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Classical and machine learning interatomic potentials for BCC vanadium
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BCC transition metals (TMs) exhibit complex temperature and strain-rate dependent plastic deformation
behavior controlled by individual crystal lattice defects. Classical empirical and semiempirical interatomic
potentials have limited capability in modeling defect properties such as the screw dislocation core structures
and Peierls barriers in the BCC structure. Machine learning (ML) potentials, trained on DFT-based datasets,
have shown some successes in reproducing dislocation core properties. However, in group VB TMs, the
most widely used DFT functionals produce erroneous shear moduli C44 which are undesirably transferred to
machine-learning interatomic potentials, leaving current ML approaches unsuitable for this important class of
metals and alloys. Here, we develop two interatomic potentials for BCC vanadium (V) based on (i) an extension
of the partial electron density and screening parameter in the classical semiempirical modified embedded-atom
method (XMEAM-V) and (ii) a recent hybrid descriptor in the ML Deep Potential framework (DP-HYB-V).
We describe distinct features in these two disparate approaches, including their dataset generation, training
procedure, weakness and strength in modeling lattice and defect properties in BCC V. Both XMEAM-V and DP-
HYB-V reproduce a broad range of defect properties (vacancy, self-interstitials, surface, dislocation) relevant to
plastic deformation and fracture. In particular, XMEAM-V reproduces nearly all mechanical and thermodynamic
properties at DFT accuracies and with C44 near the experimental value. XMEAM-V also naturally exhibits the
anomalous slip at 77 K widely observed in group VB and VIB TMs and outperforms all existing, publically
available interatomic potentials for V. The XMEAM thus provides a practical path to developing accurate and
efficient interatomic potentials for nonmagnetic BCC TMs and possibly multiprincipal element TM alloys.
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I. INTRODUCTION

BCC transition metals (TMs) and alloys are an impor-
tant class of structural materials for high temperature, high
strength, radiation, or corrosion-resistance applications [1].
Their plastic deformation and fracture behavior are critical for
flaw tolerance and structure integrity [2]. Controlling plastic-
ity and fracture is thus essential but challenging, since both are
governed by crystal lattice defect generation, interaction and
evolution spanning multiple time and length scales [3]. For
example, point defects such as self-interstitials are generated
at individual atomic sites within a few femtoseconds during
ion irradiation but their diffusion can occur across multiple
grains and over the entire service life of the components [3].
The challenge is further amplified in the BCC TM family
with plenty of surprises seen in experiments [4]. It is now
well-established that BCC TMs exhibit strong temperature
and strain-rate dependent yield [2,5], non-Schmid/anomalous
slip [6], parabolic hardening [5] and planar slip at low tem-
peratures [7], as well as a ductile-to-brittle transition (DBT
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[2,8]) below some characteristic temperatures, all of which
are distinctly different from the behavior in FCC metals.

At low temperatures, dislocation plasticity is governed by
the glide of individual 〈111〉/2 screw dislocations, which
have a high lattice friction (or Peierls barrier, e.g., in W [9])
and require thermally activated, double-kink nucleation and
propagation [10]. The controlling mechanism for the DBT is,
arguably related to the dislocation mobility and nucleation at
crack tips, which in turn are influenced by the high lattice
friction of the screw/mixed dislocations in the crack near field
[8,11]. Nevertheless, the sharp transition temperature suggests
that DBT may be related to a switch of defect properties or
deformation mechanism at the DBT temperature. Among the
individual BCC elements, subtle differences have also been
reported in their defect properties and deformation behavior,
including ground-state self-interstitial structures [12], solute
hardening/softening response [13,14], activation of twinning,
and dominant dislocation slip planes [15].

The complexity in the BCC TMs has root in the
partially-filled d-bands, non-close-packed crystal structure
and associated defect properties. First-principles density func-
tional theory (DFT) calculations have thus been employed
extensively to provide quantitative information on funda-
mental defect properties, such as the generalized stacking
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fault energy, dislocation core structure and Peierls barrier. In
particular, DFT calculations have unequivocally determined
the nondegenerate (ND) core structure of the 〈111〉/2 screw
dislocations (e.g., Ta [16,17], Mo [16–18], W [19], and Fe
[18,20,21]) and its 2D Peierls potential for all 7 BCC TMs
[22]. These DFT calculations played an instrumental role in
advancing fundamental plasticity theory of BCC structure
materials. However, DFT calculations are computationally
expensive and typically limited to a few hundred atoms
(or a few thousand valence electrons) and several hundred
time steps/femtoseconds. They can not provide the necessary
length and time scales required to study dislocation interac-
tions, evolutions and their temperature-dependent behavior.

Classical interatomic potentials (e.g., embedded-atom
method [23], modified embedded-atom method [24,25], bond
order [26–28], etc.) have been developed to approximate
interatomic interactions using empirical but more efficient
functions since at least early 1980s. With these classical
interatomic potentials, molecular dynamics/statics simula-
tions were performed to study defect dynamics in statistically
meaningful ensembles at much larger scales, reaching ∼100
nanometers and ∼10 nanoseconds. For BCC TMs, interatomic
potential-based studies have thus been actively pursued over
the last few decades, with well over a dozen potentials de-
veloped for Fe alone [29]. Those potentials, particularly the
most widely used EAM and MEAM ones, had mixed recep-
tions; their physical relevance is often scrutinized against DFT
calculations. In particular, nearly 1/3 out of 72 interatomic
potentials examined exhibit a degenerate (D) core structure,
in stark contrast to the ND core predicted by DFT [29]. The
D-core is thus often considered as an artefact of such inter-
atomic potentials. Among those possessing the correct ND
core, about half have the single-hump Peierls energy profile
as that predicted by DFT, and only a few of them have quanti-
tative accuracy in the Peierls barrier (e.g., Fe [30]).

The deficiencies are well recognized in interatomic po-
tentials for BCC TMs. Emerging machine-learning (ML)
interatomic potentials have been developed to address some of
these issues. ML potentials generally use extensible functions
(such as neural networks [31–33], Gaussian approximation
[34], rotation-invariant linear model [35]) to map atomic en-
vironments to total energies, forces and sometimes the virial
stresses of a large set of atomic configurations computed by
DFT calculations. For example, many ML potentials have
been fit and reported, including Gaussian approximation po-
tentials (GAP [34,36,37]) for Fe [30], V/Nb/Ta/W/Mo [38],
moment-tensor potentials (MTP [39]) for Fe [40], spectral
neighbor analysis potential (SNAP) for NbMoTaW [41], and
deep potential (DP [42,43]) for W [44]. These ML potentials
have demonstrated good accuracy and transferability with
respect to DFT calculations. For example, the GAP-Fe [30],
ANN-Fe [45], and DP-W [44] are shown to exhibit the ND
core and Peierls barrier in quantitative agreement with DFT
predictions for the first time.

The successes of the ML potentials are remarkable in
resolving long-standing issues of modeling dislocations in
BCC TMs. Since ML potentials are fit to atomistic datasets
computed by DFT, they are considered to be robust and re-
liable, provided that current exchange-correlation functionals
are exact and can predict material properties accurately. This
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FIG. 1. Relative errors of elastic constants of BCC structures
predicted by DFT and machine learning interatomic potentials with
respect to the experimental values. The errors δC = |Cmodel

i j /Cexp
i j −

1| are calculated based on values of DFT-1 [38] and GAP potentials
[38] for V/Nb/Ta/Mo/W, DFT-2 [41], and SNAP potentials [41]
for Nb/Ta/Mo/W (see Table VIII). The machine learning potentials
faithfully reproduce the erroneous elastic constants from DFT. The
empty symbols are C11 and C12, and the filled symbols are C44.

is often an implicit and valid assumption in material model-
ings, as demonstrated in previous DFT calculations [46,47].
However, most widely-used DFT methods exhibit deficien-
cies in predicting some fundamental properties of BCC TMs.
For group VB TMs (V and Nb), DFT with generalized gra-
dient approximation (GGA)-Perdew–Burke–Ernzerhof (PBE
[48]) and other functionals severely underestimates the shear
modulus C44 of V and Nb [49] (on the order of 50% from
their respective experimental values, see Fig. 1). Not surpris-
ingly, ML potentials apparently inherit this deficiency (Fig. 1).
On the other hand, many EAM/MEAM potentials [50], ML
GAP-W [38], and DP-W [44] have accurate C44. Reproducing
the elastic constants of BCC structures thus does not seem to
be a gruelling task. The shortcomings of current ML potentials
do not arise from their energy function formalism or learning
strategy; these ML potentials faithfully learnt all information
produced by DFT.

For BCC V in particular, at least seven interatomic po-
tentials have been developed and made publically available.
Table IX in Appendix shows a brief survey of their basic
mechanical and screw dislocation properties. Two classical
potentials (EAM3 [51] and MEAM2 [52]) and the GAP po-
tential [38] have the ND screw dislocation core structure as
predicted by DFT, while the rest have the D/unstable screw
core. EAM3 and MEAM2 have a double-hump Peierls poten-
tial profile, contradicting DFT predictions [22,53]. Only the
recent GAP-V [38] has a single-hump Peierls potential profile,
but yields a Peierls barrier �EPB = 66.9 meV/b, ∼2.6 times
the DFT values (24.4 [53] and 25.7 [22] meV/b) and about
80% of that of DFT-W [22,54]. GAP-V thus underestimates
C44 by 50% and very likely overestimated �EPB. Considering
these issues, all current interatomic potentials have limited
capability for modeling crystal lattice defects in BCC V.
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To address the above problems, at least two approaches
can be attempted and may lead to more accurate interatomic
potentials suitable for modeling general plastic and fracture
phenomena in BCC V. One is to increase the fitting flexibility
of the classical MEAM by expanding its energy functions,
while the other is to train ML potentials with corrected
datasets and incorporate core structure information from DFT.
Since the spline-MEAM potentials for Mo [55] and Nb [56]
give accurate screw dislocation core structures and Peierls bar-
rier profiles, it seems feasible to use spline-MEAM for BCC
TMs. The analytical functions of the electron density terms
can also be extended to higher order terms or use spline-based
forms, similar to the multistate MEAM [57]. Separately, a
hybridized descriptor is recently developed in the DP frame-
work (DP-HYB [44]). DP-HYB concatenates the two- and
three-body embedding descriptors. Specifically, the two-body
embedding only involves interatomic distances in the embed-
ding matrix and the three-body embedding further includes
contributions of bond-angles. We refer readers to Ref. [44] for
the mathematical details of DP-HYB. Based on the DP-HYB,
a new potential for W has been developed and shown to yield
accurate properties (point defects, core structure, and Peierls
barrier) relavant to its mechanical behavior.

In this work, we explore both approaches to examine
their respective strengths and weaknesses in developing in-
teratomic potentials for an important class of materials and in
particular BCC V. In the classical potential path, we extend the
original MEAM formulation by including additional angular
electron density terms and use different screening parameters
for the embedding function and pair interaction function, sim-
ilar to the multistate MEAM [57]. We denote this extension of
MEAM as XMEAM. In the XMEAM, we preserve the analyt-
ical functions of all electron density terms and the embedding
energy function, which retains the physical interpretation of
the classical MEAM. In addition, XMEAM is fitted to (i)
BCC V bulk properties from experiments (lattice parame-
ter, cohesive energy and elastic constants) and (ii) properties
calculated by DFT (point defect formation energies, surface
and decohesion energies, γ -lines, and FCC cohesive energy.)
The XMEAM is shown to give more flexibility compared to
MEAM in reproducing many material properties such as the
energies of BCC and FCC structures. For the ML approach,
we use the latest DP-HYB due to its enhanced representation
and generalization properties [44]. In contrast to XMEAM,
the training datasets/properties are all based on DFT calcu-
lations. We provide detailed analysis of the XMEAM and
DP-HYB in the fitting procedure, accuracies on individual
properties and computational efficiency. Both the XMEAM
and DP-HYB yield interatomic potentials for V (XMEAM-V
and DP-HYB-V) significantly more accurate than all existing
ones. Nevertheless, DP-HYB-V inherits some of the deficien-
cies of current DFT calculations (discussed above). Further
optimization may be possible via the use of higher order or
otherwise enhanced DFT to produce the DP training dataset.
On the other hand, XMEAM-V reproduces an extensive range
of properties, making it the better choice of interatomic poten-
tial for modeling plastic and fracture behavior of V at present.
XMEAM-V is then applied to study lattice defect properties
and reveals several unique features of dislocation behavior in
V for the first time. The simulation results are also compared

with previous experimental studies. Like the DP approach,
XMEAM is general and can be applied to other nonmagnetic
BCC TMs as well.

In the following, we first introduce the general meth-
ods and simulation cells used in the DFT calculations and
molecular dynamics (MD) simulations, followed by the de-
tails on the development of XMEAM-V and DP-HYB-V,
as well as the calculation models for individual defects. In
Sec. III, we present a comprehensive comparison between the
resulting classical XMEAM-V and ML potentials DP-HYB-
V (and GAP-V) on their thermodynamic and mechanical
properties, including point defects, dislocations and their
finite-temperature behavior. We also perform a quantitative
benchmark on the computational speed of these three in-
teratomic potentials. Section IV discusses the strengths and
weaknesses of the classical and ML approaches based on the
current results. We particularly focus on the broad implica-
tions on developing accurate interatomic potentials for crystal
defects of structure materials. Section V summarizes the key
conclusions and provides an outlook for future works related
to interatomic potentials for the BCC TM family.

II. METHODOLOGY AND COMPUTATIONAL MODELS

We first describe the general methods and parameter set-
tings employed in the current work. These parameters apply
to all the calculations unless otherwise mentioned in the re-
spective models.

A. DFT calculations

The DFT calculations are performed using the Vienna ab
initio simulation package (VASP [58–60]). We employ the
generalized gradient approximation (GGA) with the Perdew–
Burke–Ernzerhof (PBE [48]) exchange-correlation functional.
The outer 13 electrons (3s23p63d44s1) of V are treated as
valence electrons and the rest as core electrons replaced by
the projector-augmented-wave (PAW [61]) pseudopotential
(V_sv). The plane-wave expansion cutoff energy is set to
650 eV. We use the Monkhorst–Pack Mesh method [62]
to sample the Brillouin zone with a k-point grid spacing
of 0.1 Å−1. The first-order Methfessel–Paxton method [63]
with a smearing width of 0.22 eV is used for integration
in the Brilliouin zone. During atomic structure optimization,
convergence is assumed when the energy variation between
two electronic self-consistent steps is below 10−6 eV, and all
forces after ionic steps are below 0.01 eV/Å.

The generalized stacking fault γ -lines are calculated for
the {110}, {112}, and {123} planes of the BCC structure.
We use the slab-vacuum supercell and the standard method
[64] where atoms are only allowed to move in the direction
perpendicular to the slip plane. In all the cases, the vacuum
layer thickness is ∼20 Å. The supercells contain 12, 20,
and 20 atom layers for the {110}, {112}, and {123} planes,
respectively. In the equation of state (EOS) calculations, spin-
polarized DFT is used to include the influence of magnetic
moment on the total energy at large atom separations.

DFT calculations are performed to determine the forma-
tion energy of the monvacancy and self-interstitials in BCC
V (Fig. 6). For these point defects, we use a supercell of
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4 × 4 × 4 cubic unit cells with 128 atoms and the k-point grid
spacing is 0.2 Å−1. The monovacancy/self-interstitials are
created by removing/inserting an atom at appropriate posi-
tions. The defect structures are optimized using two methods:
(i) fixed supercell (FSC) where supercell vectors are fixed at
ideal lattice values and (ii) optimized supercell (OSC) where
supercell vectors are optimized to achieve minimum stresses.
Atoms are free to move in both methods. The former is
commonly employed in previous studies [65], while the latter
allows additional affine deformation and should give a lower
formation energy. Neither of the two methods reproduces the
conditions expected in bulk materials, but they should yield
consistent results for sufficiently large supercells.

B. Molecular dynamics/statics simulations

All molecular dynamics and statics calculations are per-
formed using the Large-scale atomic/molecular massively
parallel simulator (LAMMPS [66]). Atomic structure optimiza-
tion is performed with the conjugate gradient method. In the
calculations of surface energy, point defects and γ -surfaces,
convergence is assumed when forces on all atoms drop be-
low 10−12 eV/Å in XMEAM-V. The convergence criterion
is relaxed to 10−10 eV/Å for DP-HYB-V and 10−6 eV/Å for
GAP-V due to their higher computational cost and slower con-
vergence. The calculations of specific dislocation structures
are described in Sec. II E below.

C. EXtended modified embedded-atom method (XMEAM)

The modified embedded-atom method (MEAM) was built
upon the original embedded-atom method (EAM [23]) by
Baskes et al. [24,25] to describe bond-bending effects by
including angular dependent terms in the formulation. In
MEAM, the total energy of a system of N atoms is

E =
N∑
i

[
Fi(ρ̄i ) + 1

2

∑
j �=i

φi j (ri j )Si j

]
, (1)

where Fi, φi j, Si j are the embedding function, pair interaction
function and screening function, and ri j is the interatomic
distance, respectively. The embedding function usually takes
the following form:

Fi(ρ̄i ) = AiE
0
i ρ̄iln(ρ̄i ) + Biρ̄i, (2)

where ρ̄i is the total background electron density at atomic
site i due to all surrounding atoms and Ai, E0

i , Bi are element-
dependent parameters. The contributions to ρ̄i in the original
MEAM formulation include a spherically symmetric electron
density term ρ̄

(0)
i and angular-dependent terms ρ̄

(k)
i . In the

implementation of the LAMMPS [66]), ρ̄i is expressed as

ρ̄i = ρ̄
(0)
i

ρ0
i

Gi

[
3∑

k=1

t (k)
i

(
ρ̄

(k)
i

ρ̄
(0)
i

)2]
, (3)

where Gi computes the electron density and has several forms
[67], ρ0

i is the composition-dependent electron density scal-
ing, t (k)

i are average weighting factors, and the summation k is

truncated at 3. In the current implementation, we use

Gi(�) = 2

1 + exp(−�)
. (4)

The expressions of the partial electron densities ρ̄
(k)
i are

shown in Eqs. (A1)–(A6) in the Appendix for completeness.
Each ρ̄

(k)
i is determined by the atomic electron densities

ρ
a(k)
i (ri j ), which is parametrized by β

(k)
i , i.e.,

ρ
a(k)
i (ri j ) = ρi0exp

[
−β

(k)
i

(
ri j

r0
i

− 1

)]
, (5)

where ρi0 is an element-dependent density scaling, r0
i is

the nearest-neighbor distance in the single-element reference
structure and β

(k)
i are element-dependent parameters.

Furthermore, ρ̄
(k)
i is scaled by a screening function

Si j =
∏

k �=i, j

Sik j (Cmin,Cmax) fc

( rc − ri j

�r

)
, (6)

Sik j = fc

(
Cik j − Cmin,ik j

Cmax,ik j − Cmin,ik j

)
, (7)

Cik j = 1 + 2
r2

i j r
2
ik + r2

i j r
2
jk − r4

i j

r4
i j − (

r2
ik − r2

jk

)2 , (8)

fc(x) =
⎧⎨
⎩

1, x � 1,

[1 − (1 − x)4]
2
, 0 < x < 1,

0, x � 0,

(9)

where Cmin and Cmax are the screening function parameters, fc

is the radial cutoff function, rc is the cutoff distance and �r is
the smoothing distance.

The average weighting factors t (k)
i is parametrized by

element-dependent t (k)
0, j as

t (k)
i = 1

ρ̄i
(0)

∑
j �=i

t (k)
0, jρ

a(0)
j Si j . (10)

Note that the screen function Si j is applied to both the partial
electron density and average weighting factor functions, as
implemented in LAMMPS (see Refs. [67,68] for more details).

In the classical MEAM, the angular-dependent electron
density in Eq. (3) is truncated at k = 3 and only the first
nearest-neighbor (1nn) interactions are explicitly treated. The
1nn-MEAM exhibits difficulties in reproducing the ground
state BCC/HCP structure and surface energy ordering of
many elements. Lee et al. thus modified the 1nn-MEAM to ex-
plicitly include the second nearest-neighbor (2nn) interactions
[68], which successfully addressed these intrinsic issues in
1nn-MEAM. The 1nn-MEAM/2nn-MEAM has been widely
used to develop interatomic potentials for metals and semicon-
ductors. They have been shown to reproduce many properties
of FCC [69], BCC [50] and HCP [70,71] metals. Despite its
broad success, the 1nn/2nn-MEAM faces challenges in repro-
ducing properties for multiple structures and their transition
paths. Multistate MEAM (MS-MEAM [72]) was then intro-
duced to address this shortcoming. Specifically, MS-MEAM
uses DFT-based multiple reference structures and transforma-
tion paths to determine all the functions/parameters in Eq. (1).
The MS-MEAM was further expanded to include additional
angular-dependent electron density functions (k = 1, 2, 3, 5)
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and was shown to well describe general properties of Ti in the
HCP, BCC and liquid phases [57].

The MS-MEAM is particularly appealing for BCC TMs as
it can include multiple reference structures (e.g., BCC, FCC,
and their transformation path). Reproducing the relative ener-
getics and their transition paths are critical for dislocation and
twinning properties in BCC TMs. We recently discovered that
the 〈111〉/2 screw dislocation core structure (ND vs D), its
Peierls barrier �EPB and nucleation barrier γus are all related
to the energy difference �EFCC-BCC bewteen the FCC and
BCC structures [29]. However, given the current deficiencies
of DFT functionals in predicting some properties of V, it is
possible that MS-MEAM will also inherit these deficiencies.
Here, we choose a new path by combining recent advances
in MS-MEAM and the flexibility in the classical MEAM
in choosing the target properties. Specifically, the XMEAM
in this work includes the angular electron density functions
[Eq. (3)] for k = 1, 2, 3, 4, 5, which adds four parameters
β4, β5, t4, t5 related to partial electron density functions. In
addition, the XMEAM uses independent screening parameters
(Crho

min,Crho
max) in the electron density function and (Cpair

min ,Cpair
max)

in the pair interaction function. The XMEAM thus has six
more parameters in total, in addition to the 18 parameters in
the classical MEAM. The XMEAM retains all the analytical
functional forms and physical interpretations of the classi-
cal MEAM, and can be easily applied to a broad range of
materials. We have also developed the XMEAM based on
the original implementation of MEAM in LAMMPS [66]. For
the details of analytical expressions in XMEAM, we refer
readers to earlier references [57,67,68,72] and the source code
available online [73]. Here we focus on the fitting procedures
of the XMEAM potential for V and its properties.

The datasets used for fitting potentials are critical for
the accuracy and relevance of the resulting potentials. For
modeling the mechanical behavior of V, we focus on the fun-
damental thermodynamic and mechanical properties of BCC
V. In particular, we use its BCC bulk properties (lattice pa-
rameter, cohesive energy, and elastic constants), vacancy and
self-interstitial formation energies, equation of state (EOS),
{110} surface decohesion energies and γ -lines of the {110},
{112}, and {123} planes. In addition, we also include the
cohesive energy and lattice parameter of the FCC phase in the
fitting datasets, given its importance in governing dislocation
properties [29]. We use the experimental values of the BCC
lattice parameter, cohesive energy and elastic constants, with
the remainder from DFT as described in Sec. II A.

There are 24 adjustable parameters in an XMEAM po-
tential for a pure element. It is difficult to determine these
parameters manually and yet achieve optimal properties. We
thus employ the particle swarm optimization (PSO [74,75])
algorithm to optimize these parameters. In the PSO algorithm,
each candidate potential is a particle in a 24-dimensional
space. The potential parameters are thus the coordinates x of
the particle. The properties of the candidate potential pi are
functions of this 24-parameter vector, i.e., pi = f (x).

In practice, we assign an objective function

fobj(x) =
n∑
i

wi

[ pi − ti
ti

]2

, (11)

where ti and wi are the target value and weight assigned to
property i. The weights are chosen based on the relative im-
portance of properties; high weightage is assigned to critical
properties such as the surface energies of individual planes.
A large number of candidate potentials/particles are gener-
ated with their positions randomly chosen within a specified
domain in the 24-dimensional space. In the PSO process, all
the particles evolve based on their current positions, local
optimal position and global optimal position (see Ref. [75]).
The PSO process stops when the objective function fobj falls
below a threshold value or the number of iterations reaches
a pre-defined limit. We emphasize that a potential can rarely
achieve perfect agreement with all target DFT/experimental
values. The PSO process thus yields an optimized potential
within the fitting parameter space. Table I shows the parameter
space/fitting range used for XMEAM-V.

D. Deep potential hybridized (DP-HYB)

The procedure to develop ML potentials is quite different
from that of the classical potentials. For DP-HYB-V, we use
the general Deep potential generator (DP-GEN) scheme with
the new hybrid descriptor [44] and a “specialization” strat-
egy [76] to generate the training datasets. The new hybrid
descriptor includes two- and three-body functions modelled
by embedding neural networks of sizes (20, 40, 80) and
(4, 8, 16), respectively. The fitting neural network size is
(240, 240, 240). The cutoff radii for the two- and three-body
embedding neural networks are 6 and 4 Å, respectively. In all
the training stages, four models are trained on the same train-
ing datasets with the same neural network sizes but starting
from different random seeds.

We first perform DFT calculations to determine the lat-
tice parameters of the BCC, FCC and HCP structures of V
(Sec. II A). Based on these lattice parameters, we construct
three supercells of 2 × 2 × 2 BCC, FCC, and HCP structures
containing 16, 32, and 16 atoms, respectively. These super-
cells are affinely scaled by s from −4% to 6% with a step
size of 2%, resulting in 6 configurations for each phase. These
scaled supercells are then perturbed 3 times by adding some
random vectors δ = 3% to each of the supercell vectors ci

and 0.01 Å to atom positions Ri, which creates some dis-
torted supercells. Ab initio MD (AIMD) simulations are then
performed for 2 steps for each configuration. In AIMD, the
NVT ensemble is employed with the temperature maintained
at 100 K using the Nosé-Hoover thermostat. At the end of
AIMD steps, a total of 104 configurations from the converged
ionic steps are prepared with atomistic information including
the total energy, atom coordinates Ri, atomic forces fi, and
virial tensors. To enhance the description of the BCC structure
near equilibrium, we create 20 more perturbations from each
uniformly scaled BCC supercells and perform 5 AIMD steps,
resulting in an additional 600 training datasets to represent the
BCC V.

The above ab initio configurations provide the initial train-
ing datasets to initialize the DP-GEN loop. In the DP-GEN
loop, four DP models are first generated randomly and trained
using the initial datasets. In each model, the learning rate
starts at 1 × 10−3 and decays exponentially to 5 × 10−8. In
the DP-GEN iteration, the training step is 4 × 105 and the
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TABLE I. Parameter fitting ranges and optimized values of the XMEAM-V developed in this work.

Parameter α β0 β1 β2 β3 β4 β5 A

Lower limit 4.55 4.00 3.00 4.00 2.00 4.00 2.00 0.25
Optimized value 4.6230 4.9371 3.8737 4.5265 3.6661 5.9816 2.6531 0.2965
Upper limit 4.65 6.00 5.00 6.00 4.00 6.00 4.00 0.35

Parameter B t1 t2 t3 t4 t5 rc �r
Lower limit −0.10 −10.00 0.00 −25.00 −15.00 −5.00 6.50 3.00
Optimized value 0.0442 −3.2282 5.1961 −19.1000 −8.6960 0.9093 7.6192 4.3217
Upper limit 0.10 0.00 10.00 −15.00 0.00 5.00 8.00 5.00

Parameter Ec alat dattrac drepuls Crho
min Cpair

min Crho
max Cpair

max

Lower limit 5.28 2.98 −0.10 −0.10 0.00 0.30 2.60 2.60
Optimized value 5.3000 2.9923 0.0119 −0.0045 0.0454 0.4218 2.8616 2.9547
Upper limit 5.31 3.02 0.10 0.10 0.50 0.70 3.00 3.00

prefactors of the energy, atomic force, and virial tensor in
the loss functions are pstart

e = 0.02, plimit
e = 2, pstart

f = 1000,
plimit

e = 1, pstart
v = 0, and plimit

v = 0, respectively.
In the exploration step of the DP-GEN loop, one DP model

is selected to explore different bulk and surface structures
using DP-based MD (DPMD) interfaced with the LAMMPS

package. We use fully periodic supercells of 2 × 2 × 2 BCC,
FCC and HCP structures and applied perturbations δ. The
bulk configurations are explored using the NPT ensemble with
fixed box shape. The temperature and pressure are controlled
using the Nosé-Hoover thermostat and barostat [66,77]. For
the bulk structures, DPMD explores four temperature range
sets from 50 K to 1.9 Tm (Tm = 2183 K [78]):

(a) 50 K, [0.1, 0.2, 0.3, 0.4]Tm,

(b) [0.5, 0.6, 0.7, 0.8, 0.9]Tm,

(c) [1.0, 1.1, 1.2, 1.3, 1.4]Tm,

(d ) [1.5, 1.6, 1.7, 1.8, 1.9]Tm. (12)

In each temperature, DPMD are performed under eight pres-
sures [0.001, 0.01, 0.1, 1, 5, 10, 20, 50] kBar.

The exploration step provides a set of configurations based
on the selected model. The other three models are then used
to calculate atomic force fi in these configurations, resulting
in four sets of fi. The standard deviations σ (fi ) is calculated
and used as an indicator of the accuracy of the models. If
the maximum deviation of atomic forces max[σ (fi)] is within
[σ low, σ high], the configuration is considered a candidate and
sent to DFT calculations. σ low and σ high are lower and upper
bounds set as [0.10,0.25] for region (a), [0.15,0.30] for re-
gions (b) and (c), [0.20,0.35] for region (d ) in Eq. (12). All
candidate configurations are computed with DFT and added
to the initial datesets, forming a broad training datesets for the
next DP-GEN loop. The DP-GEN loop with bulk structures is
iterated 32 times.

The DP-GEN loop, with the surface structures, follows the
bulk structures exploration. For surface structures, the initial
supercells are constructed for the {100}, {110}, and {111}
surfaces in the BCC and FCC structures, and the {0001} and
{101̄0} surfaces in the HCP structure. The surface structures
are then uniformly scaled by s and perturbed by δ. The surface
configurations are explored within the NVT ensemble from

50 K to 0.9 Tm [temperature regions (a) and (b) in Eq. (12)].
For exploring the surface structures, σ low and σ high are 0.20
and 0.35 in the entire temperature range. The DP-GEN loop
with surface structure is iterated 8 times.

In addition to the bulk and surface structure datasets, we
also include configurations with point defects in the BCC
structure, which are important for diffusion, vacancy and in-
terstitial clustering. We include six types of self-interstitials
(Fig. 6). Specifically, we compute the 〈111〉, 〈110〉, and 〈100〉
dumbbells, 〈111〉 crowdion, tetrahedral, and octahedral inter-
stitial structures in a 3 × 3 × 3 supercell (55 atoms) using
DFT. For each self-interstitial, a set of configurations are
obtained via ionic structure optimization. These configura-
tions are used as initial configurations for DPMD exploration
using one selected DP model, in the temperature range of
50 to 600 K and the NVT ensemble. The other three DP
models are then used to calculate the atomic forces in these
DPMD configurations. The configurations with max[σ (fi )]
within [0.2,0.35] are selected as candidates and sent for DFT
calculations. These point-defect related ab initio configura-
tions are added to the training datasets. The DP-GEN loop
with self-interstitial structures is iterated 8 times.

Finally, we include configurations with atoms at small sep-
arations in the BCC and FCC structures. We create 2 × 2 × 2
BCC and FCC cubic supercells and uniformly scale the super-
cell vectors from 0.86 to 0.94 with a step size of 0.02. These
supercells are further distorted by adding δ to its supercell
vectors and atomic positions. The distorted supercells are
used as initial configurations for DPMD with one selected DP
model. DPMD is then performed with the NVT ensemble at
50 to 600 K for exploration at high atomic density/small atom
separations. Similar to the earlier DP-GEN loop, the forces
are computed in the DPMD configurations with the other
three DP models. The DPMD configurations with max[σ (fi )]
within [0.2,0.35] are selected as candidates and sent for DFT
calculations. The resulting configuration from DFT are added
to the training datesets. The DP-GEN loop with high density
atomic structures is iterated four times.

The above DP-GEN loops explore configurations in the
bulks, at the surfaces, with point defects and at high densities.
They provide a broad set of atomic configurations/training
datasets relevant to mechanical properties of V. Table II sum-
marizes the training datasets generated in the DP-GEN Loop.
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TABLE II. Summary of the training datasets for DP-HYB-V.

Dataset type
Number of

datasets Weightage

Initialization datasets around equilibrium 704 1
DP-GEN bulk 3393 1
DP-GEN surface 991 1
DP-GEN interstitial 705 1
DP-GEN high-density BCC 1052 1
DP-GEN high-density FCC 1846 1
γ -line datasets from specialization 63 100
Cohesive energy datasets from specialization 10 100
Vacancy datasets from specialization 22 10
Total 8786

We refer readers to Refs. [42,76] for more details of the DP-
GEN scheme.

Based on the above DP-GEN loop, the four DP mod-
els can reproduce many properties of BCC V. However,
their generalized stacking fault energies (γ -lines) are not
sufficiently accurate with respect to DFT results. Special
training datasets are thus generated with configurations de-
scribing shear displacement along the 〈111〉 direction on the
{110}, {112}, and{123} planes in the BCC structure. In addi-
tion, “special” training sets are generated on the EOS curve
of BCC V (Fig. 2) for a wide range of lattice parameters
a/a0 = 0.75, 1.2, 1.3, . . . , 2.0 (a0 is the equilibrium lattice
parameter) and for a monovacancy configuration in a supercell
of 3 × 3 × 3 BCC V. For each configuration, DFT is em-
ployed to compute the total energy and atomic forces, which
form the special datasets and are added to the earlier train-
ing datasets. The final training datasets include those from
the initial, DP-GEN loop and special steps (Table II). Four
new DP-HYB models are trained with 8 × 106 steps using
all the training sets in Table II (except the high-density FCC
structures and cohesive energy datasets) with a focus on the
properties of BCC structures near equilibrium. Subsequently,
the best performing DP-HYB model is further trained with
all the training sets in Table II for 4 × 106 steps with the
initial and final learning rates at 1 × 10−4 and 5 × 10−8,
respectively. The pre-factors in both training processes are
pstart

e = 10, plimit
e = 10, pstart

f = 1, plimit
f = 1, pstart

v = 10, and
plimit

v = 10, respectively. Table II summarizes the individual
weights assigned to the respective datasets for the final train-
ing for DP-HYB-V.

Finally, the energy of DP-HYB-V is adjusted with respect
to the energy of an isolated V atom in vacuum, in order to
reproduce its cohesive energy of BCC V (−5.31 eV/atom
[79]) measured in the experiment. This adjustment was also
applied in DP-Ti developed earlier [76].

E. Calculation of lattice properties and defects

A wide range of lattice and defect properties are calculated
using the developed XMEAM-V and DP-HYB-V. The point
defects are calculated using the same setup as that in DFT
Sec. II A. We describe the details of the calculations which
are sensitive to the simulation conditions below.

We use a periodic array of dislocations (PAD [80]) con-
figuration to investigate all dislocation core properties in this

FIG. 2. The cohesive energy of the BCC and FCC structures of
V as a function of lattice parameter predicted by DFT and three
interatomic potentials (XMEAM-V, DP-HYB-V, and GAP-V [38]).
(a) The cohesive energy of the BCC structure in the entire range
(0.7a0, 3.0a0). (b) The cohesive energies of the BCC and FCC
structure near the respective equilibrium lattice parameters (0.8a0,
1.2a0).

work. In the PAD configuration, the slip plane is placed in
the x-y plane and normal to the z direction. Periodic boundary
conditions are imposed in the x and y directions, while the top
and bottom z surfaces are treated as traction-controlled/free
surfaces. For the pure edge and screw dislocations, the
Burgers vector b is aligned in the x direction. For mixed
dislocations, the screw component of b (i.e., |b · ξ|ξ, where
ξ is the dislocation line direction) is always aligned in the x
direction. Shear stresses are applied by adding forces to atoms
at the top and bottom layers within 12 Å (∼ 2 × rc, where rc

is the cutoff distance of the interatomic potential) from the
surfaces in the ±z directions.

We first construct the respective supercells with the ap-
propriate crystal orientations and dimensions, as shown in
Table III. Dislocations are then introduced at the center of
the supercell by applying the displacement field of the corre-
sponding Volterra dislocation using the atomsk package [81].
For dislocations with a nonzero screw component, a homo-
geneous shear strain of εyx = b · ξ/2 is applied to correct the
plastic shear strain created by the screw component. The con-
structed cores are then optimized using the conjugate gradient
algorithm with a force convergence criterion of 10−4eV/Å.

In the calculations of the Peierls stress, we use a load-
optimize sequence to estimate the critical stress to drive the
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TABLE III. Supercell orientations and sizes used to calculate Peierls stresses of different dislocations.

Slip system Supercell orientation Size
b, n (c1, c2, c3) (|c1|, |c2|, |c3|) Number of atoms

1/2〈111〉 screw ([111], [112̄], [11̄0]) (
√

3a0, 54
√

6a0, 47
√

2a0) 30456
1/2〈111〉{110}70.5◦ mixed ([111], [112̄], [11̄0]) (

√
3a0, 54

√
6a0, 47

√
2a0 ) 30456

1/2〈111〉{110} edge ([111], [112̄], [11̄0]) (154
√

3/2a0,
√

6a0, 47
√

2a0) 43428
〈100〉{110} edge ([100], [011], [011̄]) (133a0,

√
2a0, 46

√
2a0 ) 24472

dislocation at 0 K. In each case, some trial runs are firstly
carried out to estimate τP, where τP is the final stress when
the dislocation starts to glide continuously. In the actual mea-
surement of the Peierls stresses, we first apply a shear stress
τstep of about 5%τP. Structure optimization is then carried
out with the applied stresses/forces fixed. Upon reaching
convergence/equilibrium, the shear stress is increased by
τstep, followed by structure optimization. The load-optimize
sequence is repeated until the dislocation starts to glide contin-
uously. When the system nearly approaches the final τP, τstep

is reduced to less than 1%τP. The Peierls energy profile for
the 〈111〉/2 screw dislocation is calculated using the nudged
elastic band (NEB [82]) method with the force convergence
criterion set at 10−6eV/Å.

For the 〈111〉/2 screw dislocation, the measured τP is
weakly influenced by the simulation supercell sizes. For ex-
ample, τP of a screw dislocation of length 2|b| in XMEAM-V
is measured as 1148, 1210, and 1217 MPa in supercells of
sizes (200 Å, 80 Å), (300 Å, 140 Å) and (400 Å, 200 Å). The
core structures and Peierls barriers are almost identical in the
different supercell sizes. Consequently, we use the smaller
supercell of (200 Å, 80 Å) to calculate the Peierls barrier and
related screw core energetics, and (400 Å, 200 Å) to calculate
the Peierls stress for the screw dislocation and other types of
dislocations. The supercell sizes are summarized in Table III.

The temperatures-dependent lattice parameters a(T ) or
elastic constants Ci j (T ) are calculated by time-averaging the
supercell sizes using an NPT ensemble or time-averaging
the measured stresses using the NVT ensemble equilibrated
with a Nosé-Hoover thermostat in LAMMPS. Specifically, fully
periodic supercells are used for the calculations. The supercell
sizes are 24 × 24 × 24 for XMEAM-V, while a smaller super-
cell of 12 × 12 × 12 are used for GAP-V and DP-HYB-V due
to their higher computational cost. For the calculation of a(T ),
the supercell is first equilibrated for 40 000 fs (40 000 time
steps) under stress-free conditions and at the target tempera-
ture with an isothermal-isobaric NPT ensemble. The supercell
size is then measured and averaged for 4000 steps. The final
supercell size is averaged for 10 measurements.

For the calculation of Ci j (T ), the supercell is first equi-
librated at target temperatures using an NPT ensemble for
16 000 time steps. A ±1% strain in one of the strain
components (ε11, ε22, ε33, ε12, ε13, ε23) is applied and the con-
figuration is then equilibrated for another 16000 steps using
the canonical NVT ensemble. After the equilibration, the re-
sulting stresses are measured and averaged for every 4000
times steps. The final stresses are taken as the average of
four measurements. For DP-HYB-V, C44 based on the smaller
12 × 12 × 12 supercell exhibits large fluctuations at high tem-
peratures. We therefore perform additional calculations using

a 24 × 24 × 24 supercell for temperatures above 1100 K.
The elastic constants are calculated by dividing the measured
stresses with the applied strains.

We use PHONOPY [83] and phonoLAMMPS [84] to calculate
the phonon spectra of the BCC structure at 0 K. The supercell
size is 8[100] × 8[010] × 8[001], containing 1024 atoms in
total. Specifically, phonoLAMMPS is first used to compute the
3N × 3N force matrix and PHONOPY is used to calculate the
phonon spectra based on the force matrix.

The melting temperatures is determined by the solid-liquid
two-phase co-existence method [85]. We employ a fully
periodic supercell of 92 Å × 46 Å × 46 Å and examine the
volume fraction of the liquid and BCC phases in the supercell
as a function of temperature in the NPT ensemble. Each sim-
ulations run at different temperatures separated by Tstep. The
melting temperature is determined to be (Tlow + Thigh)/2 ±
Tstep/2; the BCC phase always grows at and below Tlow and
shrinks at and above Thigh. Separately, we also estimate the
melting temperature in the calculations of elastic constants
Ci j (T ) when the shear modulus C44 drops to zero, as shown
below.

III. RESULTS

Table I shows the final optimized parameters of XMEAM-
V. The potential files in the LAMMPS format are also available
in Ref. [86]. DP-HYB-V and all the training datasets are
available at dplib [87]. Both XMEAM-V and DP-HYB-V are
compatible with LAMMPS and can be employed immediately.

In this section, we provide a comprehensive study of the
classical (XMEAM-V) and ML (DP-HYB-V) potentials on
their thermodynamic and mechanical properties. We perform
extensive benchmarks using GAP-V, DFT and experimental
results of V available in the literature.

A. Bulk properties

Table IV shows the basic properties of BCC and FCC
V calculated by DFT, XMEAM-V, DP-HYB-V and GAP-
V, as well as the experimental data of BCC V. For the
BCC structure, all computational models accurately repro-
duce the lattice parameter, cohesive energy, surface energies
and elastic constants C11 and C12. Nevertheless, DFT predicts
C44 as 23.6 GPa, about 50% of the experimental value of
46.0 GPa and consistent with most ealier DFT calculations
for V [38,41]. ML DP-HYB-V and GAP-V faithfully repro-
duce this value from DFT. We attempted to manually correct
the C44 value by scaling the virial tensor relevant to C44 in
the DP-HYB training datasets. However, this strategy leads
to degradation of other properties like the dislocation core
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TABLE IV. Properties of V from DFT, experiments, XMEAM-V, DP-HYB-V, and GAP-V. The properties include lattice parameter a (Å),
cohesive energy Ec (eV), elastic constants (GPa) in BCC and FCC phases, and surface energies σ (J/m2) of low index planes in BCC phase.
DFT calculations are performed in this work.

Structure Property Experiment DFT XMEAM-V DP-HYB-V GAP-V [38]

BCC a0 3.03 (300 K) [79] 3.00 3.03 3.00 3.00
Ec −5.31 [79] −5.38 −5.323 −5.308 −5.384

C11 232.4 (0 Ka) [88] 268.6 (15.6%) 261.4 (12.5%) 271.9 (17.0%) 271.0 (16.6%)
Ci j C12 119.4 [88] 140.0 (17.3%) 104.2 (12.7%) 141.6 (18.6%) 145.0 (21.4%)

C44 46.0 [88] 23.6 (48.7%) 41.3 (10.2%) 25.3 (45.0%) 23.7 (48.5%)
{100} 2.62b [89], 2.55b [90] 2.39 2.66 2.60 2.38
{110} 2.41 2.36 2.35 2.40

σ {112} 2.71 2.72 2.63 2.69
{123} 2.64 2.66 2.60 2.64

FCC a0 3.82 3.85 3.82 3.82
Ec −5.14 −5.145 −5.064 −5.142
�EFCC-BCC(χ ) 0.243 0.178 (0.74) 0.244 (1.00) 0.242 (1.00)

C11 4.7 97.3 8.1 16.9
Ci j C12 262.4 180.8 276.1 265.9

C44 5.4 44.5 1.2 9.2

aExperimental elastic constants at 0 K are extrapolated from a series of measurements at low temperatures.
bExperimental surface energies are obtained from surface tension measurements and do not represent the property of a specific surface.

structures. Manually adjusting C44 perhaps generates some
inconsistencies among the training datasets, and this turns out
to be not as straightforward as anticipated. On the contrary,
XMEAM-V reproduces all the elastic constants within 15%
from their respective experimental values.

For the FCC phase, V is not stable at 0 K as pre-
dicted by DFT. Its C11 and C44 are nearly 0 and C11 < C12,
which violates the Born stability criterion for cubic structures
[91]. No FCC phase appears in the low pressure regions
of the equilibrium phase diagram of V, further suggesting
the instability of FCC-V. The two ML potentials also show
excellent reproducibility of the FCC elastic constants from
DFT, while the XMEAM-V shows appreciable discrepan-
cies. DFT also predicts that the FCC phase has a higher
cohesive energy relative to the BCC phase, �EFCC-BCC =
0.243 eV/atom. The two ML potentials accurately repro-
duce this quantity, while XMEAM-V has �EFCC-BCC =
0.178 eV/atom or χ = �EXMEAM-V

FCC-BCC /�EDFT
FCC-BCC = 0.74. Fur-

ther increase of �EFCC-BCC in XMEAM-V is feasible, but at
a cost of reduced accuracy in other properties such as the
γ -lines. The current XMEAM-V is thus selected with an over-
all balance on all properties considered. Comparing the two
approaches, ML potentials demonstrate excellent capability
in reproducing multiphase/state properties while the classical
approach exhibits some limitations here.

B. Equation of state

Figure 2 shows the BCC and FCC cohesive energies as
a function of the lattice parameter (i.e., equation of state,
EOS) predicted by DFT and the interatomic potentials. All
three potentials accurately reproduce the DFT values near
the equilibrium lattice parameter in the range (0.8a0, 1.2a0).
Energy variations of FCC phase at large atom separations
(>1.2a0) are similar to the BCC phase [Fig. 2(a)] and are thus
not shown. In particular, the FCC’s EOS is not included in
the fitting data for XMEAM. The accurate reproduction here

suggests its good transferability to configurations different
from the stable BCC phase. XMEAM-V and DP-HYB-V have
smooth energy variations in the entire range (0.7a0, 3.0a0),
while GAP-V shows a rapid energy increase near and beyond
1.4a0. This rapid change in cohesive energy is perhaps due
to its relatively short cutoff distance of 4.7 Å employed in
the potential, as seen in many other MEAM-type interatomic
potentials [92] employing a relatively short cutoff distance.
While the physical implication of the rapid energy variation at
large atom separations is not completely clear, it does affect
other fundamental properties such as the traction-decohesion
behavior of some low-index planes, as shown in the next
section.

C. Surface energy and decohesion

All computational models accurately capture the surface
energies of BCC V when compared to values measured by
the surface tension method [89,90]. DFT predicts that the
{100} plane has the lowest surface energy, followed by the
{110}, {123}, and {112} planes. GAP-V reproduces all surface
energies and their ordering from DFT, while XMEAM-V and
DP-HYB-V show that the {110} plane has the lowest energy,
followed by the {100}, {123}, and {112} planes. We note that
for all other BCC TMs, the close-packed {110} plane has the
lowest energy and V is the only exception [38]. Nevertheless,
the energy differences among the different planes are rather
small and the largest discrepancies are 11.3% and 8.8% on
the {100} plane in XMEAM-V and DP-HYB-V. All models
predicts the {100} and {110} planes as the primary cleavage
planes in BCC V [93].

BCC V tends to be brittle and exhibits cleavage fracture
at low temperatures [94]. The cleavage process is governed
by the surface traction-separation relations. We compute the
surface decohesion energy by rigidly separating two blocks of
materials across a specified crystallographic plane. Figure 3
shows the results obtained from DFT and the three interatomic
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
ec

oh
es

iv
e

en
er

gy
γ

d
(J

/m
2
)

DFT
XMEAM-V
DP-HYB-V
GAP-V

0.0

4.0

8.0

12.0

16.0

20.0

24.0

D
ec

oh
es

io
n

st
re

ss
σ

(G
P

a)

(a)

0 1 2 3 4 5 6 7
{110} planar separation distance (Å)
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FIG. 3. Surface decohesion energy curves (solid) and their gradients/stresses (dashed) of the {100}, {110}, {112}, and {123} planes
predicted by DFT and three potentials. Note that the decohesion energies are divided by 2 and thus the energy at large distance is the unrelaxed
surface energy.

potentials. For XMEAM-V, the DFT data of the {110} plane
is included in the fitting datasets, while the DP-HYB-V and
GAP-V do not explicitly include these data. All four low-
index planes are included for comparisons. Both XMEAM-V
and DP-HYB-V capture the decohesion energy variations,
gradients and peak values from DFT, while GAP-V exhibits
undulating decohesion stresses at large planar separations.
These undulations occur at planar separation approaching
2 Å where atoms move outside their interaction distance in
GAP-V, as that in the EOS curves in Fig. 2. This drawback,
appearing to arise from the short cutoff distance used in
the GAP-V formulation, precludes GAP-V from applications
involving cleavage processes. Increasing the cutoff distance
in GAP may resolve this problem, which was observed in
BOP-Si/C [95] and MEAM-Mg [92].

D. Generalized stacking fault energy

The generalized stacking fault energy (γ -surface) de-
scribes the periodic energy variations during shear displace-
ment between two crystallographic planes. The γ -surface has
fundamental importance in governing dislocation nucleation,

dissociation, core structure, energy and glide behavior. The
minimum energy path bewteen two absolute minima on the
γ -surface is the γ -line and is the fundamental slip step dur-
ing plastic deformation. Along the γ -line, the maxima is the
unstable stacking fault energy γusf and dictates the dislocation
nucleation barrier at stress concentrations such as crack-tips,
while the metastable point γsf determines the dislocation core
dissociation.

Figure 4 shows the γ -surfaces of the {110}, {112} and
{123} planes in the BCC structure predicted by XMEAM-V,
DP-HYB-V and GAP-V. These three planes are the common
active slip planes in BCC metals. In all the cases, the mini-
mum energy path is along the 〈111〉 direction. No metastable
point exists in any of the cases, which is consistent with the
γ -surfaces of other BCC metals computed by DFT [19,29].
All 〈111〉/2 dislocations (screw, edge and mixed) are thus
expected to have nondissociated core structures. Despite the
completely different potential energy functions and fitting
methods, all three models exhibit similar γ -surface profiles
with some differences near the peak energies. The γ -surfaces
are perhaps strongly dictated by crystal geometry which is
easily represented in all models.
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FIG. 4. Generalized stacking fault energy surfaces (γ -surfaces) of the {110}, {112}, and {123} planes calculated by XMEAM-V, DP-HYB-
V, and GAP-V. The white dashed arrows denote the shortest lattice translation vector 1/2〈111〉 on the respective planes.

Figure 5 shows the γ -lines along the 〈111〉/2 direction
on the three planes calculated by DFT and the respective
interatomic potentials. These γ -lines are included in the fitting
datasets of XMEAM-V, DP-HYB-V, and GAP-V. The {110}

plane is the close-packed plane and has the largest interpla-
nar separation, followed by the {112} and {123} planes. The
DFT-based unstable stacking fault energies exhibit a similar
trend, i.e., γ

{110}
us < γ

{112}
us ≈ γ

{123}
us . All interatomic potentials
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FIG. 5. Generalized stacking fault energy lines (γ -lines) along the 〈111〉 direction on the {110}, {112}, and {123} planes predicted by DFT,
XMEAM-V, DP-HYB-V, and GAP-V.
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(a)
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DP-HYB-V unstable unstable
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FIG. 6. Self-interstitials in the BCC structure of V predicted by DFT, XMEAM-V, DP-HYB-V, and GAP-V: (a) 〈111〉 dumbbell, (b) 〈100〉
dumbbell, (c) 〈110〉 dumbbell, (d) 〈111〉 crowdion, (e) tetrahedral, and (f) octahedral. All structures are the optimized configurations under
the fixed supercell constraint. All models have similar self-interstitial structures while quantitative differences still exist in atom positions. The
self-interstitial atom is shown in dark color.

accurately reproduce the γ -line profiles and their peaks; the
largest discrepancy is 11% of GAP-V on the {112} plane.
Overall, XMEAM-V possesses accurate elastic constants,
surface-decohesion lines and γ -lines. It is thus promising to
be used to study general plastic and fracture behavior of BCC
V.

E. Point defects

BCC TMs are often employed in high temperature and
irradiative environments. Point defects can be generated fre-
quently, and accumulate to high densities and form various
defect clusters, which in turn directly affect their macro-
scopic mechanical properties. We consider the monovacancy
and six self-interstitials in BCC V : 〈111〉 dumbbell, 〈110〉
dumbbell, 〈100〉 dumbbell, 〈111〉 crowdion, tetrahedral, and
octahedral interstitials (Fig. 6). These defects can interact
with themselves, dislocations, grain/interface boundaries, and
crack-tips. Table V summarizes the point defect energies of
DFT, XMEAM-V, DP-HYB-V, GAP-V, and experiments. In
DFT, all formation energies with the OSC method are gener-
ally ∼0.2 eV lower than previous DFT values with the FSC
method [12]. These energy differences may also arise from
the different DFT parameters (cutoff energy, k-point densities)
employed. However, the lower formation energy is expected
in the OSC method, and is also seen in calculations with the
interatomic potentials.

For the monovacancy, all three potentials give formation
and migration energies comparable to DFT and experimen-
tal values. For self-interstitials, all configurations are at least
meta-stable in both the OSC and FSC methods in DFT, while
some relax to lower energy configurations in calculations us-
ing the interatomic potentials (Fig. 6). The 〈111〉 dumbbell is
predicted as the ground state configuration by DFT and all the
three potentials, followed by the 〈111〉 crowdion configuration
at 5 meV higher in the OSC method in DFT. The 〈111〉
crowdion is not stable and relax to the 〈111〉 dumbbell using
the interatomic potentials and the OSC method. The 〈110〉
and 〈100〉 dumbbell configurations have the third and fourth
highest energies and are metastable in XMEAM-V, while
DP-HYB-V and GAP-V predict that the 〈110〉 and 〈100〉
dumbbells are not stable using the OSC method and show
only the 〈100〉 dumbbell is metastable in the FSC method. All
other self-interstitials are not stable using the OSC method
and the interatomic potentials. For the stable/metastable con-
figurations, quantitative differences on atomic positions at
point defects exist among the different computational models.
Nevertheless, all potentials generally reproduce the stable and
meta-stable self-interstitial energetics and structures in good
agreement with DFT (Fig. 6).

F. Phonon and temperature-dependent lattice properties

Figure 7 shows the phonon spectra of BCC V at 0 K
based on XMEAM-V, DP-HYB-V, GAP-V, DFT [98], and
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TABLE V. The formation and migration energies (eV) of the monovacancy and formation energies of self-interstitials of BCC V based on
experiments, DFT, XMEAM-V, DP-HYB-V, and GAP-V. In MD simulations with the relaxation on atomic positions and supercell vectors,
some self-interstitial configurations are unstable and relax to lower energy states. The numbers in the parenthesis are energies obtained under
fixed supercell constraint.

Defect Energy DFT/Experiment XMEAM-V DP-HYB-V GAP-V [38]

monovacancy formation energy 2.34, 2.6 [96] (2.61 [65]) / 2.1–2.1 [97] 2.55 (2.56) 2.40 (2.41) 2.56 (2.58)
migration energy 0.65 [65] / 0.5 [97] 0.56 0.56 0.39

〈111〉 dumbbell 2.71 (2.91 [12]) 2.83 (2.87) 2.83 (2.93) 2.76 (2.89)
〈110〉 dumbbell 3.01 (3.16 [12]) 2.98 (3.05) usa (usa) usa (usa)
〈100〉 dumbbell formation 3.20 (3.38 [12]) 3.21 (3.25) usa (3.85) usa (3.42)
〈111〉 crowdion energy 2.71 (2.91 [12]) usa (2.87) usa (2.96) usa (2.89)
tetrahedral 3.23 (3.42 [12]) usb (3.34) usa (usa) usa (usa)
octahedral 3.27 (3.44 [12]) usb (3.35) usa (3.84) usa (3.49)

aThe structure relaxes to the 〈111〉 dumbbell configuration.
bThe structure relaxes to the 〈110〉 dumbbell configuration.

experiments [99]. At low to medium frequencies, all inter-
atomic potentials and DFT agree well with experimental data.
In particular, XMEAM-V has slightly better agreement with
experiment around the � point, which reflects its accurate
elastic constants of the BCC structure. However, at higher
frequencies in the N , H , and P directions, the two ML po-
tentials are more accurate than XMEAM-V. The XMEAM-V
potential does not qualitatively reproduce the basic symmetry
of the phonon spectrum at the H and P points. GAP-V is
particularly close to the DFT and experiment data, and is
expected to be more accurate in reproducing properties such
as thermal conductivity and diffusivity, while XMEAM-V is
perhaps more accurate in describing mechanical properties
such as crack-tip dislocation nucleation given its promising
shear modulus in a wide range of temperatures (see below).

Figure 8 shows the BCC lattice parameter a(T ) and elastic
constants Ci j (T ) as a function of temperature calculated by the
three interatomic potentials and from experiments [100,101].
All three potentials yield variations of lattice parameter with
temperature in excellent agreement with experiment over
the entire temperature range. In particular, XMEAM-V has

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y
(T

H
z)

EXP
DFT
XMEAM-V
DP-HYB-V
GAP-V

N Γ H P Γ

FIG. 7. The phonon spectra of BCC phase from DFT, XMEAM,
GAP, DP, and experiment. The DFT and experimental results are
from Refs. [98,99].

accurate lattice parameters with discrepancies less than 0.01
Å while the two ML potentials underestimate the lattice
parameter by ∼0.03 Å. The offsets of a(T ) of the ML poten-
tials are likely inherited from DFT which exhibits a similar
offset at 0 K. The linear coefficient of thermal expansion
(α(T ) = 1/a(∂a/∂T )) are 7.02 × 10−6, 7.49 × 10−6, and
10.31 × 10−6 K−1 for XMEAM-V, DP-HYB-V, and GAP-V
at 300 K respectively, which are close to the experimental
value of 8.71 × 10−6 K−1. Near 2200–2300 K, the slope of
a(T ) changes in all potentials, indicating a phase transition at
this temperature.

For the finite-temperature elastic constants, GAP-V and
DP-HYB-V exhibit continuous decrease of C11(T ) and C12(T )
in the entire temperature range, while XMEAM-V has C11(T )
decreasing continuously up to 2100 K and C12(T ) almost
independent of temperature. The temperature insensitivity of
C12(T ) agrees well with the experimental data up to 300 K.
For the shear modulus C44(T ), XMEAM-V agrees well with
experiments in both its magnitude and slope. DP-HYB-V has
C44(T ) nearly independent of T at low temperatures and then
increasing slowly with T at high temperatures, while C44(T )
of GAP-V decreases rapidly at low temperatures and gradu-
ally increases with increasing temperatures. We suspect that
the pathologies in C44(T ) of the ML potentials are associated
with the inaccuracies of DFT for the shear constant of V at
T = 0. Nevertheless, their slopes of C44(T ) are unusual with
respect to experimental results. In the intermediate temper-
ature range, discrepancies of the shear modulus C44(T ) is
further enlarged in GAP-V.

All of the elastic constants drop precipitously at a tem-
perature close to the experimental solid-liquid transition
temperature. In particular, the shear modulus C44(T ) of
XMEAM-V drops to 0 at 2200 K, suggesting the BCC phase
transforms to the liquid phase, in agreement with the exper-
imental melting temperature of 2183 K [78]. The two ML
potentials have their C44(T ) reaching 0 at about 2500 K. The
shear modulus data C44(T ) give some approximations of the
melting temperatures of the respective potentials. In the solid-
liquid coexistence method, the obtained melting temperatures
are consistently lower than these approximations [Fig. 8(d)].
Specifically, the melting temperatures of XMEAM-V and DP-
HYB-V are determined to be 1875 ± 25 and 2025 ± 25 K,
respectively, while GAP-V has Tm reported as 2130 K [38].
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FIG. 8. Lattice parameter a and elastic constants of BCC V at finite temperatures. The experimental data of lattice parameters and elastic
constants are from Refs. [100] and [101], respectively. Dashed black lines in (a) and (d) mark the experimental melting temperature of V at
2183 K [78]. The melting temperatures obtained from the solid-liquid two phase method are shown in (d).

Melting temperatures from C44 are the upper limits, since the
configurations used are ideal BCC structures in fully peri-
odic supercells and homogeneous nucleation of liquid phases
requires some barriers to be overcome and occurs at some
higher temperatures. Nevertheless, all potentials have melting
temperature around 2000 K close to experimental values.

Overall, XMEAM-V has better lattice and elastic proper-
ties at finite temperatures than the two ML potentials, despite
the fact that finite-temperature properties are not included ex-
plicitly in the fitting of XMEAM-V. For the two ML potentials
(Table II and Ref. [38]), the training datasets include AIMD
configurations and yet their C44 values vary considerably in
the intermediate temperature range and rise at high temper-
atures, indicating that additional datasets may be needed to
reproduce the shear modulus at finite temperatures in ML
frameworks.

G. Dislocation core structures

Dislocations are the primary plastic strain carriers in most
metals at low to moderate temperatures. In BCC V, plastic slip
occurs via the motion of dislocations with a 〈111〉/2 Burgers

vector. In BCC TMs, the 〈111〉/2 screw dislocation has high
lattice friction, carries most plastic strain and thus dictates
stress responses at low temperatures. The screw dislocation
exhibits a wide range of intriguing behaviours which originate
from its core structures and associated properties. Given its
importance, the screw dislocation has been extensively stud-
ied in simulations using DFT or interatomic potentials. As
mentioned in Introduction, existing interatomic potentials of
V have limited capabilities in reproducing the screw disloca-
tion properties and current understanding is largely derived
from DFT calculations which are often limited to small super-
cell sizes and 0 K temperature, in addition to its inaccuracy in
the shear elastic modulus C44.

We examine the structures of four different dislocations
in BCC V using XMEAM-V, DP-HYB-V and GAP-V and
discuss the results with reference to earlier DFT calculations
of core properties in BCC TMs. Figure 9 shows the core
structures of the 〈111〉/2 screw, edge, 70.5◦ mixed and 〈100〉
dislocation predicted by the interatomic potentials at 0 K. The
〈100〉 edge dislocation was previously observed in BCC Mo
[102] while the mixed dislocation may exhibit high lattice
friction as proposed in an earlier study [103]. For the screw
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FIG. 9. Core structures of 〈111〉/2 and 〈100〉 dislocations in BCC V. [(a) and (b)] The nondegenerate 〈111〉/2 screw core and the 〈111〉/2
edge core on the {110} plane predicted by XMEAM-V, DP-HYB-V and GAP-V. (c) The bond-centered and atom-centered 1/2〈111〉{110} 70.5◦

mixed core on the {110} plane predicted by XMEAM-V/GAP-V and DP-HYB-V, respectively. (d) The 〈100〉{110} edge core on the {110}
plane predicted by XMEAM-V and GAP-V/DP-HYB-V. All cores are visualized with the differential displacement map. For the edge and
mixed cores, edge components are plotted on the relaxed configurations. For the screw core, screw components are plotted on the ideal BCC
lattice.

dislocation [Fig. 9(a)], all potentials produce the ND core,
consistent with previous DFT calculations [104] and the pre-
diction based on a new material index χ [29]. All potentials
also predict a nondissociated core of the 〈111〉/2 edge dis-
location on the {110} plane [Fig. 9(b)], consistent with the
γ -surfaces of the {110} plane (Fig. 4) where no meta-stable
stacking fault exists.

Figure 9(c) shows the core structures of the mixed dis-
location. XMEAM-V and GAP-V produce a bond-centered
(BC) structure while DP-HYB-V gives the atom-centered
(AC) structure. The BC core is seen in BCC TMs (Nb, Ta,
Fe, Mo, W) in DFT calculations and the AC core is observed

in some interatomic potentials [11]. Since DFT suggests that
the BC core is prevalent in other BCC TMs, XMEAM-V and
GAP-V are likely producing the correct ground state core
structure of the mixed dislocation in V. Finally, for the 〈100〉
edge dislocation on the {110} plane [Fig. 9(d)], XMEAM-V
shows a compact core structure, similar to the core in Fe from
DFT [105]. In contrast, both DP-HYB-V and GAP-V predict a
relatively open structure, which is also seen in GAP-Fe. Since
DFT suggests Fe adopts the compact structure and GAP-Fe
produced the open structure, it is likely that the open structure
in GAP-V/DP-HYB-V is not the ground state core structure.
Based on all of the above cores and available DFT results,
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TABLE VI. Peierls stress τP (MPa) of the screw, mixed and edge dislocations in BCC V.

Model 1/2〈111〉 screw 1/2〈111〉{110}70.5◦ mixed 1/2〈111〉{110} edge 〈100〉{110} edge

XMEAM-V 1217 30 8 198
DP-HYB-V 1961 620 57 1102
GAP-V [38] 1971 79 20 503
DFT 1000–1200 [22] − − −
Experiment 360 [110] − − −

XMEAM-V perhaps correctly produces all the ground state
core structures.

H. Dislocation Peierls stresses

We further calculate the Peierls stresses τP of the disloca-
tions shown in Fig 9. Table VI shows the computed results
and DFT/Experimental data. For all the dislocations and in
all models, the 〈111〉/2 screw dislocation has the highest τP,
in agreement with TEM study where screw dislocations have
low mobilities and are often observed as long straight lines
(e.g., Nb at 50 K [106], Ta [107], and W [108]). Specifically,
XMEAM predicts τP-screw as 1217 MPa, in agreement with the
DFT calculation of 1000–1200 MPa [22], while DP-HYB-V
and GAP-V have higher τP-screw of 1961 and 1971MPa, re-
spectively. For the edge dislocation, all models predict low τP,
negligible compared to that of the screw core. For the 70.5◦
mixed dislocation, XMEAM-V and GAP-V have the same BC
core structure and similar τP at 30 and 79 MPa, while DP-
HYB-V adopts the AC core with a much higher τP. Low τP of
nonscrew cores by XMEAM-V and GAP-V is consistent with
(i) recent DFT calculations [11] where the mixed core has
nearly zero Peierls barriers and stresss and (ii) internal friction
(IF) experiments where the two low-temperature peaks in IF
spectra almost coincide [11] in group VB elements (Nb and
Ta) [109]. DP-HYB-V thus likely over-estimates the Peierls
stress of these nonscrew dislocations, as in other earlier in-
teratomic potentials [103]. For the 〈100〉 edge dislocation on
the {110} plane, XMEAM-V predicts its Peierls stress of 198
MPa, while DP-HYB-V and GAP-V have high Peierls stresses
at 1102 MPa and 503 MPa. For the mixed and edge cores,
the discrepancies among the interatomic potentials seem to lie
in their different core structures (Fig. 9), which adds further
complexities in modeling and understanding dislocation and
plastic deformation in BCC TMs. All three interatomic po-
tentials have exactly the same relative ordering of the Peierls
stresses of all the dislocations. Nevertheless, based on the
available DFT and experimental results in the BCC TM fam-
ily, XMEAM-V appears the preferred choice for modeling
core structures and Peierls stresses.

I. The 〈111〉/2 screw core Peierls barriers and energetics

At finite temperatures, the glide of the 〈111〉/2 screw dislo-
cation is governed by the transition path and associated energy
variation between two adjacent ground state core positions
(Peierls valley). This energy variation is known as the Peierls
potential. We study the Peierls potential using the nudged
elastic band (NEB) method. Figure 10(a) shows the schemat-
ics of the transition path and critical core positions viewed

along the 〈111〉 direction. In particular, the easy, hard, split
and saddle cores are highly related to the Peierls potential
[22]. The easy and hard cores are at the centers of the triangles
formed by three columns of atoms. The relative positions
of these three columns of atoms along the Burgers vector
direction determine whether the structure is an easy or hard
core. Previous DFT calculations have shown that the ND core
always adopts the easy core position, while hard and split
cores are the maximum energy states in BCC TMs [22]. The
split core center is at the vicinity of one atomic column. It
is often metastable in some EAM/MEAM potentials [51,52],
which results in a double-hump Peierls energy profile.

Figure 10(b) shows the Peierls energy profiles of
XMEAM-V, DP-HYB-V and GAP-V calculated by the NEB
method and previous DFT results [22]. In all the cases, the
energy profile is symmetric about the middle point of the
transition path [Fig. 10(c)] and has a single peak correspond-
ing to the saddle core [Fig. 10(d)] energy. The Peierls barrier
�EPB is thus determined by the energy difference between
the saddle and easy cores and is the energy barrier per unit
length that must be overcome for dislocation glide at 0 K.
All potentials exhibit similar saddle core structures with some
minor differences on the magnitudes of the DD between the
atom pair below the core center. GAP-V predicts a Peierls
barrier of 66.9 meV/b, close to that of W at 81.8 meV/b [22]
and much higher than the DFT values of 24.4 meV/b [53]
and 25.7 meV/b [22]. XMEAM-V and DP-HYB-V predict
�EPB slightly above the DFT value, which itself may be
underestimated in DFT (see below). Table VII summarizes the
saddle, split and hard core energies relative to their respective
easy cores predicted by the three potentials and DFT. GAP-V
has core energies at least 50% higher than the corresponding
DFT values, resulting in much higher Peierls barrier �EPB.

Previous DFT calculations show that the elastic constant
C44 and Peierls barrier �EPB in V depend strongly on the num-
ber of valence electrons employed. Specifically, C44 and �EPB

are predicted to be 10.8 GPa and 14.6 meV/b with five valence
electrons and increase to 22.0 GPa and 24.4 meV/b with 11

TABLE VII. The energies of the saddle, split and hard cores
relative to their respective easy cores predicted by DFT, XMEAM-V,
DP-HYB-V, and GAP-V. The energies are in the unit meV/b.

Model �Esaddle-easy �Esplit-easy �Ehard-easy

XMEAM-V 38.2 56.4 74.5
DP-HYB-V 35.1 67.6 77.3
GAP-V [38] 66.9 136.0 108.7
DFT 25.7 [22], 24.4 [53] 51.3 [22] 52.5 [22]

113603-16



CLASSICAL AND MACHINE LEARNING INTERATOMIC … PHYSICAL REVIEW MATERIALS 6, 113603 (2022)

[1̄21̄]

[1̄01]

⊙

[111]

(a)

⊗ ⊗

⊗

⊗

⊗
⊗⊗ ⊗⊗ ⊗⊗⊗⊗

Easy-1as Easy-2sy

Easy-3Easy 3

⊗

Ha

⊗⊗

rd

⊗

⊗

SaS ddlele

SplitSplit

0.0 0.2 0.4 0.6 0.8 1.0
Reaction coordinate

0

20

40

60

80

P
ei

er
ls

en
er

gy
(m

eV
/b

) DFT
XMEAM-V
DP-HYB-V
GAP-V

(b)

(c) Rc=0 Rc=0.3 Rc=0.4 Rc=0.5

(d) XMEAM GAP DP

FIG. 10. Critical screw cores in 2D Peierls potential. (a) The schematic diagram of core positions (easy, hard, split and saddle cores) in the
2D Peierls potential. (b) Peierls energy of the screw dislocation calculated by the NEB method with interatomic potentials. DFT results are
collected from Ref. [22]. (c) Screw core migration process obtained from the NEB method with XMEAM-V. Rc denotes Reaction coordinate
in the NEB calculations. Only the first half migration is shown as the process is symmetric. (d) Saddle core structures obtained by interatomic
potentials. Minor differences exist in the differential displacement (DD) between the two atoms below the core center. All core structures are
visualized with the DD map and core centers are highlighted with orange arrows.

valence electrons [53]. As the experimental value of C44 is
46.0 GPa and nearly 2 times the DFT value, it is reasonable
to expect the true �EPB is higher than the DFT value. Linear
extrapolations based on the shear modulus [53] and valence
electron number to all electrons will land �EPB at 51 meV/b
and 44 meV/b. These extrapolations are not expected to be
quantitatively accurate, or well founded since inner electrons
have less influence than outer electrons. In any case, �EPB of
XMEAM-V/DP-HYB-V are perhaps reasonable at this stage.

J. Gliding of a long screw dislocation at finite temperatures

The screw dislocation is believed to glide via a double-kink
nucleation and propagation mechanism at low to moderate
temperatures. We study its glide behavior explicitly under
a shear stress of 1 GPa at 77 K in MD simulations. The
applied stress is higher than the Peierls stresses in experiments
(360 MPa [110]), but enables quick examination of the el-
ementary core migration step at relatively short timescales
(e.g., 30 ps). Since only the XMEAM-V gives accurate shear
modulus, we focus on the finite temperature glide using
XMEAM-V here. Figure 11 shows the atomic configuration
during the core migration from one Peierls valley (easy core)
to the next one (easy core) (a complete animation is available
in Ref. [86]). In the simulation, the screw core glides via the
double-kink nucleation and migration mechanism. In partic-
ular, the screw core is stationary at the easy core position
for most of the time. A double kink of opposite signs is
occationally nucleated at a short segment of the dislocation
line on the maximum resolved shear stress plane [MRSSP,
the (1̄01) horizontal plane in Figs. 11(a) and 11(b)], followed
by the kink propagation in the opposite directions along the
dislocation line. The two kinks annihilate each other after they

cross the periodic boundary and meet again, which completes
the one-step migration of the entire screw dislocation.

In addition to the double-kink nucleation and migration
along the MRSSP, a double-kink could occationally nucle-
ate on the (01̄1) plane with a lower resolved shear stress
[Figs. 11(e)–11(g)]. The Schmid factor of the anomalous sys-
tem [111](01̄1) is only one half of that of the primary system
[111](1̄01) [6]. This non-Schmid behavior is surprising, but
is consistent with the anomalous slip observed in high-purity
V and more broadly in group VB and VIB TMs deformed at
low temperatures [6]. In V in particular, and with decreasing
temperatures (e.g., 77 K), the tendency of slip on crystallo-
graphic {110} planes increases with frequent anomalous slips
on lightly stresses {110} planes [111–113] and branching on
concurrent {110} planes [114]. This anomalous slip is also
widely observed in Nb [106,115–119] and Ta [120] and group
VIB TM family (see Ref. [6]). XMEAM-V thus demonstrates
its capability in modeling fundamental dislocation glide be-
havior for BCC V, including the unexpected anomalous slip
which seems to be an intrinsic property of the screw core.

K. Computational speed

Finally, we compare the computational speeds of
XMEAM-V, DP-HYB-V and GAP-V. All benchmarks are
performed through the LAMMPS interfaces on a 32-CPU-core
node and on a V100 GPU (only for DP). DP-HYB-V supports
two models: the original and compressed models. The for-
mer preserves the exact information of the embedding neural
network while the latter accelerates the computational speed
via tabulating the embedding network [121]. The benchmark
measures the time elapsed for 10000 MD timesteps for su-
percells of perfect BCC structure at 100 K. Figure 12 shows
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FIG. 11. The gliding process of the long screw dislocation (30 b) under a shear stress τzx of 1 GPa at 77 K. Atoms are colored by their local
structures identified by the common neighbor analysis: BCC-blue and white-others. [(a)–(d)] Double-kink nucleation and propagation along
the (1̄01) MSSRP. [(e)–(g)] Double-kink nucleation and propagation along the lightly stressed (01̄1) plane. (h) Schematics of the slip planes
and the applied stress τzx .

the speed (ns/day) as a function of total number of atoms
in the supercells. Overall, all interatomic potentials exhibit
near-linear scaling with increasing number of atoms, which is
of utmost importance and a key attribute in stark contrast with
first-principles DFT calculations. For the largest system with
more than 30 000 atoms, XMEAM-V is slightly faster (20%)
than DP-HYB-V compression model, 13.3 times of DP-HYB-
V original model, and 31.6 times of GAP-V on CPU. The
compression model accelerates DP-HYB-V by about a factor
of 10 on CPU and 6 on GPU. The above benchmark pro-
vides a general comparison among the different interatomic
potential formalisms and are only for references to estimate
their respective computing costs. Further code optimizations
are certainly possible in the various models.

IV. DISCUSSION

Interatomic potentials provide a bridge between material
properties at lattice scales and defect properties at microme-
chanics scales. This upscaling is achieved by approximating
the potential energy landscape of the system with analytical,
numerical/spline-curve, Gaussian basis, or neural-network
functions. GAP does not have fixed functional form and
can be systematically improved, so does DP which em-
ploys variable-size embedding and fitting neural-network
functions. Both GAP and DP have well-established training
frameworks [38,122] which allows systematic development
of new interatomic potentials. For V, both DP-HYB-V and
GAP-V are trained with a broad range of datasets gen-
erated from first-principles calculations. GAP-V is trained
with BCC structures (elastically distorted, high temperatures,
vacancy, self-interstitials, surface, γ -surfaces), elastically dis-
torted FCC, HCP, simple cubic, diamond, A15 and C15, as
well as liquids and dimers. DP-HYB-V is trained with a sim-
ilar datasets covering a smaller range of structures (mainly
BCC and FCC). Both these ML-type potentials accurately
reproduce V properties from DFT. In particular, both poten-
tials possess the ND core structure and single-hump Peierls

energy profile of the 〈111〉/2 screw dislocation, which has
been a challenging task for interatomic potentials over several
decades. This success, however, has its origin in the crystal
geometry at the screw core center. We recently discovered
that the screw dislocation core structure is governed by the
cohesive energy difference �EFCC-BCC bewteen the FCC and
BCC structures [29]. Since DP-HYB-V and GAP-V are fit to
both BCC and FCC structures and reproduce their cohesive
energies accurately (Table IV), they naturally produce the ND
core.

The capability of DP and GAP to fit to multistructure/state
is an inherent advantage in ML type of interatomic poten-
tials, since they use extensible functions and allow continuous
improvements. Training with multistructure has further pro-
found impacts on the transferability of interatomic potentials
in general. For example, recent DFT calculations show that the
〈111〉/2 screw dislocation Peierls barrier and nucleation bar-
rier scale linearly with �EFCC-BCC in BCC TMs [29]. Previous
first-principles calculations show that the tetragonal shear
constant C′ = (C11 − C12)/2 is also determined by �EFCC-BCC

and the Bain path [123]. While all these are ultimately re-
lated to band-filling or valance electron concentrations [29],
these interatomic potentials do not contain electrons explic-
itly. Therefore it is likely that electronic structures/quantum
mechanics information is transferred to ML potentials more
robustly via structures of different phases. Nevertheless, such
transfer is not always straightforward or automatic in ML
frameworks, nor guarantees accurate reproduction of any
particular properties. For example, GAP-V has its screw dis-
location saddle, split and hard core energies 100% higher than
the corresponding DFT values, while the Peierls potential can
only be accurately reproduced with the new DP-HYB con-
taining a three-body descriptor in the DP framework, despite
their accuracies with respect to DFT in many other prop-
erties including the unstable FCC phase and the erroneous
elastic constant C44. Of course, such ML potentials can be
no better than the datasets upon which they are trained. In
the present case, the datasets come from DFT in the GGA
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approximation. At this level of electronic structure calcula-
tions, it is well-known that DFT does poorly for group VB
elements and especially so for V. This has variously been
attributed to orbital localization and delocalization error in
elements with strongly localized and correlated valence elec-
trons [49]. Hence, group VB V should be viewed as a worst
case scenario. The resulting problem is poor reproduction of
the elastic constant C44. Recent semiempirical DFT + J for-
malisms correct such a problem [49], leading to more accurate
C44 of V. Hence, the accuracies of ML potentials may be
improved by retraining the entire potential using the DFT + J
approach.

MEAM/XMEAM uses the classical formalism with an-
alytical functions for its electron density and embedding
functions, and a spline curve for its pair-interaction func-
tion. It is semiempirical with its total energy expression
conceptually related to the tight-binding theory, has fixed
functional form and contains 18/24 fitting parameters. The
MEAM/XMEAM also has the flexibility to be trained us-
ing any combination of datasets from DFT and experiments.

Compared with the ML potentials, the classical semiempirical
MEAM/XMEAM contains considerably fewer parameters
and can be trained on small datasets compared with those used
for ML potentials. Nevertheless, the selection of the datasets
requires a priori knowledge about the material system (ML
frameworks also require some of it). The original MEAM
faces considerable difficulty in reproducing properties of mul-
tiple structures, which is crucial for many defect properties
and phase transformations. The new XMEAM extends the
MEAM capability for multistructure, as seen in earlier similar
works [57,72]. Nevertheless, it also has limitations. For exam-
ple, the current XMEAM-V cannot reproduce the �EFCC-BCC

of V at the DFT value; raising �EFCC-BCC leads to deterio-
ration of other properties. However, preliminary results of an
XMEAM potential for W suggest it is possible to reproduce
�EFCC-BCC of W with reasonable overall properties.

While XMEAM-V is the first potential developed under
this extended MEAM framework, further refinements are
possible, such as through the selection of fitting datasets,
procedures, parameter space and weights. ML potential
frameworks, such as the GAP and DP, are also evolving
towards more accurate material and alloy properties and in-
creased efficiency (e.g., DP on GPUs and tabulated GAP
[124]). However, their accuracy for group VB TMs will
continue to be limited by the current functionals in DFT cal-
culations until a practical improvement/replacement is found
and validated (e.g., DFT + J). Nevertheless, the improve-
ments in DFT, at almost no additional computational cost, is
tempting for ML potentials given their natural flexibility. A
broad survey on existing interatomic potentials show that very
few interatomic potentials (include ML ones) can simultane-
ously give the correct ND screw dislocation core structure and
accurate Peierls energy profile. The issues shown in Table IX
are thus not unique for V but general for all BCC TMs. Given
the current state-of-the-art, XMEAM offers a reasonable path
applicable to all nonmagnetic BCC TMs. The datasets and
fitting procedures introduced here can be easily applied to
Nb and Ta, and perhaps to Mo and W as well. Compared to
the current DP-HYB-V and GAP-V, XMEAM-V reproduces
nearly all properties relevant to point defect, dislocation and
fracture properties. It offers a balance between accuracy and
efficiency and thus can be used broadly to study plastic de-
formation at different loading conditions, temperatures, and
likely with high fidelity. In particular, the anomalous slip,
dislocation mobility as a function of dislocation character
(edge, mixed, screw), twinning, crack-tip behaviours should
be examined more carefully than the simulations in the current
work with a main purpose of introducing the new potentials.
Such specific studies will provide new insights and guidance
on realistic plasticity modellings at higher scales such as
in dislocation dynamics and crystal plasticity finite element
analysis.

V. CONCLUSION

In summary, we developed two new interatomic poten-
tials for BCC V, using an extended form of the classical,
semiempirical MEAM (XMEAM) and the machine-learning
DP-HYB framework. Both new potentials exhibit superior
accuracy for mechanical properties relative to all existing
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TABLE VIII. The elastic constants of BCC nonmagnetic transition metals. The DFT-1 [38] and DFT-2 [41] values are used to train the
GAP [38] and SNAP [41] potentials, respectively. The experimental values are extrapolated to 0 K from a series of measurements at low
temperatures [88].

Element Elastic constants (GPa) Experiment DFT-1 [38] GAP [38] DFT-2 [41] SNAP [41]

C11 232.4 (0 K) 269 271 − −
V C22 119.4 146 145 − −

C44 46.0 22 23 − −
C11 252.7 (4.2 K) 237 243 249 266

Nb C22 133.2 138 137 135 142
C44 30.8 11 13 19 20
C11 266.3 (0 K) 266 267 264 257

Ta C22 158.2 161 161 161 161
C44 87.4 77 77 74 67
C11 450.0 (0 K) 468 472 472 435

Mo C22 173.0 155 163 158 169
C44 125.0 100 105 106 96
C11 532.6 (0 K) 521 524 511 560

W C22 205.0 195 200 200 218
C44 163.1 147 148 142 154

interatomic potentials. We performed comprehensive compar-
isons among the XMEAM and two ML potentials (DP and
GAP) on the thermodynamic and mechanical properties of
V. The two ML potentials inherit the erroneous properties
of V from current DFT calculations. On the other hand, the
classical XMEAM potential, trained using a selection of ex-
perimental and DFT data, gives accurate properties relevant
for plastic and fracture phenomena at both 0 K and finite
temperatures. In particular, XMEAM-V reproduces all screw,
edge, mixed dislocation core structures, Peierls stress at 0 K
and anomalous slip at 77 K, enabling large-scale atomistic
simulations in BCC V. XMEAM expands the capability of
classical potentials for multistructure and provides a practical
path to developing interatomic potentials for other BCC TMs,
and in particular the group VB TMs where the most widely
used DFT functionals have limited accuracy. Since XMEAM
retains the essential features of MEAM, XMEAM interatomic
potentials fit for pure elements may be used as a foundation
for developing potentials for multiprincipal element alloys,
particularly the refractory class NbTaMoW alloys and its
derivatives.
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APPENDIX

Table VIII shows the elastic constants predicted by DFT
and machine learning interatomic potentials trained based on
the DFT-computed datasets. These values are used to com-
pute the relative errors shown in Fig. 1. Table IX shows
the basic mechanical and screw dislocation properties calcu-
lated by extant interatomic potentials for V and DFT method.

TABLE IX. Comparisons of key properties obtained from extant interatomic potentials, DFT calculations and experiment measurements
for V. The properties include the BCC lattice parameter a (Å), cohesive energy Ec (eV/atom), elastic constant C44 (GPa), FCC-BCC structural
energy difference �EFCC-BCC (eV/atom), the 〈111〉/2 screw core structure, Peierls energy profile and Peierls barrier �EPB (meV/b). The Peierls
energy profile and barrier are only calculated for potentials with the nondegenerate (ND) core structure.

Property EAM1 [96] EAM2 [125] EAM3 [51] EAM4 [126] MEAM1 [50] MEAM2 [52] GAP-V [38] DFT/Exp.

a 3.00 3.04 3.03 3.03 3.03 3.00 3.00 3.00a /3.03 [79]
Ec −5.29 −5.31 −5.02 −5.31 −5.30 −5.30 −5.38 −5.38a /−5.31 [79]
C44 32550 43.5 42.0 46.0 46.0 50.1 23.7 23.6a /46.0 [88]
�EFCC-BCC 0.157 0.123 0.214 0.138 0.084 0.244 0.242 0.243a

Core structureb us D ND D D ND ND ND [22,53]
PE profilec − − DH − − DH SH SH [22,53]
�EPB − − − − − − 66.9 24.4 [53], 25.7 [22]

aDFT in this work.
bus: the core structure is unstable; D: Degenerate core structure; ND: Nondegenerate core structure.
cDH for double hump and SH for single hump in the Peierls energy profile.
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Equations (A1)–(A6) show the formulations of the partial
electron density functions ρ̄i

(k) up to the fifth order. The clas-
sical MEAM considers ρ̄i

(k) up to the third order. XMEAM
extends it to the fifth order.
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