is just F, [Fig. 2(b)]. To obtain Fi,
we retain this value of F, and perform two more simulations.
In one we set V =0 and g # O to obtain Fy [Fig. 2(c)]. In
the other we use the same nonzero values previously used
for ¢ and V to get the full force F. Using the calculated
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FIG. 3. Evolution of (a) |Fy|, (b) |Fi], (¢c) |F2|, and (d) |Gaml|
starting from a spherical tip and ending with a full cone (solid
curves) and then from a cone with a small effective cantilever to
a large one (dashed curves). The transition from sphere to cone
affects both the magnitude and shape of all curves, whereas the
cone-to-cantilever transition primarily affects the magnitude of F
and hence, via Eq. (7), the magnitude of Gay;. Parameters common to
all curves are § = 1 wm, a = 20nm, d = 10nm, 6 = 20°, k = 2.0,
and T = 1 ym.

values for F', Fyy, and F,, we find F] = F — Fy — F, [Fig. 2(d)].
Putting this all together, the AM-KPFM Green’s function for
a particular geometry at a particular probe/charge separation
is then obtained via Eq. (7). In this procedure, the exact
nonzero values of ¢ and V are not important. As long as
we use the same values, the factor V/q in front of Eq. (7)
ensures that Gay is appropriately scaled. We point out that
Gam 1s a negative function as we have defined it—F; is always
negative (downward), and the factor V F} /g is always positive
(upward). Combined with our AFM convention for the sign
of Vpc, this means that positive (negative) surface charges
produce negative (positive) voltages. Our procedure is similar
to what Ref. [13] used for the forward problem of determining
one single AM-KPFM voltage centered above a charged disk.
By instead considering the effect of point charges to get the
Green’s function, we unlock the capacity to solve the inverse
problem and determine the charge density from an arbitrary
voltage map.

In Fig. 3 we plot |Fy 1 2| and |Gam| as the geometry evolves
from a spherical tip to a full cone and then from a cone
with a small effective cantilever to a large one. The sphere-
to-cone evolution affects all terms. For the “charge” terms
Fy,1 it changes the magnitude and, in the earlier stages (up
to [ ~ 1 um), the shape of the curves. For the capacitive term
F; the shape is necessarily constant, but the magnitude signif-
icantly increases. During the cantilever evolution, the charge
terms remain stable, while the capacitive term continues to
increase. To demonstrate how little the cantilever evolution
affects F}, we calculate the deviation between a full cone with
no cantilever and one with R = 20 wm, which is less than 0.5%
averaged along the two curves. The rationale for these obser-
vations is as follows. First, the Fj term is large right under the
tip because this is where the field of the capacitor is strongest.
Similarly, Fy is large here because this is where the real charge
is closest to its images. Both Fp and F; decay rapidly moving
away from the tip, with the steepest changes occurring at the
radius a. Second, F, depends only on the capacitive attraction
between the probe/cantilever and ground; hence, it continues
to grow whenever more surface is considered. The takeaway
is that spatial information in G depends almost exclusively
on the spherical tip and initial cone evolution (through F}),
whereas the magnitude information is ultimately modulated
by the cantilever (through F). This justifies approximating a
real cantilever with a disk, as it permits calibration to find an
R such that the Green’s function has the correct magnitude,
without adverse effects for spatial information [21]. Strictly
speaking, this convenience is possible only because a, d < I,
but this is true in most KPFM experiments.

IV. APPLICATION OF THE METHOD
TO SYNTHETIC DATA

Before applying our method to experimental data, we per-
form tests with synthetic data. The advantage of this is that
we know what the input surface charge is and can therefore
compare the accuracy (i.e., errors relative to the true value)
of the different charge recovery methods. A preliminary step
in either case is to convert our one-dimensional (1D) Green’s
function into a 2D image, with dimensions set by the scan size
and pixel length scale. We define the center as the origin and
fill in pixel values according to Eq. (7), assuming an N x N
image, where N is an odd number. Pixels whose |ry — 1|
falls between calculated points are filled with interpolation
[Fig. 4(a)]. In Fig. 4(b), we show a synthetic charge density
map consisting of a square with & = 40nC/cm? on a charge-
free background. The side lengths of the square are s = 1 um,
comparable to the size of experimentally observed contact-
charged features [5]. The thickness of the insulator is also § =
1 um. We convert charge density to voltage via the forward
convolution of o and Gam [Eq. (5) and Fig. 4(c)]. We then
use our method (i.e., deconvolving with the correct Green’s
function) to recover exactly the original input [Fig. 4(d)]; that
is, the relative error of our method is ~0%. By design, this
test is tautological—it illustrates that our method works in the
idealized case. We gain further insight by comparing this ac-
curacy to what happens if the other existing charge estimation
methods are applied instead. If we use the “capacitor method”
(o ~ Vamke€p/8), we recover an average charge density in
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FIG. 4. (a) Conversion of a numerically calculated 1D Green’s
function [as in Fig. 3(d)] to a radially symmetric 2D map. The
geometry is the same as in Fig. 3, except with fixed £ = 10 um and
R = 10 um. (b) Synthetic input charge map with side lengths s =
1 um and charge density o = 40 nC/cm?. (c) Forward convolution
of surface charge with Green’s function to generate the voltage map.
(d) Deconvolution of surface charge with Green’s function to exactly
recover input. (e) If instead we use the capacitor method to recover
the charge, it is grossly underestimated; the color bar is the same as
in (d) to highlight this inaccuracy, with a recovered charge so small
(more than a factor of 10) that it is barely visible. Additionally, sharp
spatial features of the original charge distribution are lost. (f) If we
deconvolve the voltage map with a Green’s function corresponding
to just the spherical tip, we do better with the spatial features but still
significantly miscalculate the original charge density.

the square of 3.2 nC/cm? (~91% relative error) [Fig. 4(e)].
This gross underestimation occurs because, even if there is
a rigorous derivation for the capacitor method somewhere, it
can be argued for only when s > §. Since s ~ §, presumed
contributions from (missing) charges at longer length scales
lead to an incorrect reduction. Moreover, the recovered shape
is smeared due to the loss of spatial information—proper de-
convolution allows one to resolve clearer charge features than
can be seen in the voltage map. If instead of using the correct
Green’s function we use one generated for just a spherical
tip [Fig. 4(f)], we do better at recovering spatial information
but still introduce significant error. The charge density in the
square is 18.3 nC/cm? (~51% relative error). As we learned
from Fig. 3, the problem in this case is that by neglecting the
vast majority of the AFM geometry, we improperly calculate
the terms F; and F,. Thus, existing methods can significantly
miscalculate the magnitude of the true charge density. As we
show in the Supplemental Material, in certain circumstances
the KPFM voltage (and by extension the capacitor method)
can even get the sign of the charge incorrect [21]. This occurs
when a small region of charge of one sign is surrounded by a

larger region of the opposite sign, resulting in a voltage map of
a single sign. The takeaway is that quantitative and sometimes
even qualitative information about the surface charge density
is not reliably obtained without a rigorous approach.

V. APPLICATION TO EXPERIMENTAL DATA

We now demonstrate application of our method, perform-
ing contact electrification experiments on aSiO, insulating
layer with § =3 pum and « =~ 4.2. Our AFM is a Park Sys-
tems NX20, equipped with a MikroMasch NSC14/Cr-Au
gold-coated probe with B8 = 13°. This probe is pyramidal
rather than conical, so we use the average cone half an-
gle, 6 =~ 20°. The cantilever parameters are £ = 14 um, a =
55 nm, L =125um, W =32 um, and 7 = 2.1 um, as mea-
sured with scanning electron microscopy. All experiments
were performed in single-pass, AM mode with AC modula-
tion frequency = 17 kHz and offset heights of either d =
19nm [Figs. 5(a), 5(b), 5(g), and 5(h)] or 15 nm [Figs. 5(e)
and 5(f)]. The relative humidity is held constant during the
experiments by means of controlled flow of dry nitrogen gas
into the acoustic enclosure of the AFM, at 36% for Figs. 5(a),
5(b), 5(g), and 5(h) and 10% for Figs. 5(e) and 5(f).

The first step is to find the background voltage V;, that is
present before the addition of o (r,) during CE. We discharge
samples by first placing them in an x-ray discharge chamber
and then baking them at 200°C for several hours. Subse-
quent measurements in a Faraday cup confirm this process
leads to samples with zero net charge, and voltage maps at
several locations confirm the surface is uniform [Figs. 5(a)
and 5(b)]. These steps validate our assumptions about trapped
bulk charges prior to CE—they are reduced to a small enough
level to be negligible. In the experiments described below,
the background value used is from the exact region of inter-
est when background/CE measurements at the same location
were possible [Figs. 5(e) and 5(f)]. When this was not possible
[Figs. 5(g) and 5(h)], we used the global average from several
regions, as in Fig. 5(b). We remark that this value (ng =
—0.66 £ 0.06 V) is close to what is expected for the difference
between the work functions of the backing silicon electrode
and gold tip (~0.56 eV) [23]. The next step is to calibrate R
so the effective cantilever disk mimics the real cantilever. To
do this, we first experimentally measure the total force on the
real cantilever/probe as an applied DC voltage V is varied, as
shown in Fig. 5(c). The parabolic shape is due to the capac-
itive force term F,, from which we extract the value at 1 V
away from the minimum, defined as lev. Next, we perform
charge-free simulations to determine the capacitive force of a
probe with effective cantilevers of different radii R, as plotted
in Fig. 5(b). The potential difference in these simulations is
set to be 1 V; hence, plotting F,'V in the same graph as a
horizontal line, the intersection gives the calibration value. As
the capacitive force depends on the geometry, this calibration
must be done whenever the geometry changes. In the case of
the experiments in Fig. 5, the only geometric parameter we
had to alter was d (from 15 to 19 nm). Given this change
was small, we found the same value (R = 22.2 &+ 0.4 um) for
all panels. After this calibration, we constructed the Green’s
function as previously explained.
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FIG. 5. (a) AM-KPFM image of an uncharged surface to obtain
background Vi,. In this and subsequent voltage maps, we Fourier
filter noise at length scales smaller than the tip radius a. (b) Average
Vpe from five distant regions on the surface, illustrating it is uniform.
Dotted lines represent the global average and standard deviation.
(c) Experimentally measured total force on cantilever vs applied DC
voltage. The surface is uncharged as in (a) and (b). We define and
extract the force 1 V away from the minimum as F,'V. (d) We use F,'V
from (c) (red horizontal line) and compare it with the capacitive force
for simulated probes with growing effective cantilever radii (blue
line), also at 1 V. We find the best R where the two lines intersect
(vertical dashed line). For all panels, the calibrated cantilever disk
has the same value, R = 22.2 4+ 0.4 um. (e) Background-subtracted
voltage map of the surface after charging via scraping a square with
a side length of 1 um. (f) Recovered surface charge density from (e),
where deconvolution reveals the average value —9.8 & 0.4 nC/cm?
in the marked region. (g) Background-corrected voltage map for
different regions of the surface after 15 contacts with a macroscopic
PDMS substrate. (h) Recovered surface charge from (g), showing a
mean charge density of 2.2 4 0.2nC/cm? and high charge regions
with 25.2 & 0.6 nC/cm?.

Now we perform contact electrification experiments. First,
we reproduce the square feature in Fig. 4 by scraping charge
into the surface with the tip connected to the ground, ap-
plying a force of 300 nN while scanning over a region of
1 um in contact-mode AFM (not KPFM mode) and with
no tip bias. This results in the background-corrected voltage
in Fig. 5(e), where, like in Fig. 4(f), we see a dense fea-

ture surrounded by a diffuse halo. Deconvolving this with
our Green’s function, we recover the surface charge den-
sity 0 = —9.8 & 0.4 nC/cm?. We calculate the uncertainty
with Monte Carlo error propagation including contribu-
tions of Vi, and F,'V. We obtain negative charge (positive
voltage) on the surface, which is consistent with previous
results for SiO, contacting metals [24]. As shown in the
Supplemental Material [21], applying the capacitor method
severely underestimates the charge density, as it did for
the synthetic data, yielding —1.1 4 0.1nC/cm? (89% rela-
tive deviation from our method), and using the sphere-based
Green’s function yields —6.6 +0.1nC/cm? (33% relative
deviation).

Next, we perform macroscopic charge transfer experiments
with a 1 cm? polydimethylsiloxane (PDMS) counter sam-
ple (Sylgard 184, 10:1 mixing ratio). We move the SiO;
sample stage out from underneath the probe and perform a
hand-pressed contact with the PDMS. We then return the
sample stage and perform new AM-KPFM measurements.
Figure 5(g) shows an example background-corrected volt-
age map. The voltage for SiO, is negative, indicating the
presence of positive charges. Hence, the PDMS is nega-
tively charged which is consistent with their places in the
triboelectric series. In contrast to other results [5], we see
no features of alternating charge polarity—the surface is
positively charged everywhere, although with heterogeneous
“bright spots” of elevated intensity. Deconvolving this with
the Green’s function, we find that the average surface charge
density is 2.2 +£0.2nC/cm?, with a high-density feature of
25.2 4+ 0.6nC/cm? at a length scale of ~2 um [dashed square
in Fig. 5(h)]. In this case, the average we obtain from the ca-
pacitor method (1.1 & 0.1 nC/cm?, 50% relative deviation) is
more consistent with the rigorous result, presumably since the
length scale of the average charge transfer is much larger than
the thickness of the SiO,. Importantly, however, the capacitor
method still fails to recover the charge of features with a small
lateral scale—for the high-density region, as expected, it again
yields a smaller value of 2.1+ 0.1nC/cm? (92% relative
deviation).

VI. CONCLUSIONS

We have introduced a rigorous method to extract surface
charge density from KPFM voltage maps. Conceptually, our
work reiterates [9,11] that the key to the problem is to find the
appropriate Green’s function, which makes recovering charge
a simple matter of deconvolution. Practically, we overcome
the geometric complexity involved in calculating this Green’s
function by relating it to forces that are obtainable in FEM
simulations. The entire process takes approximately 10 min
on a contemporary computer. Although we have focused on
AM-KPFM, we show in the Supplemental Material that a
similar approach is possible for FM-KPFM [21]. Our main
approximation is to replace the rectangular cantilever as a disk
in our FEM simulations. As we have shown, this is justified
because the effect of the cantilever is almost exclusively to
change the magnitude of the Green’s function, but not spa-
tial information—hence by calibration an appropriate disk
radius can be determined to yield the correct magnitude. We
have shown that existing methods can grossly miscalculate
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the magnitude of the charge density, and in certain instances
the KPFM voltage itself can even misrepresent the correct
sign of charge. Our experiments illustrate the capacity of
our method to quantitatively extract charge and to see finer
features than with the voltage map alone. Our method assumes
rotational /translational symmetry in the geometry and that
the charge to be measured is close to the surface compared
to the tip/sample distance, but these are among the most
common situations. With sufficient computational power to
efficiently calculate symmetry-reduced Green’s functions for
different locations, these limitations could be overcome to
address more complex situations.
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