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Normal grain growth in multiphase polycrystalline systems includes sluggish evolution of minor-phase grains
and relatively faster growth of the major-phase grains. Which of these two factors predominantly affects
the growth kinetics of the overall microstructure remains an open question. Critical insights to answer this
question are offered in this work, through data science techniques, by cumulatively analyzing the influence
of the evolution rate of all constituent phase grains on the simulated growth kinetics of duplex and triplex
microstructures. Moreover, predictive models relating volume fraction of the constituent phases to the growth
kinetics of multiphase systems are developed and are extensively validated. The simulated data set encompassing
a large area of interest and feature-rich information, which lends itself to the current analyses, is built through
a suitable data-acquisition strategy, and a thermodynamically consistent multiphase-field approach. Statistical
analyses of 14 triplex and 5 duplex microstructures, included in the data set, unravel that the grain-growth kinetics
in both multiphase systems is primarily governed by the evolution rate of phase(s) occupying larger volume
fraction. This effect is observed in spite of the sluggish growth exhibited by the minor-phase grains. Furthermore,
the predictive models, developed using regression and feed-forward neural network, indicate a nonlinear, but
proportional, relation between the phase fractions and kinetic coefficients that quantify the grain-growth rate of
multiphase systems.
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I. INTRODUCTION

A. Multiphase polycrystalline materials

Microstructures of materials are meticulously engineered
to cater to ever demanding needs of technological progress.
Properties, once thought to be irreconcilable, are increas-
ingly combined through appropriate combination of phases in
microstructures [1–3]. Even though microstructures charac-
terized by more than one chemically distinct phase have been
around for a considerable period of time, the distribution of
the constituent phases engenders a unique category of multi-
phase materials. For instance, in polycrystalline pearlitic steel,
the combination of ferrite and cementite in a specific phase
fraction is observed in all grains, despite being separated by
the interfaces (grain boundaries) [4,5]. Such grains can be
treated as chemically homogeneous, despite the presence of
two distinct phases. However, on the other hand, there are
specialized steels, wherein the grains are not chemically ho-
mogeneous but are exclusively associated with the constituent
phases [6]. In other words, instead of martensite and ferrite
coexisting in all grains of the polycrystalline microstructure,
individual grains assume a specific phase, thereby establishing
a chemical inhomogeneity in the system [7]. Polycrystalline
materials, characterized by these chemically distinct grains,
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are qualified contextually as multiphase, and depending on the
number of constituent phases, these materials are referred to
as duplex, triplex, and such.

Aside from steel, multiphase microstructures are estab-
lished in a wide range of materials to achieve a desired
combination of properties [8,9]. The extensive applicability
of two- and three-phase titanium alloys is primarily due to
properties which is a direct consequence of their multiphase
microstructure. The prevalence of multiphase polycrystalline
arrangement in high-entropy alloys is a principal reason for
their characteristic behavior [10,11]. In ceramics, mechan-
ical properties including fracture toughness are noticeably
enhanced by a two-phase microstructure. The duplex sys-
tem of alumina and silicon carbide is a prime example of
such behavior-enhanced ceramics [12,13]. Moreover, it has
been reported that the introduction of an additional phase,
which institutes a triplex microstructure, exacts a more pre-
ferred response from ceramics to an imposed mechanical
condition [14,15]. Similar favorable effects of multiphase mi-
crostructure are observed in composite materials as well [16].

B. Grain growth in multiphase microstructures

Properties of the multiphase materials, in addition to the
characteristic features of the constituent phases, are notice-
ably influenced by microstructural features that primarily
include the average grain size and volume fraction of the
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phase, i.e., phase fraction. Consequently, to achieve desired
behavior, multiphase materials with appropriate grain sizes
and varying phase fraction ranging from minimal minor
phase (close to 1%) to equifraction (50-50 in duplex) are
fabricated [17,18]. While material-specific processing tech-
niques are employed for introducing the necessary phase
fraction, the required grain sizes are rather obtained through
a well-known microstructural transformation called grain
growth [19]. The mechanism of grain growth in multiphase
systems is significantly different from single-phase poly-
crystalline microstructure. In polycrystalline materials with
chemically homogeneous grains, the local diffusion of atoms
across the grain boundaries, which consequently leads to
its migration, ultimately governs the grain growth. In other
words, the grain growth in single-phase systems is primar-
ily dictated by the movement of the interface (or) grain
boundaries. However, in multiphase microstructures, the as-
sociation of grains to a specific constituent phase adds an
additional facet to the conventional grain growth. Aside from
reducing the number of grains, grain growth in multiphase
systems conserves the characteristic volume fraction of the
phases. Therefore, the curvature-driven transformation, which
minimizes the overall grain-boundary energy, in multiphase
materials is, in principle, a combination of coarsening and
grain growth [20]. Typifying features of both coarsening and
grain growth, which respectively are preservation of volume
fraction and growth of larger grains at the expense of smaller
ones, are simultaneously observed in multiphase materials.
For this reason, the energy-minimizing curvature-driven trans-
formation in multiphase systems is, at times, referred to as
concurrent grain growth and coarsening. Correspondingly,
as opposed to interface migration, the long-range diffusion
of atoms dictates grain growth in multiphase polycrystalline
systems [21]. Regardless of the mechanism, owing to the
influence of the grain size on the properties rendered by the
materials, grain growth in multiphase systems has been ex-
tensively analyzed [22,23]. Moreover, it is conceivable, and
indeed reported, that a change in the average grain size of a
multiphase material, while employed in an application, results
in undesired behavior. In other words, aside from the direct ef-
fect of grain size on the properties of multiphase materials, its
life in an application is dictated by the rate at which the grains
grow. Solid-oxide fuels with triplex microstructure are prime
examples of this relation between the growth kinetics and life
of a material [24]. Considering this influence of grain size,
investigations have been geared towards understanding the
kinetics of grain growth in multiphase polycrystalline system.

C. Focusing on generalized features

Experimental techniques generally pose definite practical
difficulties when adopted for comprehensive analyses of grain
growth. Therefore, theoretical approaches have long since
been adopted to complement, and extend, the existing un-
derstanding [25–27]. These theoretical studies, particularly
ones involving multiphase-field models, have been offering
critical insights on mechanism and kinetics of grain growth
in multiphase system, which are consistent with the ex-
perimental observation [28–30]. Existing investigations, and

resulting understanding, of grain-growth kinetics in multi-
phase polycrystalline systems can broadly be categorized into
two. One relates material-specific parameters, including dif-
fusivities and grain-boundary energy anisotropies, to the rate
of grain growth [31,32], while the other focuses on the effect
of microstructural features like phase fractions [18,33]. The
material-specific studies are, in principle, inherently bound
by the choice parameter(s). On the other hand, the analyses
involving phase fraction offer more generalized insights that
are relevant to a wide range of multiphase polycrystalline
systems.

In keeping with the change in grain-growth mechanism,
the investigations focusing on microstructural features un-
ravel that the introduction of second phases significantly redu-
ces the kinetics of overall evolution. Moreover, it is real-
ized that the expression capturing the temporal change in the
average radius of the polycrystalline system reflects coarsen-
ing kinetics, R̄n ∝ t with n = 3, irrespective of the volume
fraction of the second phase [21,34]. Even though the ma-
jor and minor phases, categorized based on volume fraction,
and the entire polycrystalline system as a whole, evolve at
a rate that complies with the coarsening power law, the ki-
netic coefficients (k) vary between the phases based on their
volumes [18]. For instance, in a duplex microstructure charac-
terized by unequal volume fraction of constituent phases, the
grains of the major phase, with higher phase fraction, grow at
the noticeably faster rate when compared to the minor phase.
This disparity in the kinetics of the grain growth between the
phases is indicated by the difference in the kinetic coefficient
(k). The relatively sluggish growth of the minor phase(s) is
attributed to the increased distance between the respective
chemically similar grains, and complex diffusion pathways
that facilitate the growth, when compared to the proximity of
the major phases. Furthermore, attempts have been made to
quantify the effect of volume fraction on the kinetic coeffi-
cients of major and minor phases by comparing the evolution
of the microstructures with varying phase fractions [33]. In
the above and subsequent discussions, it is vital to note that
the terminologies minor and major phase are subjectively
used. Therefore, a given phase, in the context of a specific
multiphase microstructure, might assume a role of a minor
phase, whereas in other systems, it would be treated as a major
constituent.

Despite the advancements, there continues to exist certain
aspects to the grain-growth kinetics that prevent a com-
prehensive understanding of the evolution of multiphase
polycrystalline systems. For instance, studies aimed at expli-
cating the grain-growth rate in multiphase materials primarily
report, and discuss, on the difference in the kinetics exhibited
by the major and minor phases, while largely overlooking the
evolution of the entire microstructure [12,35]. Moreover, the
collective influence of the growth rate of major and minor
phases on the temporal change in overall average size of the
grains is yet to be convincingly understood. In three (or more)
phase systems, particularly, the interdependency between the
grain-growth rate of different phases has not been consid-
ered in depth so far. Amongst others, in this work, a step is
taken towards addressing the aforementioned questions on the
grain-growth kinetics of the overall multiphase microstructure
through appropriate statistical analysis.
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II. ACQUIRING INFORMATION-RICH DATA SET

Persuasive understanding on the relation between the
evolution of individual phase grains and the overall grain
growth in a multiphase system demands a systematic ap-
proach that renders the feature-rich information. To that end,
a “multidimensional” data set is developed by modeling grain
growth exhibited by duplex and triplex microstructures in the
multiphase-field framework [36,37]. Thermodynamic under-
pinnings of the adopted model are rather well established,
and is often presented as a computationally efficient alter-
nate [38,39]. Even though the complete formulation of the
present approach [40,41], its ability to incorporate different
modes of mass transfer, and recover sharp-interface solutions
is exhaustively discussed elsewhere [42,43], a brief outline
focusing on the key aspects is rendered here. Moreover, the
terms associated with the governing expressions are delin-
eated in Appendix A.

A. Multicomponent multiphase-field model

The multiphase-field approach is characterized by the
introduction of scalar variable(s) which distinguishes the dif-
ferent phases in the system. Conventionally, while modeling
polycrystalline microstructures, these variables, called phase
field [φ(x, t )], are employed to differentiate various grains,
and their spatiotemporal evolution translates to grain growth.
Across the grain boundary separating two grains, phase field
assumes a value of φ = 0 in one grain, while the other is re-
alized by a constant nonzero value, which is generally φ = 1.
The diffuse region, wherein the value of the phase field grad-
ually varies, φ(x, t ) ∈ (0, 1), describes the grain boundary.
Given that, in most cases, the grains in the polycrystalline
systems are chemically homogeneous, phase field typifying
the various grains are introduced as a tuple, which is expressed
as

φ = {φ1, φ2, . . . , φN }, (1)

where N denotes the total number of grains in the system.
However, since the present approach models grain growth in
multiphase systems comprising of N phases, wherein numer-
ous grains are associated each phase, the corresponding phase
field is extended and written as

φ=

⎧⎪⎨
⎪⎩{φ1

α, φ2
α . . . φqα

α }︸ ︷︷ ︸
φα

, {φ1
β, φ2

β . . . φ
qβ

β }︸ ︷︷ ︸
φβ

. . . {φ1
N , φ2

N . . . φ
qN
N }︸ ︷︷ ︸

φN

⎫⎪⎬
⎪⎭.

(2)

Moreover, in this formulation, number of grains sharing a
given phase is represented by qi where i ∈ {α, β, . . . , N}.
By assigning appropriate concentration, grains of a given
phase are distinguished from the rest, {φ(c) = φα (c)|c = cα}.

Similar to phase field, in order to encompass the K-different
chemical components, the concentration is introduced as a
tuple. Correspondingly, concentration of a random grain m
associated with phase α reads as

cα
m = {

cα
m:i, cα

m: j, . . . , cα
m:K

}
. (3)

The homogeneity in the chemical composition of the grains
associated with a given phase, say α, yields

cα
1 = · · · = cα

m = · · · = cα
qα

≡ cα = {
cα

i , cα
j , . . . , cα

k

}
. (4)

To ensure that the volume fraction of the phases remains
unaltered despite the evolution, equilibrium composition is
assigned to the corresponding phases. In other words, since
the current approach attempts to model grain growth in a
multiphase system, cα represents a tuple of equilibrium com-
position that characterizes phase α.

Following the conventional framework, the overall energy
density of the multiphase polycrystalline system is formu-
lated as the combination interface (grain boundaries) and bulk
(grain) contribution [44]. Correspondingly, by incorporating
the appropriate phase field and concentration, the energy den-
sity of the system comprising of N phases and K chemical
components is written as

F (φ,∇φ, c) = Fint(φ,∇φ) + Fbulk(φ, c)

=
∫

V
fint(φ,∇φ) + fbulk(φ, c)dV, (5)

where fbulk(φ, c) and fint(φ,∇φ) are the respective energy
contribution of grain and grain boundary with V representing
the volume of the entire domain. The interface contribu-
tion fint(φ,∇φ), akin to most multiphase-field techniques,
comprises of a gradient and potential-energy term. Grain-
boundary energy densities, and corresponding anisotropies,
are introduced to the system through the interface-energy
contribution [45]. While multiwell potentials are generally
employed to penalize phase field and ensure its bounds, in
this work, an obstacle-type potential operating in combination
with Gibbs simplex is involved [46]. Furthermore, the energy
contributions from the grains fbulk(φ, c), which is reasonably
assumed to be insignificant while modeling grain growth in
a single-phase system, is formulated as the interpolation of
the energy contribution of the individual grains, f (φ, c) =∑N

α

∑qα

m f α
m (cα )h(φm

α ). Given that the contribution of the in-
dividual grains is dictated by the characteristic equilibrium
composition of the associated phases, the volume of the
phases during grain growth is preserved by the energy-density
term fbulk(φ, c) [47,48].

The spatiotemporal evolution of phase field, which trans-
lates to grain growth, is formulated by considering phe-
nomenological minimization of the overall energy density of
the system. Correspondingly, the evolution of a random grain
m, which is associated with phase α, is dictated by

τε
∂φm

α

∂t
= −∂F (φ,∇φ, c)

∂φm
α

= ε

[
∇ · ∂a(φ,∇φ)

∂∇φm
α

− ∂a(φ,∇φ)

∂φm
α

]
− 1

ε

[
∂w(φ)

∂φm
α

]
−

[
∂ f α

m (cα, φm
α )

∂φm
α

]
− �, (6)

where the Lagrange multiplier � is introduced to ensure that the summation of phase fields at any point, and time, in the system
is 1. Moreover, in the above evolution equation, while a(φ,∇φ) and w(φ) correspond to the gradient and potential energy terms,
the parameter dictating interface width, and its stability during the migration, are denoted by ε and τ , respectively.
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TABLE I. Equilibrium concentration of binary and ternary systems in mole fraction.

Phase Independent component i Independent component j

(Binary)
Phase α 0.1
Phase β 0.9
(Ternary)
Phase α 0.05 0.05
Phase β 0.05 0.9
Phase γ 0.9 0.05

In multiphase-field models, wherein the energy contribution of the bulk phases is described based on the dependent
concentration, the corresponding driving force, which emerges from f α

m (cα,φm
α )

∂φm
α

in Eq. (6), and dictates the evolution of phase field,
can be viewed as the difference in the Legendre transform of the free-energy densities. This understanding forms the basis of the
grand-potential approach, and when consistently extended assumes chemical potential as the continuous and dynamic variable
replacing phase-dependent concentration [49]. Given its computational efficiency, this approach is adopted in this work, and the
driving force dictating phase-field evolution is formulated by treating chemical potential as the dynamic variable. The temporal
evolution of the chemical potential, which principally governs the bulk driving force in phase-field evolution, is written as

∂μi

∂t
=

{
∇ ·

[
K−1∑
j=1

M(φ)∇μ j

]
−

N∑
α

q∑
m

cα
i

∂φm
α

∂t

}[
N∑
α

q∑
m

h(φm
α )

∂cα
m:i

∂μ j

]−1

i j

, (7)

where µi denotes the continuous chemical potential of com-
ponent i. The mobility of the migrating elements, in the
multicomponent setup, is dictated by matrix M(φ) which
also facilitates the incorporation of surface diffusion [42,43].
The phase-dependent concentration of component i in ran-
dom grain m belonging to phase α, and the corresponding
interpolation function, are represented by cα

m:i and h(φm
α ), re-

spectively. The evolution of the different microstructures with
varying phase fractions, in this work, is modeled by solving
Eqs. (6) and (7).

Although Eq. (7) delineates the evolution of chemical (dif-
fusion) potential, the associated expression, as discussed in
Appendix A, is essentially derived from the temporal change
in the concentration. In this work, the phase fraction of the
multiphase polycrystalline systems is preserved by associat-
ing the phases with the respective equilibrium concentration.
These equilibrium concentrations are listed in Table I. In
addition to establishing chemical equilibrium, assigning spe-
cific concentration to the grains associates them to particular
phases. The equilibrium established through the concentra-
tion gets locally disturbed by the difference in the curvature
of the grains (K) resulting from their sizes and topologi-
cal factors. The curvature difference ultimately leads to the
flux of solute from the smaller to larger grains of a given
phase. This migration of concentration fundamentally, driven
by the curvature difference, introduces grain growth similar
to that of coarsening, wherein despite the decrease in the
number of grains, the volume fraction of the phases is largely
conserved.

B. Simulation setup

Existing studies unravel that, unlike Zener pinning [50],
the overall trend in grain-growth kinetics exhibited by the
individual phases, and entire microstructure, of the multiphase
system is largely independent of the dimensionality of the

simulation domain [18,33,51]. In other words, similar dispar-
ity in the evolution kinetics of major, minor, and equifraction
phases, in relation to overall growth rate, has been reported
for both two- and three-dimensional setups. Therefore, in this
work, the grain growth in various multiphase-polycrystalline
systems is modeled in a two-dimensional framework.

Irrespective of the phase fraction, all the two-dimensional
domains considered in the present investigation share iden-
tical configurations. Polycrystalline microstructures compris-
ing of approximately 10 000 grains are established over the
discretized domain through Voronoi tessellation. These two-
dimensional domains are uniformly discretized into 2048 ×
2048 cells of size, 
x = 
y = 5 × 10−7m, through the finite-
difference scheme.

The grains are associated to the constituent phases by as-
signing the characteristic chemical composition. Given that
the principal focus of this work is to understand the evolution
kinetics of different phases in relation to each other, and to the
overall grain-growth rate, a rather straightforward distinction
is made between the phases. While a binary system with two
chemical components ĩ and j̃ is considered for establishing
duplex microstructure, a three-phase microstructure is con-
strued in the framework of ternary system with components
ĩ, j̃, and k̃. In a duplex system, α phase is an ĩ-rich phase
with equilibrium composition of cα

ĩ:eq
= 0.9, and cγ

j̃:eq
= 0.9

characterizes matrix γ phase, wherein both concentrations
are expressed in mole fraction. Concentration of the solvent
in α and γ phases remains unaltered in the triplex system,
while the remnant content is equally partitioned between so-
lutes { j̃, k̃} and {ĩ, k̃}, respectively. The β phase, exclusively
introduced in the three-phase systems, is characterized by
composition cβ

ĩ:eq
= cβ

j̃:eq
= 0.05.

Since the grains are equiaxed with almost similar size,
the required phase fraction in the microstructure is achieved
by relating the appropriate number of randomly distributed

113401-4



HIGH-FIDELITY SIMULATIONS AND DATA-DRIVEN … PHYSICAL REVIEW MATERIALS 6, 113401 (2022)

TABLE II. System-specific parameters.

Parameter Symbol Value

Grain boundary energy γ̄αα = γ̄ββ γ̄γ γ 1.0 Jm2

Interphase boundary energy γ̄αβ = γ̄βγ = γ̄αγ 1.0 Jm2

Bulk diffusivities Dα = Dβ = Dγ 1.0 m2s−1

grains to the corresponding phases. In other words, duplex
microstructure comprising of 33% minor phase is devised, in
the initial stages, by assigning the respective chemical com-
position to one-third of the grains randomly.

Material-specific parameters, including grain boundary
energy, and simulation parameters involved in the present
analysis are presented in Tables II and III, respectively. Re-
flecting the isotropic nature of the microstructure, identical
energies are assigned for grain and interphase boundaries.
Furthermore, it is assumed that the components diffuse at
a constant rate irrespective of the phases. Although these
considerations can reasonably be deemed as unphysical, they
facilitate in efficiently realizing the effect of phase frac-
tions on the overall grain-growth kinetics exhibited by the
multiphase systems. Stated otherwise, the rather straightfor-
ward treatment of the material parameters lends itself to the
exclusive focus on understanding the evolution rate of the
polycrystalline with respect to the growth kinetics of individ-
ual phases.

The temporal evolution of the dynamic variables, phase
field, and chemical potential, that dictate the microstructural
changes in the multiphase polycrystalline system, are solved
over the homogeneous cells of the two-dimensional domain
by forward-marching Euler’s scheme. In order to ensure that
the computational resources are optimally used, the domain is
decomposed into smaller segments, and dealt simultaneously
through message passing interface (MPI).

C. Homogeneous and multiphase microstructures

In applications, depending on the material need, multi-
phase systems with varying degrees of phase fractions are
employed. Although investigating every combination of the
phase fraction would be redundant, convincing level of under-
standing can only be gained by systematically capturing the
entire area of interest in the space of different phase fractions.
Particularly, since this study adopts statistical techniques to
explicate the kinetic relation between the evolving phases,
the performance of the predictor depends on the wealth of
information in the data. To that end, in this work, grain growth
in 20 different systems, which encompasses 1 homogeneous
single-phase, 5 duplex, and 14 triplex microstructures, is mod-

TABLE III. Simulation parameters.

Parameter Symbol Value

Time-step width (No unit [42]) 
t 1.0
Interface-width parameter ε 0.2 µm [52]
Relaxation parameter τ 1.0 Jsm−4

eled, and “multidimensional” data set is built by monitoring
the temporal evolution of the grains.

As opposed to random consideration of different volume
fractions of phases, a systematic choice of various phase frac-
tion is made from a 2-simplex design space. The simplex,
in its entirety, along with the section focused for the current
study, is shown in Fig. 1(a). The points within, and on, the
2-simplex can be interpreted in a manner akin to the ternary
isotherm. Correspondingly, while the three vertices indicate
the homogeneous microstructure of phases α, β, and γ , the
duplex microstructures are encapsulated by the edges joining
the vertices. Any point within the simplex represents triplex
system, with phase fraction dictated by its position. As illus-
trated in Fig. 1(a), a section of the simplex emanating from
the vertex characterizing the homogeneous γ microstructure
is considered for the present analyses. This section of the sim-
plex renders a wide variety of polycrystalline systems ranging
from single-phase homogeneous to triplex with equifraction
of constituent phases. Moreover, owing to the configuration of
the section in Fig. 1(a), the γ phase acts as the matrix for the
duplex and triplex microstructures with unequal volume frac-
tions of phases. Multiphase microstructures corresponding to
the different points of the simplex section are collectively
illustrated in Fig. 1(b). Although the volume fraction of the
minor phases can be as low as 5%, the grains associated with
these phases hardly occupy a position on the grain boundary.
In other words, despite the low volume fraction and reduced
size, the grains of the minor phases seldom render an influ-
ence analogous to the particles in Zener pinning. Moreover,
the reduced size of the grains associated with minor phases,
in the initial stages of the grain growth, is consistent with
experimental observations [23,53,54] and existing theoretical
studies [18,33].

III. RESULTS AND DISCUSSION

By monitoring the grain growth exhibited by the homoge-
neous and multiphase systems, a multidimensional data set is
devised which essentially comprises of a temporal change in
the average radius of the individual phase-associated grains,
and the entire microstructure as a whole. This data set is
analyzed through established and robust statistical techniques
to unravel the effect of the individual phases on the evolution
kinetics of the entire system. Moreover, a cross-validation
strategy is adopted to further increase the rigor of the models
and to evaluate their performance against unknown data not
used for training.

A. Duplex microstructures

A duplex microstructure comprises of two distinct phases,
and is characterized by grains associated with one of these
constituent phases α and γ . Despite the inhomogeneity in the
concentration distribution, in duplex microstructures, given
that the grain growth occurs in a continuum, the tempo-
ral evolution of one phase, and its corresponding kinetics,
is inherently coupled with the other. This is illustrated
and discussed in Appendix C. In other words, the growth
rate exhibited by the duplex microstructures with varying
phase fractions can be convincingly expressed by considering
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FIG. 1. (a) A simplex, analogous to ternary isotherm, depicting all-possible phase fractions in duplex and triplex microstructures, along
with single-phase systems (vertices). The section that encompasses the varied microstructures considered in this work is distinguished, and
each point referring to a specific system is highlighted and designated as S1, S2, and such. (b) Microstructure corresponding to each point in
the section of the simplex that includes homogeneous systems along with duplex and triplex microstructures with varying volume fraction of
the constituent phases. The name Si, where i would vary from 1 to 20, assigned every microstructure facilitates in relating the corresponding
phase fraction to the specific in the simplex.

kinetics of the only one of the evolving phases. Therefore,
the aim of the present investigation in duplex microstructure
reduces to identifying which of the phases, major or minor,
principally governs the kinetics of overall grain growth.

1. Preliminary validating investigations

Before proceeding to realize the degree of influence ren-
dered by the different phases on the overall growth kinetics
exhibited by the duplex microstructure, conventional inves-
tigations are pursued to verify the outcomes of the present
approach in relation to the existing reports [18,21]. In Fig. 2,
the progressive change in the average radius of homoge-
neous and two duplex microstructures with time is presented.
Moreover, the temporal increase in the average radius of
the phase-associated grains is monitored, and included in
this illustration. While R̄(t ) represents the average radius of
the entire polycrystalline microstructure, the corresponding
parameter for the grains of phases α and γ in duplex mi-
crostructures is, respectively, denoted by R̄α (t ) and R̄γ (t ).

Moreover, the multiphase microstructures in this, and subse-
quent, discussions are described based on the volume fraction
of the minor phase. For instance, α10 indicates duplex mi-
crostructure with 10% phase α, while the equifraction system
is denoted α50.

With the introduction of a second phase in the microstruc-
ture, in Fig. 2, a significant decrease is observed in the rate at
which the radius increases with time. This noticeable change
in the kinetics is predominantly due to the change in grain-
growth mechanism, which is governed by the long-range
diffusion of the chemical components in duplex microstruc-
ture. Moreover, in a system with equal volume fraction of
phases, the temporal increase in average radius of the entire
microstructure and individual phases is largely identical with
marginal deviation. On the other hand, in α10, significant
disparity is noticed in the rate at which the major-phase grains
evolve when compared to the minor phase. Figure 2 illus-
trates that the increase in the average radius of the entire
duplex microstructure lies in-between the growth exhibited by
the individual phases. The difference on the growth kinetics
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FIG. 2. Temporal change in the average radius of the phase α

and γ grains, R̄α (t ) and R̄γ (t ), and the entire microstructure R̄(t ) for
homogeneous and duplex systems characterized by 50% and 10% of
phase α. Section of the curves indicating the evolution of average
grain sizes in equifraction system is zoom-in to reveal the closeness
of growth kinetics exhibited by individual phases and the overall
microstructure.

between the phases, exclusively in the duplex microstructure
characterized by unequal volume fraction, is due to the cor-
responding distribution of the phases. Owing to its reduced
volume, the grains of the minor phase in α10 microstructure
are considerably separated when compared to major-phase
grains. Therefore, the diffusion path, which the chemical com-
ponents need to transverse to achieve grain growth, is longer
and more convoluted. Consequently, the growth rate exhib-
ited by the minor-phase grains is significantly lower than the
grains of phase γ .

2. Grain-growth kinetics

Even though the kinetics illustrated in Fig. 2 renders a
progressive increase in the average radius with time, owing
to the difference in the governing mechanism, the exponent
of the power law capturing the growth kinetics varies depend-
ing on the nature of the system [18,21]. While the exponent
n = 2 characterizes grain growth in a homogeneous system,
evolution kinetics of the individual phases, and the duplex
microstructure as a whole, largely follow relation R̄3(t ) ∝ t .
In order to affirm that the evolution of the entire microstruc-
ture, and its corresponding phases, adhere to the power law,
the temporally varying average radius is raised to different
exponents, n = {1, 2, 3, 4}, and related to time. The correla-
tion coefficient (Pearson) characterizing the relation between
the average radius with the various exponents and time is
ascertained, and graphically represented in Fig. 3. In this
illustration, 〈R̄n, t〉 denotes the correlation coefficient between
the average radius raised to order n and time. Figure 3 shows
that, in homogeneous system (α0), maximum correlation is
observed when n = 2, thereby indicating that the grain growth
in this microstructure adheres to the power law R̄2(t ) ∝ t . Fur-
thermore, correlation coefficient relating the average radius of

FIG. 3. Correlation coefficient characterizing the proportionality
between time and the average radius of individual phase grains and
entire microstructure, raised to different exponents, for homogeneous
and duplex systems α50 and α10.

the individual phases, and entire duplex microstructures, with
time, is higher when n = 3, which implies that the evolution
in the multiphase systems complies to the established power
law [21]. Even though it might appear that, in Fig. 3, for
equifraction duplex system (α50), the maximum correlation
is observed in n = 4, given the marginal difference when
compared to n = 3, such consideration leads to overfitting,
thus returning to R̄3(t ) ∝ t as the statistically sound relation.
A brief discussion on realizing overfitting is presented in
Appendix B.

The preliminary studies and their corresponding outcomes,
as selectively illustrated in Fig. 3, indicate a microstructural
evolution induced in the multiphase polycrystalline system,
in spite of the chemical equilibrium established between the
phases through appropriate compositions. Moreover, it is evi-
dent from Fig. 3 that the kinetics associated with this evolution
adheres to a power law generally associated with coarsening,
which is principally driven by curvature difference through
the long-range diffusion of the chemical species. Therefore,
though the chemically distinct phases in a multiphase poly-
crystalline system introduce a characteristic change in the
kinetics of grain growth, the discernible increase in average
radius affirms that the evolution remains fundamentally gov-
erned by the curvature difference, wherein the larger grains
grow at the expense of the smaller ones. Despite being com-
pliant with the well-established understanding and existing
reports, these analyses are largely unsuccessful in delineating
the evolution kinetics of the entire duplex microstructure in
relation to the growth rate of the constituent phase grains.
This lack of adequate insight lends itself to the subsequent
investigations.

3. Ascertaining governing factor

As opposed to the representative analysis for validation,
all duplex microstructures indicated in Fig. 1 are statisti-
cally analyzed to realize the relative influence of the evolving
major- and minor-phase grains on the overall grain-growth
kinetics. Correspondingly, both R and Python with the
TENSORFLOW [55] and CIDS [56] libraries are employed for the
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statistical evaluation. The project data are managed by Kadi
through the Python interface (Kadi4mat) [57].

From the data set comprising of temporally varying aver-
age radius, the growth rate exhibited by the individual phase
grains (dR̄α/dt or dR̄γ /dt) and entire microstructure (dR̄/dt),
at every instance (t ), is determined for each duplex system.
Subsequently, by treating the growth rate of the individual
phase grains, and entire microstructure, as response and pre-
dictor variable, respectively, the corresponding kinetics are
related to each other. From the emerging relation, the coeffi-
cient of determination χ for the combination of an individual
phase grain and overall microstructure is estimated. Scatter
plots illustrating the dependency of dR̄α/dt or dR̄γ /dt and
dR̄/dt are included in Appendix D.

For a given duplex system, following the conventional
description, the coefficient of determination considering the
growth kinetics of minor phase α (dR̄α/dt) and entire mi-
crostructure (dR̄/dt) is calculated by

χα = χSST
α − χSSE

α

χSST
α

, (8)

where χSST
α is estimated by treating the instantaneous growth

rate of overall microstructure as univariate parameter, and
summing up the squares of the disparity (error) between the
individual values and the mean. On the other hand, χSSE

α

represents the sum of the squared differences between the data
points and regression line relating the instantaneous kinetics
of the α-phase grains and overall duplex microstructure.

Using generic variables, the calculation of SST, sum of
squares total (χSST), can be expressed as

χSST =
∑

i

(yi − ȳ)2, (9)

where yi and ȳ indicate an actual value and mean of all cor-
responding data, respectively. Additionally, the sum of square
error χSSE involved in Eq. (8) is estimated by

χSST =
∑

i

(yi − ŷ)2, (10)

with ŷ representing the predicted value based on the fitted
hypersurface.

Based on the description of the coefficient of determination
in Eq. (8), χα can be viewed as a parameter that quantifies
the effect of α-phase growth kinetics on the evolution rate
of entire microstructure. Therefore, in addition to χα , the
corresponding parameter that realizes the influence of the
major-phase growth kinetics (dR̄γ /dt) on the overall evolu-
tion rate χγ is appropriately determined for all the different
duplex microstructures considered in this investigation.

Coefficients of determination separately quantifying the
role of dR̄α/dt and dR̄γ /dt in overall growth rate exhibited
by the microstructures χα and χγ are calculated for different
duplex systems with varying phase fractions and plotted in
Fig. 4. The variation observed in the coefficients of deter-
mination, across the different duplex systems, unravels that
the effect of individual phase grains on the overall growth
kinetics is primarily dependent on the phase fraction of the
microstructure. In a duplex system characterized equal vol-
ume fraction of phases, identical coefficients of determination

FIG. 4. Coefficient of determination, quantifying the effect of
growth kinetics of individual phase grains on the overall grain-
growth rate of the entire system, is estimated using Eq. (8) for
different duplex microstructures with varying phase fraction.

imply that both α and γ grains similarly influence the evolu-
tion kinetics of the entire microstructure. On the other hand,
noticeable disparity between χα and χγ is observed in duplex
microstructures with varying volume fraction of constituent
phases. Moreover, Fig. 4 shows that this inequality in the co-
efficients of determination becomes more pronounced with an
increase in the difference between the volume fraction of the
phases in the duplex microstructure. While the coefficient of
determination pertaining to major phase γ exhibits a relatively
marginal change, and continues to remain noticeably greater,
χα progressively decreases with reduction in the volume frac-
tion of the corresponding minor-phase grains. In other words,
Fig. 4 unravels that, in duplex systems with unequal volume
fraction of phases, the overall growth rate of the entire mi-
crostructure (dR̄/dt) is primarily influenced by the evolution
kinetics of the major-phase grains (dR̄γ /dt). Furthermore, it
is evident from the illustration that the dominance of the major
phase in effecting the overall growth kinetics becomes more
definite with increase in the corresponding volume fraction (or
decrease in the amount of minor phase).

4. Verifying the statistical claim

In order to substantiate the understanding rendered by the
analyses based on coefficient of determination, the temporal
change in the average radius of the phase-associated grains
(R̄α or R̄γ ) and entire microstructure (R̄) is studied in a con-
ventional manner. In Fig. 5, the progressive increase in the
average radius of major- and minor-phase grains with time,
in duplex systems with varying phase fractions, are cumu-
latively presented. Since the evolution of different duplex
microstructures is considered together, for the ease of dis-
tinction, temporal change in R̄3

α and R̄3
γ is adopted for this

illustration.
Consistent with the mechanism of evolution, it is ob-

served that the minor-phase grains in system with the minimal
volume fraction (α10) grow at a least rate. However, the
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FIG. 5. Progressive increase in the average radius of phase α

and γ grains R̄3
α and R̄3

γ , with time for various duplex systems with
characteristic phase fraction.

growth kinetics of these grains noticeably increases as the
corresponding phase grains occupy more volume in the mi-
crostructure. Accordingly, in duplex systems with unequal
phase fractions, minor-phase grains of α40 microstructure
exhibit the highest growth rate, followed by α33 and α16. On
the other hand, the evolution kinetics of major-phase grains
is minimal in the α40 system, and significantly increases in
α33 and α16 as the volume fraction of the phase α reduces.
Moreover, the maximum growth rate in γ -phase grains is
observed in microstructure with minimal volume of minor
phase α10. Owing to the influence of volume fraction, which
governs the kinetics through the diffusion paths, the disparity
in the temporal change in average radius of the major- and
minor-phase grains becomes more evident as the inequality in
phase fraction increases. In other words, as shown in Fig. 5,
the progressive change in R̄α and R̄γ with time is notably far
apart in α10 system when compared to the rest. Nevertheless,
this separation gets reduced with the increase in the volume
fraction of minor phase α.

Analyses based on the coefficient of determination, in
Fig. 4, unravel that the growth rate of duplex microstructure
is predominantly influenced by evolution kinetics of major-
phase grains. Moreover, the effect of the minor-phase grains
decreases as their corresponding volume fraction reduces.
Adopting these insights, and given that in Fig. 5 γ grains of
α10 exhibit maximum growth rate, it can be predicted that
the overall growth kinetics of the corresponding microstruc-
ture will be noticeably greater than the other duplex systems
considered in this study. Furthermore, it can also be stated
that, since the volume fraction of minor phase continues to
be considerably lower in α16 and α33, the overall growth
will be dominated by the γ -phase grains, and their kinetics
will correspondingly follow the α10 microstructure. Finally,
considering that the volume of phase α is close to the major
phase in α40, based on Fig. 4, it can be suggested that this
duplex microstructure will represent the lower bound for the
rate of evolution in the figure.

In order to verify the accuracy of the above predictions,
emerging from the understanding of coefficient of determi-
nation, the overall growth rate exhibited by different duplex

FIG. 6. Temporal change in the average radius of entire duplex
systems R̄3 with varying phase fractions during grain growth.

microstructures is cumulatively presented in Fig. 6. In com-
plete adherence to the prediction, it is observed that, in duplex
microstructures with unequal phase fraction, maximum and
minimum growth rate, respectively, pertain to α10 and α40
microstructures. Additionally, the kinetics of evolution ex-
hibited by α16 and α33 lies in-between the maximum and
minimum, with the former noticeably greater than the latter.
Ultimately, Fig. 6 affirms that, in duplex systems character-
ized by unequal volume fraction of constituent phases, the
overall grain-growth kinetics is primarily governed by the
evolution rate of the major-phase grains. This influence of the
major-phase grains gets increasingly dominant with increase
in its volume fraction.

5. Phase fraction and growth rate

Having realized that, for a given duplex microstructure,
the overall grain-growth rate (dR̄/dt) is predominantly dic-
tated by the kinetics adhered to by the major-phase grains
(dR̄γ /dt), attempts are made to relate the varying phase
fractions to the observed growth rate across different sys-
tems. Kinetics rendered by the diffusion-governed mechanism
in multiphase microstructure complies with the power law
characterized by the exponent n = 3. Considering that the ex-
ponent remains unaltered, despite the varying phase fractions
in multiphase systems, the disparity in the rate of grain growth
can only be understood from the kinetic coefficient k, that
relates the average radius to time. In other words, the effect
of phase fraction on growth kinetics is efficiently described
by relating the kinetic coefficient to the volume fraction of the
major phase. To that end, evolution of duplex systems with
different phase fractions is analyzed and the corresponding
kinetic coefficient is ascertained. The resulting data set which
includes volume fraction of the major phase (major-phase
fraction), and the kinetic coefficient exhibited by the respec-
tive system, is handled through machine-learning techniques,
particular regression analysis, in two different ways. First,
an expression delineating the effect of major-phase fraction
on the kinetic coefficient dictating the grain growth of du-
plex microstructure is ascertained. Subsequently, the resulting
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FIG. 7. Temporal change in the average radius of entire duplex
systems R̄3 with varying phase fractions during grain growth.

predictive function is analyzed to critically assess its ability to
handle unknown data, and to avoid overfitting.

A rather straightforward nonlinear regression treatment,
wherein a hypersurface is introduced to fit the existing vari-
ables, is adopted to comprehend the data set encompassing
major-phase fractions and kinetic coefficients of duplex mi-
crostructures (kdp). As indicated in Fig. 7, the nonlinear
regression treatment yields an exponential relation of the form

kdp = Adp + Bdp exp(CdpVγ ), (11)

where Vγ is the volume fraction of the major phase γ , with
Adp, Bdp, and Cdp representing the adjustable model param-
eters. Moreover, in Eq. (11), kdp is the kinetic coefficient
which relates the temporal change in the average radius of
the duplex microstructure with time, when expressed as a
power law ¯R(t )3 − ¯ 0R = kdpt . Despite the relation rendered by
the conventional regression analysis, the underlying numerical
treatment is extended and made more rigorous to enhance the
predictive ability of Eq. (11) across the unknown information.
This is achieved by appropriate tuning of the parameters Adp,
Bdp, and Cdp through extensive training of the underlying
regression model.

Although the present numerical model renders thermo-
dynamically consistent outcomes, the generated volume of
information poses a crucial challenge. When compared to the
wealth of information generally involved in machine-learning
analyses, the data set describing the grain-growth kinetics of
duplex microstructures with varying phase fractions is rather
limited. Owing to the restricted size of the data set, an ap-
propriate strategy, namely, “leave-one-out cross validation , is
adopted to study the performance of the function in handling
unknown data. By isolating one data point for testing, this
validation approach develops a predictive model by training
on the rest, and suitably initializing the parameters (Adup,
Bdup, and Cdup). This treatment is sufficiently iterated until
all the data points separately assume the role of test data.
The comparison of the different models, with characteristic
parameters, emerging from the overlapping subsets of the
original data, called “folds,” yields an understanding on the
susceptibility of overfitting and robustness of the predictions.

For the present cross-validation treatment, for each fold, the
training utilizes a Levenberg-Marquardt solver. Moreover, a
mean-squared error (MSE) loss function and a learning rate
of 0.1 is adopted for 101 epochs of training that completely
encompasses the data set of duplex microstructures.

The effect of the volume fraction of major phase (Vγ ) on
the kinetics coefficient dictating the grain growth in the duplex
microstructure is illustrated in Fig. 7. Evidently, with increase
in the major-phase fraction, the grain-growth kinetics of the
two-phase system correspondingly increases. This influence
of the major phase γ is captured by all models with charac-
teristic left-out validation point. In Fig. 7, the left-out point
for each fold, rendering its own predictive model, is indicated
by using the same color of the line plot. This representation
unravels that almost all models emerging from the respec-
tive folds exhibit substantial capability of handling unknown
data. However, the largest deviation in prediction is observed
while estimating the left-out point pertaining to fold 5. The
performance of individual models on the training and test sets
is quantitatively presented in Table IV, by ascertaining the
corresponding mean absolute error (MAE). In keeping with
Fig. 7, this tabulation reveals that, while the MAE of most
predictive models is within the acceptable range, the corre-
sponding value for fold 5 is considerably higher. This atypical
deviation, exclusively emerging from fold 5, can be attributed
to the steep gradients of exponential models towards the upper
boundary, which correspondingly scales the generalization
error. In other words, the unconvincing performance of the
predictive model of fold 5 is primarily due to the exponential
nature of the relation between the major-phase fraction and
kinetic coefficient amplified by the position of the relevant
data point. With increase in the information around the left-
out point of fold 5, the predictability of the resulting mode
can be significantly improved. Considering the computational
cost to add to the existing data points, the perceived reason
for the deviation and, more importantly, the performance of
other models, the present discussion is confined to Fig. 7,
which reflects the relation established in Eq. (11) between the
volume fraction of the major phase and grain-growth kinetic
coefficient of the duplex system.

B. Triplex microstructures

Triplex systems are characterized by the association of
individual grains, in the polycrystalline setup, to one of the
three constituent phases. The corresponding microstructure,
in this study, comprises of phases α, β, and γ , with γ largely
acting as the matrix or major phase. In the existing works,
unlike duplex systems, very few three-phase microstructures
with varying phase fractions are analyzed [32]. This lim-
ited consideration of triplex microstructure can largely be
attributed to the computational burden associated with it. In
the present study, on the other hand, grain growth in 14 differ-
ent three-phase microstructures, with varying phase fractions,
are examined to elucidate with statistical certainty how the
evolution of the individual phase grains effects the growth
kinetics of the entire triplex microstructure.

1. Grain-growth kinetics

Despite the difference in the number of phases, grain
growth in both duplex and triplex systems is fundamentally
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TABLE IV. Cross-validation performance for the duplex system, measured by the mean absolute error.

Fold 1 2 3 4 5

Training 0.01135 0.02881 0.02447 0.01507 0.03120
Validation 0.10656 0.04888 0.05206 0.19088 1.10930

governed by the same mechanism. Therefore, the grain growth
in three-phase systems, which is dictated by the diffusion
of chemical components, adheres to the power law with the
exponent n = 3. In order to ensure that the grain growth
in triplex systems is accurately modeled by the present ap-
proach, a preliminary validation strategy adopted for duplex
microstructures is extended. Correspondingly, the temporally
varying average radius of the individual phase grains R̄α , R̄β ,
and R̄γ , and overall microstructure R̄, is raised to different
powers (n = {1, 2, 3, 4}) and related to time t . Correlation co-
efficients characterizing the different relations are ascertained
for two triplex microstructures α33β33 and α39β22, and are
graphically illustrated in Fig. 8.

It is evident in Fig. 8 that the correlation coefficient relating
the average radius to the time is highest when n = 3 for both
individual phases, and the overall microstructure. The maxi-
mum correlation exhibited by the cube of the different average
radii R̄α , R̄β , R̄γ , and R̄ with time implies that the growth of
the individual phase grains, and the entire microstructure, are
predominantly governed by the long-range diffusion of the
chemical components.

2. Ascertaining governing factor

Considering that grain growth in both duplex and triplex
systems is predominantly dictated by the diffusion of the
chemical components, phase fraction renders identical influ-
ence on the evolution of individual phases. In other words,
when certain phase(s) assume minor volume fraction in the
three-phase microstructure, owing to relative increase in the
length, and complexity, of the diffusion path, the growth
of the corresponding grains is stunted. On the other hand,
the evolution kinetics is enhanced when the volume of the
phase(s) is dominant in the multiphase systems. Apart from
these generalized understandings, existing reports rarely offer

FIG. 8. Correlation coefficient characterizing the relation be-
tween time and average radius of individual phase grains and entire
microstructure, raised to different powers (n = 1, 2, 3, and 4) for two
triplex systems, α39β22 and α33β33.

any further insights on the grain-growth kinetics in triplex
microstructures. Particularly, similar to the duplex system,
sufficient consideration has not been rendered to relate the
growth kinetics of the individual phases to the evolution of
the entire triplex system. To that end, in this analysis, the
impact of the growth rate of individual phase grains on that
entire three-phase microstructure is examined by ascertaining
the corresponding coefficient of determination.

The instantaneous growth rate for constituent phase grains
dR̄α/dt , dR̄β/dt , and dR̄γ /dt , along with the entire triplex
microstructure dR̄/dt , is determined by monitoring tempo-
ral change in the respective parameter. These instantaneous
growth kinetics of the individual phase grains are related
to those of the entire microstructure, and the corresponding
coefficient of determination is estimated through Eq. (8). For
each system, three distinct coefficients of determination, χα ,
χβ , and χγ , are estimated, reflecting the characteristic feature
of the triplex microstructure. These coefficients of determina-
tions are related to the phase fractions of the microstructure,
and illustrated in Fig. 9.

In the triplex systems considered in this study, the volume
fraction of phase γ reaches as low as 33% despite being
the major phase. Such volume fraction of phase γ is noticed
in the triplex microstructure characterized by equifraction of
phases. Furthermore, in some systems like α45β10, the phase
α assumes a volume fraction of 45%, in spite of being one of
the minor phases. This, and similar, understanding of phase

FIG. 9. Change in coefficient of determination, typifying the in-
fluence of growth rate of individual phase grains on the evolution
kinetics of entire microstructure, with variation in the volume frac-
tion of constituent phases.
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fraction is vital to investigate the coefficients of determination
presented in Fig. 9.

Figure 9 unravels that, even though the volume fraction
of the major phase varies noticeably across different triplex
systems, the corresponding coefficient of determination χγ

continues to remain high. Given that phase γ stays as a
major phase, despite the change in phase fractions, the high
values of χγ can be attributed to the dominant volume of
the respective grains. In other words, analogous to the duplex
microstructure, the evolution kinetics of major-phase grains
offers relatively greater influence on the overall growth rate
exhibited by the entire triplex microstructure. Furthermore,
Fig. 9 suggests that the coefficient of determination of the
minor phases α and β noticeably increases as their corre-
sponding volume fraction raises. Particularly, as the volume of
phase α gets as dominant as γ , in a triplex system, an identical
coefficient of determination is rendered, χα = χγ . On the
other hand, when the volume of the phases is minimal, the
respective coefficient of determination assumes least value.
Ultimately, it is evident from Fig. 9 that the influence of the
individual phase grains on the overall growth kinetics depends
largely on the corresponding volume fraction. In a triplex sys-
tem with unequal volume fraction of phases, the growth rate
of the entire microstructure dR̄/dt is predominantly governed
by the evolution of the major-phase grains dR̄γ /dt . When the
volumes of two phases are dominant in a three-phase system,
the growth rate of both these phase grains offers identical
influence on evolution of the microstructure. The contribution
of particular phase grains to the overall evolution kinetics,
dR̄/dt , becomes least when its volume fraction is minimal.
Based on the understanding rendered by Fig. 9, as demon-
strated for duplex systems (Fig. 6), the growth kinetics of a
triplex microstructure, in relation to others with varying phase
fractions, can be predicted from the temporal change in the
average radius of the corresponding phase-associated grains.

3. Interdependency in the evolving phases

In duplex systems, since the grains of the polycrystalline
microstructure are associated with either of the two con-
stituent phases, the evolution of a particular phase grain, and
its kinetics, is inherently bound to each other. However, the
same interdependency cannot be expected in triplex systems,
wherein the grains can be associated with one of the three
possible phases. Moreover, in three-phase microstructures, the
level of influence offered by one evolving phase grain on the
rest of the phase-associated grains has not been conscien-
tiously addressed yet. Therefore, by examining the temporal
change in the average radius of a particular phase grain in
relation to the others, the interdependency exhibited between
the phases, in triplex microstructures, during grain growth is
elucidated.

Instead of investigating all the 14 triplex microstructures
to explicate the effect of one evolving phase on the other,
the systems are categorized based on phase fraction, and
one microstructure from each category is analyzed. Since
the coefficient of determination, which quantifies the effect
of an evolving-phase grain on the growth of the overall
triplex microstructure, depends on volume fraction, the phase-
fraction-based grouping is deemed reasonable. Apart from

FIG. 10. Correlation coefficient explicating the interdependency
between the growth rate of different phase grains dR̄α/dt , dR̄β/dt ,
and dR̄γ /dt , during grain growth of four different triplex systems
with varying phase fractions. (The values of correlation coefficients
are included in certain sections to facilitate unambiguous interpreta-
tion of the illustrated relations.)

the equifraction system α33β33, wherein all the constituent
phases largely occupy similar volume, the remaining sys-
tems can be categorized as “equimajor,” “equiminor,” and
“nonequifraction” triplex microstructures. While, in the
equimajor system, the volume of one of the minor phases is
equal to that of the major phase (Vα = Vγ ), the volume frac-
tion of minor phases is identical in equiminor microstructures
(Vα = Vβ). Moreover, the nonequifraction system stands in
direct contrast to the equifraction microstructure, and is char-
acterized by totally unequal volume fraction of the constituent
phases (Vα �= Vβ �= Vγ ).

In order to understand the degree of interdependency
between the evolving phases, in addition to equifraction
microstructure, grain growth exhibited systems α36β22,
α45β10, and α08β08 pertaining to nonequifraction, equima-
jor, and equiminor, respectively, are analyzed. Given that the
primary focus of the present investigation is not to quantify
the effect of an evolving-phase grain on the rest, but rather
to qualitatively realize the degree of interaction between two
phases, during grain growth in a triplex system, the coefficient
of determination is not estimated. However, alternatively, the
growth rate of different phase-associated grains is estimated,
dR̄α/dt , dR̄β/dt , and dR̄γ /dt , and is related to (or plotted
against) each other. The correlation coefficient characterizing
the relation between the growth rate of two phase grains is
realized for predetermined triplex microstructures, and graph-
ically illustrated in Fig. 10.

Before elucidating the level of interaction between two
evolving phase grains in a given triplex microstructure, based
on Fig. 10, it is exceedingly critical to realize the variation
in the range of correlation coefficient across the different
systems. Particularly, as opposed to the maximum value,
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which remains constant at unity, the least value of the correla-
tion coefficient changes with phase fraction. Correspondingly,
Fig. 10 unravels that the lowest correlation coefficient in the
equifraction system is maximum (0.84) when compared to the
rest of the triplex microstructures, and it is respectively fol-
lowed by nonequifraction (α36β22) and equimajor (α45β10)
microstructures, with the absolute minimal exhibited by the
equiminor system (α08β08). This significant disparity in
the lowest value of correlation coefficient emphasizes the
importance of considering the context, i.e., the correlation-
coefficient range, while interpreting the interaction between
two phases in a given microstructure during grain growth.
Apparently, the least interdependency between the two-phase
grains in an equifraction system translates to a strong interac-
tion in the context of equiminor triplex microstructure.

The graphical representation of correlation coefficient in
Fig. 10 indicates the influence of the growth rate of a con-
stituent phase grain on the evolution of the remnant grains
during grain growth in triplex microstructures. Moreover, this
depiction unravels similarities and dissimilarities across the
triplex systems with varying phase fractions. It is evident in
this illustration that, irrespective of the nature of the three-
phase system, the correlation coefficient relating the growth
rate of α- and β-phase grains is minimal, within a given mi-
crostructure. In other words, during grain growth in a triplex
system, the evolution kinetics of a minor-phase grain imposes
the least effect on growth rate of other low-volume phase
grains. Despite being equifraction, largely owing the manner
in which the triplex microstructure is initialized, such effect
is also observed in α33β33 microstructure. However, it is
vital to note that the least correlation in equifraction system is
tantamount to noticeable interaction in relation to other triplex
microstructures. Therefore, in α33β33 system, the evolution
kinetics of one phase grain is generally interlinked with grains
of the other phases, but this interaction is least between phases
α and β.

Within a triplex system, during grain growth, Fig. 10
suggests that minimal interdependency following two minor
phases is observed between the minor phase and the matrix
grains, irrespective of the phase fractions. The only exception
is the equiminor system wherein the volume fractions of the
minor phases are identical. Furthermore, in all triplex systems,
the growth rate of minor-phase grains with relatively greater
volume fraction when compared to the other (Vα > Vβ) is
strongly coupled with the evolution of the major-phase grains.
Ultimately, the study of interdependency between the rate
of the evolving phase grains during grain growth in triplex
systems, using correlation coefficients, unravels that a general
trend is observed in three-phase microstructures irrespective
of the phase fractions. If we distinguish the constituent phases
as minor, inter, and major phases depending on their corre-
sponding volume fractions, which in the present study are α,
β, and γ , respectively, then the least interaction during grain
growth is exhibited by the minor-phase and interphase grains.
While the growth rate of major-phase grains is considerably
interlocked with the interphase grains, the effect of the minor
phase on the matrix is comparatively lower. In other words,
in a given triplex microstructure, the level of influence offered
by the evolution rate of one phase grain on the other, during
grain growth, is primarily dictated by their corresponding vol-

ume fractions. When the volume fractions of two phases are
minimal, their degree of interaction is also minimal, whereas
a considerable dependency is noticed when the volumes of the
two phases are dominant in view of the third.

The above analysis on the interdependency of the kinetics
of evolving phases in triplex system unravels that, for express-
ing the overall growth rate of a three-phase microstructure, the
two ideal variables are the evolution rate of the grains of minor
phases, prescribed by the least multicollinearity.

4. Phase fraction and growth rate

A principal insight rendered by this study is that, in grain
growth, the evolution rate of a multiphase system is primarily
governed by the volume fraction of its constituent phases
through their respective growth kinetics. Therefore, by relat-
ing the phase fraction of 14 different triplex microstructures,
considered in this work, to its corresponding growth kinet-
ics, an attempt to extract a generalized expression is made.
Unlike the duplex system, since triplex microstructures are
characterized by three constituent phases, the corresponding
evolution rate is dictated by two independent variables, i.e.,
volume fractions. By directly relating the volume fraction,
instead of the evolution rate of individual phase grains, to the
growth kinetics exhibited by the triplex systems, the question
of multicollinearity is obviated.

Similar to the analysis of two-phase systems, nonlinear
regression can be extended to the multivariate framework for
relating the phase fractions of triplex system to the corre-
sponding grain-growth kinetics. Such treatment would yield
an expression of the form ktr = Atr + Btr exp (Cα

trVα + Cγ
tr Vγ ),

with ktr representing the growth kinetics of triplex system and
model parameters denoted by Atr, Btr, Cα

tr , and Cγ
tr . Despite

capturing the general trend in the effect of volume fractions
Vα and Vγ , on the evolution rate, the above relation is not
rigorous enough to adequately account for the local varia-
tions. To that end, generic models with adjustable variance
and biases, that are capable of encompassing local charac-
teristic relations surrounding the data points, through several
tunable parameters, are developed to realize the influence
of phase fractions on grain growth exhibited by three-phase
systems. Predictive models are generated by adopting a simple
dense feed-forward neural network technique which can be
expressed as

a(l ) = f
(
W (l )x(l ) + b(l )) for all l = 1, . . . , L (12)

with x(0) = [Vα,Vγ )]T, a(l ) = x(l−1), a(L) = ktr, (13)

where W (l ), b(l ), and L indicate the weights, biases, and
number of layers, respectively. In Eq. (12), the input and
output to the layers are respectively denoted by x(l ) and a(l ),
with f (·) indicating nonlinear activation function. While these
hyperparameters are tuned by the users, the model parameters
handled as a tensor get adjusted and reflect the data.

In the context of leave-one-out cross validation, the gen-
erality of the predictive models is ensured by preventing
the information leak from the validation data into the hy-
perparameters. In other words, for each fold, though the
model parameters are independently initialized and evalu-
ated, the optimal hyperparameters remain unaltered. These
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TABLE V. Cross-validation performance for the triplex system, measured by the mean absolute error.

Fold 1 2 3 4 5 6 7 8 9 10 11

Training 0.212 0.243 0.278 0.224 0.250 0.319 0.244 0.204 0.196 0.163 0.230
Validation 0.157 0.086 0.150 0.025 0.018 0.191 0.232 0.290 0.767 0.774 4.406

hyperparameters are tuned through a single fold using hy-
perband algorithm [58] and, subsequently, the best values are
ascertained through the mean absolute error computed on a
validation set through the approach involving a single hidden
layer of 208 rectifier neurons and a learning rate of 0.03.
Adam optimizer is employed for foldwise training of 101
epochs with a constant batch size of 4 [59]. The corresponding
learning rate is tuned with the same algorithm as the architec-
ture hyperparameters. In order to regularize the model, “early
stopping” is used, which terminates the optimization when the
performance is not improved for five consecutive epochs on
the validation set.

The data points indicating the phase fractions of the dif-
ferent triplex microstructures, and predictions offered by the
independently trained generic model for each fold, are col-
lectively illustrated in Fig. 11. The distribution of the data
points reflects the sample set of volume fractions considered
for the current investigation, as depicted in Fig. 1. How-
ever, it is evident from Fig. 11 that the kinetic coefficients
are sensitive to the local scattering of the points and corre-
spondingly vary. The ability to capture these variations in the
kinetic coefficients vindicates the use of generic models as
opposed to the nonlinear regression technique. In other words,
generic models, particularly dense neural networks used in
this study, ensure that domains of interest with strong local
differences are accurately mapped though adjustable parame-
ters. In Fig. 11, though the independently trained models yield
different mappings, the similarity characterized by plateau
(left side, 0% < Vγ < 60%) and gradient regions (bottom
right, 75% < Vγ < 100%) is noticeable. Moreover, the mor-
phology of the plateau, in all folds, changes across the training
(known) and validation (unknown) data points. The gradient
regions complementing the shapes of the plateaus remain
comparable with the contours.

Table V summarizes the mean absolute error (MAE) per-
formances of each model of the cross validation. Compared
with the exponential model for the duplex case, validation
and training performance are closer, which can be attributed
to a suitable regularization combined with sufficient capac-
ity of the low-bias neural-network model, allowing a robust
performance even on tiny data sets with strong nonlinear
characteristics. Towards high values of Vγ , these kinds of
generic models are subjected to the same data-set-inherent
problems as the exponential model, i.e., the steep gradients of
the physical behavior demand a considerably higher number
of data points to reduce the error.

The nonlinear regression treatment extended to triplex
systems. as illustrated in Fig. 11, unravels that the kinetic
coefficient, principally dictating the rate of grain growth, can
be definitively related to the independent volume fractions
of the constituent phases in the three-phase microstructures.
In other words, in spite of the limitations imposed by the
size of the data set, the extended regression analyses sug-

gest an exponential trend, similar to two-phase systems,
between the phase fractions and the corresponding grain-
growth kinetics in triplex microstructures. Correspondingly,
it is indicative that the rate of grain growth in multiphase
systems, with a given combination of phases, can be signifi-
cantly varied by exclusively altering their respective volume
fractions. The relation between the phase fraction and ki-
netic coefficient, realized for duplex and triplex systems in
Figs. 7 and 11, is of an elegant form which could directly
be extended to other multiphase systems and, more im-
portantly, adopted for suitably regulating the rate of grain
growth.

IV. CONCLUSION

Grain growth in polycrystalline systems can be desirable in
some circumstances while undesirable in others. For instance,
grain growth is induced during a processing technique to es-
tablish required average grain size, while noticeable measures
are generally taken to avoid it during a given application.
The subjective role of grain growth extends beyond homo-
geneous polycrystalline system to multiphase microstructures
as well. Therefore, it becomes vital to understand the grain-
growth kinetics exhibited by highly applicable multiphase
polycrystalline microstructures associated with duplex and
triplex systems. Particularly, generalized insights that aide in
comprehending the growth rate of multiphase microstructures
with varying phase fraction are exceedingly critical, as they
can be adopted for a wide range of systems and application.
To that end, in this study, the grain-growth kinetics of duplex
and triplex systems is studied by employing approachable
statistical techniques.

Conventionally, the grain-growth kinetics associated with
multiphase systems is discussed by considering the evolution
rate of individual phase grains and the entire microstructure
separately. Such treatments rarely offer much insights on how
the growth kinetics of individual phases relates to the over-
all evolution rate exhibited by the entire system. Therefore,
in this work, sufficiently equipped statistical tools are em-
ployed to realize the effect of the constituent phases, and
their corresponding grains, on the grain-growth kinetics of the
multiphase microstructure.

The understanding gained from the current investigation on
a wide range of microstructures encompassing two and three
phases can succinctly be delineated in the following manner:

(1) The evolution rate of a complete multiphase mi-
crostructure is predominantly governed by the growth rate
of major-phase grains, wherein the major and minor phases
are distinguished exclusively based on volume fraction. This
effect of major phase is particularly interesting considering
that the evolution kinetics of the minor-phase grains is no-
ticeably lower. Aside from statistical analyses, conventional
treatment and corresponding elucidation affirm the dominant
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FIG. 11. Effect of phase fraction on the kinetic coefficient governing the rate of grain growth in triplex systems.

role of major-phase grains on the grain growth of the du-
plex and triplex microstructures. At the outset, the dominant
influence of the major-phase grains on the temporal change
in the average grain size of the multiphase polycrystalline
microstructures might appear obvious. However, this study

goes well beyond the apparent static relation between average
radii of the major-phase grains and overall microstructure, and
essentially unravels the governing influence of the kinetics of
major-phase grains on the grain-growth rate of the multiphase
systems.
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(2) The relative effect of different phases on the overall
curvature-driven transformation is realized by models that
predict the kinetic coefficient of a given system from the char-
acteristic phase fractions. These predictive models, validated
by appropriate technique, indicate that a nonlinear exponential
relation exists between the phase fractions and the kinetic
coefficient in both duplex and triplex microstructures.

Aside from statistical comprehension of a principal phase
dictating the overall grain-growth kinetics, the development
of predictive models enhances the applicability of the present
analysis. Owing to its thermomechanical properties, alumina
is used in high-temperature applications. However, grain
growth induced in polycrystalline alumina compromises its
function be altering the relevant properties. Consequently,
chromia (Cr2O3) is included in polycrystalline alumina to
inhibit grain growth. The amount of chromia in alumina, i.e.,
phase fraction, is generally varied in experimental studies to
understand its effect on the kinetics [60]. Even though this ap-
proach yields a quantitative result, it can be made significantly
efficient by employing the predictive model developed in this
work. The model would essentially aide in narrowing down
a specific range of phase fractions that adequately suppress
grain growth without compromising other thermomechanical
properties. The predictive model, developed for triplex sys-
tems, can analogously be adopted to identify a definite phase
fraction in three-phase zirconium diboride ceramic of silicon
and zirconium carbide, that ensures microstructural stability
during its high-temperature application [23].

In systems wherein the phase fractions cannot be suffi-
ciently varied, owing to its undesired effect on properties,
the present analysis offers an alternate means for stunting
the curvature-based microstructural evolution. Correspond-
ingly, aside from altering the phase fraction, desired effective
conductivity in solid-oxide fuel cells (SOFC), with triplex
electrode, can be sustained by lowering the growth kinetics
of the major-phase grains [24]. Furthermore, the predictive
models and associated insights offered in this work can aide in
perfecting sintering cycle, involved in the fabrication of mul-
tiphase nanocomposites, wherein introduction grain growth is
ill preferred [53,61].

Even though the understanding rendered by the present
investigation can be exploited for various purposes, one crit-
ical utilization would be to alter the grain-growth rate of a
given multiphase system, with a definite phase fraction, by
appropriately, and exclusively, varying the evolution kinet-
ics of the major-phase grains. To that end, in the upcoming
works, attempts will be made to substantiate the approach
of modifying the grain-growth rate in multiphase systems by
employing the dominant influence of the major-phase grains.
Additionally, owing to the strong inclination of the current
analyses to unravel the effect of phase fractions on the overall
grain-growth kinetics in multiphase microstructures, identi-
cal and rather straightforward material parameters, including
diffusivities, equilibrium concentrations, and interfacial en-
ergies, have been assigned to the various systems. Despite

deviating from the physical conditions, such considerations
facilitate in isolating the influence of phase fraction. However,
given the importance of the material parameters in dictating
grain-growth evolution and its kinetics, the present approach
would be quantitatively enhanced in the subsequent studies.
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APPENDIX A: EXPANDING GOVERNING EQUATIONS

In the current investigation, grain growth in several multi-
phase systems is principally modeled by taking the variational
derivative of the functional expressed in Eq. (5). This deriva-
tive dictating the spatiotemporal evolution of the phase field,
in Eq. (6), translates to the transformation of the polycrys-
talline microstructures. The energy contribution of the diffuse
interfaces in the overall functional F (φ,∇φ, c) reads as

fint(φ,∇φ) = εa(φ,∇φ) + 1

ε
w(φ), (A1)

wherein εa(φ,∇φ) and 1
ε
w(φ), respectively, indicate the

gradient-energy density and obstacle potential [62]. Summa-
tion of all possible pairwise interaction between chemically
similar and dissimilar grains yields the gradient-energy den-
sity, which is correspondingly formulated as

εa(φ,∇φ) =
N∑

α�β

qα∑
m�n

γ mn
αβ

∣∣Qmn
αβ

∣∣2
. (A2)

In Eq. (A2), the energy of the grain boundary separating grains
m and n of α and β phases is represented by γ mn

αβ . Furthermore,
|Qmn

αβ |2 which adds to the interface-energy contribution is the
gradient vector and is written as

Qmn
αβ = φm

α ∇φn
β − φn

β∇φm
α . (A3)

Although a suitable formulation of the Eq. (A2) would facili-
tate the introduction of anisotropy, in the present investigation,
identical energies are attributed to all the different grain
boundaries of the multiphase systems. Aside from gradient-
energy density in Eq. (A2), the contribution of the diffuse
interface to the principal energy functional includes 1

ε
w(φ),

the potential-energy density. This obstacle-type penalizing po-
tential which ensures that the phase fields, at any given spatial
position, add up to unity, in the present model, is devised
through the Gibbs simplex of the form

G =
{

φ ∈ RN̄ :
N∑
α

qα∑
m

φm
α = 1, φm

α � 0

}
. (A4)

Based on the simplex G, the penalizing potential-energy den-
sity is correspondingly expressed as

1

ε
ω(φ) =

{ 1
ε

(
16
π2

∑
α�β

∑
m�n

γ mn
αβ φm

α φn
β + ∑

α�β�δ

∑
m�n�p

γ
mnp
αβδ φm

α φn
βφ

p
δ

)
, φ ∈ G

∞, φ /∈ G
(A5)
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while the obstacle potential for all grain boundaries is intro-
duced through the first term, the higher-order second term
prevents the introduction of any spurious phases, by imposing
an energy constraint.

Equilibrium concentration characterizing specific phases
is assigned to grains to establish multiphase systems with
definite and stable phase fraction. Despite the chemical
equilibrium, the curvature difference introduced by the dis-
similarities in the sizes and morphology of the grains induces
a mass transfer that facilitates the growth of larger grains, of a
given phase, at the expense of the smaller ones. This migration
of solute i, principally driven by the curvature (K), can be
written as

∂ci(μi(K ),φ)
∂t

=
(

∂ci

∂μi(K )

)
φm

α

∂μi(K )

∂t
+

(
∂ci

∂φα

)
μi

∂φm
α

∂t
.

(A6)

Rearranging the above formulation yields the evolution of
chemical (diffusion) potential as expressed in Eq. (7). Consid-
ering that the evolution of the chemical (diffusion) potential is
formulated based on the temporal change in the concentration,
both these principal variables are “implicitly” coupled. (For
complete derivation, the readers are directed to Ref. [42].)
Owing to the computational efficiency, and characteristic of
the current grand-potential approach, the chemical (diffusion)
potential is treated as the fundamental variable instead of the
concentration.

Even though as opposed to concentration, the evolution of
the chemical (diffusion) potential dictates grain growth in the
present formulation, the kinetics of the evolution is influenced
by the mobility M(φ), as indicated in Eq. (7). The mobility
which includes interdiffusivity and susceptibility matrix reads
as

M(φ) =
N∑

α=1

Dα:i

(
∂cα

i

∂μ j

) q∑
m

h(φm
α ) +

N∑
α

Dαα:i

q,q∑
m<n

[(
∂cα

i

∂μ j

)
h(φm

α ) +
(

∂cβ
i

∂μ j

)
h(φn

α )

]
φm

α φn
α

+
N∑
α

N∑
α<β

Dαβ:i

q,q∑
m�n

[(
∂cα

i

∂μ j

)
h(φm

α ) +
(

∂cβ
i

∂μ j

)
h(φn

β )

]
φm

α φn
β. (A7)

In the above formulation, while the bulk diffusivity is in-
dicated by Dα:i, the kinetics of the solute migration along
interfaces of the similar and dissimilar grains is effected by
matrices Dαα:i and Dαβ:i, respectively. These matrices are
symmetric and of size N × N [42]. Moreover, in Eq. (A7),
∂cα

i
∂μ j

represents the susceptibility matrix.

APPENDIX B: REALIZING OVERFITTING

When the variables including average radius and time are
related by power law [ f (x) = axn], the correlation coefficient
generally increases with raising the order of the expression
n. In other words, the correlation between x and f (x) will
often be higher when n = m, as opposed to n = m − 1, where
m ∈ N . In such instances, which is most, identifying the
best relation based on the correlation coefficient alone is
rather ineffective, as the next order n + 1 would offer a more
convincing fit. Therefore, with increase in the order, the cor-
responding change in the correlation coefficient is estimated.
For a given raise in the order, when the change in the cor-
relation coefficient is marginal, then the resulting relation is
deemed overfitting. Although for a given data set, an overfitted
expression convincingly relates all the existing data points, it
rather fails significantly when new data are augmented. Stated
otherwise, an overfitted hyperplane is restricted to a specific
set of data points; any variation to the data would render the
existing fit noticeably inaccurate. Consequently, the order that
precedes the overfitting is considered to be the best fit. Based
on this statistical understanding, certain orders in Figs. 3 and 8
are treated as overfitting, while a lower n is deemed as best fit.

In contradiction to the generally expected continual in-
crease, when there is a decrease in correlation coefficient with

the order, the consideration of the overfitting is relaxed. More-
over, in such instances, the order with maximum correlation
coefficient is deemed to reflect the best fit. Such decrease in
the correlation coefficients with increase in n is noticeable in
Figs. 3 and 8, wherein the corresponding best fit is realized
from the highest correlation coefficient.

APPENDIX C: INTERDEPENDENCY IN DUPLEX
SYSTEMS

In a polycrystalline system, irrespective of its nature,
the continuum is established by the multiple grains present
it. During the grain growth, despite the continual disap-
pearance of the grains, the continuum is sustained by the
growth the surviving grains. This characteristic feature of the
grain growth introduces interdependency between the evolv-
ing grains. Correspondingly, in duplex systems, wherein the
grains are associated with one of the two-constituent phases,
the evolution of phase-α grains is inherently linked the grains
of phase γ . Even though the interaction between the phase-
associated grains, during grain growth of a duplex system,
can be theoretically conceived, to explicate it with a statistical
certainty, the average radius of α grains, at a given time t ,
is plotted against the corresponding radius of γ grains in
Fig. 12 for a two-phase microstructure with equal volume
fraction of phases, α50. The trend in this illustration indicates
an inherent interlocking between the evolution of the phase-α
and -γ grains during the grain growth of equifraction duplex
microstructure. In addition to the α50 microstructure, the av-
erage radius of constituent phase grains, at a given instance,
is ascertained for a duplex system with 10% minor phase
α. Similar to the equifraction system, these instantaneous
average radii of phase α and γ grains are plotted against
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FIG. 12. The average radius of phase-α grains, at a given in-
stance, is plotted against the corresponding radius of matrix-phase
grains for duplex microstructure with equal volume fraction of
phases. In the subplots, for the same system, the growth rate of
individual phase grains is related, and instantaneous average radius
of phase α and γ grains is plotted for duplex microstructure with
10% alpha.

each other, and illustrated in Fig. 12 as a subplot. Despite
the change in the phase fraction, in α10 microstructure as
well, a definite interaction between the radius of major- and
minor-phase grains is evident.

Aside from the average radius of the phases α and γ at a
given instance, using the same approach, the relation between
the kinetics of grain growth associated with these phases can
be explicated. Correspondingly, the evolution kinetics of the α

grains is related to that of the γ ones, for equifraction duplex
microstructure, and are included as a subplot in Fig. 12. This
illustration unravels that even though there exists a perceivable
interdependency between the instantaneous kinetics of phase-
α and -γ grains, it is not as straightforward as the average
radius.

APPENDIX D: EFFECT OF INDIVIDUAL PHASE-GRAIN
KINETICS ON GROWTH RATE OF ENTIRE SYSTEM

One of the primary aims of the present investigation is to
realize the effect of individual phases on grain-growth rate of
an entire two-phase microstructure. Particularly, the role of
evolution kinetics of a given phase grain on the overall growth
rate of a duplex system. To that end, the kinetics of evolution
exhibited by phase-α grains, at a given instance, is related to
the overall growth rate of equifraction duplex system, and
plotted in Fig. 13(a). The graphical illustration relating the
evolution rate of phase-α grains and duplex microstructure
with 10% minor phase is included as a subplot.

Figure 13(a) unravels that the growth rate of phase-α grains
imposes a definite influence on the overall kinetics exhibited
by the equifraction-duplex system, α50, during grain growth.
On the other hand, the subplot of the corresponding illustra-
tion, which pertains to two-phase microstructure with 10% of
phase α, indicates a relation between dR̄α/dt and dR̄/dt is not
as definite as one noticed in the equifraction microstructure. It
is the degree of inter-relation between the kinetics of individ-
ual phase grains, and overall growth rate of a given duplex
microstructure, which varies with the phase fraction, is real-
ized by coefficient of determination. In other words, while the
coefficient of determination relating the dR̄α/dt and dR̄/dt
will be higher for an equifraction duplex microstructure, in
α10 system it will assume a relatively low value reflecting a
not so definite relation between the kinetics.

In Fig. 13(b) the grain-growth kinetics of phase-γ grains
and entire duplex system, with equal volume fraction of
phases, is plotted against each other. As a subplot, the corre-
sponding relation between dR̄γ /dt and dR̄/dt for α10 duplex
microstructure with 10% of phase α is illustrated. Unlike the
influence of phase α on overall growth kinetics in Fig. 13(a),
a highly definite relation is observed between the evolu-
tion rate of phase-γ grains and entire microstructure in both
equifraction and α10 duplex microstructure. Consequently,
the corresponding values of coefficient of determination will
largely be independent of the phase fraction.

FIG. 13. The instances of grain-growth rate exhibited by an individual phase grain are plotted with respect to that of the entire duplex
microstructure with equal volume fraction of phases. In (a) the kinetics of α grains is related to the grain-growth rate of the entire microstructure,
while γ -grains evolution kinetics is considered (b). The corresponding outcomes for α10 microstructure with 10% of minor phase α are
included as subplots.
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