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Curvature as an external field in mechanical antiferromagnets
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A puckered sheet is a freestanding crystalline membrane with an embedded array of bistable buckled units.
Recent work has shown that the bistable units behave like spins in a two-dimensional compressible Ising
antiferromagnet with, however, a coupling to flexural phonons. At finite temperature, this purely mechanical
system displays Ising-like phase transitions, which drive anomalous thermal expansion. Here, we show that
geometry can be used to control phase behavior: curvature produces a radius-dependent “external field” that
encourages alignment between neighboring “spins,” disrupting the ordered checkerboard ground state of an-
tialigned neighbors. The effective field strength scales as the inverse of the radius of curvature. We identify
this effective field theoretically with both a discrete real space model and a nonlinear continuum elastic model.
We then present molecular dynamics simulations of puckered sheets in cylindrical geometries at zero and finite
temperature, probing the influence of curvature on the stability of configurations and phase transitions. Our
work demonstrates how curvature and temperature can be used to design and operate a responsive and tunable

metamaterial at either the macroscale or nanoscale.
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I. INTRODUCTION

Mechanical systems composed of coupled bistable units
have been explored in recent years for applications in
soft robotics, shape memory, and information processing
[1-18]. An appealing feature of these metamaterials is their
tunability—each of N bistable units can be individually
inverted, possibly leading to ~2" metastable states and di-
verse macroscopic behaviors [19]. Tunable materials are
of interest for many technological applications, from opti-
cal filtering [20,21] to reconfigurable structures [22,23] in
which it is desirable to have a single material serve multi-
ple functions. A shared challenge of many tunable materials
is determining how to easily and reversibly control mi-
croscopic configurations, enabling the desired macroscopic
transformations.

Recently, we proposed that one such system, a free-
standing elastic sheet with an array of buckled bistable units,
can be understood as a mechanical analog of a compress-
ible Ising antiferromagnet with spin-flexural phonon coupling
[24]. In this system, bistable puckers are created by locally
dilating the surface at a regular array of lattice sites embedded
in a crystalline membrane—when the dilation is sufficiently
large, it becomes energetically favorable for the affected site
to buckle, either up or down, into the third dimension. Each
buckled dilation acts like a “spin,” and an interaction between
neighboring spins is generated via the difference in the elas-
tic energy of different deformation patterns [as in Figs. 1(a)
and 1(b)]. At zero temperature, the energy of a system with
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stress-free in-plane periodic boundaries is minimized by a
checkerboard configuration of up and down puckers, equiv-
alent to an antiferromagnetic spin configuration [Figs. 1(b),
1(e), 2(a), and 2(b)] [24,25]. Zero-temperature puckered
sheets provide a theoretically tractable system to explore
shape memory and metastability, and are relevant to recent
experimental realizations of macroscale metasheets [3-5].

When the temperature is increased, thermal energy be-
comes comparable to the energy barrier between the up and
down puckered states, and “spins” are able to flip. At a critical
temperature, the staggered magnetization, which quantifies
the checkerboard spin order, drops abruptly and the suscep-
tibility and specific heat diverge. In addition to these standard
signatures of an Ising phase transition (albeit with an unusual
specific heat exponent [24]), one finds an anomalous, diverg-
ing coefficient of thermal expansion at the critical temperature
due to the competition between spin degrees of freedom and
out-of-plane thermal fluctuations [24]. Thermally activated di-
lation arrays are relevant to experimentally realized puckered
atomically thin monolayers such as SnO [26-28].

Given an Ising-like mechanical model, a natural next ques-
tion is: Can we define a mechanical analog of an external field
that acts on our “spins”? An effective external field would
ideally enable us to control microscopic spin configurations
by varying a macroscopic quantity, allowing a puckered sheet
to function as a programmable metamaterial with tunable
properties.

In this paper, we demonstrate with theory and simulations
that the extrinsic curvature of the host lattice plays the role of
an external field in our system, encouraging dilations to defy
antiferromagnet nearest-neighbor coupling and buckle in the
same direction. A large curvature corresponds to a high ef-
fective uniform magnetic field. Figure 1 provides an intuitive
understanding of why host lattice curvature can bias dilations

©2022 American Physical Society
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FIG. 1. Curvature influences the interaction between neighboring buckled dilations. Dilations are drawn as large (blue or yellow) spheres
and undilated host lattice sites are drawn as smaller black spheres. (a) Two dilations buckled in the same direction will have a bending energy
contribution which we model as (1 — n, - ng). (b) Antialigned puckers pay a smaller bending energy penalty, as the plaquettes between the
two dilations are parallel. When a background curvature (dotted green line) is introduced, as might happen on a cylinder, it becomes somewhat
less costly for puckers to be outwardly aligned (c), and somewhat more costly to be antialigned (d). (e) A top-down view of the network of
harmonic springs connecting dilation and host lattice nodes in a square array. (f) An example of a system with 18 x 18 dilations with planar
periodic boundary conditions. (g) The same system as in (f) now rolled into a cylinder to produce an extrinsic radius of curvature, R.

to buckle away from the center of curvature—the angle be-
tween two aligned or “ferromagnetic” puckers is smoothed by
the presence of curvature, decreasing the cost of bending. Our
framework is consistent with observations in the literature of
mechanical Ising-like systems with free boundaries adopting
curved configurations when nodes are assigned to be in the
same state [1-5]. Extrinsic curvature is an appealing candidate
stimulus for many applications, as it can often be tuned at the
boundary [29].

In order to study curvature in a controlled manner, we focus
on square arrays of dilations rolled into cylinders [Fig. 1(g)].
This geometry allows us to explore the effect of a background
of nonzero mean curvature without the stretching associ-
ated with nonzero Gaussian curvature [30,31]. A cylindrical
geometry also allows us to connect more closely to the litera-
ture on functionalized carbon nanotubes with defects [32,33],
van der Waals nanotubes (e.g., MoS, monolayer wrapped into
a cylinder) [34,35], and ferromagnetic nanotubes [36,37].

We support our claim that a background curvature acts as
a biasing external field in Ising-like puckered cylinders with
two complementary theoretical models as well as molecular
dynamics simulations at both zero and finite temperature. In
Sec. II, we introduce a computational model for an array of
buckled bistable nodes on a cylinder and briefly summarize
key simulation results. In Sec. III, we provide a discrete real
space theory based on approximations to the energy used in
simulations, and show that couplings between neighboring
spins and between spins and curvature take the same forms
as terms in the microscopic Ising Hamiltonian. In Sec. IV,
we develop a nonlinear continuum model using shallow shell
theory, which we use to derive a Landau-like expansion of
the energy with a fieldlike coupling between curvature and
magnetization. In Sec. V, we use molecular dynamics sim-
ulations to confirm that ferromagnetic buckling is preferred
for high curvature and antiferromagnetic buckling is preferred
for intermediate or vanishing curvature at zero temperature.
We then increase the temperature and track the phase behav-
ior of the system. Finite-size effects are inevitable, since for
our cylindrical geometry, we cannot increase the curvature
without decreasing the cylinder circumference. Nonetheless,
we generate an approximate phase diagram in the curvature-
temperature plane showing that finite staggered magnetization

can only be maintained at either low temperatures or small
curvatures. We conclude by discussing prospects for fu-
ture work, including studying the influence of higher-order
couplings to curvature predicted by our theory, arrays of con-
tractile inclusions, systems with nonzero Gaussian curvature,
and high-temperature crumpling.

II. MODEL

In this section, we present the computational model used
in simulations (Sec. V) whose behavior we seek to understand
using theory (Secs. III and IV).

To model an antiferromagnetic array of dilations embedded
in a thin elastic sheet, we use the energy functional introduced
in Ref. [38], but generalized to have a square microstructure
[25]. Lattice sites are connected by harmonic springs, shown
as grey lines in Fig. 1(e), and each triangular plaquette is
assigned a normal vector that is used to penalize bending, as
shown in Figs. 1(a) and 1(c). This type of model has been used
to study the mechanics and thermal behavior of atomically
thin materials such as graphene and MoS, [39-43].

The total energy of our lattice model is given by

Zar,

The first sum is over neighboring nodes and gives the stretch-
ing energy in terms of the spring constant k and the rest length
of the spring connecting nodes i and j, a;;. The second sum is
over neighboring plaquettes and gives the bending energy in
terms of the microscopic bending rigidity <. The rest lengths
a;j are chosen to model a dilation array with each dilation
separated by two lattice spacings [Fig. 1(e)]. The short bonds
with projections lying in either the x or y direction have rest
length ay if they are not connected to a dilation node and
rest length ag(1 4 €), € > 0, if they are. The rest lengths of
diagonal bonds are set so as to allow for a state with zero
stretching energy in the inextensible limit. See Refs. [24,25]
and Appendix A for details.

We first simulate square sheets of area L x L [Fig. 1(f)],
and then compare with results for cylinders with axial lengths
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FIG. 2. Mapping from buckled dilation nodes to spin or staggered spin in planar and cylindrical geometries at 7 = 0 (first row) and
T = 0.15 < T, (second row), where T, is the critical temperature of the staggered (“antiferromagnetic”) pucker phase transition in the planar
geometry. Temperatures are measured in units of the microscopic bending rigidity «. (a) Height profile at equilibrium of a 48a, x 48ay
puckered sheet with 24 x 24 dilation nodes with periodic boundary conditions in the x and y directions. The colors represent nodes’ positions
relative to the zero plane in units of the lattice spacing, ao. (b) Spin configurations associated with column (a), where dilations that buckle
above the local plane formed by their neighbors are designated spin up (¢ = +1, blue) and dilations that buckle below are designated spin
down (o0 = —1, yellow). (c) Staggered spin configurations associated with the spins in column (b), measuring each spin’s adherence to a
checkerboard ordered phase. This transformation amounts to multiplying the spins on every other lattice site by —1. (d) The same puckered
sheet as in columns (a)—(c), but now wrapped into a cylinder with periodic boundaries in the axial direction. Staggered spins are shown
following energy minimization at 7 = 0 or equilibration at T = 0.15. Node positions are visualized using OVITO software [44].

L tuned to match their circumference, L = 2nw R [Fig. 1(g)].
Periodic boundary conditions in the x and y directions are used
for the planar membranes. We form cylinders by wrapping the
square membranes around the y axis, with periodic boundary
conditions along the tube axis such that the planar membranes
and the cylinders are topologically equivalent with, however,
very different extrinsic curvatures. Energies are measured in
units of £. We use € = 0.1, k = 100/%/61%, and £ = 1, which
corresponds to a continuum two-dimensional (2D) Young’s

modulus Y = 4k/3, a continuum bending rigidity « = &, and

a dilation Foppl-von Karman number [24,25] y = 16;(:‘2)6

53.3. The elastic parameters are chosen so that buckling either
up or down out of the local tangent plane is energetically
preferred by dilations (y > y. >~ 21 [24]; Appendix A).

We now introduce our main simulation results graphically
via Fig. 2, though we postpone detailed discussions to Sec. V.
In the top row, we show relaxed configurations at zero tem-
perature obtained by minimizing energy and stress with the
fast inertial relaxation engine (FIRE) algorithm [45]. Dilations
embedded in a host lattice buckle in the local z direction
in a checkerboard pattern [Fig. 2(a)]. These buckled nodes
can be mapped to up and down spins [Fig. 2(b)], which can
then be used to determine the staggered spin [Fig. 2(c)]. The
staggered spin variable is obtained by multiplying the spin
by (—1)%", where the integers x; and y; index the spin’s
position on the lattice. Thus the spins on one sublattice of
the bipartite square lattice are multiplied by —1, while the
others remain the same. This transformation means that if

%

one superimposes a checkerboard on the spin configurations
shown in Fig. 2(b), a spin is assigned to be staggered spin +1
if it is consistent with that particular checkerboard and —1 if
it is not. Thus, both a pure staggered spin-up state and a pure
staggered spin-down state correspond to perfect checkerboard
order, with their corresponding spin configurations differing
by an overall factor of —1. The average of the staggered spin is
the staggered magnetization, the order parameter identifying
the checkerboard phase. In Fig. 2(d), the surface is shown
wrapped into a cylinder in real space with its staggered spin
configuration superimposed.

In the bottom row of Fig. 2, we carry out the same set of
transformations at a temperature greater than zero but less
than the critical temperature (7. >~ 0.20) [24] of the stag-
gered magnetization phase transition in the planar geometry.
In Fig. 2(a), we now observe long-wavelength thermal fluc-
tuations generating out-of-plane displacements significantly
greater than the dilation buckling amplitude (~0.4ay). To as-
sign spin configurations, we use the nodes’ positions relative
to the local planes formed by their neighbors. In Figs. 2(b) and
2(c), we observe that checkerboard order is largely maintained
at T = 0.15. However, checkerboard order is broken up for
the same system when equilibrated in a cylindrical geometry!
The curvature has decreased the effective critical temperature
of the phase transition, and 7 = 0.15 now lies in the mg = 0
phase. This outcome is reminiscent of the effect of a uniform
external field in Ising antiferromagnets (see Appendix D and
Refs. [46,47]). However, as we will see, the strength of this
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effective field is size dependent, varying inversely as the radius
of the cylinder.

III. DISCRETE REAL SPACE THEORY

To better understand these results, we now derive a mi-
croscopic fieldlike interaction between the curvature and the
buckled dilations at zero temperature by working directly
with an approximate form of the energy functional used in
simulations, Eq. (1).

If we assume as a first approximation that there are no
displacements tangent to the surface defined by the host lattice
and only dilation nodes have displacements normal to the
surface (consistent with a large Foppl-von Karman number),
we can express the energies of the pairs of buckled dilations

J

2(1—n, -ng) =201+

1
Jag + fiai + f3

where f; and f, are the perpendicular displacements of the
left and right dilations relative to the host lattice in Figs. 1(c)
and 1(d)], respectively.

A. Effective external field

To see that curvature enters Eq. (2) as an effective ex-
ternal field acting on an antiferromagnetic Ising model, we
set fi = o1f and f, = oo f, where 01, = £1. While a good
assumption in a planar geometry, this approximation is less
accurate for the cylinder—curvature breaks the up-down sym-
metry of the system, and |fi| # |f>| in our simulations of
antiferromagnetically buckled nodes. We relax this assump-
tion in Appendix A 3, and also consider the total energy of a
small patch, rather than just the bending between an isolated
pucker pair, with only minor changes in the results.

Upon expanding Eq. (2) in the limit @p/R < 1 (small cur-
vature) and simplifying, we find

2% (f2+2_ag>

2k(1 —ny -mg) ~

f2 +a% RZ
2R f? 2a}
(e L
4kadf

(01 + 02) + O(ay [ RY).
3)

After neglecting the o;-independent term, this contribution
to the bending energy has the form of the Ising Hamiltonian
AH), (per nearest-neighbor pair of dilations) for a spin system

in an external field, where AH|, = Je0107 — hi" (o1 + 072),

B R(f*+d})

with
2/2f2 2a(2)
Jigt = ——1— — |, 4
ff f2+a(2,< R “
8kasf
eff R(f2+a(2)) ( )

f1f2<1 -

in Fig. 1 solely in terms of the out-of-plane displacement,
the lattice constant, and the energetic parameters. For the
dense arrays studied here and in Ref. [24], applying this ap-
proximation to planar arrays leads to quantitatively accurate
predictions for the buckling threshold, the height of buckled
dilations, and macroscopic expansion if the lattice constant is
allowed to vary (Appendixes A 1 and A 2) [48].

With these assumptions, all the terms in the energy of the
ferromagnetic and antiferromagnetic spin pairs on a curved
host lattice [Figs. 1(c) and 1(d)] are identical except for the
bending energy generated by the two sets of adjacent plaque-
ttes with normals labeled n, and ng. The contribution to the
bending energy from these sets of plaquettes along a cross-
section line of a cylinder can be found by directly calculating
the interactions between the normals (Appendix A 3), which
gives

2a? 2a? a? 2a?
ﬁg—7ﬁﬁ+ﬁﬁl—ﬁ+%(ﬁL4> )
[

Note that the effective uniform field heg is size dependent,
vanishing like the reciprocal of the cylinder radius. This
calculation describes the interaction between two puckers
connected along the azimuthal direction of the cylinder, as in
Fig. 1. The dilations connected along the axial direction will
have an interaction of strength J.i(R — 00) (Appendix A).
We only simulate cylinders with a circumference larger than
or equal to 124y, for which this estimate of J ¢ is always posi-
tive, as expected for an antiferromagnet. Curvature biases the
system towards positive o1, o, (outward buckling), at linear
order in ap/R, and reduces the strength of the antiferromag-
netic interaction at quadratic order in ay/R.

B. Estimate of the threshold radius

As the cylinder becomes more strongly curved (1/R in-
creases), the effective external field will bias the dilations
to buckle away from the center of curvature, as pictured in
Fig. 1(c), and the new term in the effective coupling will
weaken the antiferromagnetic interaction. At some threshold
radius (which will be a function of the elastic parameters),
ferromagnetism will become the preferred ground state at zero
temperature. A rough estimate of this threshold radius follows
if we assume that the buckling magnitude f is the same for
both ferromagnetic and antiferromagnetic patterns. We calcu-
late the energy difference between two small patches of an-
tiferromagnetically and ferromagnetically puckered dilations
curved into cylindrical caps [explicitly given in Egs. (A15)
and (A16)], and find the energy difference per pucker,

Expv —Epv 8k f2 8kal f*
Ny fPtay (af+ AR

(12

8kalf\/1— 7
(a3 + AR
Upon solving Eq. (6) for when Expy and Egy are equal, we
find a threshold radius below which outward ferromagnetic

(6)
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puckering dominates,

R = ‘}—“(\/fz +ad), %)

where f is the local pucker amplitude. We estimate R; for the
parameters used in simulations by substituting f = 0.374ay,
the buckling amplitude for systems with planar periodic
boundaries (Appendix A 2 [49]), which gives

R, ~ 2.85ay. ®

Although this estimate depends sensitively on our assump-
tions about the value of f, it does reveal the existence of a
threshold radius in the discrete theory. In Sec. V, we measure
the threshold radius in simulations and find a larger value,
R; = 4ay.

IV. NONLINEAR CONTINUUM ELASTIC THEORY
FROM SHALLOW SHELL THEORY

We now introduce a complementary continuum theoretical
model for puckers on a cylindrical host lattice using shallow
shell theory [50-53]. We use this model to calculate the en-
ergy in terms of the amplitudes of the staggered magnetization
and magnetization buckling modes, which reveals a fieldlike
coupling between curvature and magnetization. In contrast to
the discrete model presented in Sec. III, which only accurately
describes interactions between spins whose associated pla-
quettes share an edge, the complementary continuum model
is most accurate in the limit of dilute dilation arrays, for
which dilations are far apart and can be reasonably modeled as
§-function perturbations in the preferred metric [54]. Though
we only work at zero temperature in what follows, we com-
ment on how this calculation could be extended to nonzero
temperatures as well.

A. Energy functional

Consider a patch of puckered dilations with a cylindrically
curved host lattice, as in Figs. 1(c) and 1(d). For a shallow,
nearly flat cylinder of radius R, we can parametrize the curved
background surface of the cylinder, ry, using the Monge rep-
resentation, placing the origin at the top of the cylinder,

ro(xi, x2) = (x1, x2, Z(x1)), )
where
X

Shallow shell theory assumes that the slope of the surface
is small, which for our case requires

x|
= ‘— < 1,
/ 2
R? — xj

thus restricting our attention to the region close to the origin
where x? < R?/2. Deformations relative to the cylindrical

aZ
8x1

an

background surface ry can now be decomposed into displace-
ments tangent to the surface (in the t) and 9 directions) and
normal to the surface (in the A direction) such that

r(xi, x2) = 1o 4 u €0 + uot + f. (12)

A deformation with positive f corresponds to a “spin-up”
pucker with an increased radial displacement relative to the
cylindrical background surface [55].

Upon applying the small slope approximation such that
0Z/dx; ~ —x;/R and neglecting (3Z/dx;)* and fu;dZ/dx,
terms, Eq. (12) can be reexpressed as

r(x;, x) = <x1 + uy +f%,xz +u2,Z(x1)+f>. (13)

Consistent with these approximations, an array of dilations
can be modeled as a sum over § functions at regularly spaced
positions {r;} in the preferred metric tensor gg 8 [25,54],

ggﬁ = Saﬂ (1 + Qo 282(1' — I'l‘)> = Saﬂ(l + Qoc(r)),

(14)

where «, B € {1, 2}, Qp is the extra area provided by each
dilation, and c(r) is the concentration of dilations.

The metric tensor of the deformed or actual configuration
can be found by computing g,g = 3972 . aaTr,g using Eq. (13).
Thus, the strain tensor that penalizes deviations from the met-
ric of Eq. (14) is given by

B 1
Uyp = E(gaﬁ - gﬂ,g)
1/0u, OJu af o 1
== b 07 31 + Z51a51ﬂ — 5 Qoc(r),
2\0xg  0xq¢  Oxy Oxp R 2

s)

which defines our stretching energy in terms of the Lamé
parameters,

1
E, = E/dzr[Zuﬁiﬁ + A . (16)

We also impose a bending energy via the bending rigidity,
Kk, penalizing the square of the mean curvature [38],

12
E, = %/dzr(VZ(Z()n)-i-f))2 = g/d2r<V2f— I_Q) '
a7

The total energy is the sum of these two terms, and is in
general a function of both tangential and normal displace-
ments. However, for the purposes of our study, we are only
interested in normal displacements, which determine the spin
configuration. As described in Appendix B, we can elimi-
nate the tangential displacements at either zero or low finite
temperature: At zero temperature, we minimize the energy
functional with respect to tangential displacements u, for a
fixed function of f [25], and at finite temperatures, we inte-
grate over the tangential phonon degrees of freedom in the
partition function [56]. For either case, we find a relatively
simple (free) energy for phonon displacements normal to the
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host lattice surface,

2 / 2
_K 2 2 1 Y 2 (1or §2 rf
E _E/d r<V f- I_€> + Ef d r(EPaﬂaafaﬁf— 7(:(r)+P11]—e , (18)
where ¥ = 455?3\)) is the 2D Young’s modulus and P! p 18 the transverse projection operator [56]. The prime on the second

integral signals that the @ = 0 mode is excluded.

To probe the structure of Eq. (18), we Fourier transform the energy E by introducing f(q) = % [ d®rf(r)e™aT, where A is
area spanned by x; and x,. The Fourier transform of the dilation concentration is c¢(q) = % > ¢ 8q.G, in terms of v, the real space
area of the unit cell, and a set of reciprocal lattice vectors {G}. Upon neglecting constants and a term of order (£29/v)?, we arrive

at an energy per unit area,

E YQ YQ
1= —2—12 ZPlTl (@) f(q)d6,—q + 4—0 Z Plo(q1 + 42)q1692f (1) (92)86. ~q,~q
v qéo v ql(,:f'tlzz;lo#“
=—q

Y
+ 5 2 d @@+ 325 Y (Ph@) f@f (—a)

q#0 q#0
Y T T
—5r 2. Pt @)qeas @) (@)P] @+ )f (—a - @)
q1+q2=q#0
Y T T
t3 Z Fop(qi + 42)q10925 /(A1) f (@2)P, 5(q3 + 94)q3y G5 (q3) f (Qa). 19)
q) +ap=q#0
q3+q4=-q#0

Note that linear, quadratic, cubic, and quartic terms in f(q)
are all present.

B. Fourier space order parameters

We now introduce two order parameters into our theory
by associating the magnitude of the ferromagnetic buckling
mode with a uniform magnetization and the magnitude of the
antiferromagnetic buckling mode with a uniform staggered
magnetization.

As discussed in detail in Ref. [25], each buckled pattern can
be associated with a set of Fourier modes. For a ferromagnetic
buckling pattern, the set of allowed Fourier modes is simply
the reciprocal lattice vectors of the dilation superlattice:

2w 21
Gk, k) = <k1—7 kz—) = go(ky, k), (20)
na nagp

where k; and k, are integers, nag is the real space distance
between dilation sites when €2y = 0, and gy is the magnitude
of the smallest vector in the subspace, 27 /nay. Thus, the area
of the real space unit cell is v = n’a3. In the discrete model
and simulations, n = 2.

In the spirit of the nearly free electron model in solid
state physics [57], we approximate the ferromagnetic buckling
pattern as a sum over the eight smallest nonzero reciprocal
lattice vectors, {G;} = {(£go, £8o), (£&o, 0), (0, £go)}:

8
Seu(®) =) f(GeG™. @)

i=1

This truncation is consistent with a square Brillouin zone
that includes |g./[, |g,] < 57” To determine the relevant coef-
ficients for the Fourier mod)es, {f(G;)}, we calculate the first
eigenvector to go unstable in the limit R — oo in the truncated

(

basis by diagonalizing the quadratic terms in Eq. (19), enforc-
ing f*(G;) = f(—G;), as displacements must be real [25].

We find an unstable eigenvector that has all f(G;) real and
of the same sign. The magnitude of f(G;) for |G;| = g is
(1 ++/5) times the magnitude of f(G;) for |G;| = goﬁ at
the buckling threshold (away from threshold the eigenvector
depends on elastic parameters in the combination % =vy).
We normalize the f(G;) values so that the real space peak-to-
trough distance is may, in order to match our intuitive notion
of the magnetization.

Our ansatz for the real space ferromagnetic buckling defor-
mation is thus

Sem(xi, x2)
—@<cos( %2) + cos(gox )(1+M))
=4 80X2 80X1 1—1—\/3 .

(22)

Similarly, the Fourier modes associated with checkerboard
buckling can be found by direct calculation:

B(by, by) = <(2”1 + D (26 + 1)71')

nagp nap

— %O(Zbl +1,2b, + 1), (23)

where b; and b, are integers.

We now approximate the antiferromagnetic buckling pat-
tern by a sum over the four smallest nonzero wave vectors
given by Eq. (23): {B;} = {(£5}, £%)}. The first unstable
eigenvector in this basis has all f(B;) values equal and real.
We normalize these values so that the real space peak-to-
trough distance is 2mgag. The real space antiferromagnetic
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buckling deformation is therefore approximated by

4
Sama(r) =) fB)e™ T

i=1

= mgag cos <%> cos (é%) (24)

We assume that, within the parameter regime studied here,
other buckling modes play only a minor role in the phase
behavior of the system.

C. Zero-temperature behavior

Through this point, our calculations apply to both zero and
low finite temperatures (far below the crumpling transition).
If one wished to perform a low-temperature expansion, for
example, one could approximate f(q) in Eq. (19) as a sum
over wave vectors corresponding to ferromagnetic and antifer-
romagnetic order [Egs. (20) and (23)], wave vectors near the
order parameter subspaces, generated by pucker-scale thermal
fluctuations, and wave vectors with g < go, generated by
long-wavelength thermal fluctuations. This procedure would
reveal interesting temperature-dependent couplings between
Fourier modes. For example, we can directly observe that the
fieldlike linear term will only contribute when wave vectors

J

with exactly the periodicity of the dilation superlattice are
present, due to the § function in that term. Similar restrictions
prevent long-wavelength modes from contributing to any term
proportional to €2y, though the wave vectors close to the order
parameter frequencies would certainly enter. An explicit low-
temperature expansion is, however, beyond the scope of this
work, and we consider only the zero-temperature behavior of
the continuum theory.

At zero temperature, we assume that the deformation can
be represented as a sum over the truncated subspace of ferro-
magnetic and antiferromagnetic modes defined in Sec. IV B:

8 4
fE)=my Gt my Yy D™ (25)
i=1 i=1

where the Fourier modes {G;} and {B;} are given by Egs. (20)
and (23), and C; and D; are the constants providing the
normalizations in Egs. (22) and (24), discussed above.

By substituting Eq. (25) into the energy per unit area,
Eq. (19), we can examine couplings between m and myg. These
terms would also appear as part of the low-temperature expan-
sion procedure described above.

Upon using n =2 in gy = 37”0 and v = n’a3, we obtain a
polynomial expansion in the order parameters m and my,

E(momy) G+ VSY (19— V5Ya
= m 1024R?

A 128Ray

5 —VSr*  V5rYQ
- m
64a% 256a%

2 572Yay ) (5\/_—5)712Ya0 3

N ( Ya(z) s B 2Y Qo

32R?> 324}
B+ , ,

128a]

M T R MM
(7-2V57%y , n'v

2048R

(26)

m m
2048 st

Note that we impose a cutoff on the sums over g; and ¢, in
the quartic term such that |g.|, |g,| < 27 /nag in order to have
a consistent Fourier space truncation.

Upon inspecting Eq. (26), we see that the term

—%%Og“m is in fact a fieldlike coupling with the same

dependence on cylinder radius R and sign as the effective field
derived in the real space model [Eq. (5)]. If we expand the
discrete model in the amplitudes of the buckling modes (Ap-
pendix A 3), we find an expansion with all of the same terms,
with all the same signs as Eq. (26), though the coefficients
differ. With the exception of the m%m and m? terms, similar
terms also appear in the usual mean-field free energy of an
Ising antiferromagnet (Appendix D).

In summary, both the continuum elastic theory and the
discrete theory display couplings between the uniform magne-
tization and a magnetic-field-like term that scales as 1/R. The
coefficient multiplying 1/R in this field term differs between
the two theories, as expected since the theories pertain to com-
plementary approximations to the physics of dilation arrays.
However, upon expanding the discrete model by treating the
amplitudes of the buckling modes as small parameters and
comparing it to the continuum model, we see that the energies
of both models have the same structure.

8192

2048”5

[
V. MOLECULAR DYNAMICS SIMULATIONS

We now present simulation results for puckered cylinders
at zero and finite temperature, comparing with theoretical
expectations from the preceding sections when possible. Sim-
ulation details can found in Appendix C and our recent work
[24].

A. T = 0 results

At zero temperature, we can test the prediction of the dis-
crete model that there exists a threshold cylinder radius below
which ferromagnetic order is preferred over antiferromagnetic
order. We simulate square membranes wrapped into cylinders
with sizes in the range 12ay < L < 120ay, or equivalently,
cylinders with radii in the range 1.9a9 < R < 19.1ay. We
initialize the pucker heights in either an antiferromagnetic or
ferromagnetic configuration (with puckers pointing outward)
and use the FIRE algorithm to perform structural relaxation
and find the closest energy minimum [45].

In Fig. 3(a) we plot the difference in total, bending, and
stretching energy between ferromagnetic and antiferromag-
netic states (e~g-’ AEbending = Ebending [FM] — Ebending[AFM])a
normalized by the total number of sites (N = L?/a}) for sys-
tems R < 8ag (L < 48ag). We find the total energy of the
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FIG. 3. (a) Difference in energy per site between cylinders with
ferromagnetic and antiferromagnetic pucker configurations. AE is
defined as the energy of the ferromagnetic state minus the energy
of the antiferromagnetic state—therefore, for small radii (large cur-
vatures), Eapm > Epv, AE < 0 and ferromagnetism (with puckers
pointing outward) is preferred. The dashed vertical line estimates the
T = 0 threshold radius from the simulation data, R, (T = 0) ~ 4ay.
Insets show cross-section views of a relaxed ferromagnetic puckered
cylinder of size L = 24a, and a relaxed antiferromagnetic puckered
cylinder of size L = 48ay. (b) The three representative cylinder sizes
(small, medium, large) used in this work, with radii R = 3.8ay,
7.6ay, and 19.1ay (L = 24ay, 48ay, and 120ay), respectively. In the
figures that follow, simulation data are colored according to the key
provided by this figure: green for small cylinder results, blue for
medium cylinder results, and red for large cylinder results. Periodic
boundary conditions along the cylinder axis are imposed at the two
ends of all cylinders.

ferromagnetic state is lower than that of the antiferromag-
netic state, i.e., AEioa1 = Eroral[FM] — Eoral[AFM] < 0, when
R < dag (L < 24ay).

B. T > 0 results

At finite temperature, we can test the prediction of both the
discrete and continuum theory that the presence of curvature
lowers the effective critical temperature at which the staggered
magnetization undergoes a continuous phase transition. Be-

cause our cylinders are finite, such transitions will always be
rounded due to finite-size effects [58-60].

We monitor the behavior of two order parameters, intro-
duced in Sec. II and Fig. 2: the magnetization m and the stag-
gered magnetization my, defined as spatial averages over
the up and down “spin” configurations associated with the
puckers,

N, N,
1 < 1 « !
m=or Do ma=am ) e(=DYL @)
N, 2 N, &

where x; and y; index the spin’s lattice position, and N, is the
total number of puckers. Note that these convenient quanti-
ties differ somewhat from the buckling amplitudes we used
as proxies for magnetization and staggered magnetization in
Secs. III and IV. Here, spins are assigned to be either 1
or —1 depending on their buckling direction, regardless of
their buckling amplitude. These definitions of magnetization
and staggered magnetization can be easily analyzed at finite
temperature and emphasize connections with the Ising model.

In Fig. 4, we compare the staggered magnetization of three
planar systems to three cylindrical systems with the same
number of sites, displayed in Fig. 3(b). We see a number of
striking differences. The planar system displays a smoothly
sharpening drop in the order parameter at 7 ~ 0.2 as the
system gets larger, indicative of a continuous phase transition
in a finite system broadened in the usual way by conventional
finite-size effects [59,61,62]. The large cylinder behaves
similarly to the planar sheet, experiencing a smooth decay in
the order parameter as a function of 7. The medium cylinder
has a more gradual decay, starting at a lower temperature,
and the small cylinder displays different behavior entirely,
as its ground state has zero staggered magnetization due to
its high curvature. As emphasized by the insets to Fig. 4, as
well as Fig. 2, a planar system can be in the ordered phase
at the same temperature that a cylinder of puckers is in the
disordered phase.

Figure 5 shows the average magnetization (m) of puckered
cylinders and sheets as a function of 7. For planar puck-
ered sheets of all sizes, (m) >~ 0 at any 7. For the medium
and large cylindrical systems, (m) increases from zero and
reaches a small positive value at around T = 0.2 before de-
creasing monotonically with increasing 7. In contrast, the
small cylinder has nonzero magnetization in its ground state,
which decreases rapidly from (m) ~ 1 for 0 < T < 0.1 and
continues to decrease slowly for 7 > 0.2.

Note that we plot the absolute value of myg, as in our recent
work [24] and in Monte Carlo studies of Ising systems [64].
Taking the absolute value is helpful because (mg) averages to
zero in finite-size simulations; i.e., true spontaneous symme-
try breaking only occurs in the thermodynamic limit. We do
not, however, take the absolute value of m, since the curvature
of the cylinder breaks the up-down symmetry. In Fig. 5, for ex-
ample, (m) > 0 (puckers point radially outward) for all cylin-
ders, dramatically differing from their planar counterparts.

Finally, we examine the susceptibility of the staggered
magnetization,

/ _ & 2\ 2
X' (my) = kBT((rnst) (Img1)?). (28)
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FIG. 4. Comparison of the average of the absolute value of stag-
gered magnetization as a function of temperature for three different
system sizes in (a) a square planar geometry with relaxed (tension-
less) periodic boundary conditions and (b) a cylindrical geometry
with the same dimensions. The insets to (a) compare staggered spin
configurations for a 48ay x 48a, puckered plane (24 x 24 puckers)
atT = 0.15, below the critical temperature, and 7 = (.21, just above
the critical temperature, with red and yellow circles representing up
and down staggered spins, respectively. The insets to (b) compare
staggered spin configurations for a 48ay x 48ay puckered cylinder
with radius R = 7.6ag at T = 0.05 and T = 0.15. Notice that at T =
0.15 the puckered plane displays strong antiferromagnetic ordering
whereas the puckered cylinder is already in the disordered phase,
indicating that the two systems behave in a qualitatively different
fashion, as if they have different critical temperatures, due to the
radius-dependent ordering field from the cylindrical geometry. Error
bars were calculated using the jackknife method [63].

as a function of temperature for different system sizes, shown
in Fig. 6. In the planar systems, we again see a clear signature
of critical behavior in a finite system: growing peaks in the
susceptibility, with the location of the maxima converging to
a well-defined 7. in the thermodynamic limit. In cylindrical
systems, we observe a dramatic broadening of the peak of
the susceptibility and a substantial shift in the location of
the maximum as we go from a large cylinder to a medium
cylinder. While the data for cylinders do not conclusively
indicate the existence of a critical point obscured by finite-size
effects, if we assume that this is the case we can use the
energy derived in Eq. (26) to predict the shift in the critical
temperature caused by the cylindrical geometry.

1 H\HHH‘HHH\H \\\\\H\\‘\H\\\\\\‘\\\\H\H‘HHI\\\H‘\\\\HH\‘\H\\HH‘H\HHH‘HHHHL
0.9 (a) iH“‘H“HH“H“HH“H\E{
08: 0.005;7 Planar sheets f; ]
0.7 T opemgiineie e
06F 0005 ; é =

F \\H‘\\\\‘\\\\‘\H\‘\\\\‘\\\\::
EO'S? 0001 015 0.2 025 0.3 035 0.4
0.4F T =
0.3 =
0.2? f
L Irs \\\\\\‘\\H\H\\‘\\\\\\\\\‘\\\\\\\H‘\\\\\\\H‘\\\\\\H\‘\\\\\HH‘\HHHH‘\HHHH:

00

01 02 03 04 05 06 07 08 09 1
T

FIG. 5. (a) Average ferromagnetic pucker magnetization (m) of
three representative cylinder sizes as a function of temperature 7'.
The inset shows (m) >~ 0 for puckered sheets for the three sizes
we studied in a planar geometry. (b) Typical spin configurations
for small and medium cylinders at T = 0.01. The blue and yellow
spheres represent spins (puckers) pointing outward and inward, re-
spectively. At very low T, the small cylinder has most of its puckers
pointing radially outwards (m > 0) whereas the medium cylinder has
most of its puckers pointing in and out in a checkerboard pattern
(m =~ 0).

Following the logic of Landau theory, we assume that the
coefficients in the energy expansion given by Eq. (26) become
functions of temperature once the order parameter Fourier
modes are permitted to couple to thermal fluctuations, as
discussed in Sec. IV C, but that no new terms appear since all
terms allowed by symmetry are already present. Close to the
staggered magnetization phase transition, we only consider
the temperature dependence of the m? term. We relabel the
coefficients in Eq. (26), neglecting higher-order terms in m
and myg, to express the free energy as

F 2 2 2 22
i h((RYm + ri (T )mg + rom” 4 ¢ (R)ymmg + Bm~my,.

(29)

We identify the phase transition temperature within this mean-
field theory as the point at which the coefficient of m? passes
through zero, assuming that | (T') = a(T — T;) close to T:

r(To(R)) = alT.(R) — T.(00)] = =¢ (Rym — pm*. (30)

The value of m that minimizes Eq. (29) in the limit of small

Zism = h(R) . Upon substituting this value of m into Eq. (30)
and the 1 /R scahngs of h(R) and ¢ (R) given in Eq. (26), we
find that the critical temperature for a cylinder with radius R
decreases as 1/R?:

_ C(R)MR)  Bh(R)*
T.(R) = T.(c0) — ma | 42a
= T.(c0) — const X % 31
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FIG. 6. Comparison of the thermally averaged staggered suscep-
tibility as a function of temperature for three different system sizes in
(a) a planar geometry and (b) a cylindrical geometry. The staggered
susceptibility of the large cylinder is similar to that of planar systems.
For the medium cylinder, however, the peak broadens and shifts to a
lower temperature, with even more striking changes for the small
cylinder.

We test this scaling in simulations by identifying the max-
imum in the (possibly very broad) peak of the staggered
susceptibility with 7.(R). We plot the putative phase boundary
obtained in this way in curvature-temperature space in Fig. 7.
As shown in the inset, the shift in the critical temperature is
consistent with a 1/R? scaling. Since the finite-size effects
strengthen as the curvature increases (and the cylinder size
decreases), we cannot draw firm conclusions about how quan-
tities scale with system size without further analysis and/or
simulations. We briefly discuss the effect of changing the axial
length in Appendix C 2.

VI. DISCUSSION

We have argued that the effect of curvature on arrays of
buckled bistable nodes embedded in a thin elastic sheet is
analogous to the effect of an external field on an Ising an-
tiferromagnet at lowest order for large cylinder radii and to
leading order in a Landau-like expansion. First, we showed
that a fieldlike quantity scaling as 1/R, where R is the radius
of curvature, couples to a ferromagnetic order parameter in
two distinct theoretical models of a puckered sheet. Next,
we conducted molecular dynamics simulations of puckered
sheets wrapped into cylinders at zero and finite temperature

0.05— \ \ \ \ \ \ N T
| R R m_.=0 i
- _® 10,0015 st
L e 7 -
0.041 L Pl —0.0010 m>0 »
ol e j
[ g —0.0005
L e b |
003~ (... 1.0 0H0 N
o 0 005 01 015 02
= r T ()-T,R) 1
~— Cc c
0.02—
7 mJ>0
0.01F m>0 _
. P N R B B I .

| | |
0 0.02 0.04 006 008 0.1 0.12 0.14 0.16 0.18
To(*)-T,(R)

FIG. 7. Estimated staggered magnetization order-disorder phase
boundary plotted as curvature 1/R vs critical temperature of cylin-
ders T,(R) offset by T, for R — co. T.(R — 00) is the estimated 7,
in the thermodynamic limit of the planar system [24]. Inset shows
the linear relationship between 1/R* and T,(c0)-T,(R). The dashed
line is the piecewise linear fit line to the data points.

and found behavior consistent with curvature acting as an
external field, strongly modulated by finite-size effects. In
particular, as the radius of the cylinder decreases (curvature
increases), the lowest energy state switches from an antiferro-
magnetic configuration to a ferromagnetic configuration, and
at intermediate values of the curvature we observe a shift in
the effective critical temperature of the phase transition in the
staggered magnetization, defined as its maximum.

In our previous work studying phase transitions in flat
puckered surfaces, we were able to make precise measure-
ments of critical exponents via finite-size scaling [24]. We did
not make similar measurements in this work, since changing
the size of the cylinder also changes the strength of the applied
field, complicating the analysis. The correlation length in the
axial direction is limited by the axial length of the cylinder,
whereas the correlation length in the circumferential direction
will be limited by the circumference, which couples to the
effective field. We hope to investigate these subtle boundary
effects in future work.

Intriguingly, both theoretical models reveal additional
terms in the energy proportional to 1/R that scale as m® and
m2m, where m and my are the amplitudes of magnetization-
like and staggered-magnetization-like buckling, respectively.
These additional couplings to our fieldlike quantity are not
present in the standard free energy expansion of an Ising
model in an external field. The m® term might allow for a
first-order phase transition in the magnetization to a state with
negative magnetization (puckers buckled radially inwards).
Although evidence of such a transition was not observed in
our simulations, it would be interesting to search for by using
parameters that increase the relative strength of the m? term.

Finally, we comment on three interesting extensions of
this work. First, we have focused exclusively on systems
with positive dilations. Negative dilations (or contractile in-
clusions) in dense planar arrays have been shown to have
similar phase behavior [24], but assume profoundly different

115203-10



CURVATURE AS AN EXTERNAL FIELD IN MECHANICAL ...

PHYSICAL REVIEW MATERIALS 6, 115203 (2022)

ground states in isolation [65,66]. Both theoretical models can
be generalized to negative dilations, as discussed in Ref. [24]
and Appendix A 4. Second, cylinders allowed us to isolate the
effects of background mean curvature from the more compli-
cated (though interesting and experimentally relevant) effects
of background Gaussian curvature [67,68]. Our shallow shell
theory could be straightforwardly extended to more general
curved surfaces [69,70]. Third, at higher temperatures, ther-
mal fluctuations are able to crush cylindrical shells [53]. The
simulations presented here could be used to study whether
dilation arrays can stiffen cylindrical shells and impede ther-
mally driven collapse.

We conclude by noting that our findings are relevant for
controlling the buckled phase of 2D materials such as SnO,
borophane polymorphs, and many others [26-28,71-73]. Lo-
cal strains and the nature of buckling affect the electronic,
optical, and spin properties of 2D materials [74-81]. Hence,
the idea of using curvature as a control parameter to alter
buckled structure can be applied to 2D materials on curved
geometries [82] which can be realized experimentally in
many ways, such as by rolling 2D materials into nanoscrolls
[32,33,35,83], adhering 2D materials onto curved substrates
[74,76,77,80], pressurizing 2D materials with clamped bound-
aries [84], and applying in-plane strains [85]. This suggests
the possibility of developing “curvetronics,” through which
electronic and spin properties could be controlled via curva-
ture.
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APPENDIX A: CALCULATIONS USING THE DISCRETE
REAL SPACE MODEL

1. Positive dilations with planar periodic boundaries

With some simplifying assumptions, we calculate the en-
ergy of a small system of buckled positive dilations at 7 = 0,
show that we can extract an effective antiferromagnetic cou-
pling due to bending, and estimate the buckling threshold.

We consider the smallest (0,2) system [25] for which an
antiferromagnetic pattern is allowed by the periodic boundary
conditions, pictured in Fig. 8. Because of the boundaries, there
are only four independent dilations in the system. We make
the following simplifications.

(1) We set all in-plane displacements u, and u, to zero.

(2) We assume that the blue nodes in Fig. 8 all have height
o1f and the yellow nodes have height o, f, where 07, = £1
and f > 0 is a positive height displacement. This assumption
restricts us to studying either ferromagnetic or antiferromag-

FIG. 8. A perspective view of the small model system we con-
sider in the checkerboard state. Blue and yellow nodes buckle in
opposite directions. Top view is shown in Fig. 1(e).

netic configurations (see Ref. [25] for a discussion of other
states).

(3) We require that only the dilation nodes have nonzero
out-of-plane displacement.

Bending and stretching energy is now calculated using the
discrete form of the energy, Eq. (1). The preferred length of
the bonds lying along the x and y directions connected to
positive dilations is ap(1 + €) and the corresponding length
of the diagonal bonds is ag+/2 + 2¢ + €2, constructed so as
to allow for a stress-free prismatic limit [25]. The stretching
energy is

Estrerch = Sk(\/m —ap(l + 6))2
+8(,/f2 + 203 —ao/2+ 2+, (AD)

where k is the spring constant of the lattice model. The stretch-
ing energy is minimized when f = ag+/2¢ + €2, independent
of o1 and o,.

The bending energy is calculated by explicitly computing
the normals to the triangular plaquettes in Fig. 8, with the
result

floi09 — a(z) a(z)
Evena :16/%(1 +——— ) +16k|1l - ———
f*+aj f*+aj
[22+0102)
f* +a
where the first term in the first line comes from bending across
hinges formed by short bonds, and the second term from

bending across hinges formed by long bonds. The bending
energy is minimized when f = 0 (i.e., the system is flat).

— 167 (A2)

a. Effective antiferromagnetic coupling

We observe that the bending energy given by Eq. (A2)
has a contribution from the interaction between neighboring
buckled dilations that is exactly of the form of an Ising cou-
pling o,0,. The interaction term leads to an Ising Hamiltonian
> i) Jefioi0j, where we sum over a square of four nearest-
neighbor bonds connecting our puckers, with

2k
— >0
T+ a3/ f

Jetr 18 zero when f = 0, since there is no interaction between
dilations in the flat state (bending energy is zero). When

Jett = (A3)
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f # 0, Jegr is strictly positive, confirming an effective antifer-
romagnetic interaction.

If we assume that f ~ ag./y — y. close to the buckling
threshold y. [25],

Ky —ve)

et 1 (A4)

Jefr ~ ~ Ry —ve),

when y —y, < 1.

b. Buckling threshold

The competition between bending and stretching energies
decides whether the flat or buckled state is preferred, and
allows an estimate of y,., the buckling threshold. The van-
ishing of the second derivative of the total energy E(f) =
Egretch + Ebeng With respect to f, evaluated at f = 0, deter-
mines when E (f) becomes a double-well potential and the flat
state becomes unstable. The condition that E(f) is a quartic
polynomial for small f is thus

ka(z)(—Z +2e4+/4+2e24€)) =42+ 0102)k.

If we neglect terms of order €2 and eliminate k, #, and € in
favor of their macroscopic analogs ¥ = %, Kk =Kk, and Qy =
4ale,

(A5)

Y C
Ye = M = ﬁ(2 +0102). (A6)
K 9

This threshold is first reached for antiferromagnetic buckling,
oy0p = —1, when y,. = %4 ~ 7.11. This result underestimates
the threshold measured in simulations of a (0,2) array, y. =
20.8, because disallowing in-plane phonons makes the flat
state artificially expensive (its “breathing mode” is not per-
mitted). We note that this treatment does correctly reproduce
the finding that the antiferromagnetic state buckles before the
ferromagnetic state as y is increased.

For an alternative continuum treatment of the antiferro-
magnetic interaction between two positive dilations in a thin
elastic sheet, see Ref. [87].

2. Incorporating unit cell expansion

In order to make our simplified real space model more
realistic, we now allow the system to lower its energy by
expanding or contracting uniformly. We thus scale the lattice
constant ag by a factor 5. All other assumptions of the previ-
ous section are unchanged.

The stretching energy for the system in Fig. 8 becomes

Egtreteh = Sk(m —ap(1 + 6))2
+8(,/S? + 2P0} — V2 + 2 + )’

+ 8kag(n — 1) (A7)
The bending energy becomes
2
2
Eyg = 1622+ 0192) (AS)

f* +n*ag

We now estimate a more accurate buckling threshold by
first computing the value of 7 that minimizes the energy in the

= 30
27
24

=21
18
15
12
9
6

3

Energy

096 0.98 1.00 1.02 1.04 1.06
n

FIG. 9. Contour plot of the total energy of a system of four anti-
ferromagnetic dilations as a function of the dilation factor n and the
height of the buckled dilations f. Energy is measured in units of &,
the bending rigidity. € = 0.1, k = 100& /aZ. The minimum occurs in
the purple region, when 1 = 1y, = 1.017 and f = fiuin = 0.374qy.

flat state by solving ‘;—5 |f=0 = 0. To linear order in €, we find
€
5

This result is consistent with the finding in Ref. [25] that 2y =
4a(2)e.

Ng=o=1+ (A9)

We then calculate 3275 and evaluate at f =0and n =1+

%. This second derivative now vanishes when

ka2 + €)(—2 + 4+ 262+ €)) = 8(2 + o102)k. (A10)

As above, we neglect terms of order € and eliminate k,
K, and € to find two distinct puckering thresholds, one for
ferromagnetism (070, = 1) and one for antiferromagnetism
(0100 = —1),

ve=%Q2+010). (AT1)

The instability to antiferromagnetism (o070, = —1) again oc-
curs first for increasing y, with y, = 63—4 ~ 21.3, very close to
the value measured in simulations, y. = 20.8.

Away from the buckling threshold, we can numerically
minimize the energy with respect to 1 and f (see Fig. 9). For
the parameters used in the main text, € = 0.1, k = 100% /a(z),
we find that nyi, = 1.017 and fin, = 0.374ay. These values
are identical to those measured in simulations, where n =
1.017 and f = 0.374ay.

In summary, for dense, (0,2) arrays, this simplified model,
focused on just four nearest-neighbor puckers, can quantita-
tively reproduce key simulation results. This accuracy does
not carry over to more dilute arrays such as those studied
in Ref. [25], as neighboring spins become uncoupled when
their associated plaquettes do not share an edge under these
assumptions.

3. Effect of curvature

Building on the model introduced in Appendix A 1 (with a
fixed lattice constant for simplicity) at T = 0, we now show
that a small imposed curvature leads to an effective external
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field term, and estimate the radius of curvature below which
ferromagnetic puckers are preferred.

We start by explicitly calculating the normals n, and ng
labeled in the curved, cylindrical geometry of Fig. 1(c). Con-
sider the three (nondilated) nodes that lie along the dotted
green circle. Their positions in the (x, z) plane are

r; = R(—sin(A#), cos(AH)),
r; = R(0, 1),
r; = R(sin(A8), cos(AH)),

where R is the radius of the circle that defines a cylindrical
cross section. Upon assuming that the distance between r; and
r; (and r, and r3) is 2ay, we have AG = 2 sin’l(ao/R).

We assume that the left dilation in Fig. 1(c) is displaced
from the midpoint of r; and r, a distance f;, and the right
dilation is displaced from the midpoint of r; and r3 a distance
f>. Their positions in the (x, z) plane are, respectively,

2 2
p1 = | —a —ﬁ— D hR ——+f 1‘@ ;
- 1 “0 R |- G

p2=|ao + fz, ——+f ~r

The normal to the line formed by p; and r; is

n, =

1 aj \/ a} a ap
— |5 15 a1 -+ i)
/a(2)+f12 R R R R

and the normal to the line formed by p; and r; is

1 a3 \/ a} a;  ap
=———\| 75 Myl -5 anl—-5+5h
/a(%+f22 R R R R
(A13)

The two sets of adjacent plaquettes with normals n,, and
ng thus contribute a term to the bending energy between
neighboring plaquettes of the form

2k(1 —ny - ng)

1
:2/2(1 +
Jai+ fiJak+ f3

—2ao(fi + f)xv/1 — x2 4+ al(2x* — 1))), (A14)

(fifo(1 —2x%)

where x = ap/R. We assume, for relatively small bends
ap/R < 1, that the other terms in the bending energy and
stretching energy [e.g., Eqs. (A2) and (A7)] are unchanged
and remain independent of the cylinder radius R.

Comparison with free energy expansions

We now demonstrate that the energy derived using the real
space model has a similar structure to the energy derived

using shallow shell theory by expanding the energy in terms
of the amplitudes of the ferromagnetic and antiferromagnetic
buckling modes.

We consider all sources of bending and stretching energy
(rather than just the single term considered above) for the
small system pictured in Fig. 8 wrapped into a cylindrical cap
as in Figs. 1(c) and 1(d). We assume dilations in blue have a
height f; measured relative to the tilted plane formed by their
neighbors (the base of the square pyramid with the dilation
node at the vertex), and similarly dilations in yellow have a
height f,. We assume that all of the neighbor nodes of a given
dilation lie in the same plane to simplify the calculation, but
no longer require |fj| = |f2]. We also rescale fj, by ag to
make these quantities dimensionless.

The stretching energy is the same as in Appendix A1,
generalized to two different pucker heights:

Eureen =4ka3 (/12 +1— (1 + )’
Fakad(J 2 +2—V2+2e +€2)

Fakal (21— +e)
Fakad(J 22— V2+2e+ )

The bending energy has a term that is unchanged relative to
the flat case corresponding to bending within a pyramid. The
remaining source of bending energy is the relative rotation of
neighboring plaquettes from different pyramids. Some neigh-
boring pyramids experience additional rotation due to the
underlying curvature. Our final result for the bending energy
is

(A15)

N f
Ebend 8k <f1 +1 f22 + 1>
_l=hah

,/1+f1,/1+f2
el — 1
+8K<1+ %14_]012 %14_]022

—2(fi + v 1 — x2 4+ (2x% — 1))), (A16)

(fifo(1 —2x%)

where x = ao/R as in Eq. (A14).

We now expand x to linear order, € to linear order, and f;
and f; to quartic order. These approximations are most accu-
rate for small dilations on weakly curved surfaces (ag/R < 1)
close to the buckling threshold. Then, we define the amplitude
of the ferromagnetic and antiferromagnetic buckling modes
respectively as

= 1(fi + f), (A17)

mg = 3(fi — fo).

Upon substituting these expressions into the expansion and
dividing by N,v = 4Npa3 = A, we find the energy density as

(A18)
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(a) (b)

FIG. 10. (a) A top-down view of a small (0,2) array of negative
dilations (shown as large black spheres along the boundary and at
the center). The nodes on the lattice dual to the dilation super-
lattice (highlighted in blue and yellow) buckle in a checkerboard
pattern, while the dilation nodes themselves remain in plane. (b) The
checkerboard state for the buckled negative dilation array viewed in
perspective.

a function of these two order parameters:

E 2k 3k 3k
—%——K(m—mftm—m3)+<—l;——6 m?
A Ray ag 4
+ K 3ke 2 3k(6+5) 10k , ,
- ——|m — €) — — |mgm
a3 4 * 16 a )

k 3w\ . [k '
(A19)

Similar to our results for shallow shell theory, this ex-
pansion has a fieldlike term linear in m that scales as 1/R,
and quadratic terms that become negative as a function of y
(agreeing with previous results in the absence of unit cell ex-
pansion: y™ = 64/3 and yA™ = 64/9). Higher-order terms
in m and myg could be required for stability at intermediate
values of y.

4. Comments on negative dilations

Though a complete treatment would be beyond the scope
of this paper, we now briefly explore how these real space
models can be adapted to planar arrays of negative dilations,
studied in Ref. [24].

When a (0,2) array of negative dilations buckles, the sites
with significant out-of-plane displacement from the average
height are the host lattice sites dual to the dilation superlattice
(highlighted in blue and yellow in Fig. 10), rather than the
dilations themselves. We recalculate the energy of the small
system with negative dilations shown in Fig. 10, assuming that
the blue and yellow highlighted nodes are the only nodes with
out-of-plane displacements, taking values of £f in either a
checkerboard or ferromagnetic configuration.

If we assume that the lattice constant is fixed, as we do in
Appendix A 1, we find that the flat state is always stable, even
for arbitrarily large negative dilations. A global contraction
seems to be a necessary condition for buckling in negative
dilation arrays, in contrast to positive dilation arrays. We
therefore allow for a breathing mode by multiplying the lattice
constant ap by a factor n, as in Appendix A 2, with no other
in-plane displacements permitted. The stretching energy is

then

Egreteh = Sk(\/m _ a0)2
+8K(,/ 7 + 2023 — apy/2 + 26 + €2)
+ 8kag(n — 1 —€)’. (A20)

The stretching energy differs from Eq. (A7) because the
bonds connected to the displaced nodes have different rest
lengths. Note that € < 0 in Eq. (A20), as is appropriate for
negative dilations. We find that the bending energy is un-
changed from Eq. (A8):

2
2
Epna = 160G 91%2)
fe+n gy

Following the same steps as in Appendix A 2, minimizing
the energy with respect to n gives, to linear order in € < 0,

(A21)

€

5 (A22)

Nl =1+

We then calculate 227‘2 and evaluate at f =0andn =1+
5. This second derivative vanishes when

kaZ(2 + €)(=2 — 26 + /4 + 262 + €)) = 8(2 + 5100)k.
(A23)

As above, we neglect terms of order €2, which leads to

—kate =82+ ai)k. (A24)
Upon eliminating &, , and €, we find
Y|Q5 64
]/C = P = ?(24—0’102) (AZS)

This buckling threshold for € < 0 thus again occurs first for
antiferromagnetism (o070, = —1) and has the same magnitude
as the corresponding threshold for € > 0 under the same set of
assumptions. In simulations, we instead find that the negative
dilation arrays first buckle at higher values of y (y. = 26.1)
compared to positive dilation arrays (y. = 20.8). We previ-
ously showed that the nonlinear continuum theory introduced
in Ref. [25] is able to capture this delay [24].

As before, away from the buckling threshold, we can nu-
merically minimize the system with respect to n and f. When
e=-0.1 k= 100/%/@%, we now find that 1y, = 0.919 and
Jmin = 0.346a,. These values are again identical to those mea-
sured in simulations of a small system. We note that this ~8%
contraction is more significant than the ~2% expansion found
for positive dilation arrays at the same magnitude of y.

APPENDIX B: ELIMINATION OF TANGENTIAL
PHONONS

We present here additional details on how to eliminate the
tangential displacements in the energy functional defined by
Egs. (16) and (17).

If we wish to work at finite temperature, we can integrate
over the tangential phonons in the partition function. At zero
temperature, we instead assume the energy is minimized with
respect to tangential phonons. For either scenario, the first step
in the calculation is to shift u, by a function of f such that
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the energy becomes quadratic in the variable containing u,
(completing the square).
The appropriate shifted variable in Fourier space is

q“( ()+@>

Wq (Q) = ua(q) + d)a(q) -

2u+ i g? R
(1 +A)iqy q1 f(q)
2M+Aq2<0()+2 R)
iq1810 f(q)
-2 p R (B

with the following notation [25]: ¢,(q) and ®(q) are the

longitudinal and transverse parts of A,g(q), respectively,
where Aqp(r) = 3 (2 75), and c(q) is the Fourier trans-

form of the concentration of dilations, c(r) = Zzﬁ 8%(r —r;).
The Fourier convention used is f(r) = Zq f(Q)er, f(q) =

/% [ d*rf(ryear.
In terms of the shift variable w,(q), the stretching energy
[Eqg. (16)] becomes

s+ 5 2 d @
q

A
£y (%qZIW(q)IZ + 4 w(q)|2>

q#0
Y Qo f@
+5 2 |®@— e@+Ph@—-| . (B2)
q#0
where Y = 4’;2‘5” is the 2D Young’s modulus, A is the area
of the system, and P/} = 1 — Z—z.

Upon minimizing (or integrating) over w,(q) and i’ g We
find the energy (or free energy) as a function of f:

KA A
E=——+>) |cg'lf@P
2R 2 por

Qo
‘Cb(q) - —c(q) +Pn(q)—

] (B3)

In real space, this functional becomes

E—f/dzr vepo L 2
) R

Y (1

v [ e

where the prime on the second integral signals that the q = 0
mode is excluded.

p0ufOpf —c(r) + Pl f;)

(B4)

APPENDIX C: MOLECULAR DYNAMICS SIMULATIONS

All simulations are performed on HOOMD-blue package
v2.8.1 [88]. Simulation details for the planar membranes can
be found in our recent work [24]. We set k = 100& / ag, k=1,
and gy = 1. Temperatures are reported in units of £. We vary
the temperature from 7" = 0.05 to T = 0.500. Following our

previous work [24], we initialize the heights of the puck-
ers with the ground state pattern, either an antiferromagnetic
(AFM) or ferromagnetic (FM) configuration depending on the
radius. A small amount of noise is added to every node. We
then perform zero-temperature structural relaxation using the
FIRE algorithm [45] with force and energy convergence crite-
ria of 107 and 107!, respectively, and a step size dt = 0.005
to minimize energy and stress.

At finite temperature, NPT (fixed number of particles, pres-
sure, temperature) molecular dynamics simulations with zero-
stress condition are used after employing the zero-temperature
structural relaxation. Pressure and temperature are controlled
by the Martyna-Tobias-Klein barostat-thermostat [89] with
a time step dt = 0.001, thermostat coupling t7 = 0.2, and
barostat coupling 7p = 1.0. Periodic boundaries are applied
in the x and y directions for the membranes and along the tube
axis for the cylinders. NPT simulations are run for 107 time
steps for cylinders with L < 60ag and 2 x 107 for cylinders
with L > 60ay. Snapshots are taken every 10 000 steps and
the first half of data is discarded for thermal equilibration.
We typically perform 10 independent runs at each temperature
and 20+ independent runs closer to the transition temperature.
HOOMD simulation input scripts and other codes are available
at Ref. [86].

1. Thermal equilibration with random initial conditions

To check the robustness of our thermalization protocol,
Fig. 11 shows additional simulations of systems prepared
with random initial conditions. Specifically, we initialize the
pucker heights of cylinders with L = 60ay (R > R,, AFM
ground state) and L = 24ay (R < R,, FM ground state) with
random values and omit the zero-temperature structural opti-
mization. We find that the order parameters converge to the
average values obtained from systems prepared with ground
state initial conditions but in a much longer time. We therefore
save computational resources by performing simulations with
ground state initial conditions as described above.

2. Extending axial length

Here we provide additional simulations of a cylinder in
which we vary both the axial length, L., and the circum-
ference, L. In the main text, these lengths were always
equal. In Fig. 12, we observe that the staggered susceptibility
of the medium cylinder with Ly = L. = 48ay is similar to
the staggered susceptibility of a cylinder with L,x = 96ay,
Lgire = 48ay. However, doubling the circumference as well
leads to a very different behavior, consistent with Fig. 6.

APPENDIX D: ISING ANTIFERROMAGNET
IN A UNIFORM FIELD

Here, we provide a standard derivation for the free en-
ergy expansion for a conventional Ising antiferromagnet on a
square lattice in a uniform external field using Bragg-Williams
mean-field theory (see, e.g., Ref. [90]) and provide references
on how to improve these results. The resulting Landau-like
theory bears some resemblance to the energy functionals we
find for puckers on a cylinder [Eqgs. (A19) and (26)].
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FIG. 11. Magnetization m and staggered magnetization my as
a function of time ¢ of cylinders with (a) L = 60ay (R > R;) and
(b) L = 24ay (R < R,) prepared using random initial conditions. At
t = 0, both m and my, are approximately zero. At long times, m and
myg, are close to the average values of systems prepared with ground
state initial conditions (green circle and blue triangle, respectively).
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FIG. 12. Staggered susceptibility x'[mg] as a function of tem-
perature T for three cylinders, [(L.x = 48ag, Leire = 48ap), (Lix =
96ay, L. = 48ap), (Lax = 96ag, Leire = 96ay)]. Doubling the axial
length L, while keeping the curvature (L) fixed has small effect
on the effective 7 (the location of the peak in x'[mg]).

The energy of an Ising antiferromagnet with a spin config-
uration {o0;}, o; = %1 in the presence of an external field
that favors up spins is

E:JZO’iO'j—hZO'i, (Dl)
(i.J) i
with J > 0.
The square lattice is bipartite, so it can be divided into

sublattices A and B such that all interactions are between (and
not within) sublattices A and B. We define my = 1\} Y e O

and mp = N > i 0i» the uniform magnetization per spin of
each sublattice.

Each sublattice has an entropy of mixing due to the number
of ways to achieve a magnetization my4 g with Ny p spins:

~ —k 1 + mA,B 10 1 —+ mA’B
B 2 ]\ T2
l—mAB l—mAB

— |1 . .

(g ()

We now approximate Eq. (D1) by replacing each spin with a
spatial average. On combining the approximated energy with
Eq. (D2), the Bragg-Williams free energy per spin for an Ising
antiferromagnet reads

F E-TS

N N

S(ma,p)
Ny.p

s(my p) =

D2)

h T
=2J/mymp — E(mA + mpg) — E(S(mA) + s(mp)). (D3)

In the limit of small &, with T close to 7., we expect
both m4 and mp to be small. We now expand in m, and mg,
neglecting terms of order m;, p:

F h
N ~ — kpT log?2 + 2Jmymp — E(mA + mp)
kgT kgT
+ —i (mj + mp) + —54 (my +myz). (D4

We then define the magnetization and staggered magneti-
zation in terms of my4 and mg:
m = 1(mp + mp),
1
my = 5(ma —mg).

Upon making these substitutions, the expansion becomes

F kgT
N~ —ksTlog2 —hm+ 20 (m* —m3) + BT(mZ +m?)
kgT kpT
+ f—z( s mft) + BTmszt. (D5)

We see that the coefficient of the term quadratic in myg
changes sign at kT, = 1i{n2 ~ 4J — 4Jm?. The coupling
with m shifts the transition temperature but does not affect the
nature of the phase transition. When & =0, m = 0, and we
regain the mean-field theory critical temperature of the Ising
model, kgT.? = 4J. Upon neglecting terms quartic in m and
quadratic in mg, we minimize f with respect to m and estimate
m = # On substituting this result in our estimate of T,
we find the shift in the critical temperature as a function of the
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external field kpT,. ~ 4J — 4J(gor) = 47 — 1. Unlike the
ferromagnetic Ising model, we have a critical line in the A-T
plane, rather than a single critical point. With the mean-field

approximations described above, the critical line is given by

WT,) = £,/16Jks(T? — T.).

Many better approximations for the critical line have been
derived [91-94]. The “interface solution” of Miiller-Hartmann
and Zittartz [46], though not the most accurate among them
[95], has a particularly simple form and agrees well with
simulations [47] and exact results in the limits 2~ — 0 and

(D6)

h 2J
cosh = sinh? . (D7)
kpT. kgT,

As discussed in the main text, we observe that Eq. (D5) has
many of the same terms as Egs. (A19) and (26)—a linear term
coupling the field and magnetization, and all even terms in m
and mg. However, Eq. (D5) is missing terms that scale as m>
and mm?,. Terms of this form would be created if Eq. (D3) had

aterm w(m3 + my) = 2wm’ + 6wmm?.
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