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Machine-learning-based prediction of first-principles XANES spectra for amorphous materials
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In this paper, a machine-learning-based method is proposed for predicting the x-ray absorption near-edge
structure (XANES) for local configurations specific to amorphous materials. A combination of molecular
dynamics and first-principles XANES simulations was adopted. The XANES spectrum was assumed to be
accurately represented by linear regression of the local atomic descriptors. A comprehensive prediction of
Si K-edge XANES spectra was performed based on an atom-centered symmetry function, smooth overlap of
atomic positions, local many-body tensor representation, and spectral neighbor analysis potential. Furthermore,
prediction accuracy was improved by compression of XANES spectral data and efficient sampling of training
data.
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I. INTRODUCTION

In recent years, x-ray absorption spectroscopy (XAS) has
become important for the structural characterization of vari-
ous materials. In particular, near-edge region spectra, such as
x-ray absorption near-edge structure (XANES), can provide
sensitive information regarding chemical bonding, valence
states, and coordination around atoms of interest. Conven-
tional interpretation of experimental XANES spectra is most
commonly based on the fingerprinting technique, wherein the
experimental spectrum of interest is compared with that of
a reference crystalline material. For energy loss near edge
structure (ELNES) analysis performed with a transmission
electron microscope (TEM), identical to XANES, data-driven
spectral analysis by in-database machine learning for crys-
talline materials via simulation was proposed [1]. However,
unlike crystalline materials, the interpretation of experimental
XANES spectra for glass systems remains difficult. There is
no guarantee that spectra of crystalline material will be appli-
cable to local configurations of amorphous or glass systems,
and reference spectra for local configurations specific to those
systems are lacking. Therefore, theoretical simulations are
indispensable for the complete interpretation of experimental
XANES spectra of glass systems.

Li-ion secondary batteries exhibiting high-energy densi-
ties have been developed with a focus on applications, such
as small mobile devices and electric motorization. A possi-
ble high-energy density incorporation includes high-capacity
negative electrodes fabricated from tin, silicon, and other ma-
terials [2–7]. In particular, SiO materials incorporated into a
cell using a negative electrode mixed with carbon-active ma-
terials have attracted significant commercial attention [8,9]. It
is believed that SiO is not a simple mixture of Si and SiO2,
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but is composed of local atomic structures that can change
during charge-discharge cycling. Structural changes during
charge-discharge cycling were probed using XANES for Si,
O, and Li K-edges. It has been proposed that the SiO material
before charging contains Si atoms with valence states other
than Si0 in crystalline Si and Si4+ in amorphous SiO2 [10,11].
However, Si atoms with these valence states are uncommon
in glass materials, and the reference spectra of crystalline
systems are insufficient for in-depth structural analysis. For
example, there are 331 Si-O binary crystalline data sets in
the Materials Project [12], but there are only three, three, and
seven systems including Si1+, Si2+, and Si3+, respectively.
Therefore, it is reasonable to conclude that the experimental
SiO XANES spectra are not yet fully understood.

Theoretical XANES spectra can be obtained using various
first-principles methods. A large system is required when
dealing with disordered systems that include defects, inter-
faces, and amorphous structures. To obtain XANES spectra of
these systems, first-principles density functional theory (DFT)
[13,14] simulations based on the projector augmented-wave
(PAW) method [15–17] is effective. First-principles XANES
simulations of Ti doped in SiO2 glass [18] and oxygen-
related defects in SiO glass have already been applied with
great success [19]. Since various atomic configurations are
possible in glass materials, it is necessary to perform sev-
eral simulations to account for statistical effect. Generally,
first-principles XANES calculations are computationally ex-
pensive because the XANES spectrum contains information
regarding the excitation of core electrons to unoccupied states
and several unoccupied states should be included. Further-
more, sufficiently large supercells are necessary to prevent
strong physical interactions among the excited electrons in
repeated cells.

XANES spectra provide local information around an atom
of interest, thus it can be assumed that XANES spectra
could be reproduced using only the easily calculated local
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FIG. 1. Schematic of nonsequential predictions of XANES spectra for amorphous materials. (a) Amorphous models are generated by
quenching. (b) Atomic descriptors for all atoms are calculated. (c) Training data are selected with active learning. (d) XANES spectra is
calculated within DFT. (e) Using the atomic descriptors and calculated XANES spectra, the machine learning model parameters are optimized.

atomic environment. Recently, a variety of atomic descriptors
pertaining to the local environment have been proposed for
machine-learned interatomic potentials, including symmetry
functions [20], bispectrum components [21–24], and moment
tensors [25]. In this paper, a procedure for predicting the
XANES spectra of amorphous materials using the descriptors
originally proposed for energies and forces was developed.
Furthermore, the prediction accuracy was improved by effi-
cient sampling of training data and compression of XANES
data. Figure 1 shows a schematic of the proposed procedure,
wherein a machine-learning model of the XANES spectra was
developed based on atomic descriptor space.

II. METHODS

For a-SiO glass, periodic cells containing 50 Si and 50
O atoms were generated by quenching from the melt via
classical and first-principles molecular dynamics (MD) sim-
ulations. Neural-network potentials expressing various Si
valence states were constructed using the MD program pack-
age, nap [26] (see also Data-1 of the Supplemental Material
[27] for more details), and 101 classical MD models were
generated according to the following procedure with various

cooling processes. The system was annealed at 5000 K in the
NVT (constant-volume) ensemble for 200 ps and a structure
was obtained every 2 ps, resulting in 101 initial structures.
All structures were cooled linearly to 3000 K over 100 ps
in the NVT ensemble, to 300 K over 100 ps in the NpT
(constant-pressure) ensemble, and subsequently relaxed to
stable configurations in the NpT ensemble. Additionally, a
first-principles MD model was generated by rapid quenching
from 3000 K with the cooling speed of 100 K/ps in the NVT
ensemble. Figure 2 shows the distribution of the Si valence
states in classical and first-principles MD models. The Si
valence state and coordination number of oxygen were equiv-
alent. The proportions of Si2+ and Si3+ in the first-principles
MD model are more than those in classical MD models due
to rapid cooling. The Si valence state was distributed between
zero and four and no O–O bonds were observed.

Si K-edge XANES calculations were performed using the
computational code QMAS (Quantum Materials Simulator)
[28] to implement PAW calculations [15–17] with a general-
ized gradient approximation [29] for the exchange-correlation
energy functional. The proper inclusion of a core hole in a
supercell is essential for reproducing experimental XANES
spectra [30,31]. The core-hole effect can be addressed through

115601-2



MACHINE-LEARNING-BASED PREDICTION OF … PHYSICAL REVIEW MATERIALS 6, 115601 (2022)

FIG. 2. Distribution of Si valence states in the models generated
via classical MD (blue dotted line) and first-principles MD (red solid
line).

the PAW pseudopotential of an excited atom with a core hole
[18]. The k-point grids for the a-SiO models were set as the �

point for self-consistent calculations and 4×4×4 for XANES
calculations. The plane-wave energy cutoff was set to 476 eV
(= 35 Ry). The theoretical spectra were broadened with Gaus-
sian functions of σ = 1.0 eV. In our previous papers [18,32], it
has already been confirmed that these parameters can be used
to obtain sufficiently converged results (see also Data-3 of the
Supplemental Material [27] for more details). The XANES
spectra for diamond-type Si and α-quartz-type SiO2 were also
calculated as reference materials. Supercells were constructed
with minimum distances between the excited atoms exceeding
approximately 10 Å. The supercell contained 64 atoms for the
diamond-type Si and 72 atoms for α-quartz-type SiO2. The
k-point sampling mesh is common to the a-SiO model.

The theoretical XANES spectra obtained by DFT-PAW
calculations were predicted using only the local environ-
ment information. The proposed machine learning scheme
was based on the assumption that a XANES spectrum can
be represented by linear regression of the atomic structural
descriptor. To obtain a highly accurate nonlinear regression,
a large amount of training data must be prepared. Addition-
ally, obtaining a single XANES spectrum is computationally
expensive. Thus, linear ridge regression, which is a famous re-
gression approach used in a wide range of statistical machine
learning applications, was applied. Ridge regression mini-
mizes the following objective function with input xi, output
yi, and regularization parameter λ:

L = ‖y − Xw‖2
2 + λ‖w‖2

2, (1)

where the ith row of X is x�
i and the ith element of y is yi, for

which the minimizer is written as

ŵ = M−1X�y, (2)

where M ≡ X�X + λI with the identity matrix I ∈ Rd×d . It
was assumed that the XANES spectral intensity at energy ε

for ith atom can be represented as

Ii(ε) = x�
i w̃(ε), (3)

where Ii(ε) denotes a 401-dimensional vector, wherein the re-
gion from 1835 to 1855 eV is divided by 0.05 eV increments,
xi ∈ Rd denotes the d-dimensional structural descriptor vec-
tor, and w̃(ε) ∈ Rd denotes an unknown parameter vector for
each energy level. Using the learned ŵ(ε), a prediction of the
XANES spectral intensity for the ith atom can be obtained as

Ii(ε) ≈ x�
i ŵ(ε). (4)

Parameter λ was determined by cross validation. We call this
approach direct regression.

The direct regression of the intensity Ii(ε) is not always
optimal since the intensity at each energy ε is regressed in-
dependently. XANES spectra are broadened with Gaussian
functions. Therefore, we construct basis vectors by dimension
reduction using the training set of XANES spectra. We adopt
the principal component analysis (PCA) which is a typical
method for dimension reduction. However, it is known that
negative values appear in basis vectors with PCA. Thus, we
also adopt the non-negative matrix factorization (NMF) [33]
since the XANES spectrum should be a non-negative vector.
The XANES spectrum can be approximated by a linear com-
bination of m basis vectors, as

Ii(ε) ≈
m∑

j=1

a j
i G j (ε), (5)

where Gj (ε) is a basis vector of the same energy mesh point
as Ii(ε). a j

i is a linear combination coefficient, and is predicted
by ridge regression. Using the learned ŵ j , a j

i can be predicted
as

a j
i ≈ x�

i ŵ j . (6)

Finally, the intensity of XANES spectrum for the ith atom at
energy ε can be predicted as

Ii(ε) ≈
m∑

j=1

x�
i ŵ j G j (ε). (7)

For the atomic structural descriptor xi of each atom, atom-
centered symmetry function (ACSF) [20], smooth overlap
of atomic position (SOAP) [21,22], local many-body tensor
representation [34] (LMBTR), and spectral neighbor analysis
potential (SNAP) [23,24] were applied. SOAP, ACSF, and
LMBTR were obtained using the Python package DScribe
[35]. Two types of SOAP were employed with spherical
Gaussian-type orbitals (SOAP-gto) and polynomial basis
(SOAP-poly) as radial basis functions (RBFs). The DScribe
library was used to compute SOAP in user-friendly software
packages that enable automatic analysis and mapping, and
automatic selection and prediction tools for materials and
molecules (ASAP) [36]. SNAP was obtained using LAMMPS
[37] code. Two SNAP types were employed: a linear model
in the original SNAP formulation [23] and a quadratic model
(qSNAP) [24]. SNAP calculated by LAMMPS can correctly
reproduce the physical properties of some metallic systems
[38,39]. The details of the computational conditions for these
descriptors are provided in Data-2 of the Supplemental Mate-
rial [27]. The descriptors were standardized and subsequently
dimensionally compressed using PCA, as described in the
following section.

115601-3



HARUKI HIRAI et al. PHYSICAL REVIEW MATERIALS 6, 115601 (2022)

FIG. 3. PCA analysis of structural descriptors projected onto the plane of the first two principal components (PCs). The parentheses indicate
the variances of the PCs.

III. RESULTS

The atomic structural descriptors X were calculated for
all 5100 Si atoms contained in the generated models and
standardized descriptors were applied to PCA maintaining
99.9% of the original variance. Figure 3 shows the projection
of structural descriptors onto the first two principal compo-
nents (PCs). Clusters formed based on the Si valence states
and the first PC indicates the valence state. Local similar-
ities were found in the amorphous structures. Only ACSF,
originally proposed for neural-network potentials, showed
different trends from the others, featuring outliers from the
clusters.

Figure 4 shows the average Si K-edge XANES spectra
calculated by randomly selecting 50 Si atoms from each of
Si0 to Si4+ along with the theoretical spectra of diamond-type
Si and α-quartz-type SiO2 and the experimental spectrum of
a-SiO [10]. The calculated spectra were shifted to a lower
energy by 10.2 eV to match the highest peaks in the theo-
retical spectrum of quartz SiO2 and experimental spectrum of
a-SiO. The highest peak intensity in the average spectrum of
Si4+ was normalized to a value of one. All calculated spectra
were shifted and normalized in the same manner. The average
spectra of Si0 and Si4+ in the amorphous models were broader
than those in the bulk structures, but the peak positions were
similar. The peak position shifted to the high-energy side
with increasing valence state, consistent with that observed
for other oxide materials.

The predictive performance of the structural descriptors
was examined in detail. The descriptor dimensions after com-
pression by PCA are listed in Table I. A total of 1000 training
data points were randomly selected from the 5100 atoms.
The test data consisting of 250 data points was generated by
randomly selecting 50 data points from each Si valence state.
The training and test data were common to all verifications. To

FIG. 4. Average Si K-edge XANES for Si valence states com-
pared to theoretical calculations for bulk Si and quartz SiO2 and
experimental data for a-SiO [10]. The calculated absolute transition
energy was adjusted to the experimental energy using a shift of
−10.2 eV.
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TABLE I. Descriptor dimensions before and after compression
by PCA.

Descriptor Before After

ACSF 5202 85
SOAP-poly 2730 735
SOAP-gto 2730 531
LMBTR 1500 97
SNAP 1120 372
qSNAP 29 160 587

evaluate prediction error, the root-mean-square error (RMSE)
was determined for each energy mesh point as follows:

RMSE(ε) =
√ ∑

xi∈XTest

{
IDFT
i (ε) − x�

i ŵ(ε)
}2

/|XTest|. (8)

The average RMSE was the smallest for qSNAP, as shown in
Fig. 5(a). Figure 5(b) shows the RMSE for each valence-state
of Si and qSNAP exhibited a smaller error for valence states
between 1+ and 3+ than the other descriptors.

To improve prediction accuracy, the XANES spectra were
predicted by regressing dimensionally reduced elements and
then decoding them. PCA and NMF were applied to reduce
the XANES dimensions. For PCA, the XANES spectrum was
compressed until the cumulative contribution rate exceeded
99.9%, resulting in seven dimensions, whereas for NMF, the
XANES spectrum was compressed to nine dimensions. The
total RMSE values are listed in Table II. Compressed regres-
sion slightly improved the prediction accuracy, and NMF was
more accurate than PCA. A comparison between the direct
and compressed regressions for each energy level is shown
in Fig. 6. The difference between the RMSEs of direct and
compressed regressions is defined as

�RMSE(ε) = RMSEcomp(ε) − RMSEdirect (ε), (9)

FIG. 5. (a) Average RMSE and (b) RMSE for each Si valence
states obtained with direct regression.

TABLE II. Total RMSE on direct and compressed regressions.

Descriptor Direct PCA NMF

ACSF 3.214×10−2 3.226×10−2 3.210×10−2

SOAP-poly 2.783 2.773 2.761
SOAP-gto 2.756 2.735 2.722
LMBTR 2.964 2.927 2.917
SNAP 2.450 2.446 2.424
qSNAP 2.321 2.278 2.259

where the negative values indicate improvement. The com-
pressed regression slightly improved prediction accuracy, but
PCA regression was worse than direct regression at approx-
imately 1840 eV. The reason behind this phenomenon is
discussed in the following section.

FIG. 6. Difference between the RMSEs of direct and compressed
regressions. The difference of RMSE is defined in Eq. (9).
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FIG. 7. (a) Training data obtained by active-learning (tr-AL) for qSNAP shown with black points in the reduced dimensional space created
by PCA compared to training data obtained by random sampling (tr-RA). The distribution of all Si atoms is the same as in Fig. 3. (b) Distribution
of test data (te) and training data by AL (tr-AL) and random sampling (tr-RA) for each valence state. The dotted black line represents the
distribution of all Si atoms.

The active-learning (AL) approach has been widely studied
in the machine-learning community for selecting appropriate
training data sets. It has been proposed that the uncertainty
reduction (UR) approach in AL is effective for collecting
training data for DFT atomic energy [40]. Our UR criterion
evaluates the reduction of uncertainty (variance) for all the
atoms after adding a candidate training point xi. Candidate
points are iteratively selected to minimize the predicted total
uncertainty. For this approach, the observed y is not required
because the variance depends on x. For each descriptor, a
training data set was generated using the AL approach. For
example, in Fig. 7(a), training data selected by AL for qSNAP
are shown in the reduced dimensional space created by PCA
alongside training data selected by random sampling. Com-
pared to the random sampling selection, the training data was
more widespread and representative when selected with AL.
In Fig. 7(b), the selection points for each valence state are
compared. Random sampling reproduced the distribution of
all data, while the number of selection points for Si4+ was
reduced, and those for Si+1, Si2+ and Si3+ increased in AL
for all descriptors. From these results, it is expected that the
prediction accuracy for Si4+ will decrease, while that for Si+1,
Si2+, and Si3+ will improve.

The average RMSEs for the data sets obtained by the AL
and random sampling approaches are compared in Fig. 8. The
difference between the RMSEs of direct regression on the data
sets obtained by the AL and random sampling approaches is
defined as

�RMSE(ε) = RMSEAL(ε) − RMSERA−direct (ε), (10)

where AL contains direct and compressed regressions, as
described later. Direct regression with AL yielded a smaller
RMSE than that obtained with random sampling for all de-
scriptors. Therefore, the regression accuracy was shown to
be improved by using AL. For qSNAP, which was the most
accurate, the accuracy for each valence state is compared in
Fig. 9. With AL, the prediction accuracy for Si1+, Si2+, and
Si3+ improved compared with that of random sampling, but
the accuracy for Si4+ decreased. This is likely due to the
reduction in the selection points in the training data, as shown
in Fig. 7(b).

The transition of the total RMSE with respect to the amount
of training data generated by AL and random sampling is

FIG. 8. Average differences in RMSEs for the data sets obtained
by AL and random sampling. The difference of RMSE is defined in
Eq. (10).
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FIG. 9. Differences in RMSEs for Si valence states of the data
sets obtained by AL and random sampling for qSNAP. The difference
of RMSE is defined in Eq. (10).

shown in Fig. 10. Surprisingly, when the amount of training
data was small, random sampling showed better prediction
accuracy than AL. With increasing amounts of training data,
AL improved the prediction accuracy. The accuracy of AL
was poor for small training data because several specific data
points exist in the training data and AL considers the variance,
which gives priority to specific structures when few selection
points are available.

AL was further investigated to determine whether it im-
proves the accuracy of compression regression. The RMSEs
for the data sets generated by AL and random sampling are
shown in Fig. 8. Similar to direct regression, AL exhibited a
smaller RMSE, showing that AL is effective for compression
regression. Figure 11 shows the spectra with the smallest and
largest RMSE in each valence state predicted for qSNAP with
AL and NMF. For the smallest RMSE, the predicted spectra
are in good agreement with the theoretical spectra. However,
for the largest RMSE, the peak positions could not be pre-
dicted accurately.

We demonstrate the prediction of XANES spectrum for a
large-scale model. An a-SiO model containing 4913 Si and
4913 O atoms was generated via classical MD simulation
in the same way as for small 100-atoms models, as shown
in Fig. 12(a). The proportions of Si0, Si1+, Si2+, Si3+, and
Si4+ are 34.7, 12.6, 9.5, 3.5, and 39.6%, respectively. The
proportion of Si3+ is much less than that in small 100-atom
models shown in Fig. 2. Figure 12(b) shows PCA analysis of
qSNAP for 5,100 Si atoms contained in 100-atoms models
and 4913 Si atoms in the large-scale model. The distribution
of the large-scale model is almost within the range of that of
small-scale models, except for Si0. This means that the param-
eter vector learned with small-scale models can be applied to
large-scale models. Figure 12(c) shows the predicted average
Si K-edge XANES for 4913 Si atoms in the large-scale model
in comparison with the simple sum of bulk Si and SiO2 shown
in Fig. 4. In the energy range from 1843 to 1846 eV, the a-SiO
model shows the intensity that is not seen in the simple sum
of bulk Si and SiO2, similar to experimental spectra. These
results provide strong evidence for the presence of various Si
valence other than Si0 and Si4+ in SiO materials.

FIG. 10. The transition of total RMSE with respect to the number of training data points generated by AL (red solid line) and random
sampling (blue dotted line).
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FIG. 11. The spectra with the smallest and largest RMSE in each
valence state predicted for qSNAP with AL and NMF.

IV. DISCUSSIONS

The Si K-edge XANES contains information regarding the
excitation of 1s electrons to unoccupied p states and reflects
the projected density of states (DOSs) of p orbitals for the Si
atom of interest. DOSs are the result of hybridization with
surrounding atom electrons. Thus, the XANES spectra can
be reproduced using the local atomic environment. Various
atomic descriptors have been proposed to describe the lo-
cal environment for machine-learned interatomic potentials.
ACSF and LMBTR incorporate information regarding dis-
tances and angles. SOAP and SNAP are atomic descriptors of
the correlation between atomic density functions, containing

information relating to three- and four-body correlations, re-
spectively. Previous studies have systematically examined the
regression performance of the atomic descriptors. In the Gaus-
sian process for the regression of energies and forces of the Si
crystal, the prediction accuracy follows the order SOAP-poly,
qSNAP, and SNAP [41]. For the kernel ridge regression of
small organic molecules with ionic charges, the prediction
accuracy follows the order SOAP-gto, SOAP-poly, and ACSF
[35]. Pozdnyakov et al. showed that atomic descriptors calcu-
lated using three-body correlation were incomplete because of
degeneracy [42]. Among the descriptors adopted in this paper,
the atomic descriptors for three-body correlations were ACSF,
SOAP, and LMBTR. SNAP contains information related to
four-body correlations and was considered to be the most
accurate in this paper. However, it has also been highlighted
that SNAP is not complete because it does not distinguish
chirality (mirror images) as the tetrahedra are not chiral [42].
Parsaeifard and Goedecker proposed an overlap matrix (OM)
containing four-body correlation information [43]. Using the
OM, the helix angle, which is specific to a four-body correla-
tion, can be accurately regressed. XANES reflects additional
information regarding the surrounding atoms, and it is highly
possible that XANES is a vector quantity containing four-
body correlation information. To further improve prediction
accuracy, it is necessary to develop a structural descriptor that
includes information relating to the four-body and higher-
body correlations. For example, more recently, the atomic
cluster expansion (ACE) [44,45] was developed to provide a
complete and efficient representation of atomic properties as a
function of local atomic environment in terms of many-body
correlation functions, and SOAP and SNAP are equivalent to
the three- and four-body terms in ACE, respectively. Although
simple linear regression was adopted in this paper, results
show that nonlinear regression, including the kernel regres-
sion, slightly improves prediction accuracy. The descriptors
can be intrinsically connected to the target function via a
simple nonlinear function. Our future work will focus on the
verification of prediction performance by a variety of descrip-
tors and models.

The structural descriptors mentioned above were devel-
oped for interatomic potentials that represent energies and
forces. Recently, vector data prediction using these structural
descriptors has been reported for atom-projected DOS predic-
tion using SOAP [46] and graph neural networks [47]. The

FIG. 12. (a) Atomic configuration for a large-scale a-SiO glass model containing 4913 Si atoms and 4913 O atoms. (b) PCA analysis
of qSNAP for 5100 Si atoms contained in 100-atom models (black) and 4913 Si atoms in the 9826-atom model (orange). (c) The predicted
average Si K-edge XANES for all Si atoms in the large-scale model in comparison with the simple sum of bulk Si and SiO2 shown in Fig. 4.
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simplest regression of vector data is a direct regression at
each point. However, since there is a correlation with adja-
cent points in XANES spectral data, compressed regression is
more useful. PCA is widely used to reduce dimensionality by
compression. It was previously demonstrated that compressed
regression by PCA is more useful than direct regression, and
the cumulative distribution function (CDF) is more useful
than PCA for predicting DOS based on Gaussian process
regression [46]. In this paper, as shown in Table II, PCA
improved the accuracy as a whole. However, as illustrated in
Fig. 6, poor accuracy was obtained for some energy points. In
principle, eigenvectors with negative values can appear in the
PCA and the analysis confirmed a negative eigenvector. By
contrast, eigenvectors with negative values did not appear in
NMF. Shiga et al. proposed a spectral imaging technique for
electron energy loss and energy-dispersive x-ray spectral data
sets observed with scanning TEM combined with NMF [48].
As shown in Fig. 6, NMF compression improved the accuracy
at many energy points, displaying higher regression accuracy
than direct regression and PCA. In this paper, based on linear
ridge regression, CDF did not show any advantages over direct
regression.

Since the efficient sampling of training data directly affects
regression accuracy, AL has been extensively studied in the
field of machine learning. The uncertainty reduction (UR)
technique was adopted in this paper, similar to a previous
paper [40]. An important property of UR is that it does
not require the observed y because the variance does not
depend on y. Thus, sequential DFT-XANES calculations are
not necessary and it is possible to execute several calculations
simultaneously using a massive parallel computer. However,
as illustrated in Fig. 10, when the training data is limited,
random sampling is more accurate than AL. This is because

the AL tends to select from specific points to reduce the
overall variance. When the number of training data points
was � 400, AL was more accurate than random sampling for
all descriptors. Therefore, it can be concluded that the UR
technique is an efficient sampling method for training data
when DFT calculations can be performed in parallel.

V. CONCLUSIONS

In this paper, a machine learning-based method was pro-
posed for predicting XANES spectra for local configurations
specific to amorphous materials using a combination of MD
simulations and first-principles XANES simulations. It was
assumed that the XANES spectrum can be represented by
linear regression of the local atomic descriptors. Comprehen-
sive predictions of the Si K-edge XANES spectra were made
based on ACSF, SOAP, LMBTR, and SNAP methodologies.
Furthermore, the prediction accuracy was improved by com-
pression of the XANES spectral data and efficient sampling
of training data.
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