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Ab initio construction of full phase diagram of MgO-CaO eutectic system
using neural network interatomic potentials

Kyeongpung Lee , Yutack Park, and Seungwu Han *

Department of Materials Science and Engineering and Research Institute of Advanced Materials,
Seoul National University, Seoul 08826, Korea

(Received 25 August 2022; accepted 15 November 2022; published 21 November 2022;
corrected 4 January 2023)

While several studies confirmed that machine-learned potentials (MLPs) can provide accurate free energies
for determining phase stabilities, the abilities of MLPs for efficiently constructing a full phase diagram of
multicomponent systems are yet to be established. In this work, by employing neural network interatomic
potentials (NNPs), we demonstrate construction of the MgO-CaO eutectic phase diagram with temperatures up
to 3400 K, which includes liquid phases. The NNP is trained over trajectories of various solid and liquid phases at
several compositions that are calculated within the density functional theory (DFT). For the exchange-correlation
energy among electrons, we compare the PBE and SCAN functionals. The phase boundaries such as solidus,
solvus, and liquidus are determined by free energy calculations based on the thermodynamic integration or
semigrand ensemble methods, and salient features in the phase diagram such as solubility limit and eutectic
points are well reproduced. In particular, the phase diagram produced by the SCAN-NNP closely follows the
experimental data, exhibiting both eutectic composition and temperature within the measurements. On a rough
estimate, the whole procedure is more than 1000 times faster than pure-DFT based approaches. We believe that
this work paves the way to fully ab initio calculation of phase diagrams.
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I. INTRODUCTION

By informing phase formation under the given tempera-
ture, pressure, or composition, the phase diagram plays an
important role in designing and processing materials [1,2].
However, determination of the phase diagram requires a
huge amount of experimental efforts, particularly for mul-
ticomponent systems [3,4]. This is because while possible
combinations of temperature and composition are vast, each
data point becomes only reliable with consistent observations
from complementary techniques. As such, full phase diagrams
are sparse for multicomponent systems [3].

Theoretically, the phase diagram is determined by the
Gibbs free energies of competing phases, where the low-
est ones appear in the equilibrium phase diagram. Several
computational methods based on molecular dynamics (MD)
have been developed for computing the free energies from
atomistic simulations: thermodynamic integration, coexis-
tence method, and semigrand ensemble [5–9]. Among them,
the coexistence method allows the calculation of the free en-
ergy difference between the two phases by directly simulating
the equilibrium of a large-scale simulation cell containing
their interfaces [7,8]. On the other hand, the thermodynamic
integration calculates the absolute free energy by exploiting
the reference systems whose free energies are known, thus
avoiding direct evaluation of partition function of real sys-
tems. For pure phases, this method has been applied for a
wide range of systems to compute melting points and single-
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component phase diagrams [10,11]. In contrast, the semigrand
ensemble method focuses on the free energy of mixtures such
as solid solutions and liquid alloys, by calculating derivatives
of the free energy about composition and integrating them
from the pure phases [5,9].

In combination with the density functional theory (DFT),
the above methods allow for evaluating free energies without
experimental inputs. For example, various single-component
phase diagrams including melting properties have been con-
structed by employing the above-mentioned methods [10–16].
However, in binary or higher-order systems, the MD-based
approaches are limited with DFT because the sampling over
compositional variations and configurations requires iterative
simulations over millions of time steps and large simulation
cells containing hundreds of atoms [17,18]. Alternatively,
the MD-free cluster expansion was employed in constructing
phase diagrams of solid alloys by interpolating free energies
of alloy configurations [5,19–25]. However, this approach is
applicable to only crystal systems, and its accuracy degrades
when atomic relaxations are significant [26].

In recent years, machine-learned potentials (MLPs) have
gained much attention as they can provide energies with near-
DFT accuracy at a fraction of the cost [27]. The computational
acceleration using MLPs has been confirmed over a wide
range of applications including, for example, crystal struc-
ture prediction [28] and lattice thermal conductivity [29]. In
addition, MLPs are suitable as surrogate models of DFT in
evaluating free energies, which has been successfully demon-
strated in many recent studies [30–43]. However, examples
are mostly single-component systems [30–40] and only a few
examples, AgxPd1−x [41], NixMo1−x [42], and GaxAs1−x [43],
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have been attempted for constructing the phase diagram of
compounds. Therefore, the accuracy and efficiency of MLPs
for constructing the whole phase diagram of multicomponent
systems are yet to be confirmed. With these motivations,
herein we aim to construct a full temperature-composition
phase diagram for the MgO-CaO, an archetypal pseudobinary
system with rich experimental information, using Behler-
Parrinello-type neural network potentials (NNPs) [44].

Our strategy for computing the free energy and construct-
ing the phase diagram is as follows: first, for pure phases,
temperature-dependent free energies are calculated using the
thermodynamic integration method. For pure MgO and CaO
we consider rocksalt and liquid phases, and the crossing of
the free energy curves of both phases corresponds to the
melting point. Next, the composition-dependent free energy of
mixing is calculated using semigrand ensemble simulations at
selected temperatures. Since no intermetallic compound exists
along the MgO-CaO pseudobinary line, only the rocksalt solid
solution phase and liquid mixture are considered. The whole
temperature- and composition-dependent free energies are fit-
ted into analytical forms, and phase boundaries are determined
by common tangents on the isothermal sections of free energy
curves. The rest of the paper is organized as follows: in Sec. II
we introduce computational methods used in the present work
such as NNPs, thermodynamic integration, and semigrand en-
semble simulations. The main results are discussed in Sec. III,
and Sec. IV summarizes and concludes this work.

II. THEORETICAL METHODS

A. Neural network potential and DFT calculations

In the present work, the Behler-Parrinello-type NNPs [44]
are trained by using the SIMPLE-NN package [45,46]. For
input features, we use atom-centered symmetry functions
(ACSFs) [47]. The numbers of features are 24 and 108 for the
radial and angular parts, respectively, with cutoff radii of 7.0
and 4.5 Å, respectively. Since three-body interactions require
more computational resources than two-body terms, we tune
the angular cutoff to accelerate the MD simulations. When
compared to the single cutoff of 7 Å, we confirm that more
than ten times speed gain can be achieved, while the energy
and force RMSE marginally increases from 4 to 5 meV/atom
and 0.22 to 0.28 eV/Å, respectively. The full parameters for
ACSFs are listed in the Supplemental Material [48]. The train-
ing is accelerated by decorrelating features using principal
component analysis and whitening [49]. We use an initial
learning rate of 0.01, which decays exponentially during 190
epochs and becomes 0.0005 at the final epoch. We use a fully
connected atomic neural network with two 60-node hidden
layers. The MD simulations and evaluations of energy, force,
and stress are carried out using the LAMMPS package [45,50].

The DFT calculations for the training set are carried out
using Vienna ab initio simulation Package (VASP) [51–53]
with the projector-augmented wave pseudopotentials [54].
The pseudopotential contains the valence electrons of 3s2,
3s23p64s2, and 2s22p4 for Mg, Ca, and O, respectively.
We generate data sets independently using two types of the
exchange-correlation functional; the widely used generalized
gradient approximation (GGA) by Perdew-Burke-Ernzerhof
(PBE) [55] and the strongly constrained and appropriately

normed (SCAN) meta-GGA functional [56]. The SCAN
functional has been benchmarked against PBE on diverse
properties, providing more accurate lattice parameters [56],
formation enthalpies [57], lattice dynamics [58], energies of
metastable phases [59], and the melting points [38,60]. For
ab initio MD simulations, we use default plane-wave energy
cutoffs with the �-point sampling for the Brillouin zone inte-
gration. Then more accurate DFT calculations are performed
on selected snapshots for the reference data set by increas-
ing the plane-wave energy cutoff to 500 eV and employing
3×3×3 k-point meshes for the conventional unit cell of rock-
salt MgO and CaO, which is scaled in supercells to select a
similar k-point density. Details on the training structures will
be discussed in Sec. III A.

B. Thermodynamic integration

Thermodynamic integration allows one to calculate the
free energy by computing the work done in the isothermal
switching process from a reference state whose free energy
is known a priori, to a state of interest [6,7,13,61]. We apply
this method for pure rocksalt and liquid phases of MgO and
CaO. When the potential energy term of the Hamiltonian of
the reference system (Ui) and of the system of interest (Uf ) is
given, a parametric potential is defined as

U (λ) = (1 − λ)Ui + λUf , (1)

where λ is a coupling parameter ranging from 0 to 1. The dif-
ference in the Helmholtz free energy between the two systems
(Ff − Fi) is given by

Ff − Fi =
∫ 1

0

〈
∂U (λ)

∂λ

〉
λ

dλ, (2)

where the 〈·〉λ denotes the ensemble average under the NVT
condition at constant λ, which is practically replaced by a
temporal average according to the ergodicity.

We employ two reference systems depending on the final
state: the Einstein crystal for solid phases and Lennard-Jones
(LJ) fluid for liquid phases. The free energy of the Einstein
crystal is given by

F =
∑

i

3nikBT ln

(
hωi

2πkBT

)
, (3)

where kB, h, and T mean the Boltzmann constant, Planck
constant, and temperature, respectively, and ni and ωi cor-
respond to the number of atoms and angular frequency of
Einstein oscillators of atomic species i, respectively. We use
a spring constant of 5 eV/Å2 throughout this work regardless
of atomic species.

For the liquid phase, we select for the reference system the
“cut and shifted” LJ potential [62]. In Ref. [62], the residual
free energy of the LJ fluid in reference to the ideal gas was
parametrized into an equation of state, which provides highly
accurate free energies over a wide range of temperatures and
densities. The free energy of the ideal gas is given by

F = −kBT
∑

i

ln

(
V ni

�
3ni
i ni!

)
, (4)

�i = h√
2πmikBT

, (5)
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where V is the volume of the system and �i is the thermal De
Broglie wavelength of the atomic species i with the atomic
mass of mi. To avoid a phase transition along the integration
path, the depth of the LJ potential is controlled such that the LJ
fluid becomes supercritical, and the diameter of LJ particles is
chosen to have a nearest-neighbor distance similar to the final
state [7].

C. Semigrand ensemble simulations

Taking the example of a binary system made of atoms A
and B, the difference of chemical potentials is written as

�μ(x, T ) ≡ μB(x, T ) − μA(x, T ) = ∂G(x, T )

∂x
, (6)

where x is the mole fraction of species B and G is the Gibbs
free energy. �μ(x, T ) can be obtained by the semigrand en-
semble, a subset of the grand-canonical ensemble in which the
number of atoms is fixed but chemical identities can change
freely [9,17,18,63]. In practice, the equilibration within the
semigrand ensemble is achieved by hybridizing MD simula-
tions with Monte Carlo (MC) swap of atomic species. The MC
particle swap is accepted by the Metropolis criterion defined
as

p = min

[
1, exp

(
−�E − �μN�x

kBT

)]
, (7)

where �E and �x indicate the change of energy and compo-
sition of the simulation cell due to the test flipping of atomic
species respectively, and N is the total number of atoms [63].
After sufficient MD-MC runs, the equilibrium composition x
is obtained for the given �μ. By iterating the semigrand en-
semble simulations over a range of �μ, x(�μ) and its inverse
�μ(x) are obtained at given T , and the free energy G(x, T )
is obtained in turn by integrating Eq. (6). A more formal
derivation [9], practical implementation [63], and application
examples [17,18] of the semigrand ensemble are referred to
the literature. During the MD simulations, the isobaric condi-
tion is imposed to consider composition dependent of lattice
parameters.

III. RESULTS AND DISCUSSIONS

A. NNP training

The DFT data set for training NNPs consists of pure
phases, solid solutions, and their melts. For pure phases of
MgO and CaO, the data set first contains rocksalt crystals un-
der volume-conserving uniaxial, hydrostatic, or shear strain,
whose ranges are −5% to 5%, −2% to 4%, and −5% to
5%, respectively. For intermediate compositions, we generate
100 random alloys in the rocksalt structure (MgxCa1−xO)
containing 100 atoms in x = 0.08, 0.2, 0.8, 0.92. For each
composition, the lattice parameter is obtained by relaxing
the cell shape and volume. To sample thermal vibrations of
solids as well as liquid phases, the crystals of pure phases
and random alloys (the most and least stable configurations
among the 100 structures) are heated from 300 to 2000,
4000, 6000, and 8000 K with a duration time of 1 ps
at each temperature. Two independent MD simulations are
performed in constant pressure (NPT) or constant volume

TABLE I. The root mean square error (RMSE) for the energy and
force on training and test sets. PBE-NNP and SCAN-NNP represent
NNPs that are trained with the corresponding functional. In averag-
ing errors in the force, the three-dimensional Euclidean distance is
measured between DFT and NNP forces.

Energy (meV/atom) Force (eV/Å)

Train Test Train Test

PBE-NNP 4.0 4.1 0.24 0.28
SCAN-NNP 5.1 5.5 0.24 0.29

(NVT) ensembles, where temperatures are modulated with the
Langevin [64] or Nosé-Hoover [65] thermostats, respectively.
We note that both ensembles are complementary in construct-
ing data sets; while the NPT data set includes the thermal
expansion of solid and liquid phases, NVT data set contains
interactions between atoms at short distances, which helps
prevent short-bond failures of NNPs during MD simulations
along the thermodynamic integration path. We find that the
pure phases and random alloys melt at 8000 and 6000 K,
respectively. By including these melting processes, NNP may
learn the interface between the solid and liquid phases re-
quired for coexistence simulations. Those MD trajectories are
sampled with the interval of 40 and 10 fs at 300–4000 K
and 6000–8000 K, respectively, and included in the data set
after accurate single-shot DFT calculations. The whole data
set contains 5670 structures, equivalent to 552 096 atoms,
consistently for both PBE and SCAN. (See the Supplemental
Material [48] for details.)

We generate single NNP for PBE and SCAN functionals,
named as PBE-NNP and SCAN-NNP, respectively, which is
used for the whole calculations. 10% of the data is randomly
selected as a test set to evaluate performance of the NNP. The
root mean square error (RMSE) of NNPs on the training and
test set is presented in Table I, indicating that the accuracy of
NNPs is satisfactory. As shown in the training and test RMSE,
the NNPs are not overfitted, as also observed in previous MLP
studies [37,49]. This is because the data set mainly consists of
MD trajectories that are finely sampled on the order of 10 fs,
so the training and test sets become uniform regardless of how
they are selected from the entire data. In addition, the final
models are insensitive to the initial random numbers of the
model, as will be confirmed below by giving almost the same
results when trained on the same data set. The parity plots in
Fig. 1 display correlations of the energy and force components
between DFT and NNP for the test sets, showing that both
PBE-NNP and SCAN-NNP well reproduce the reference DFT
results. The slightly higher energy RMSE of SCAN-NNP
(Table I) could be attributed to a wider energy range of the
data set as seen in Figs. 1(a) and 1(b). In comparison, the force
RMSE between the two NNPs is comparable since the mag-
nitude of the force is similar in both data sets [see Figs. 1(c)
and 1(d)].

Given that the final model is subject to the hidden layer
architectures or the random numbers that determine initial
weights of neural networks, the influence of the network
dimension can be partly examined by the four NNPs with
varying numbers of hidden nodes that were developed for
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FIG. 1. Parity plots between DFT and NNPs, comparing energies
(E ) [(a) and (b)] and force component (Fi, i = x, y, z) in the Cartesian
coordinate [(c) and (d)] for test sets. The functional used for the
reference data set is shown at the top.

estimating prediction uncertainties in Fig. S1 [48]. They have
two hidden layers of 30, 60, 100, or 150 nodes and trained
on different training sets from the same data set. When we
calculate melting points of the pure phases using those NNPs,
the deviations between NNPs are less than 20 K (see below).
Moreover, the standard deviation of substitutional defect for-
mation energy among those NNPs is only about 1% within
SCAN-NNPs.

B. Test of NNP on pure phases

In Table II the trained NNPs are further validated by com-
paring various properties of pure phases. We first compare

structural and mechanical properties of rocksalt MgO and
CaO at 0 K. It is seen that PBE overestimates the lattice
parameters by 0.6%–0.8%, while SCAN underestimates by
0.3%–0.6%, in better agreements with experiment [66,67].
The elastic constants are also reproduced more accurately by
SCAN than PBE, except for C12. It is seen that each NNP
well reproduces corresponding DFT results—lattice parame-
ters within 0.001 Å and elastic constants within 16.7% (largest
for off-diagonal component C12 in SCAN-NNP).

In Fig. 2 we compute phonon dispersions and compare
them with experiments. The phonon dispersions are calculated
using the Phonopy code [68] with the finite displacement
method and a 5×5×5 repetition of the primitive cell. In
Ref. [58] it was tricky to obtain phonon dispersions with
the SCAN functional due to unstable convergences, which
is also confirmed in the present work as the phonon disper-
sions calculated within the SCAN functional exhibit spurious
imaginary modes for rocksalt MgO and CaO. Instead, we
employ r2SCAN functional [69] for phonon calculations, as
it exhibits better numerical convergences while maintaining
the accuracy of the original SCAN. As shown in Fig. 2,
the r2SCAN functional accurately reproduces the lattice dy-
namics of the experiments [70,71]. On the other hand, PBE
calculations underestimate the phonon frequencies. We do
not consider the modifications of optical branches due to the
long-range Coulomb interactions (LO-TO splitting), resulting
in the deviations of optical branches near the � point. In Fig. 2,
NNPs successfully reproduce the phonon dispersions by DFT
regardless of the functional type.

To benchmark thermal properties of solids at constant pres-
sures, the linear coefficient of thermal expansion (CTE) and
heat capacity (Cp) are calculated in Fig. 3 within the quasi-
harmonic approximation [68]. As can be seen in Fig. 3(a), for
both pure phases, the predicted CTE in SCAN-NNP compares
favorably to the experiments, whereas PBE-NNP overesti-
mates it by about 20%–30%. Similarly, Fig. 3(b) shows that
Cp of MgO agrees well between SCAN-NNP and experiment,
while PBE-NNP slightly overestimates it. For CaO, Cp is
accurately predicted by both NNPs, although SCAN-NNP and
PBE-NNP perform slightly better at temperatures below and
above 350 K, respectively.

TABLE II. Equilibrium lattice parameter (a0), bulk modulus (B), and elastic constants (C11, C12, and C44) of rocksalt MgO and CaO at 0 K.
The properties are calculated after cell relaxations, and elastic constants are calculated by applying strains smaller than 0.5%. Relative errors
are presented in parentheses with respect to the experiments (for DFT) or DFT calculations (for NNP), respectively.

Property PBE PBE-NNP SCAN SCAN-NNP Experiment

MgO a0 (Å) 4.246 (0.8%) 4.247 (0.0%) 4.186 (–0.6%) 4.186 (0.0%) 4.213a

B (GPa) 153.3 (–6.9%) 158.6 (3.4%) 174.4 (5.9%) 170.9 (–2.0%) 164.7b

C11 (GPa) 273.8 (–10.7%) 281.4 (2.8%) 327.1 (6.6%) 317.6 (–2.9%) 306.7b

C12 (GPa) 93.1 (–0.6%) 97.3 (4.5%) 98.0 (4.6%) 97.6 (–0.5%) 93.7b

C44 (GPa) 145.2 (–7.9%) 132.4 (–8.8%) 160.8 (2.0%) 146.0 (–9.2%) 157.6b

CaO a0 (Å) 4.839 (0.6%) 4.840 (0.0%) 4.797 (–0.3%) 4.797 (0.0%) 4.811a

B (GPa) 105.2 (–7.7%) 105.5 (0.3%) 115.8 (1.6%) 118.5 (2.4%) 114.0a

C11 (GPa) 203.1 (–9.0%) 203.6 (0.2%) 241.7 (8.2%) 232.3 (–3.9%) 223.3a

C12 (GPa) 56.3 (–5.0%) 56.5 (0.3%) 52.8 (–10.9%) 61.7 (16.7%) 59.3a

C44 (GPa) 74.8 (–7.7%) 70.7 (–5.4%) 86.0 (6.2%) 76.3 (–11.3%) 81.0a

aReference [66].
bReference [67].
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FIG. 2. Phonon dispersion along the high-symmetry points of the
rocksalt phase of MgO and CaO. We use the r2SCAN functional
instead of the original SCAN in this case for better numerical con-
vergence of lattice dynamics [58]. Experimental measurements are
adopted from Refs. [70] (MgO) and [71] (CaO).

We next compare structural properties of the liquid phases,
which are obtained by employing 100-atom supercells and
NVT ensembles. To consider thermal expansion, we employ
25% and 45% larger volumes than the 0 K ground state for
liquid MgO and CaO, respectively [77]. We use temperatures
of 3100 and 2850 K for MgO and CaO, respectively, whereas
3500 K is used for liquid MgO in SCAN and SCAN-NNP
to avoid crystallization. The radial and angular distribution
functions (RDF and ADF, respectively) are averaged over
40-ps MD simulations, preceded by 5-ps premelting at twice
the temperature and 10-ps equilibration. The total and atom-
resolved RDFs in Fig. 4(a) indicate that the first peaks are
dominated by heteropolar pairs for both liquid MgO and CaO
(l-MgO and l-CaO, respectively). The first peaks lie at 2.0 and
2.2 Å for MgO and CaO, respectively, where the difference
stems from the larger ionic radius of Ca than that of Mg.
The second peaks consist of mostly homopolar pairs, with
similar distributions among the pairs. The ADFs are shown
in Fig. 4(b), and both phases commonly exhibit a major peak
at 90° and shoulder peaks around 50° and 150°. Both NNPs

FIG. 3. Thermal properties of MgO and CaO calculated by
quasiharmonic approximations: (a) linear coefficient of thermal
expansion (CTE) and (b) heat capacity at constant pressure (Cp). Ex-
perimental values of CTE for MgO and CaO are from Refs. [72–74]
and Refs. [74,75], respectively, while Cp is from the thermochemical
tables [76].

well reproduce main features in the RDF and ADF from
DFT calculations. In addition, the RDF and ADF are also
consistent in 12 500-atom supercells, as shown in Fig. S3 [48].
It is noticeable that the liquid structures of PBE-NNP and
SCAN-NNP are hardly distinguishable despite the significant
differences in the solid phase.

C. Test of NNP on pseudobinary mixtures

In this subsection we test the accuracy of NNPs for solids
and liquids at intermediate compositions. To this end we first
compare the formation energies of substitutional defects in
solids that affect the free energy of mixing at low concentra-
tions. The defect formation energy (Df ) is defined as follows:

Df = Edefect −
∑

i

NiEi, (8)

where Edefect means the total energy of the supercell contain-
ing a point defect, and Ni and Ei (i = MgO, CaO) indicate
the number of formula unit in the supercell and the energy
of pure phases, respectively. As can be seen from Table III,
NNPs reproduce DFT formation energies of the substitutional
defects within 3%. Both PBE and SCAN produce a larger Df

for CaMg than for MgCa, which implies a lower solubility of
the former. It is also seen that SCAN produces a higher Df

than PBE by 0.2 eV, which affects the solubility limit as will
be shown later.

Next, we compare the formation energies of ordered struc-
tures at intermediate compositions. We consider ten ordered
structures [78] by exchanging cations in the rocksalt lattice,
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FIG. 4. (a) Total and partial radial distribution functions [g(r)] and (b) total angular distribution functions [p(θ )] of liquid MgO and CaO.

including L10, L11, NbP, Ni4Mo, L12, D022, and MoPt2 struc-
tures where the latter three structures include both Mg- and
Ca-rich stoichiometries. The formation energy per atom (�Ef )
is defined as follows:

�Ef = 1

2
∑

i Ni

[
ESC −

∑
i

NiEi

]
, (9)

where ESC means the total energy of the ordered structure
and other notations are the same as in Eq. (8). The �Ef ’s
computed by DFT and NNPs are compared in Fig. 5, show-
ing that NNPs closely reproduce corresponding DFT results
within 10 meV/atom. It is understandable that the errors in
�Ef are maximum at Mg0.5Ca0.5O, as the training set consists
of pure phases and mixtures of up to 20% mole fractions.
It is seen that none of the ordered phases are energetically
favorable with respect to the pure phases, with �Ef greater
than 50 meV/atom. We also note that the magnitude of �Ef

is larger in SCAN than PBE, which is consistent with Df .

D. Free energy of pure phases

With the accuracy on solid and liquid phases confirmed,
the trained NNPs are used in the thermodynamic integration
to calculate free energies of the solid and liquid phases. We
employ a ten-point Gauss-Legendre quadrature to evaluate
the integral in Eq. (2) using the lattice parameters obtained
from NPT simulations at zero pressure. For all the phases,
each point in the quadruture is evaluated by employing a

TABLE III. The formation energy of substitutional defects in eV.
CaMg and MgCa mean a single-atom impurity of CaO in MgO and
MgO in CaO, respectively, where we use 216-atom supercells to
evaluate the formation energy of point defects.

Type PBE PBE-NNP SCAN SCAN-NNP

CaMg 1.00 0.98 1.21 1.19
MgCa 0.67 0.70 0.86 0.82

1000-atom supercell and 2-ps equilibration followed by 5-
ps sampling for the temporal average. We use the Langevin
thermostat [64] with the center of mass fixed to avoid drift
of the atoms [6,79,80]. To determine convergence, we use the
block standard error (BSE) as a measure of uncertainty [81].

Figure 6 shows the computed free energies of pure phases,
which are fitted to an analytical free energy model as follows:

G(T ) = a + bT + cT ln T + dT 2 + eT −1, (10)

where a, b, c, d , and e are fitting parameters. Similar function
forms were used in the previous thermodynamic calcula-
tions [4] and MD studies [79,82]. The error of fit is less
than 2 meV/atom in both solid and liquid phases, which
is on the order of the BSE of each point and sufficient to
obtain melting properties. By fitting to the smooth function
in Eq. (10), the determination of temperature-dependent free
energies becomes robust against statistical fluctuations in the
numerical integration. We add that the specific function form
has negligible effects on the melting properties as long as the
free energy data are well fitted into the model.

The resulting free energy curves of MgO and CaO are
shown in Fig. 6 as solid lines, and melting properties obtained

FIG. 5. Formation energy (�Ef ) of ten ordered structures evalu-
ated within PBE or SCAN functional and corresponding NNPs.
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FIG. 6. Free energy curves of rocksalt and liquid phases of MgO
and CaO. Free energies that are directly calculated from the thermo-
dynamic integration are represented by diamonds (solid) and disks
(liquid), and the free energy models are shown in solid lines. Melting
points are indicated by vertical dotted lines at the intersection of the
free energy curves.

from intersections of the curves are summarized in Table IV.
The melting point of MgO is calculated as 2787 K by PBE-
NNP, which is consistent with the previous works at the
PBE level, 2747 K by DFT calculations [60] and 2698 K by
the Gaussian approximation potential (GAP) [38]. However,
these values are significantly underestimated compared to the
experimental range of 3040–3250 K [4,60]. In contrast, the
SCAN-NNP produces an improved melting point of 3173 K,
which is within the experimental range and agrees reason-
ably with the previous SCAN-DFT calculations (3032 K) or
SCAN-GAP (3072 K) [38]. The entropy of fusion and slope
of melting curve of MgO are mostly consistent among the
same functional. On the other hand, the melting point of CaO
is computed to be 2640 K by PBE-NNP, which is far below
the experimental data of 2850–3220 K [4]. The SCAN-NNP

better predicts the melting point of CaO to be 3057 K, which
is within the experimental range.

For a further check, the melting points of the pure phases
are recalculated with the coexistence method [7,83]. In this
method, the simulation cell contains solid and liquid phases
and the interfaces between them, which is directly equilibrated
to identify the transition temperature at which the interface
stops moving. We employ a 16 000-atom simulation cell that
is a 10×10×20 replication of the conventional unit cell. The
initial simulation cell is prepared in NPT ensembles, with
the initial guess on melting points calculated from the ther-
modynamic integration. Half of the simulation cell is melt
quenched to the tentative melting point while the other atoms
are frozen. Then the simulation cell is equilibrated within the
NPH ensemble for 100 ps, and the temperature is sampled
for another 100 ps. When we test the cell size effect with
2000-atom simulation cells, the melting point shifts only by
6 K. As can be seen in Table IV, the melting points calculated
by the thermodynamic integration and coexistence methods
agree within 40 K.

E. Phase diagram

To construct the full phase diagram, we compute the free
energies in semigrand ensembles at intermediate composi-
tions. The isobaric ensemble is used to allow for the volume
to change according to the composition during the MD simu-
lations, and the cell size is the same as in the thermodynamic
integration. The ensemble is equilibrated and sampled during
50 000 steps with the 2-fs time step, and attempts to swap
between Mg and Ca atoms are set at 1% of the cations per time
step. Single run of the semigrand ensemble simulation at given
�μ and T provides the corresponding equilibrium composi-
tion x. After carrying out the semigrand ensemble simulations
over a set of (�μ, T ), one can obtain composition-dependent
Gibbs free energies following the relation in Eq. (6).

In Fig. 7(a), results from the semigrand simulation using
SCAN-NNP are shown for �μ = μCaO − μMgO. With solid
solutions at 2400 K, there exists a �μ range where the equi-
librium composition is not unique due to the dependence on
the initial composition. Because of this hysteresis, pure phases
of MgO or CaO should be used as initial configurations to

TABLE IV. Melting point (Tm), entropy of fusion (�Sm), and slope of the melting curve (dT/dP) of MgO and CaO. PBE-GAP and
SCAN-GAP represent the Gaussian approximation potential (GAP) trained by the PBE and SCAN data sets, respectively. Approaches refer to
thermodynamic integration (TI), coexistence method (Coexist), and interface pinning method with a correction by thermodynamic perturbation
theory (IP+TP) [8]. The block standard errors are also provided. Results are from this work unless references are given.

Property PBE-NNP PBE-NNP SCAN-NNP SCAN-NNP PBEa SCANa PBE-GAPb SCAN-GAPb

MgO Tm (K) 2787±30 2786±1.5 3173±33 3181±1.7 2747±59 3032±53 2698±23 3072±25
�Sm (kB/atom) 1.61 – 1.58 – 1.63 1.70 1.57 1.50
dT/dP (K/GPa) 150 – 140 – 155 134 153 140
Method TI Coexist TI Coexist TI TI IP+TP IP+TP

CaO Tm (K) 2640±30 2659±1.5 3057±35 3097±2.0
�Sm (kB/atom) 1.65 – 1.56 –
dT/dP (K/GPa) 181 – 156 –
Method TI Coexist TI Coexist

aReference [60].
bReference [38].
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FIG. 7. (a) Chemical potential difference (�μ = μCaO − μMgO) and (b) the free energy of mixing (�Gmix) as a function of composition at
selected temperatures, which are calculated with SCAN-NNP. �Gmix is defined as the difference from the free energy of pure solids. Symbols,
solid lines, and dotted lines represent data points obtained from the semigrand ensemble simulations, the fitted free energy models, and the
common tangents that determine phase boundary, respectively. Empty circles correspond to the phase boundary at the given temperature.

scan over end compositions. This is the reason why data points
are empty for a range of intermediate compositions at 2400 K
(and also 2800 K). The hysteresis weakens with the increasing
temperature and almost disappears at 3200 K. For the liquid
phase, such hysteresis does not exist at any simulation tem-
perature.

The semigrand simulations are carried out for solid and
liquid phases for at least five temperatures spanning relevant
domains in the phase diagram. [For example, in the case of
SCAN-NNP, the simulation temperatures for solids (liquids)
are sampled from 1200 (2400) K to 3200 (3300) K with
the interval of 400 (100) K.] In order to interpolate free
energies over the whole phase diagram and obtain G(x, T )
via integration of �μ(x, T ) following Eq. (6), we introduce
analytical models for the free energy [4,18] and fit them to the
simulation data in Fig. 7(a). First, the free energy is written as
follows:

G(x, T ) = G(x, T ) + �Gmix(x, T ), (11)

where x is the mole fraction of CaO and G(x, T ) means the
weighted average of free energies of pure phases:

G(x, T ) = xGCaO(T ) + (1 − x)GMgO(T ), (12)

where GMgO and GCaO are free energies of the pure phases
obtained in the previous subsection. In Eq. (11), �Gmix(x, T )
means the residual free energy of mixing defined as

�Gmix(x, T ) = kBT [x ln x + (1 − x) ln (1 − x)]

+ x(1 − x)(A + Bx + Cx2), (13)

where the first term corresponds to the ideal free energy of
mixing, and the second term reflects the nonideality with the
temperature-dependent parameters A, B, and C. The chemical

potential model is derived from the relation in Eq. (6), written
as

�μ(x, T ) = μCaO − μMgO = ∂G(x, T )

∂x

= GCaO(T ) − GMgO(T ) + kBT ln

(
x

1 − x

)

+ A + 2(B − A)x + 3(C − B)x2 − 4Cx3. (14)

Equation (14) is fitted to the simulation data in Fig. 7(a), and
the optimized models in solid lines are in good agreements
with the simulation data. The parameters A, B, and C are as-
sumed to be linear with the temperature as in Ref. [4], and the
fitting RMSE of the solid phase is 5.1 and 7.3 meV/atom for
PBE-NNP and SCAN-NNP, respectively, and the correspond-
ing RMSEs in the liquid phase are 3.6 and 5.8 meV/atom,
respectively.

Figure 7(b) shows the fitted �Gmix in Eq. (13) at the
selected temperatures. At 2400 K, the free energy curve for
the solid phase features a miscibility gap resulting from the
two local minima at terminal solutions, while no liquid phase
is thermodynamically stable throughout the composition. At
the elevated temperature of 2800 K, the liquid phase be-
comes stable over a range of intermediate compositions, and
so the eutectic point is expected to lie between 2400 and
2800 K. Above 3200 K, the liquid phase is always stable
over the solid phase as the temperature becomes higher than
the melting point of both pure phases. The dotted lines in
Fig. 7(b) are common tangents of stable phases, and the con-
tacts are indicated by the circles. These contacts represent
the phase boundary since the coexistence of those phases
is thermodynamically favored over other compositions and
phases.
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FIG. 8. Phase diagrams of MgO-CaO calculated with NNPs, compared to (a) experiments or (b) other theoretical works or CALPHAD
modelings. Experimental solvus, solidus, and liquidus data are from Ref. [4] and the references therein. Theoretical solid-state phase diagrams
that are calculated from classical potential [85,86], first-principles calculations with vibrational effects [85], or tight-binding calculations [78]
are displayed in gray lines. The CALPHAD models are adopted from Refs. [4,87].

The full phase diagrams constructed with NNPs are shown
in Fig. 8(a) together with experimental data. Based on the
fitted analytical free energy models, we calculate the phase
boundaries with the 1 K interval between 1200 and 3200 K.
It is seen that both PBE-NNP and SCAN-NNP reproduce the
characteristics of the MgO-CaO system such as eutectic points
and solubility limits. In detail, the eutectic compositions pre-
dicted by PBE-NNP and SCAN-NNP are 0.50 and 0.49 for
the mole fraction CaO, respectively, which are within the
experimental observations of 0.45–0.60 [4] (see red crosses).
The eutectic temperature, on the other hand, is 2253 and
2651 K for PBE-NNP and SCAN-NNP, respectively, only the
latter being close to the experimental range of 2550–2640 K.
The failure of PBE-NNP is consistent with the underestimated
melting points of the pure phases. The experimental solid
solubility of CaO in MgO (MgO in CaO) at the eutectic
temperature is 6% (22%) mole fraction CaO [84], which are
closely reproduced by SCAN-NNP within the error bar. The
PBE-NNP can also reproduce the solid solubility of CaO in
MgO at its own eutectic temperature, but the solubility of
MgO in CaO is overestimated by about 10%. The overestima-
tion is related to the smaller formation energy of substitutional
defects than with SCAN-NNP (see Sec. III C), which leads to
thermodynamic preference toward mixing. Other experimen-
tal data regarding the solvus, solidus, and liquidus are all in
good agreements with those by SCAN-NNP.

Figure 8(b) compares the phase diagram by SCAN-NNP
and those from other atomistic simulations (see gray lines).

Previous theoretical works identified only solid-state phase
diagrams of the MgO-CaO system with classical poten-
tials [85,86] or first-principles calculations [78,85]. (To note,
the effect of lattice vibration is considered only in Ref. [85].)
It is seen that none of the previous works produced correct
solvus lines on both MgO- and CaO-rich sides. On the other
hand, the results by calculation of phase diagrams (CAL-
PHAD) modeling are also presented in Fig. 8(b). While solvus
lines are consistent with the SCAN-NNP results, eutectic
point, solidus, and liquidus are at variance with each other,
even among the CALPHAD data. This is because while solvus
lines are validated through a number of experiments, the data
for solidus and liquidus lines are sparse and scattered [4]. The
mismatch of the phase boundaries from CALPHAD models is
understandable because each model is fitted to different sets
of data points.

IV. CONCLUSION

We remark on the computational efficiency for construct-
ing the phase diagram. The whole procedure, including the
data set generation, NNP training, and free energy calcula-
tions with MD simulations, took about ten days of computing
time on 400 cores of Intel® Xeon® Gold 6148 CPU running
at 2.4 GHz. In detail, about five days were spent on gener-
ating data sets and training NNPs, and another five days on
free energy calculations using NNPs and 1000-atom cells. If
identical free energy calculations were carried out by purely
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DFT approaches, it would take several decades with the same
computational resource, even assuming that the free energy
calculations are done on smaller 200-atom simulation cells.
This is mainly because the hybrid MC-MD simulations re-
quire a large amount of computing resources due to several
million time steps.

In summary, we developed NNPs for the MgO-CaO pseu-
dobinary system and demonstrated construction of the full
phase diagram. The accuracy of NNPs trained over PBE or
SCAN data is confirmed by validation over diverse properties.
Notably, SCAN-NNP outperformed PBE-NNP in most cases
when compared with experiments. The full phase diagrams
are determined from the free energy calculations employing
thermodynamic integration and semigrand ensemble methods.
Notably, SCAN-NNP produced a phase diagram that closely

follows experimental measurements on liquidus, solidus, and
solvus lines, including the eutectic point and solid solubility
limits. In conclusion, we believe that this work will pave the
way to the ab initio CALPHAD approach with high prediction
accuracies.
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