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Optimizing density-functional simulations for two-dimensional metals
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Unlike covalent two-dimensional (2D) materials like graphene, 2D metals have nonlayered structures due to
their nondirectional, metallic bonding. While experiments on 2D metals are still scarce and challenging, density-
functional theory (DFT) provides an ideal approach to predict their basic properties and assist in their design.
However, DFT methods have rarely been benchmarked against metallic bonding at low dimensions. Therefore,
to identify optimal DFT attributes for a desired accuracy, we systematically benchmark exchange-correlation
functionals from LDA to hybrids and basis sets from plane waves to local basis with different pseudopotentials.
With 1D chain, 2D honeycomb, 2D square, 2D hexagonal, and 3D bulk metallic systems, we compare the
DFT attributes using bond lengths, cohesive energies, elastic constants, densities of states, and computational
costs. Although today most DFT studies on 2D metals use plane waves, our comparisons reveal that local basis
with often-used Perdew-Burke-Ernzerhof exchange correlation is quite sufficient for most purposes, while plane
waves and hybrid functionals bring limited improvement compared to the greatly increased computational cost.
These results ease the demands for generating DFT data for better interaction with experiments and for data-
driven discoveries of 2D metals incorporating machine learning algorithms.
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I. INTRODUCTION

The discovery of graphene nearly two decades ago sparked
an entire new research field of two-dimensional (2D) materi-
als [1]. The 2D materials pedigree has expanded ever since,
thanks to unique properties and visions for novel applications
[2–5]. Most 2D materials are covalently bound and have lay-
ered structures easily exfoliable from three-dimensional (3D)
bulk matter [6,7]. However, in contrast to directional cova-
lent bonding, nondirectional metallic bonding prefers large
coordination numbers, which renders low-dimensional metal
structures energetically unfavorable. Despite this preference
for large coordination, in 2014 atomically thin stable iron
patches were discovered in graphene pores [8]. This discov-
ery has been followed by rapid progress in research on 2D
metals and alloys, making 2D metals a full member of the 2D
materials family [9–14].

The wavering stability of 2D metals makes experiments
challenging, whereby research relies heavily on computa-
tions. A reasonable description of metallic bonding requires
electronic structure simulations, which has made the density-
functional theory (DFT) [15,16] the workhorse method for
modeling 2D metals [17–31]. Most DFT studies have chosen
plane wave (PW) basis sets [32] and the nonempirical Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional [33].
These choices for DFT attributes are plausible in the con-
text of delocalized electrons in periodic systems that are still
lacking experimental data. However, DFT attributes have not
been systematically benchmarked for metallic bonding at low
dimensions. It is not certain whether these standard choices
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are efficient and accurate enough or they if simply waste
computational resources.

The DFT attributes consist of few central choices. The first
choice is the flavor of exchange-correlation (xc) functional,
the level of which is of central importance for consistent
results. A functional performing well in some systems may
perform poorly in others. Here we make use of several xc
functionals to obtain a systematic picture of their perfor-
mance in low-dimensional metallic bonding [34]. The second
choice is the type of basis function. Plane waves are suit-
able for periodic systems, whose electrons fill out the entire
simulation cell. Unfortunately, the non-periodic directions of
low-dimensional systems require large vacuum regions that
make PW simulations inefficient compared to modeling bulk.
Thus, an additional choice in PW simulations is an optimum
size of the vacuum. In this respect, PW and grid-based DFT
share the same challenges [35,36]. Another alternative for
basis is linear combination of atomic orbitals (LCAO), and
controlling its size provides a powerful handle to trade be-
tween accuracy and efficiency [37].

The choice of basis type has implications beyond mere ac-
curacy. For example, PW is not suitable for studying electron
transport using the nonequilibrium Green’s function method
in nanoscaled devices [38]. In addition, with the coming of
data science and machine learning in materials science, lots of
consistent DFT data is required for machine learning-enabled
2D metals studies [39–43]. This efficiency demand calls for a
critical examination of the necessity of PW method to model
metallic bonding in low dimensions.

Third choice for periodic systems is the number of k points
along periodic directions for the desired accuracy. The fourth
choice is the level of Fermi broadening of electronic states,
which is partly a physical choice but mostly a necessity
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FIG. 1. Schematics of the systems with different dimensionali-
ties and coordination numbers C: 1D chain (C = 2), 2D honeycomb
(C = 3), 2D square (C = 4), 2D hexagonal (C = 6), and 3D bulk
(C = 12). The quadrilaterals show the simulation cells.

for rapid convergence of the self-consistent iteration of the
electron density. In practice, there are a plethora of other
choices to make for numerical stability and speedup, but they
are often chosen as default values that have been previously
fine-tuned for each DFT code. In this article, we consider
the above-mentioned choices of DFT attributes regarding xc
functionals, basis sets, vacuum, k-point sampling, and Fermi
broadening, and juxtapose their performance against various
properties of selected low-dimensional metal systems. The
selected systems include a 1D chain (coordination number
C = 2), three 2D lattices (C = 3, 4, and 6), and a 3D bulk
(C = 12) (Fig. 1). These systems enable comparative analysis
of the performance of DFT attributes in various dimensions.
Being low-dimensional systems, these structures are prone
to various symmetry-breaking deformations, such as out-of-
plane buckling in 2D or Peierls distortions in 1D [26,44].
However, in order to enable unambiguous comparison of the
effect of dimensionality and coordination and avoid making
unfounded conclusions based on incomplete set of defor-
mations, we retain our focus on these ideal, nondeformed
systems. We also compare the performance and speed of DFT
to the density-functional tight-binding (DFTB) method, which
is the next-in-line approximation to DFT [45]. One of our
main conclusions is that, for general purposes, DFT-LCAO
can be chosen over the default DFT-PW without compromis-
ing accuracy, a choice which enables simulating transport and
helps generating DFT data more effortlessly. Our treatise will
advance DFT modeling of 2D metals and help boosting the
interaction with experiments.

II. COMPUTATIONAL METHODS

The basic idea DFT is to use the variational principle to
generate exact ground state energy and density for the systems
of interest [15]. The ground state energy E is a functional of
the electron density (n),

E [n] = T [n] + Eext[n] + EH [n] + Exc[n], (1)

where T [n] is the Kohn-Sham kinetic energy for the ficti-
tious noninteracting electron system, Eext[n] is the external
potential energy, EH [n] is the Hartree energy, and Exc[n] is the
exchange-correlation energy. The xc term attempts to capture

TABLE I. Exchange-correlation functionals used in this work.

Functional and its family Refs.

Local density approximation (LDA) [15,55]
Generalized gradient approximation (GGA) [33]
RPBE [56]
PW91 [57,58]
PBE [33]

Hybrid functionals [59]
B3LYP [60]
PBE0 [61]
HSE03 (screening ω = 0.15 Bohr−1) [62]
HSE06 (screening ω = 0.11 Bohr−1) [63]

the complex features of many-body quantum mechanics, and
a variety of approximate xc functionals have been developed
for different purposes [34]. As a result, the quality of xc func-
tional mostly determines the quality of the results. Here, using
the QuantumATK (S-2021.06) DFT implementation [46], we
explore the set of eight xc functionals ranging from the local
density approximation to hybrid functionals (Table I).

We used two types of basis sets, plane waves and LCAOs.
The wave-function energy cutoff for plane waves was 800 eV.
Cutoff needed no separate analysis for low-dimensional met-
als, because it depends only on element and pseudopotential
[47]. For LCAOs, we used three variants: LCAO-M(edium),
LCAO-H(igh), and LCAO-U(ltra). These variants derive from
the numerical basis sets of the FHI-aims package [48], but are
further optimized for computational speed of the LCAO cal-
culator. For example, for Ag the radial functions for Medium
basis are 3s/2p/1d (14), for High 4s/3p/5d/1 f (35), and
for Ultra 4s/3p/5d/2 f /1g (51), with brackets displaying the
total number of orbitals per atom [37,48]. Local basis sets
were used in conjunction with norm-conserving PseudoDojo
pseudopotentials [49].

Further, the total energy convergence criteria for self-
consistent electron density was � 10−7eV. System geometries
were optimized to forces below 1meVÅ−1 and stresses below
0.3meVÅ−3 using the LBFGS [50] algorithm. The k points
were sampled by the Monkhorst-Pack method [51]. All cal-
culations were spin-polarized and the initial guess for lattice
parameters were adopted from the Atlas of 2D metals [20].

To complement the results with various DFT attributes with
wider context, we analyzed the systems with Ag also with
DFTB method at the level of self-consistent charge [45,52].
The Ag parametrizations were taken from earlier studies
[53,54].

III. RESULTS AND DISCUSSION

A. Convergence analysis

We made various systematic convergence analyses for the
group of coinage metals Cu, Ag, and Au [17–19]. Com-
putational and experimental studies have shown that the
free-standing monolayer patches of these metals are stabilized
by graphene pores [13,22,24,31]. The analyses were done
using PBE xc functional [33], projector augmented waves
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FIG. 2. The k-point convergence of total energy for 2D systems
made of coinage metals. δ is the relative energy tolerance and L is
the maximum period of the Bloch function [cf. Eq. (4)]. The linear
fit refers to Eq. (3).

(PAW) for core electrons [64], and plane waves for valence
electrons.

(a) k-point convergence. The k-point convergence was
studied using the 2D systems with a converged vacuum of
15 Å in the nonperiodic direction (as confirmed below). The
total energy is practically converged at 30 × 30 × 1 k-point
sampling, and we define the energy tolerance using the value

�E = ENk×Nk×1 − E30×30×1. (2)

Apart from rapid convergence at very few k points, the con-
vergence is exponential. Chosen relative energy tolerance can
therefore be approximated by

log δ = A1 + B1L, (3)

where δ =| �E | /E3D is an (approximate) relative energy tol-
erance, the ratio between energy tolerance to the 3D cohesive
energy E3D [65]. The length L = acNk , the product of simula-
tion box length and the number of k points in corresponding
direction, is the maximum period of the Bloch wave function.
Using L as the convergence parameter helps identifying the
required k-point sampling for variable simulation cell sizes in
later research.

The k-point convergence is not monotonic; more k-points
does not necessarily mean better accuracy (Fig. 2). How-
ever, for different system symmetries and cell shapes and
sizes, the ansatz (3) works satisfactorily. Linear regression
analysis to the data gives the parameters A1 = −1.29 and
B1 = −0.036 Å−1 (Fig. 2). Inverting Eq. (3), we can obtain
an optimal number of k points for given simulation cell size
ac and desired accuracy δ as

Nk (δ) = ceil

(
L(δ)

ac

)
, (4)

where ceil(x) = �x� maps x to the least integer greater than or
equal to x. For instance, with relative accuracy δ = 10−3 one
obtains the Nk = �47 Å/ac�, suggesting �-point calculations

FIG. 3. Vacuum convergence of the total energy for 1D and 2D
systems made of coinage metals. δ is the relative energy tolerance
and Lnorm is vacuum normalized in terms of van der Waals radii. Free
atom vacuum convergences are added for comparison.

for 4.7-nm-sized simulation cells. In subsequent analyses, we
use Nk = 13, suggesting ∼δ = 10−2.5...−3 relative tolerance.

(b) Vacuum convergence. Using plane waves requires pe-
riodicity in all directions, regardless of system dimensions.
Low-dimensional systems need therefore a large vacuum
region in the nonperiodic direction to avoid spurious inter-
actions with periodic images of the system. Larger vacuum
means more volume and computational cost, implying a need
to minimize the vacuum without affecting the energy. For
a complete picture, we investigate vacuum convergence not
only in 2D systems and but also in 1D chains and free atoms.

We normalize atoms’ dimensions by their van der Waals
radii RvdW and consider the normalized vacuum Lnorm =
Lvac/RvdW , where Lvac is the vacuum along the non-periodic
direction (, i.e., the separation between periodic images.) The
total energy is practically converged at 8-Å vacuum, and we
define the energy tolerance as �E = E (Lvac) − E (8 Å) and
relative energy tolerance again as δ = �E/E3D. The toler-
ance converges roughly exponentially, log δ = A2 + B2Lnorm

(Fig. 3). Consequently, the vacuum for a desired relative en-
ergy accuracy for a given element can be estimated from

Lvac(δ) = RvdW
(log δ − A2)

B2
, (5)

where the parameters A2 = 2.38 and B2 = −1.65 were ob-
tained by linear regression. For instance, the relative tolerance
δ = 10−3 requires Lvac = 3.3 × RvdW . In subsequent analysis,
if not said otherwise, we will use Lvac = 10 Å, which for Ag
means δ = 10−4.2, in rough alignment with k-point conver-
gence.

Still, such a single estimate is indicative at best. The vac-
uum convergence follows roughly the coordination number,
free atom converging the slowest, hexagonal system the fastest
(Fig. 3). This suggests that for a given element the vacuum
should be set by the lowest-coordinated atom—or by the
free atom to be on the safe side. After all, a modest 16%
increase in vacuum (Lnorm = 2.5 → 3.0) may increase the
relative accuracy by an order of magnitude. Thus, a single fit
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FIG. 4. The effect of electronic temperature on the cohesion en-
ergy of coinage metals in different dimensions.

as above is not the best guideline and the vacuum convergence
is best considered by case basis, especially in the presence of
possible charge transfer.

B. Effect of Fermi broadening

In principle the Fermi broadening is a physical parameter
intimately linked to the electronic temperature T ; in practice
it is frequently used as a technical parameter to accelerate the
self-consistency convergence. The technical attitude towards
broadening is evident in available methods other than the
Fermi function. Computational literature shows a plethora of
different values for Fermibroadening, but its effect is rarely
discussed in detail. For insulators and semiconductors the
broadening is inconsequential, but for metals it matters. In
this section, we want to investigate its effect on the energetics
systematically, for sheer completeness and future reference.

Ideally, broadening should be chosen to enable rapid con-
vergence without conflicting too much with other convergence
parameters. We investigated the effect of broadening by in-
creasing the electronic temperature T from 10−5 K to 1000 K
and looked at the energy difference

�E (T ) = E (T ) − E (10−5 K). (6)

The temperature 10−5 K was the smallest that enabled robust
convergence for all systems. Vacuum was 15 Å for all systems.
As a result, 1D systems were most sensitive to the broadening,
3D bulk systems were least sensitive (Fig. 4). This result is
plausible, because the density of states is the smallest for
1D systems. In 2D and 3D systems there are more k points,
density of states at Fermi level is greater, and state occupations
average over a larger set of states, consequently diminishing
the influence of broadening. The 2D systems show energy
variation around ∼10 meV upon increasing temperature to
1000 K, corresponding to 86 meV energy broadening (Fig. 4).
For the remainder of the calculations in this article, we used
the electronic temperature of 580 K (=̂0.05 eV).

FIG. 5. The cohesive energies of optimized 1D, 2D (hc, sq, and
hex), and 3D systems of Ag with different xc functionals.

C. Performance of exchange-correlation functionals

We investigated the performance of xc functionals by first
fixing certain attributes. To eliminate uncertainties from an
insufficient description of valence electrons, we used the most
complete PW basis set and the PAW potential to describe the
core electrons. We used the converged number of k points
and size of vacuum from previous analysis, as well as the
recently adopted 0.05 eV broadening. With these choices, we
may concentrate on the performance of xc functionals without
worrying too much about artifacts from other sources.

We also investigate xc functionals by using only Ag sys-
tems. By belonging to the same group, the coinage metals
follow similar trends and it is reasonable to expect other
metals to follow the trends of Ag. Still, we do not claim Ag
displays completely universal trends, for there are elements
that have complex many-body effects even beyond the capa-
bilities of DFT.

In the following, we compare the xc-functional perfor-
mance against bond lengths, cohesive energies, and elastic
moduli of all 1D, 2D, and 3D systems. The electronic struc-
ture is compared in terms of later-introduced characteristic
figures related to the density of states at the Fermi-level.

(a) Cohesive energies. The cohesive energy was defined as

Ecoh = Efree − E/N, (7)

where E is the energy of the system with N atoms and Efree is
the energy of free atom calculated by placing it inside a 15-Å
cube.

All functionals display similar trends, cohesive energy in-
creasing monotonically from 1D to 3D bulk (Fig. 5). Yet the
quantitative differences are visible. LDA displays its well-
known tendency to overestimate cohesive energies. The 3D
bulk cohesion shoots over the experimental value by 23%
[65]. Generalized gradient approximation (GGA) functionals
work significantly better, where PW91 and PBE are now
off by approximately ≈13 − 14 %. In contrast, revised PBE
(RPBE) shows considerable underbinding and even less ac-
curate cohesion than LDA. Among hybrid functionals, the
performance of screened exchange Hyde-Scusceria-Ernzerhof
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FIG. 6. Trends of low-dimensional energetics with different xc
functionals. The fitted scaling exponent γ is plotted for different xc
functionals; smaller γ means that energy depends less linearly on the
coordination number [see Eq.(7)].

(HSE)03 and HSE06 is better than PBE0, which still suffers
from the spurious Coulomb interaction. B3LYP describes co-
hesion poorly and is outperformed by practically all other
functionals, and should be avoided while modeling 2D
metals—a conclusion not surprising in the light of previous
observations [66]. In addition, convergence of free atom with
B3LYP was difficult and required loosening the convergence
criterion to � 10−6 eV (loosening had an insignificant ef-
fect on the cohesion of Fig. 5). As a rule, GGA and hybrid
functionals outperform LDA, but a hybrid functionals do not
necessarily outperform GGA. PW91 and PBE appear as still
as fair choices for robust energetics for general purposes.

(b) Dimensionality dependence of energetics. In 2D metal
modeling, the coordination of single metal atoms can range
from C ∼ 1 to C ∼ 6 and occasionally beyond. The compu-
tational method should therefore capture correctly the relative
energetics of atoms at different coordination numbers. In other
words, the cohesion should increase with the coordination
number with an appropriate dependence. Our ansatz for the
C dependence for the cohesion Ecoh is

Ecoh(C) = E3D
coh × (C/12)γ , (8)

where E3D
coh is the 3D bulk cohesion and γ is an exponent that

quantifies the coordination or dimensionality dependence of
the cohesion energy. The ansatz has the correct asymptotic
limits [Ecoh(0) = 0 and Ecoh(12) = E3D

coh] and suffices for our
purposes in this article. (We tested also more refined ansatzes,
but the conclusions remained the same.) The exponent γ was
obtained by fitting Eq. (8) for energies from each functional.

As the result, LDA and all GGA and HSE functionals show
roughly the same γ , the same dimensionality-dependence in
energetics (Fig. 6). Especially the dependencies in different
GGAs are nearly identical. Only the dependencies in B3LYP
and PBE0 are clear outliers, PBE0 showing more linear de-
pendence on C (γ closer to one) and B3LYP showing more
nonlinear dependence on C (γ further away from one). In-

FIG. 7. Optimized bond lengths of 1D, 2D (hc, sq, and hex), and
3D systems of Ag with different xc functionals.

terestingly, although LDA badly overestimates the absolute
cohesion energies, the dimensionality dependence lies some-
where in between GGAs and HSE functionals. In conclusion,
GGA-PBE appears to capture the dimensionality dependence
of energetics comparably well and be still a serious competitor
to the far more costly HSE functionals.

(c) Bond Lengths. The bond lengths were obtained directly
from the optimized lattice constants (Fig. 7). In accordance
with overbinding, LDA functional shows small bond lengths.
In 3D, the functionals PW91, PBE, PBE0, HSE03, and HSE06
are underbinding and show 1 − 2 % too large bond lengths.
PBE0 shows shortest bonds among hybrid functionals, and
B3LYP shows longest bonds among all functionals. Nearly
all functionals show monotonic increase of bond length with
coordination number. Only LDA functional is an exception:
it has a slightly smaller bond length for 2D hexagonal lattice
than for 1D chain.

(d) Elastic constants (theory recap). Due to colorful prac-
tices in the notations of low-dimensional elasticity, and to
avoid any confusion, we wish to define explicitly the elastic
constants presented in this article.

Within the linear elastic regime the stresses {σi} and strains
{εi} (i = 1 . . . 6) satisfy the generalized Hooke’s law

σi =
6∑

j=1

Ci jε j, (9)

where Ci j are elastic constants and expressed as a 6 ×
6 matrix and ε1 = εxx, ε2 = εyy, ε3 = εzz, ε4 = 2εyz, ε5 =
2εxz, ε6 = 2εxy, when following the Voigt notation. We
adapted the formalism of Refs. [67–71] to evaluate the elastic
constants for 1D, 2D, and 3D systems.

In 3D, the strain tensor is

ε3D =
⎛⎝ ε1 ε6/2 ε5/2

ε6/2 ε2 ε4/2
ε5/2 ε4/2 ε3

⎞⎠. (10)

The elastic constants are obtained by applying selected strains
{εi} to the equilibrium simulation cell and by calculating the
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TABLE II. Formulas for bulk modulus (K), shear-modulus (G),
Young’s modulus (Y), and Poisson’s ratio (μ) for the systems in
Fig. 1.

System K G Y μ

1D C11 – K –

2Dhex/hc
C11+C12

2
C11−C12

2
4KG
K+G

K−G
K+G

2Dsq
C11+C12

2 C66
C2

11−C2
12

C11

C11
C12

3D C11+2C12
3

3C44+C11−C12
5

9KG
3K+G

3K−2G
2(3K+G)

partial derivatives

Ci j = ∂2�U

∂εi∂ε j
. (11)

Here �U (εi ) = U (εi ) − U (0) is the elastic energy density per
unit volume, where U (εi ) is the energy density at strain εi. For
a system with cubic symmetry, the energy density is

�U (εi ) = 1
2

(
C11ε

2
1 + C11ε

2
2 + C11ε

2
3 + C12ε1ε2 + C12ε1ε3

+ C12ε2ε1 + C12ε2ε3 + C12ε3ε1 + C12ε3ε2

+ C44ε
2
4 + C44ε

2
5 + C44ε

2
6

)
. (12)

For 2D systems, the strain tensor is

ε2D =
(

ε1 ε6/2
ε6/2 ε2

)
. (13)

Again, the elastic constants are obtained by applying selected
strains {εi} to the equilibrium simulation cell and by calculat-
ing the partial derivatives

Ci j = ∂2�U

∂εi∂ε j
. (14)

Here �U (εi ) = U (εi ) − U (0) is the energy density per unit
area, where U (εi ) is the energy density at strain εi. For a
system with square symmetry, the energy density is

�U (εi ) = 1
2

(
C11ε

2
1 + C22ε

2
2 + 2C12ε1ε2 + 2C16ε1ε6

+ 2C26ε2ε6 + C66ε
2
6

)
(15)

and all three elastic constants C11, C12, and C66 are indepen-
dent. However, for a hexagonal system, only constants C11 and
C12 are independent and C66 = (C11 − C12)/2.

Finally, for 1D systems, the strain-tensor matrix is simply
ε1D = (ε1). Yet again, the elastic constant is obtained by ap-
plying the strain ε1 to the equilibrium simulation cell and by
taking the partial derivative

C1 = ∂2�U

∂2ε1
. (16)

Here �U (εi ) = U (εi ) − U (0) is the energy density per unit
length, where U (εi ) is the energy density at strain εi. In other
words,

�U (ε1) = 1
2C11ε

2
1 . (17)

Table II summarizes the formulas for the elastic constants
and their relations. Note that the elastic constants in different
dimensions have also different units: they are GPa for 3D, GPa

nm for 2D, and GPa nm2 for 1D (GPa nm3−D or eV/ÅD in
short, where D is the dimensionality).

(e) Elastic constants (results). Functionals show similar
trends for bulk moduli, but there are quantitative differences
[Fig. 8(a)]. We remind that because the elastic moduli in dif-
ferent dimensions have different units, the trend with respect
to the coordination number can be compared only between
different 2D lattices. LDA overestimates the bulk moduli sys-
tematically, for 3D bulk by almost 40%. Only for the 1D
chain is the modulus in line with HSE06. Among GGAs,
the bulk moduli of PW91 and PBE are nearly the same.
The hybrid functionals have fairly similar performance, with
B3LYP again showing a striking exception, especially related
to 1D modulus. These observations in bulk moduli apply also
to Young’s moduli [Fig. 8(b)]. Only GGAs show somewhat
larger stiffness and the trends in 2D moduli for B3LYP and
PBE0 are different.

The shear modulus and Poisson’s ratio are defined only
for 2D and 3D systems [Figs. 8(c) and 8(d)] Moreover,
shear modulus is not reported for the 2D square lattice due
to instability against shear deformations. In addition, some
deformations with PBE0 and B3LYP resulted in consistent
numerical errors, forcing us to omit shear and Young’s mod-
ulus as well Poisson ratio for these functionals. In summary,
the most consistent behavior in elastic moduli is displayed by
HSE and GGA functionals. LDA, B3LYP and PBE0 function-
als suffer from both numerical challenges and deviant trends
at least in some elastic properties.

(f) Electronic structure (density of states). To complement
pure energetic and geometric properties, we now extend our
investigations to electronic structure properties. Electronic
structure is a complex topic with many features. To reduce
complexity and extract trends, we investigate the electronic
structure simply in terms of the density of states DOS(ε)
and its projections DOSl (ε) to s (l = 0), p (l = 1), and d
(l = 2) angular momentum states. In addition, we focus only
on energies at the vicinity of the Fermi-level ε = εF .

Consequently, we define the quantities

Nl =
∫ ∞

−∞
DOSl (ε)g(ε) dε (18)

that give the number of l-type orbitals surrounding the Fermi
level. The DOS is also normalized by the number of atoms in
the simulation cell. The envelope function g(ε) has a Gaussian
form

g(ε) = exp

[
−1

2

(
ε − ε f

σ

)2
]

(19)

and we used σ = 1 eV energy window around εF .
In general, the s-orbital contribution decreases with in-

creasing coordination number for all xc functionals (Fig. 9).
In 1D the main contribution comes from s-orbitals, followed
by p- and d-orbitals for all functionals. In 2D this order is
rearranged to p > s > d. In 3D this same trend is retained by
all hybrid functionals. The LDA, PW91, and PBE have very
similar orbital contribution ordering. For all xc functionals,
the p contribution is the largest for honeycomb, smallest for
1D, and smallest for hexagonal among 2D systems. The order-
ing of Np with respect to different coordination number is the
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FIG. 8. Elastic properties of low-dimensional systems of Ag with
different xc-functionals. Bulk moduli (a) and Young’s moduli (b) are
shown for all systems, shear moduli (c) and Poisson’s ratio (d) are
shown only for 3D and stable 2D systems. Units for moduli are
GPa nm3−D, where D is the system dimensionality.

same for GGAs, PBE0, and B3LYP. For HSE03 and HSE06
all Nl are very similar. The d-orbital contributions follow trend
similar to s orbitals. The value of Nd is the highest for LDA

FIG. 9. Effect of xc functional on the electronic structure of low-
dimensional metals made of Ag. Heat map visualizes the number
of s-type states (Ns), p-type states (Np), d-type states (Nd ), and the
total number of states (Nt ) within a ∼1 eV energy window around
the Fermi-level [see Eq.(18)].

and the lowest for PBE0 for all systems; the most visible
difference is the generally low Nd of all hybrid functionals,
especially in 1D.

Regarding the total DOS, all GGAs produce nearly iden-
tical Nt , apart from 3D bulk in RPBE. The total DOS from
hybrids differs somewhat from the LDA and GGA func-
tionals. HSE functionals show similar Nt for C = 6 and 12
systems, but differ in other systems. Overall, trends in the total
densities are inconsistent for LDA and PBE0 functionals, but
somewhat consistent among GGA as well as B3LYP and HSE
functionals.

(g) Conclusions on xc functionals. To summarize, PW91
and PBE perform similarly for forces, energies, and densi-
ties of states, while RPBE shows underbinding, smaller bond
lengths, and smaller elastic constants. LDA is inferior to GGA
practically in all respects. Among hybrid functionals, the
performances of HSE03 and HSE06 aligned in all respects.
B3LYP failed to improve GGA in terms of accuracy in the
lattice constants and cohesive energies, even if its electronic
structures resembled those of HSE functionals. Cohesion en-
ergy displayed congruent dimensionality dependences, apart
from visibly differing dependences by B3LYP and PBE0
functionals.

Before reaching ultimate conclusions, however, we have
to consider the computational cost (Table III). As expected
by the nonlocal character of the hybrid functionals, already
minimal-cell systems require 2 − 3 orders of magnitude more
computational time for hybrids than for LDA and GGA, and
for larger systems the difference would increase even further.
Considering the low computational cost, GGA functionals
perform extremely well compared to hybrid functionals, com-
pared even to the most robust HSE family. To conclude, unless
the low-dimensional metals are studied for very specific pur-
poses, the standard PBE indeed remains the preferred weapon
of choice for low-dimensional metals modeling.
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TABLE III. Computational cost of different xc functionals: Time
in seconds to calculate the energy of minimal-cell systems using
24 cores. The cell has one atom for all systems except for 2D
honeycomb.

LDA RPBE PW91 PBE B3LYP PBE0 HSE03 HSE06

1D 39 39 44 43 476 1360 491 1897
hc 49 59 62 58 16786 20937 18662 15006
sq 18 24 23 22 1469 1739 1535 1493
hex 16 19 20 17 1454 1800 1698 1675
3D 14 18 19 17 88553 41352 38802 38704

D. Performance of different basis sets

In this section, we choose PBE xc functional and repeat
the systematics of the previous section while this time varying
the basis set. The converged plane wave basis gives the best
results that provide the reference assessing the performance
of the three LCAO basis sets Medium, High, and Ultra intro-
duced in Sec. II.

To obtain a broader context, we compared the DFT-LCAO
with DFTB method, which uses a minimal local basis and
contains approximations speeding up the calculations. Here
we used the parameters available for Ag developed earlier
[53,54]. However, parametrization can be done in different
ways, and one should not consider these results as unique and
absolute representation of DFTB.

(a) Cohesive Energies. The LCAO-U and LCAO-H pro-
duce cohesive energies very close to those of PW (Fig. 10).
LCAO-M overbinds slightly in comparison, but the accuracy
for 2D systems is still 3 − 4 % compared to PW. The depen-
dence of cohesion on coordination number is reproduced with
all basis sets, and differences are difficult to see on absolute
scale. DFTB follows similar behavior, but shows significant
overbinding, especially for 3D bulk.

(b) Dimensionality dependence of energetics. As with xc
functionals, we investigate how basis set affects the de-

FIG. 10. Cohesive energies of optimized 1D, 2D (hc, sq, and
hex), and 3D systems made of Ag with different basis sets. Bars on
the left show DFTB results with minimal basis for comparison.

FIG. 11. Trends of low-dimensional energetics with different ba-
sis sets. The fitted scaling exponent γ is plotted for different basis
sets; smaller γ means that energy depends less linearly on the coor-
dination number [see Eq. (7)]. The vertical scale is the same as in
Fig. 6.

pendence of energetics on coordination number. Again this
dependence is analyzed via the scaling exponent γ in Eq. (8)
fitted to the cohesive energies as a function of C.

Compared to PW, the dependence on C becomes system-
atically more linear as we move from Ultra to High and
ultimately to Medium basis (Fig. 11). However, still the
Medium basis reproduces γ to within 5 % accuracy compared
to PW basis. Even DFTB compares well in the overall coor-
dination dependence, although there are visible problems in
capturing the DFT trends for 2D systems (the green bars for
DFTB in Fig. 10). However, to state the main point, the choice
of basis influences dimensionality dependence of energetics
far less than xc functional: note that Figs. 6 and 11 have the
same scale in γ .

(c) Bond lengths. The LCAO-U and LCAO-H bond
lengths are very similar, accurate to within 0.77 % compared
to PW (Fig. 12). All LCAO variants overestimate all bonds,
LCAO-M having the lowest performance with 1.6 % too long
bonds. DFTB no longer captures the DFT trends in coordi-
nation dependence. The 1D chain bond length is larger than
honeycomb and the 2D bonds vary wildly, even if the C
ordering still remains correct.

(d) Elastic constants and moduli. For 1D and 2D systems,
elastic moduli have minor dependence on basis set (Fig. 13).
The largest deviation from PW occurs for 3D bulk, for all
LCAO variants. This deviation likely stems from the bet-
ter space-filling character of PW basis. Moreover, although
performing well in cohesion and bond lengths, LCAO-M
performs poorly in all elastic properties. LCAO-U is close
to PW in all respects, and LCAO-M captures all the same
trends, even if with some quantitative differences. These re-
sults suggest that, except perhaps for LCAO-M, LCAO basis
can be reliable for studying mechanical properties of low-
dimensional metallic systems. The LCAO variant dependency
of elastic properties is even smaller than the changes upon

124004-8



OPTIMIZING DENSITY-FUNCTIONAL SIMULATIONS FOR … PHYSICAL REVIEW MATERIALS 6, 124004 (2022)

FIG. 12. Bond lengths of optimized 1D, 2D (hc, sq, and hex),
and 3D systems made of Ag with different basis sets.

switching from GGA to hybrid functional (compare Figs. 8
and 13).

In comparison, DFTB shows both trend differences and
large absolute differences compared to DFT-LCAO (Fig. 13).
For example, the 1D elastic modulus is overestimated by a
factor of ∼5. Even the trend within 2D systems was not
reproduced. It appears that the Ag parametrization should
be revised for more reliable mechanical properties of low-
dimensional Ag systems.

(e) Electronic structure (density of states). Also the elec-
tronic structure from LCAO is compared here against PW
results, using the indicator numbers given by Eq. (18). For
2D structures PW gives orbital contributions in order p >

s > d (Fig. 14). For LCAO this trend shuffles to s > d > p,
that is, the p contribution diminishes for all LCAO variants.
For 1D system the orbital ordering for PW and LCAO basis
remains the same. However, still all basis sets—including
minimal-basis DFTB—show consistent C dependence in or-
bital contributions around the Fermi level. LCAO-H and
LCAO-U results align better, while LCAO-M results are dif-
ferent in some respects. In summary, the C dependence of
the total DOS in 2D metals is reproduced by LCAO to a fair
degree, but the orbital contributions are different.

(f) Conclusions on basis sets. To conclude, LCAO basis
competes extremely well with PW for studying energetic and
geometric properties of low-dimensional metal systems. Even
elastic moduli are reproduced reasonably well by LCAO-
H and LCAO-U basis, compared to converged PW basis.
The performance of LCAO-M basis was notably modest, re-
garding elastic properties and also the details of electronic
structure. The orbital breakup of the electronic structures at
the vicinity of Fermi-level for PW and LCAO variants differed
markedly.

Regarding DFTB, the Ag parametrizations clearly require
revisiting. The cohesive energies are too large, bond lengths
are both large and small, and elastic moduli are close to
arbitrary. Still many of the qualitative trends regarding C
dependence were reproduced reliably.

FIG. 13. Elastic properties of low-dimensional systems of Ag
with different basis sets. Bulk moduli (a) and Young’s moduli (b) are
shown for all systems, shear moduli (c) and Poisson’s ratio (d) are
shown only for 3D and stable 2D systems. Units for moduli are
GPa nm3−D, where D is the system dimensionality.
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FIG. 14. Effect of basis set on the electronic structure of low-
dimensional metals made of Ag. Heat map visualizes the number of
s-type states (Ns), p-type states (Np), d-type states (Nd ), and total
number of states (Nt ) within a ∼1 eV energy window around the
Fermi-level [see Eq.(19)].

However, before again reaching ultimate conclusions, we
have to consider the computational cost with different basis
(Table IV). The cost was investigated by simulation cells with
32 − 64 atoms and a couple of dozen cores. The comparison is
thus by no means unique or absolute, but it does give a rough
inkling of the computational demands. As expected, DFTB
outspeeds DFT by one to three orders of magnitude. Within
DFT, switching from LCAO-M to LCAO-U results in cost
increases from a factor of two (1D) up to a factor of ∼15 (3D).
Especially for low-dimensional systems, LCAOs are faster
than PW, nearly by two orders of magnitude. For 3D bulk PW
is very competitive against LCAO due to lacking a vacuum
region; here LCAO-U is even slower than PW. In conclusion,
unless very high accuracy is of central importance, LCAO has
demonstrated a fair accuracy in most properties and should
be prioritized over PW due to its superior efficiency. Even
LCAO-M basis can be considered for simulations where the
improved speed wins over lost accuracy.

E. Combined scanning of xc functionals and basis sets

Above we investigated xc functionals (with PW basis)
and basis sets (with PBE functional) separately. However, the

TABLE IV. Computational cost of different basis sets: Time in
seconds to calculate the energy of systems using 24 cores. The
parenthesis contain the number of atoms in the supercell.

Systems DFTB LCAO-M LCAO-H LCAO-U PW

1D (32) 10 175 265 310 11890
2D hc (64) 20 215 355 610 13120
2D sq (64) 18 190 300 500 12370
2D hex(64) 17 130 290 655 6885
3D (64) 19 145 855 2220 2050

performance of xc functionals and basis sets can be coupled.
We therefore complement our analysis by combined scanning
of different xc functionals with different basis sets. The bond
lengths, cohesive energies, elastic constants, and orbital con-
tributions to DOS obtained at different basis set xc functional
-combinations are shown in Tables V, VI, and VII in the
Appendix.

For LDA, the choice of basis set did not affect the cohesion
dependence on C (Table V). Changing the basis set from
PW to LCAO increases the cohesive energy for C � 4 and
decreases it for C = 1 and 3. Decreasing the LCAO size also
decreases the cohesion, as expected in the light of variational
principle. Bond lengths with PW, LCAO-U and LCAO-H
basis are nearly equal. With LCAO-M bonds are longer for all
systems. The elastic properties are nearly basis independent,
with the notable exception of LCAO-M (Table VI). Most
sensitive to the choice of basis is the electronic structure; all
LCAO variants show the same trend, which however differs
significantly from PW (Table VII).

For GGAs, the performance remains robust upon reducing
the size of the basis set. In fact, the observations in Subsection
III D with PBE are representative for other GGAs as well.
Switching PW to LCAO-U or LCAO-H changes bond lengths
and cohesive energies less than 1 %; less robust LCAO-M de-
creases cohesive energies by 4 % and increases bond lengths
by ≈1.5 % Table V). Basis set sensitivity is the smallest for
PW91 and the largest for RPBE. Elastic constants follow the
accuracy trends similar to those of energetics and geometric
properties. PBE shows some basis set sensitivity, especially
for the bulk moduli of 2D systems (Table VI).

For hybrid functionals, the matters are less systematic.
Using LCAO-M in conjunction with unscreened B3LYP and
PBE0 functionals results in significant overbinding; bond
lengths are underestimated by more than 10 % (Table V).
With LCAO-H and LCAO-U basis sets, the same xc func-
tionals underestimate bonds only by ≈2 %, while increase
cohesive energies by � 24 %. B3LYP and PBE0 are thus
extremely sensitive to the quality of LCAO basis. Moreover,
B3LYP and PBE0 are unable to produce elastic moduli due
to persistent numerical errors. In contrast, the screened HSE
functionals produced robust geometries, energetics and elastic
properties upon changing the size of the LCAO basis. The
robustness was even better than with PW91 and PBE, al-
though admittedly at a considerable computational cost. The
orbital contributions to DOS with PW and LCAO basis were
different; the same effect was observed for PBE functional
(Fig. 14). Among different LCAO variants, LCAO-H and
LCAO-U show similar orbital contributions for all systems. In
addition to energetic and geometric properties, the peculiari-
ties of B3LYP and PBE0 functionals are observable also in
electronic properties (Table VII). In general, hybrid function-
als in conjunction with LCAO-H and LCAO-U basis requires
prohibitive computational resources even for a single atom.

F. The effect of DFT implementation

In addition to DFT attributes, it is important also to be
able to rely on the DFT implementation itself. For com-
pleteness, therefore, we briefly discuss the magnitude of
differences related to the numerical implementation of DFT.
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We calculated the cohesive energies, bond lengths, and elastic
moduli also with the GPAW code, using plane wave basis
with the same 800 eV energy cutoff and default parame-
ters [36]. The QuantumATK/GPAW cohesive energies were
1.1671 eV / 1.1661 eV (1D), 1.5062 eV / 1.5054 eV (2D hc),
1.8293 eV / 1.8286 eV (2D sq), 2.0583 eV / 2.0570 eV (2D
hex), 2.5326 eV / 2.5323 eV (3D), bond lengths 2.6480 Å
/ 2.6501 Å (1D), 2.6700 Å / 2.6682 Å (2D hc), 2.6998 Å
/ 2.700567 Å (2D sq), 2.7877 Å / 2.7894 Å (2D hex),
2.9301 Å / 2.9305 Å (3D), and bulk moduli 18.32 GPa nm2

/18.73 GPa nm2 (1D), 17.20 GPa nm / 17.21 GPa nm (2D
hc), 31.46 GPa nm / 31.26 GPa nm (2D sq), 38.07 GPa nm /

37.79 GPa nm (2D hex), 92.03 GPa / 90.37 GPa (3D). Thus,
default parameters without tuning give code-related differ-
ences in cohesive energies � 1.3 meV, in bond lengths �
0.002 Å, and in bulk moduli � 1 % (2D systems) or � 2%
(1D and 3D systems). Although the comparison used the PBE
functional and plane waves, it is reasonable to suspect the
level of differences to remain similar also for other function-
als and basis sets. Overall, code-related differences remain
considerably smaller than the differences originating from
physical attributes.

IV. SUMMARY AND CONCLUSION

In summary, we investigated the performance of various
DFT attributes in the modeling of low-dimensional elemental
metals. For future reference, the number of k points, the size
of the vacuum region, and the magnitude of Fermi broadening
were given tolerance-dependent rules of thumb. Such rules
help choosing combinations of attributes that result in com-
mensurate accuracies.

The most robust against the choice of basis set was HSE06,
followed by HSE03, PBE, PW91, RPBE and LDA. The
B3LYP produced inaccurate cohesions and bond lengths—
with the highest computational cost. Only the electronic
structure in B3LYP was in line with other hybrid functionals.

The energetics, geometries, and elastic properties with
PW, LCAO-U, and LCAO-H basis sets were in overall good
agreement. The greatest disparities between PW and LCAO
methods resided in the orbital contributions to the DOS, al-
though in the total DOS they were moderated. On a general
level, LCAO-U and LCAO-H performed similarly at differ-
ent xc functionals; therefore, for general purposes, LCAO-H
should be preferred over LCAO-U due to superior efficiency
(Table IV). The LCAO-M basis worked varyingly well in
many respects, except when used in conjunction with B3LYP
and PBE0 functionals.

To conclude, in the research of metallic bonding at low
dimensions, the best value for a given cost is probably given
by semilocal PW91 and PBE xc functionals in conjunction
with moderately sized LCAO-U or LCAO-H basis sets. These
results are encouraging for doing large-scale, high-throughput
DFT simulations to generate data for machine learning algo-
rithms. In comparison, DFTB is a very speedy method and is
capable of simulations unaccessible by DFT [72–74], but the
quality of parametrization needs to be ensured first. We hope
that our results and gentle recommendations help to lift 2D
metal research to new heights, expedite better interaction with
experiments, and feed machine learning algorithms with qual-
ity data to drive further discoveries in low-dimensional metals.
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APPENDIX

Basic properties (cohesive energies, bond lengths, elastic
constants, and electronic structure indicators) for 1D chain,
2D honeycomb, 2D square, 2D hexagonal, and 3D bulk
lattices using different basis set and exchange-correlation
functional combinations.

TABLE V. Bond lengths d (Å) and cohesive energies Ecoh(eV) for each lattice type corresponding to different DFT attributes.

1D Honeycomb Square Hexagonal 3D

DFT-methods d Ecoh d Ecoh d Ecoh d Ecoh d Ecoh

DFTB 2.572 1.691 2.562 2.450 2.636 2.804 2.819 2.967 3.008 3.891
LDA-LCAO-M 2.584 1.513 2.591 2.012 2.623 2.475 2.712 2.761 2.840 3.547
LDA-LCAO-H 2.553 1.563 2.562 2.105 2.606 2.563 2.693 2.858 2.827 3.660
LDA-LCAO-U 2.542 1.587 2.553 2.126 2.598 2.590 2.685 2.887 2.826 3.672
LDA-PW 2.542 1.591 2.542 2.138 2.595 2.586 2.682 2.881 2.828 3.638
RPBE-LCAO-M 2.732 0.959 2.760 1.198 2.764 1.474 2.853 1.677 2.982 2.065
RPBE-LCAO-H 2.710 0.989 2.731 1.251 2.745 1.531 2.831 1.738 2.965 2.130
RPBE-LCAO-U 2.691 1.001 2.723 1.262 2.736 1.547 2.824 1.756 2.963 2.143
RPBE-PW 2.689 0.992 2.709 1.248 2.734 1.523 2.822 1.732 2.962 2.100
PW91-LCAO-M 2.679 1.145 2.700 1.470 2.717 1.806 2.807 2.026 2.941 2.529
PW91-LCAO-H 2.655 1.171 2.670 1.522 2.703 1.858 2.790 2.083 2.932 2.586
PW91-LCAO-U 2.642 1.186 2.668 1.536 2.696 1.876 2.785 2.103 2.932 2.598
PW91-PW 2.639 1.185 2.659 1.534 2.693 1.862 2.783 2.089 2.928 2.560
PBE-LCAO-M 2.690 1.126 2.710 1.441 2.724 1.771 2.814 1.994 2.945 2.501
PBE-LCAO-H 2.668 1.155 2.685 1.497 2.710 1.826 2.797 2.053 2.932 2.558
PBE-LCAO-U 2.651 1.170 2.677 1.510 2.702 1.844 2.790 2.073 2.932 2.571
PBE-PW 2.648 1.167 2.670 1.506 2.700 1.829 2.788 2.058 2.930 2.533
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TABLE V. (Continued).

1D Honeycomb Square Hexagonal 3D

DFT-methods d Ecoh d Ecoh d Ecoh d Ecoh d Ecoh

B3LYP-LCAO-M 2.373 3.734 2.410 5.164 2.457 6.029 2.558 6.586 2.725 8.340
B3LYP-LCAO-H 2.655 1.067 2.691 1.426 2.714 1.772 2.812 1.977 – –
B3LYP-LCAO-U 2.642 1.100 2.679 1.461 2.705 1.816 2.803 2.025 – –
B3LYP-PW 2.681 0.944 2.715 1.211 2.737 1.470 2.830 1.659 2.986 1.963
PBE0-LCAO-M 2.322 4.877 2.358 6.807 2.409 7.978 2.512 8.657 – –
PBE0-LCAO-H 2.635 1.092 2.654 1.523 2.679 1.970 2.773 2.219 – –
PBE0-LCAO-U 2.626 1.128 2.642 1.567 2.670 2.023 2.764 2.277 – –
PBE0-PW 2.649 0.963 2.671 1.288 2.690 1.640 2.779 1.879 2.910 2.444
HSE03-LCAO-M 2.694 1.030 2.715 1.351 2.729 1.696 2.825 1.919 2.725 2.436
HSE03-LCAO-H 2.668 1.044 2.693 1.385 2.714 1.728 2.807 1.949 – –
HSE03-LCAO-U 2.663 1.058 2.687 1.396 2.710 1.744 2.801 1.966 – –
HSE03-PW 2.651 1.049 2.664 1.392 2.697 1.742 2.787 1.971 2.925 2.484
HSE06-LCAO-M 2.697 1.061 2.716 1.358 2.733 1.707 2.829 1.932 2.954 2.431
HSE06-LCAO-H 2.676 1.075 2.693 1.391 2.719 1.738 2.812 1.961 – –
HSE06-LCAO-U 2.666 1.088 2.686 1.402 2.709 1.753 2.803 1.978 – –
HSE06-PW 2.650 1.075 2.664 1.396 2.695 1.750 2.786 1.982 2.923 2.479

TABLE VI. Elastic constants for 1D (GPa nm2), 2D (GPa nm), and 3D (GPa) calculated by using different DFT attributes.

1D Honeycomb Square Hexagonal 3D

DFT-methods C11 C11 C12 C66 C11 C12 C66 C11 C12 C66 C11 C12 C66

DFTB 88.2 163.6 63.8 49.9 57.8 9.7 −3.9 42.7 22.6 10.1 110.7 102.4 19.9
LDA-LCAO-M 24.5 34.3 14.9 9.7 80.5 9.0 −5.9 77.9 30.7 23.6 163.6 133.0 53.4
LDA-LCAO-H 25.2 33.7 17.0 8.3 79.5 10.7 −7.5 79.1 28.4 25.3 165.4 131.0 56.3
LDA-LCAO-U 25.8 34.2 17.4 8.4 80.6 12.1 −7.6 85.3 27.1 29.1 164.3 131.4 54.7
LDA-PW 24.7 34.0 18.3 7.9 79.4 12.0 −8.8 79.2 31.4 23.9 165.4 131.1 58.7
RPBE-LCAO-M 15.5 19.0 8.7 5.1 48.6 4.6 −2.9 43.5 13.8 14.9 103.4 88.0 35.9
RPBE-LCAO-H 15.3 19.4 9.0 5.2 47.8 5.6 −2.3 48.6 16.7 16.0 103.6 83.9 32.7
RPBE-LCAO-U 15.1 19.6 8.4 5.6 47.9 6.5 −2.7 44.6 21.8 11.4 103.4 82.9 31.3
RPBE-PW 16.0 20.5 9.4 5.5 48.2 6.4 −3.4 49.0 17.1 16.0 92.7 72.0 25.4
PW91-LCAO-M 18.8 24.1 10.7 6.7 57.3 6.0 −3.0 56.2 −9.0 32.6 133.3 81.2 16.7
PW91-LCAO-H 18.6 24.5 11.7 6.6 56.7 7.4 −3.4 56.3 21.8 17.2 116.4 69.2 19.7
PW91-LCAO-U 19.1 24.2 11.0 6.6 56.1 8.1 −3.6 56.8 21.1 17.8 117.7 68.9 19.0
PW91-PW 19.1 24.7 11.5 6.6 57.5 8.2 −4.1 56.8 21.3 17.7 109.8 85.9 29.7
PBE-LCAO-M 16.9 25.5 8.63 8.4 56.2 5.5 −3.1 55.2 20.1 17.5 114.1 67.6 34.2
PBE-LCAO-H 17.6 23.0 10.7 6.2 54.8 6.8 −3.6 56.2 18.8 18.7 113.2 68.3 20.5
PBE-LCAO-U 18.6 23.2 10.7 6.2 55.3 7.7 −3.7 55.8 20.7 17.5 115.2 68.0 20.0
PBE-PW 18.3 23.4 11.0 6.2 55.3 7.7 −4.3 55.8 20.4 17.7 107.7 84.2 31.0
B3LYP-LCAO-M 65.3 97.4 45.6 25.9 160.2 52.2 −31.9 168.8 85.3 41.8 – – –
B3LYP-LCAO-H 19.4 23.3 10.5 6.4 44.9 17.0 −3.6 51.3 19.2 16.0 – – –
B3LYP-LCAO-U 20.5 24.2 10.7 6.7 46.0 18.2 −3.4 52.8 20.6 16.1 – – –
B3LYP-PW 35.9 20.8 9.6 5.6 38.9 15.5 −1.8 47.2 17.6 14.8 – – –
PBE0-LCAO-M 80.4 115.1 58.9 28.1 205.4 60.0 −90.1 203.9 103.2 50.3 – – –
PBE0-LCAO-H 20.2 25.1 11.1 7.0 48.4 23.8 −8.0 58.3 20.2 19.1 – – –
PBE0-LCAO-U 20.8 26.3 14.8 5.8 45.2 25.2 −8.3 59.9 21.9 19.0 – – –
PBE0-PW 17.6 22.5 11.0 5.7 40.0 22.2 −5.3 55.1 19.6 17.6 138.4 73.0 –
HSE03-LCAO-M 17.7 23.1 10.2 6.5 53.9 8.3 −3.1 54.0 19.6 17.2 96.4 84.5 27.9
HSE03-LCAO-H 18.0 23.4 10.6 6.4 50.9 10.2 −3.3 53.2 20.5 16.3 – – –
HSE03-LCAO-U 17.4 22.7 10.9 5.9 50.3 10.0 −3.5 53.8 19.4 17.2 – – –
HSE03-PW 20.9 22.3 11.5 5.4 52.4 9.1 −4.5 53.8 21.2 16.3 96.2 83.0 13.7
HSE06-LCAO-M 17.4 23.1 10.3 6.4 52.1 8.6 −3.1 52.8 19.3 16.8 113.5 95.6 36.5
HSE06-LCAO-H 18.6 23.2 10.6 6.3 49.9 11.0 −3.2 51.9 19.5 16.2 – – –
HSE06-LCAO-U 17.1 24.0 9.9 7.0 49.1 11.3 −3.5 53.3 18.9 17.2 – – –
HSE06-PW 26.5 21.9 11.5 5.2 50.5 11.1 −5.3 54.4 20.3 17.0 94.2 87.2 14.4
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TABLE VII. Estimation of contribution of s, p, and d orbitals to the density of states by implementing different DFT attributes.

1D Honeycomb Square Hexagonal 3D

DFT-methods Ns Np Nd Ns Np Nd Ns Np Nd Ns Np Nd Ns Np Nd

DFTB 1.01 0.19 0.15 0.52 0.39 0.12 0.36 0.45 0.12 0.34 0.42 0.13 0.19 0.46 0.15
LDA-LCAO-M 0.97 0.08 0.53 0.56 0.14 0.18 0.39 0.18 0.20 0.33 0.16 0.22 0.20 0.26 0.14
LDA-LCAO-H 1.00 0.04 0.79 0.57 0.13 0.26 0.41 0.18 0.26 0.34 0.16 0.27 0.21 0.22 0.18
LDA-LCAO-U 0.99 0.04 0.81 0.56 0.13 0.26 0.40 0.18 0.27 0.33 0.16 0.26 0.21 0.22 0.18
LDA-PW 0.64 0.39 0.31 0.17 0.54 0.08 0.10 0.50 0.11 0.08 0.44 0.09 0.01 0.41 0.02
RPBE-LCAO-M 1.04 0.08 0.37 0.67 0.13 0.13 0.45 0.17 0.13 0.40 0.17 0.18 0.26 0.26 0.12
RPBE-LCAO-H 1.06 0.04 0.53 0.67 0.12 0.18 0.47 0.17 0.17 0.41 0.15 0.22 0.26 0.22 0.18
RPBE-LCAO-U 1.05 0.04 0.54 0.67 0.12 0.18 0.47 0.17 0.18 0.40 0.15 0.22 0.26 0.22 0.18
RPBE-PW 0.75 0.33 0.23 0.28 0.52 0.07 0.16 0.49 0.08 0.14 0.43 0.08 0.03 0.49 0.02
PW91-LCAO-M 1.01 0.08 0.28 0.63 0.13 0.11 0.43 0.18 0.11 0.38 0.17 0.15 0.24 0.26 0.11
PW91-LCAO-H 1.04 0.04 0.58 0.63 0.12 0.20 0.45 0.17 0.19 0.39 0.16 0.23 0.25 0.23 0.17
PW91-LCAO-U 1.03 0.04 0.59 0.63 0.12 0.20 0.45 0.17 0.19 0.38 0.16 0.22 0.25 0.22 0.17
PW91-PW 0.73 0.33 0.23 0.25 0.53 0.07 0.14 0.50 0.08 0.12 0.44 0.08 0.02 0.48 0.02
PBE-LCAO-M 1.02 0.08 0.31 0.64 0.13 0.12 0.44 0.17 0.12 0.38 0.17 0.16 0.24 0.26 0.12
PBE-LCAO-H 1.04 0.04 0.59 0.65 0.12 0.20 0.46 0.17 0.19 0.39 0.15 0.23 0.25 0.22 0.17
PBE-LCAO-U 1.04 0.04 0.60 0.64 0.12 0.20 0.45 0.17 0.19 0.39 0.15 0.23 0.25 0.22 0.18
PBE-PW 0.73 0.33 0.23 0.25 0.53 0.07 0.14 0.50 0.08 0.12 0.44 0.08 0.02 0.49 0.02
B3LYP-LCAO-M 0.62 0.10 0.01 0.41 0.14 0.00 0.29 0.18 0.00 0.27 0.15 0.00 0.19 0.22 0.01
B3LYP-LCAO-H 0.81 0.03 0.02 0.55 0.10 0.01 0.41 0.15 −0.01 0.37 0.13 0.00 – – –
B3LYP-LCAO-U 0.78 0.03 0.02 0.55 0.10 0.01 0.41 0.15 −0.01 0.37 0.14 0.00 – – –
B3LYP-PW 0.55 0.26 0.02 0.21 0.43 0.01 0.13 0.40 0.02 0.12 0.35 0.02 0.04 0.39 0.01
PBE0-LCAO-M 0.50 0.10 0.01 0.37 0.14 0.00 0.25 0.19 0.00 0.24 0.16 0.00 – – –
PBE0-LCAO-H 0.71 0.03 0.02 0.51 0.10 0.01 0.38 0.15 −0.01 0.34 0.13 0.00 – – –
PBE0-LCAO-U 0.70 0.03 0.02 0.50 0.10 0.01 0.37 0.15 −0.01 0.34 0.13 0.00 – – –
PBE0-PW 0.47 0.26 0.01 0.18 0.42 0.01 0.10 0.39 0.02 0.10 0.34 0.01 0.01 0.38 0.01
HSE03-LCAO-M 0.92 0.07 0.03 0.58 0.12 0.03 0.39 0.16 0.02 0.35 0.15 0.04 0.23 0.25 0.07
HSE03-LCAO-H 0.94 0.04 0.05 0.57 0.12 0.05 0.40 0.16 0.04 0.35 0.14 0.06 – – –
HSE03-LCAO-U 0.93 0.04 0.05 0.57 0.12 0.05 0.40 0.16 0.04 0.35 0.14 0.06 – – –
HSE03-PW 0.67 0.30 0.03 0.22 0.49 0.01 0.13 0.45 0.02 0.11 0.40 0.02 0.02 0.46 0.01
HSE06-LCAO-M 0.88 0.07 0.03 0.55 0.11 0.03 0.38 0.15 0.02 0.34 0.14 0.04 0.22 0.24 0.06
HSE06-LCAO-H 0.90 0.03 0.04 0.55 0.11 0.04 0.39 0.15 0.04 0.34 0.13 0.05 – – –
HSE06-LCAO-U 0.89 0.03 0.04 0.55 0.11 0.05 0.39 0.15 0.04 0.34 0.13 0.05 – – –
HSE06-PW 0.63 0.29 0.02 0.21 0.47 0.01 0.12 0.43 0.02 0.11 0.38 0.02 0.02 0.45 0.01
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