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Quasiparticle self-consistent GW band structures and phase transitions of LiAlO2 in tetrahedrally
and octahedrally coordinated structures
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A first-principles computational study is presented of various phases of LiAlO2. The relative total energies
and equations of state of the α, β, and γ phases are determined after structural relaxation of each phase. The
β and γ tetrahedral phases are found to be very close in energy and lattice volume with the γ phase having
the lowest energy. The octahedral α phase is a high-pressure phase and the transition pressure from the γ and
β phases to α is determined to be about 1 GPa. The electronic band structures of each phase at their own
equilibrium volume are determined using the quasiparticle self-consistent (QS) GW method as well as using the
0.8� approach in which the QSGW self-energy is reduced by a factor of 0.8 to correct for the underscreening of
W in QSGW . The effective masses of the band edges and the nature of the band gaps are presented. The lowest
energy γ phase is found to have a pseudodirect gap of 7.69 eV. The gap is direct at � but corresponds to a dipole
forbidden transition. The imaginary part of the dielectric function and the absorption coefficient are calculated in
the long-wavelength limit and the random phase approximation, without local field or electron-hole interaction
effects for each phase, and their anisotropies are discussed. Si doping on the Al site is investigated as a possible
n-type dopant in γ -LiAlO2 using a 128-atom supercell corresponding to 3.125% Si on the Al sublattice in the
generalized gradient approximation and a smaller 16-atom cell with 25% Si in the QSGW approximation. The
Si is found to significantly perturb the conduction band and lower the gap but a clearly separated deep donor
defect level is not found. However, the donor binding energy is still expected to be relatively deep, on the order
of a few tenths eV in the hydrogenic effective mass approximation.
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I. INTRODUCTION

LiAlO2 is a ceramic material that is known to occur in at
least five crystal structures: rhombohedral α-LiAlO2 (space
group R3m, No. 166) [1], orthorhombic β-LiAlO2 (space
group Pna21, No. 33) [2], tetragonal γ -LiAlO2 (space group
P41212, No. 92) [3], and tetragonal δ-LiAlO2 (space group
I41/amd , No. 141) [4,5]. Among these, both β and γ forms
are tetrahedrally coordinated while α and δ are octahedrally
coordinated. The δ form is essentially a slightly disordered
rocksalt-type phase, in which the 4a Wyckoff positions are
about 80% occupied with Al, 20% Li, and with the roles of Al
and Li reversed on the 4b positions. A fully disordered ε cubic
phase has also been reported [5]. A 48-atom cell with space
group P4m2 is listed in Materials Project [6] and provides
an approximate computational model for these disordered
rocksalt-type phases.

LiAlO2 has been investigated for applications in tritium
breeding in fusion reactors [7,8], as a matrix in molten car-
bonate fuel cells [9], and as a substrate for GaN light-emitting
diodes (LEDs) due to the small lattice mismatch between
γ -LiAlO2 and GaN [10]. Moreover, LiAlO2 is closely related
to LiGaO2—another ceramic material that is also known to
adopt R3m and Pna21 structures and that has recently be-
come of interest as a possible ultrawide-band-gap (UWBG)
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semiconductor due to suggestions that LiGaO2 could be
n-type doped by silicon or germanium [11–15]. Various exper-
imental works have found the band gap of LiGaO2 in the range
5.26–5.6 eV [16–19], and quasiparticle self-consistent GW
(QSGW ) [20] calculations predict a gap of 5.81 eV [21]. We
expect LiAlO2 to have an even larger band gap than LiGaO2.

LiAlO2 has recently also been considered in the context of
Li-ion batteries. It was used as a coating to protect LiCoO2

[22] but Li was also found to diffuse in LiAlO2 itself at
high temperatures [23,24], and solid solutions of LiAlO2 with
LiMO2, where M is a transition metal, were proposed by
Ceder et al. [25]. LiAlO2 has also been used as an additive
in composite electrolytes [26]. For a more complete litera-
ture overview of these recent applications, see Singh et al.
[27]. The phase transitions of LiAlO2 at high temperature are
important in this context and were studied by Singh et al.
[27] as well as the pressure-induced transitions we consider
here.

The electronic structure and phase transitions of LiAlO2

have already been studied to some extent. The structure of
γ -LiAlO2 at ambient pressure and temperature was deter-
mined experimentally by Marezio via Cu Kα and Mo Kα

radiation photographs [3]. The γ → δ phase transition has
been studied experimentally [4,5], and Sailuam et al. [28]
have carried out a first-principles computational study of the
band structures and pressure-induced γ → δ phase transition
[28]. Ma et al. have done a first-principles study of α-LiAlO2

[1]. Singh et al. [27] did an extensive computational study
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FIG. 1. [(a)–(c)] Crystal structures (made with VESTA [34]) and [(d)–(f)] Brillouin zones (made with SEEK-PATH [35]) of α-, β-, and
γ -LiAlO2. Spheres indicate Li (green), Al (blue), and O (red).

of the temperature-pressure phase diagram and also reported
electronic band structures of the various phases. However,
there still remain open questions, especially on the electronic
structure. With the exception of the study by Sailuam et al.
[28], prior first-principles works have largely used density
functional theory (DFT) methods with local or semilocal
exchange-correlation functionals, which are well known to
significantly underestimate band gaps. Sailuam et al. [28]
obtained a gap of 6.56 eV for γ -LiAlO2 using the Heyd-
Scuseria-Ernzerhof (HSE) hybrid functional, much larger than
previous DFT studies. We seek to further improve upon these
estimates using the more accurate QSGW method. Not only
the band gap but other details of the band structure, such
as the direct or indirect nature of the gap and the effective
masses, are relevant to the potential semiconductor applica-
tions, which have not yet received attention. Thus, our paper is
focused on the electronic structure and its properties relevant
to potential but not yet explored applications of the material
as an active semiconductor. Therefore, we will also briefly
consider the possibility of doping.

In relation to the band gap and optoelectronic properties,
we point that that Huang et al. [29] determined an optical
absorption onset from transmission of VIS-UV to occur at
191 nm, indicating a gap of ∼6.5 eV consistent with Zou et al.
[30], who also measured a drop in transmission near 190 nm.
More recently, Holston et al. [31,32] measured optical defects
in LiAlO2 induced by radiation of doping with Cu. They also
did not see any absorption in as-grown crystals above 200 nm
wavelength. From these we can deduce that the optical gap
appears to be near 6.5 eV at room temperature. Besides optical
properties, they also report electron paramagnetic resonance
(EPR) spectra of these defects.

The lowest-energy and most thermally stable form of
LiAlO2 is the γ phase, but coexistence of the α and γ phases
is a common result of syntheses performed below 973 K [33],
and surface contamination of bulk γ -LiAlO2 with β-LiAlO2

is known to occur as a result of matching between the a and
b axes of the orthorhombic β phase with the a and c axes
of the tetragonal γ phase [2]. Therefore, we consider each of
the α, β, and γ phases. Additionally, the R3m structure was
found to be a high-pressure phase of LiGaO2 [21], so it is
also interesting to study α-LiAlO2 for the sake of comparing
these two closely related materials. We omit here the δ phase
because it is actually a disordered phase, which requires larger
cells to model, and the octahedral coordination is already
represented by the α phase. While other work in the literature
[27] has already studied phase transitions extensively, it is
useful to compare our results to their work. The structures
studied in this paper and their Brillouin zones are shown in
Fig. 1.

II. COMPUTATIONAL METHODS

The structure relaxation calculations in this work are
performed using the QUANTUM ESPRESSO pseudopotential
plane-wave implementation of DFT [36]. We use pro-
jector augmented-wave pseudopotentials for all QUANTUM

ESPRESSO calculations [37]. The exchange-correlation energy
was treated in the generalized gradient approximation (GGA)
using the Perdew-Burke-Ernzerhof (PBE) parametrization
[38]. For each of the α, β, and γ phases, we start with the
lattice parameters provided by Materials Project [6] where
available. The unit cell is relaxed at a range of volumes around
the equilibrium volume, and the cohesive energy per formula
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unit is calculated from the total energy at self-consistency
and the reference energies of the free atoms (not including
spin-polarization corrections of the atom). Bulk moduli and
first derivatives of the bulk moduli with respect to pressure
are then extracted for each phase by fitting the corresponding
energy vs volume points to the energy curve obtained from
integrating the Birch-Murnaghan equation of state [39] via
nonlinear least squares. Transition pressures between different
phases are then extracted from these fits via the common tan-
gent method. The structural relaxation results for the internal
coordinates were further checked with the all-electron full-
potential linearized muffin-tin orbital (FP-LMTO) method as
implemented in the QUESTAAL code [40] while keeping the lat-
tice constant ratios fixed. The obtained energy ordering of the
phases was found to be consistent with QUANTUM ESPRESSO

results provided the same muffin-tin radii were kept for all
phases.

To overcome the limitations of semilocal DFT for band
gaps, we use the many-body-perturbation theoretical GW
method [41]. The band structure calculations performed
here use the quasiparticle self-consistent version of the GW
method [20] (QSGW ) as implemented in the QUESTAAL

code [40]. The G in GW represents the one-particle Green’s
function, and the W represents the screened Coulomb in-
teraction. The QSGW approach is independent of the DFT
starting point Hamiltonian H0, because a nonlocal exchange-
correlation potential is extracted from the GW self-energy,
in the form of its matrix in the basis set of H0 eigenstates
�̃nm = 1

2 Re[�nm(εn) + �nm(εm)] where Re indicates taking
the Hermitian part, and is used to update H0 and iterated
to convergence. At each iteration �(ω) = iG0(ω) ⊗ W (ω)
with ⊗ standing for convolution. At convergence, the quasi-
particle energies of GW become equal to the Kohn-Sham
eigenvalues of the updated H0. This approach is known to
give much more accurate band gaps than semilocal DFT but
is known to systematically overestimate the band gaps slightly
because the screening of W is calculated in the random phase
approximation and thereby underestimates screening by not
including electron-hole interaction effects. This shortcoming
can be overcome by including ladder diagrams [42,43] but
this is still a rather expensive approach and it was found
that reducing the self-energy correction �̃ − vDFT

xc by a uni-
versal factor 0.8, which we call 0.8�, provides a practical
alternative [44,45].

The main factors that determine the accuracy and conver-
gence of the FP-LMTO implementation of the QSGW method
[20] include the basis-set choice and the k-point mesh on
which the self-energy is calculated. In the FP-LMTO method
we use augmented spherical waves with smoothed Hankel
functions as radial functions outside the spheres and typically
use a basis set with two sets of Hankel function energies
and smoothing radii. Here we use an spdf spd basis set on
each of the atoms, which means one set of smoothed Han-
kel functions includes orbitals up to f and the second up
to d spherical harmonics. The smoothing radii and energies
are chosen in a standard way by fitting these radial wave
functions to the tail of the free atom eigenstates. The basis
functions are expanded to lmax = 4 within each augmentation
sphere. To further test the convergence, we added high-energy
s and p local orbitals but found them to affect the band gap

TABLE I. Convergence parameters for QSGW band structure
calculations; Emax

� is the maximum energy up to which the self-
energy �(ω) is calculated.

Phase k mesh Emax
� (Ry)

α 6 × 6 × 6 3.9
β 3 × 3 × 3 3.5
γ 3 × 3 × 3 3.4

negligibly. The two-point quantities, such as the bare and
screened Coulomb interaction W , are represented in a separate
basis set of Bloch functions which include products of partial
waves inside the spheres and plane waves projected on the
interstitial region. This basis set is far more efficient than a
plane-wave basis set at representing the screening within the
Hilbert space of the bands of interest and thereby also reduces
the need to include high-lying empty states in calculating
the polarization propagator P used in W = v + vPW with v

the bare Coulomb interaction and in the calculation of �.
The mixed product basis set and interstitial plane-wave basis
functions in the QSGW scheme are expanded to Gmax of 2.7
Ry1/2 and 3.3 Ry1/2, which are standard values.

The final (i.e., after checking convergence) k-meshes and
energy cutoffs for � used in the QSGW calculations for each
phase are given in Table I. In the QSGW iterations the �̃ is
replaced by an average value between Emax

� and Emax
� − 0.5

Ry. The atom-centered LMTO basis set provides a natural in-
terpolation scheme for the self-energy matrix to a finer k-point
mesh used in the charge-potential self-consistency iterations
and for obtaining the bands along the symmetry lines. It thus
provides accurate band dispersions and also effective masses.
For details about the QSGW implementation we refer the
reader to the method description papers [20,40].

III. RESULTS

A. Equations of state and transition pressures

We begin with an investigation of the structural properties
and high-pressure phase transitions of α-, β-, and γ -LiAlO2.
For the α and γ phases, we use as initial input the lattice
constants and site positions provided by Materials Project [6].
However, at the time of our investigation, Materials Project
did not have structural information for β-LiAlO2, so we in-
stead use the data for LiGaO2 in the Pna21 structure and then
relax the unit cell substituting aluminum for gallium.

First, we discuss the fitted energy vs volume curves shown
in Fig. 2 and transition pressures between structures. We fit
our directly calculated energies as functions of volume to
the energy obtained from integrating the Birch-Murnaghan
equation of state, which is given by [39]

E (V ) = E0 + 9V0B0
16

{[(V0
V

)2/3 − 1
]3

B′
0

+
[(V0

V

)2/3 − 1
]2[

6 − 4
(V0

V

)2/3
]}

, (1)

where E is the total energy in the crystalline state, E0 is the
total energy of the neutral free atoms at rest, V is the volume
of the unit cell, V0 is the equilibrium volume of the unit cell,
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FIG. 2. Directly calculated energy vs volume points and equa-
tion of state fits for α-, β-, and γ -LiAlO2, along with common
tangents corresponding to the β → α (green dashed) and γ →
α (blue dashed) and γ → β (black dotted) high-pressure phase
transitions.

B0 is the bulk modulus, and B′
0 is the first derivative of the

bulk modulus with respect to pressure.
We calculate the transition pressures between different

structures using the common tangent construction, wherein
the negative of the slope of the tangent line is the pressure
required to achieve enthalpic equality between two crystal
structures. A plot of the directly calculated points and equa-
tion of state fits is shown in Fig. 2, and values of the fitting
parameters B0 and B′

0 along with the transition pressures are
given in Table II. From Fig. 2, it is evident that the α phase is
a high-pressure form of the material. This result is analogous
to that obtained by Radha et al. from their analysis of LiGaO2,
which found the R3m structure to be a high-pressure phase of
that material [21]. Further, the γ phase is the lowest-energy
structure, though the difference between the energy minima
in the β and γ phases is only ∼10−4 eV, which is consistent
with experimental observation of these two phases coexist-
ing. Their lattice volume per formula unit are also close but
slightly larger for γ , indicating that also β could be stabilized
under pressure. The common tangents shown in Fig. 2 indicate
a tetrahedral to octahedral transition around 0.98 GPa for
γ → α and 1.4 GPa for β → α.

These results agree well with those of Singh et al. [27],
who also found the β and γ phases to have very close energy
minima and establish a γ → α transition at ∼1.3 GPa. They
obtain this by calculating the energy and enthalpy directly as
a function of pressure, by explicitly imposing the pressure as
a stress tensor as independent variable in their calculation,
whereas we start from the energy-volume curves and use the

TABLE II. Fitting parameters corresponding to Fig. 2: B0, bulk
modulus at equilibrium; B′

0, pressure derivative of the bulk modulus
at equilibrium volume; pt is the transition pressure.

Phase B0 (GPa) B′
0 pt (GPa)

α 136 3.64
β 70.5 6.01 1.4a

γ 90.2 3.14 0.98,b 0.22c

aβ → α.
bγ → α.
cγ → β.

common tangent construction, but in principle, these proce-
dures should give equivalent results. They also mention that
in the range 0–1.2 GPa the β structure already has lower
enthalpy. We calculate a transition pressure of 0.22 GPa for
γ → β based on the fitted equations of state.

The study by Singh et al. [27] is more complete than ours in
terms of the phase diagrams by their inclusion of temperature
and entropy effects and by also considering the higher pres-
sure transitions to the δ phase but for low temperatures our
results agree well with theirs. Previously, Sailuam et al. [28]
studied the γ → δ transition and found a transition pressure
of about 2–3 GPa depending on which functional was used.
This agrees qualitatively with Singh et al. [27]. They did not
consider the α phase but did evaluate energy barriers between
the phases as a function of pressure. We preferred here to
focus on the basic tetrahedral-to-octahedral phase transition
by considering the simpler α phase. After all, the δ phase,
which is a disordered cubic phase with tetragonal distortion, is
not as well established structurally or can only approximately
be described by a small unit cell because of the fractional
occupations of lattice sites.

For reference, we give the equilibrium lattice constants
of each phase in Table III as obtained from the QUANTUM

ESPRESSO minimization. These are used later for the electronic
structure on which we focus. For the α phase, we here use
the primitive rhombohedral cell parameters a and the opening
angle between the three equal size lattice vectors. To compare
with the hexagonal conventional cell, used in the work by
Singh et al. [27], which is three times larger in volume, note
that ah = √

2ar
√

1 − cos α and ch = 3ar
√

1 + 2 cos α/
√

3.
This gives ah = 2.82 Å and ch = 14.36 Å, in good agreement
with the values by Singh et al. [27].

It is also interesting to study how the lattice parameters
themselves change as functions of unit cell volume. For the
rhombohedral α structure the volume of the unit cell is given
by V = a3

√
1 − 3 cos2 α + 2 cos3 α. Figure 3(a) shows that

the opening angle α between each pair of lattice vectors de-
creases with increasing volume. For the β structure we can
see in Fig. 3(b) that b/a and c/a stay more or less constant
as the volume is decreased until the volume approaches the
region where the phase transition to the α phase occurs. The
sudden change in these ratios indicates the incipient instability
of the β structure and is possibly related to the transition
path between wurtzite and rocksalt suggested in Ref. [46].
Likewise in the γ structure, the c/a ratio is seen to increase
when approaching the transition volume but otherwise stays
constant and b/a stays equal to 1 as required by symmetry.
We have checked that, during the relaxation procedure, the
symmetries required by each lattice were maintained.

B. Band structures

For our final band structure calculations, we use the lattice
parameters corresponding to the lowest-energy point on each
of the equation-of-state fits of Fig. 3, i.e., those given in
Table III.

The QSGW 0.8� approximation band structure of
α-LiAlO2 is shown over a wide energy range in Fig. 4, with
corresponding plots of the partial densities of states (resolved
by �) in both the valence and conduction bands shown in
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TABLE III. Space groups, lattice constants, volume per formula unit, and Wyckoff positions for different phases of LiAlO2.

Structure α β γ

Space group R3̄m Pna21 P41212

a = 5.06 Å a = 5.29 Å a = 5.24 Å
α = 32.47◦ b = 6.28 Å c = 6.31 Å

c = 4.90 Å
V = 33.2 Å3 V = 40.7 Å3 V = 43.3 Å3

Li 1a 4a 4a
(0,0,0) (x = 0.0837, y = −0.3761, z = −0.0033) (x = −0.1858, y = −0.1858, z = 0)

Al 1b 4a 4a
( 1

2 , 1
2 , 1

2 ) (x = 0.0786, y = 0.1262, z = 0.0048) (x = 0.1768, y = 0.1768, z = 0)
O 2c 4a 8b

(±u,±u, ±u) (x = 0.0614, y = 0.1053, z = 0.3654) (x = 0.3392, y = 0.2904, z = −0.2271)
u = 0.2381

OII 4a
(x = 0.1003, y = −0.3528, z = 0.4062)

Fig. 5. We find that the α phase has an indirect gap of 9.30 eV,
with the conduction band minimum occurring at the � point.
The indirect nature is already present also in the GGA band
structure. From the partial densities of states, we can discern
that the deep-lying bands spanning ∼ − 20 to ∼ − 17.5 eV
are those derived primarily from the oxygen 2s orbitals. The
higher-lying valence states from ∼ − 5 to 0 eV are primarily
due to the oxygen 2p-derived bands, though there are con-
tributions from both aluminum 3s and 3p as well because
these are bonding states with the cation atomic orbitals. The
lowest-lying (around 10 eV) conduction states consist of a
mixture of lithium 2s, (antibonding) oxygen 2s and 2p, and
aluminum 3s orbitals. At higher energy, there are peaks corre-
sponding to significant lithium 2s, oxygen 2p, and aluminum
3p contributions. This confirms the ionic picture in which Li
donates its electrons to the oxygen.

We now turn to a magnified view of the valence states near
the Fermi level, shown in Fig. 6. This shows that two almost
equal energy valence band maxima (VBM) occur between �

and L and � and S0. The nomenclature for the high-symmetry
points follows the convention of the Bilbao crystallographic
server website [47] and is also given in Fig. 1. The conduction
band minimum (CBM) meanwhile is at � and the material
thus has an indirect band gap. At � the VBM is doubly degen-

erate and has Eu symmetry of the D3d point group, which is
(x, y)-like while the state below it is nondegenerate with A1u

symmetry, which is z-like. This indicates that direct vertical
transitions from the VBM at � to the conduction band which
has A1g symmetry (s-like) are dipole allowed for polariza-
tion perpendicular to the threefold-symmetry axis, while the
transitions from the crystal field split-off state will occur for
polarization along the symmetry axis. This is confirmed by
the optical absorption calculations discussed below. However,
the indirect gap is about 0.1 eV lower than the direct gap. One
may notice some avoided band crossings just below the VBM
along �-T , �-L, and �-S0. These were checked by using a
fine spacing of the k-points along the lines and indicate that
these bands belong to the same irreducible representation of
the group of k along these lines and can therefore not cross.

The band structure of the β structure is shown in Figs. 7–9.
The �-resolved partial densities of states are shown in Fig. 10.
The overall orbital character of the bands is the same as in
the α structure. The zoom-in near the VBM shows again an
indirect band gap, which is also already present in the GGA.
The VBM occurs near the point T , which is (0,0.5,0.5) in units
of the reciprocal lattice vectors. An even closer magnification
shown in Fig. 9 right near the T point in the directions T -Z
and T -R shows that T is a saddle point with a minimum in

FIG. 3. (a) Lattice angles vs volume for α-LiAlO2 (we use θab, θbc, and θac to denote the lattice angles instead of the traditional α, β, and
γ to avoid confusion with the phase labeling of LiAlO2). (b) b

a and c
a ratios vs volume for tetrahedrally coordinated β- and γ -LiAlO2.
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FIG. 4. QSGW 0.8� band structure of α-LiAlO2 spanning a
wide range of valence and conduction states.

the T -Z direction and a maximum along T -R. The line along
T -Z contains two maxima close in energy to one another. It
also is at a maximum in the T -Y direction. Thus, great care
is required to determine the effective mass tensor at the actual
VBM. The VBM at � lies ∼0.24 eV below it. The valence

FIG. 5. �-resolved partial densities of states in α-LiAlO2 in the
(top) valence and (bottom) conduction bands.

FIG. 6. Magnified view of the high-lying valence states of the
QSGW 0.8� band structure of α-LiAlO2.

FIG. 7. QSGW 0.8� band structure of β-LiAlO2 spanning a
wide range of valence and conduction states.

FIG. 8. Magnified view of the high-lying valence states of the
QSGW 0.8� band structure of β-LiAlO2.
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FIG. 9. Close magnifications on the saddle point at T and the
actual VBM along T -Z in the valence bands of β-LiAlO2. The left
panel shows the topmost bands along R-T -Z and the right panel
shows the topmost bands along Y -T -S.

bands at � from the highest one and down have irreducible
symmetries, a2, a1, b1, b2, which are respectively forbidden,
allowed for z, x, y polarization for transitions to the a1 sym-
metry CBM at �. These symmetry labels were determined by
inspection of the eigenvectors.

Finally, for the γ structure, the band structure is shown in
Figs. 11 and 12, with the �-resolved partial densities of states
in Fig. 13. The overall orbital character of the bands is similar
to the α and β phases. The magnification shows that this phase

FIG. 10. �-resolved partial densities of states in β-LiAlO2 in the
(top) valence and (bottom) conduction bands. A Gaussian broaden-
ing with a width of 0.1 eV was applied to these spectra to better
distinguish some of the features.

FIG. 11. QSGW 0.8� band structure of γ -LiAlO2 spanning a
wide range of valence and conduction states.

has a direct band gap. The CBM has A1 symmetry but the
VBM has B1 symmetry in the point group D4. This implies
that the gap is pseudodirect. In other words, it is direct but
dipole forbidden. The next lower VBM at � is double degen-
erate and therefore has E symmetry but lies about 0.63 eV
lower. However, along �-X the group of k is C2 and contains
the C2x symmetry axis under which B1 is even. This means
direct vertical transitions for states along the �-X axis become
allowed for z polarization because both CBM and VBM at
these points and z are even or belong to the A irreducible
representation of C2. Meanwhile, along �-M, the group of k
is also C2 but contains the C2 axis along the (110) direction,
under which B1 is odd. This implies that vertical transitions
from the valence band along �-M to the conduction band
become allowed for x or y polarization because the CBM is
still even under that C2 operation. In other words, the VBM
has irreducible representation (irrep) B while the CBM has
irrep A and transitions are allowed for x or y because these

FIG. 12. Magnified view of the high-lying valence states of the
QSGW 0.8� band structure of γ -LiAlO2.
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FIG. 13. �-resolved partial densities of states in γ -LiAlO2 in the
(top) valence and (bottom) conduction bands. A Gaussian broaden-
ing with a width of 0.1 eV was applied to these spectra to better
distinguish some of the features.

belong to the B irrep. Along �-Z the group of k is C4 and the
top valence band belongs to the B irreducible representation
and thus the transitions are still forbidden. We will see that
thus both x and y polarization should be allowed for energies
slightly above the direct gap at � but also very close to it for
transitions for z polarization.

The band gaps of all three phases are summarized in
Table IV. Our GGA band gaps of 4.48 eV for γ and 6.18 eV
for α agree reasonably with Singh et al.’s [27] 4.7 and 6.2 eV,
respectively. Qualitatively, the differences in gap between the
different structures agree well with prior work in the sense
that the β structure has only slightly higher gap than γ but the
octahedral phases have a significantly larger gap. The QSGW
gaps of course are significantly larger and are more reliable.
In terms of details of the band structure, prior work missed

TABLE IV. Band gaps of α-, β-, and γ -LiAlO2 from various
approximations, of which QSGW 0.8� is expected to be the most
accurate.

Phase GGA QSGW QSGW 0.8�

α 6.18 eV 10.1 eV 9.30 eV
β 4.93 eV 8.94 eV 8.16 eV
γ 4.48 eV 8.47 eV 7.69 eV

TABLE V. Effective electron masses at the VBMs and CBMs of
α-, β-, and γ -LiAlO2, extracted from the band curvatures near the
extremal points.

Phase/extreme point mxx (me) myy (me) mzz (me)

α (VBM)a −6.6 −0.69 −2.8
α (CBM) 0.47 0.47 0.58
β (VBM) −1.3 −0.57 −0.94
β (CBM) 0.43 0.39 0.36
γ (VBM) −1.7 −1.7 −2.9
γ (CBM) 0.41 0.41 0.44

aPrincipal values of the mass tensor. The masses labeled x and z
actually correspond to principal axes 15◦ from the crystal axes.

the indirect nature of the gap in the α and β structures. For
the α structure, they used the conventional hexagonal cell
and hence show the bands in the corresponding hexagonal
Brillouin zone. They may thus have missed the points where
the actual VBM occurs. Second, for all three phases, they
only show a band structure on a large energy scale, where the
top valence bands are very flat and therefore it is difficult to
ascertain where the actual VBM occurs.

C. Effective masses

The curvature of the bands near the band edges provides
the effective masses, which are important for transport prop-
erties. They are summarized in Table V.

As expected from the symmetries of the α and γ phases,
the � point CBM of the α phase and CBM and VBM of the
γ phase have effectively one transverse and one longitudinal
effective mass. The valence band masses are significantly
higher than the conduction band masses as is evident from the
flat top valence band. For the β phase they were determined
by zooming in very closely to the actual VBM along T -Z , as
shown in Fig. 10. Note that we here give electron masses, so
the negative signs for the VBM indicate positive hole masses.

D. Optical absorption

The imaginary part of the dielectric function ε2(ω),
which is proportional to the optical absorption coefficient,
was calculated in the long-wavelength independent particle
approximation, ignoring local field and excitonic effects, ac-
cording to

ε2(ω) = 8π2e2

�ω2

∑
v

∑
c

∑
k∈BZ

fvk(1 − fck )

×|〈ψvk|[H, r]|ψck〉|2δ(ω − εck + εvk ), (2)

where the commutator [H, r] gives the band velocity and
includes the contributions from the nonlocal self-energy, and
εvk and εck are the valence and conduction band states at k ob-
tained in the QSGW method. The fnk are the band occupation
numbers (Fermi functions at zero temperature) and are 1 for
n = v and 0 for n = c. � is he volume of the unit cell.

These functions are shown in Figs. 14–16 for the α, β,
and γ phases, respectively, along with the real parts of the
dielectric function ε1(ω) and the absorption coefficients α(ω).
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FIG. 14. Top: Real (ε1) and imaginary (ε2) components of the
dielectric function for α-LiAlO2. Bottom: Optical absorption coeffi-
cients in logarithmic scale near the onset of absorption.

The real parts are obtained from the imaginary parts via a
Kramers-Kronig transformation, and the optical absorption
from the relation α(ω) = 2ε2(ω)/n(ω), where n(ω) is the
real part of the index of refraction ñ(ω) = √

ε1(ω) + iε2(ω).
The onsets of absorption and their respective polarizations are
consistent with the symmetry analysis in the previous section.
For α, the top VBM at � is E -like and hence has allowed
transitions for x, y polarizations, while the VBM-1 has A1

symmetry and hence has allowed transitions for z polarization.
For β the top VBM at � is forbidden but very close to the
a1 symmetry level allowed for z; the next ones have b1 corre-
sponding to x and b2 corresponding to y symmetries and hence
the onset occurs in the order z, x, y. For the γ structure the top
valence band at the � transition to the CBM is forbidden, but
transitions along �-X become allowed for z polarization and
along �-M for x, y polarization. This is consistent with the
calculated onsets of absorption. Because the matrix elements
are expected to gradually increase as k moves away from
� either along �-X or �-M the onset of optical transitions
would not follow the usual

√
E − E0 behavior for direct al-

lowed transitions but rather an (E − E0)3/2 behavior, where
E0 is the onset of transitions. On the other hand, even for the
direct allowed transitions in the β case, the expected

√
E − E0

behavior is only seen very close to the onset. This is because
the conduction band at somewhat higher energies above the
CBM becomes linear in k, in which case, the ε2(ω) will turn
over to become proportional to ω2. In the γ phase we have
a combination of linearly increasing matrix elements and a
conduction band that turns from parabolic to linear behavior,
but, in any case, it is clear from the figures that the absorption
coefficient turns on slower for the γ than for the β case.

FIG. 15. Top: Real (ε1) and imaginary (ε2) components of the
dielectric function for β-LiAlO2. Bottom: Optical absorption coeffi-
cients in logarithmic scale near the onset of absorption.

FIG. 16. Top: Real (ε1) and imaginary (ε2) components of the
dielectric function for γ -LiAlO2. Bottom: Optical absorption coeffi-
cients in logarithmic scale near the onset of absorption.
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At present, no experimental data on the optical absorp-
tion or dielectric function over the range we have calculated
are available. This is not surprising given the difficulty to
obtain adequate light sources in this deep UV range, which
is only available at synchrotrons. As mentioned already in
the Introduction, there were two prior experimental studies
[29,30] which showed a decrease in transmission at about
190 nm or 6.5 eV for the γ phase. No data are available
for the high-pressure phases. These onsets of absorption are
significantly lower than the quasiparticle band gaps calculated
here. There are two possible reasons for this discrepancy: first,
finite temperature effects and zero-point motion of the band
gap and, second, excitonic effects. In a very ionic material,
as we have here, excitonic effects can be expected to be
large and could substantially reduce the optical absorption
onset from the band-to-band onset. An initial estimate can be
made within the hydrogenic Wannier exciton model. Using a
reduced mass of 0.33 and a dielectric constant of about 3.5, the
binding energy would be 0.36 eV. On the other hand, electron-
phonon coupling band gap renormalization effects could also
be substantial, leading to a zero point motion correction and
even larger reductions at room temperature. A full calculation
of these effects is beyond the scope of the present paper.
However, comparing to other ionic oxides like MgO suggests
the finite temperature effects could well be of order 0.5 eV.
Combining this with the estimated exciton binding energy a
reduction by about 0.9–1.0 eV would bring the absorption on-
set down to 6.7 eV, in reasonable agreement with experiment.
Finally, we should point out that the optical measurements
carried out thus far had a cutoff at about 190 nm in the UV and
only a start of the reduction of transmission was measured at
this wavelength. The nature of the absorption onset, which we
here predict to be forbidden direct, is therefore still unclear but
is challenging to measure with standard available light sources
in the UV. Furthermore, defect-related absorption band tails
can often lead to an underestimate of the band gap.

E. Silicon doping of γ-LiAlO2

With band gaps larger than 7 eV, the utility of LiAlO2 in
ultrawide-band-gap (UWBG) semiconductor applications will
depend heavily on whether it can successfully be doped. Oth-
erwise, it is just another insulator. The electrical conductivity
is also of importance in the context of Li diffusion and the
opportunities for LiAlO2 as electrodes in Li batteries. For suc-
cessful n-type doping one must find a dopant which leads to
shallow donor levels in the gap and can be readily introduced
in the material. For example, Si is used as an n-type dopant in
GaN but in AlxGa1−xN alloys of high Al content x > 0.8 leads
to a deep donor due to a distortion of the defect structure away
from the simple substitutional cation site [48], which is called
a DX-type defect. Donor binding energies larger than a few
tenths of an eV are usually considered ineffective for doping.
Inspired by prior work on LiGaO2 [15], we consider Si doping
in LiAlO2.

In this section we present the results of a band structure
calculation for γ -LiAlO2 doped with silicon as a candidate
n-type dopant. First, we simply replaced one Al in the 16-atom
unit cell by Si, which corresponds to 25% doping. While this
is an unrealistically high doping level, the advantage is that we

FIG. 17. Band structure of SiAl3O8 in the γ structure and in the
QSGW approximation. The red (blue) color indicates the Si s (Si p)
orbital contributions with background bands in grey.

can readily perform the calculation at the QSGW level. Next,
we studied a 128-atom 2 × 2 × 2 supercell, with a single SiAl

corresponding to 3.125% of the Al cation sublattice. We first
calculate it at the GGA level. Finally, we use a recently devel-
oped cut-and-paste approach [49] to obtain approximately the
QSGW band structure in the 128-atom cell with a single Si,
from the real-space self-energy of the perfect crystal and the
self-energy matrix of the Si atom and its neighbors from the
16-atom QSGW calculation. In this approach we use a cutoff
of the real-space self-energy matrices of 6.27 Å. Figure 17
shows the results of the 16-atom cell. The Fermi level now
lies about 2 eV above the CBM, indicating that no new levels
occur in the gap and the additional electron just starts to fill
the conduction band. However, the bottom of the conduction
band is clearly strongly Si dominated and the QSGW gap at
5.33 eV is significantly lower than that of pure γ -LiAlO2.
This might at first sight indicate that the Si may actually
introduce a deep donor level, which is here broadened into
an impurity band because of the high Si concentration and
merging with the conduction band. We need a larger cell to
refute this possibility.

The results for the 128-atom cell are shown in Fig. 18.
We here show only two directions of the Brillouin zone. The
faint red color of the lowest three conduction bands indicates
their small Si s contribution. The background color for the
bands without any Si s was chosen as a light grey because
otherwise it would obscure the red color. The lowest three
conduction bands both have some Si s contribution but it is
less pronounced because the Si concentration is lower and the
Fermi level now lies only 0.67 eV above the CBM. These
bands essentially are the folded version of the conduction
band of the 16-atom cell in the Brillouin zone of the supercell,
which has half the size in each direction, although at the new
Brillouin zone edge, a gap opens. The band gap between the
O 2p-like VBM and the Si-like CBM is about 7.28 eV and
is close to that of the corresponding perfect crystal gap of
7.43 eV. It is here a little bit lower than the converged value
of Table IV because of the real-space cutoff of the self-energy.
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FIG. 18. Band structure of γ -LiAlO2:Si in a 128-atom supercell
in the cut-and-paste QSGW method. The red color indicates Si s-like
orbital contribution.

Thus the Si still pushes the CBM slightly down but less so than
in the 16-atom cell and there is no evidence of a deep donor
level. Compared to the corresponding GGA results, the CBM
is simply pushed up along with its Si contribution. These
results did not include relaxation of the structure. However,
relaxation of the nearest-neighbor O atoms around the Si show
an inward relaxation of the Si-O bonds by about 6%. They
do not indicate a strong distortion or DX center formation.
Indeed, it did not lead to any notable difference in the band
structure in the GGA, which still does not show a defect level
to emerge in the gap.

These results indicate n-type doping should be possible.
However, the hydrogenic donor model would predict EB =
m∗

c R/ε2, which, with R the Rydberg unit (13.6057 eV), m∗
c ≈

0.4 and ε ≈ 3.5, gives EB ≈ 0.4 eV. This estimate includes
only electronic screening. Estimating the phonon contribu-
tions to the screening requires the calculation of longitudinal
optical (LO) phonons, which we have not yet done. However,
comparison with LiGaO2 indicates a static dielectric constant
of about 6.5 is expected. This would reduce the donor binding
energy to about 0.1 eV. This shows that even if Si doping
does not produce a well-separated defect band in the gap in a
first-principles calculation in the cell size we can here accom-
modate, it will likely act as a relatively deep donor with order
of 100 meV binding energy. This is similar to LiGaO2 for
which experimental confirmation of n-type doping also is still
to be accomplished but promising enough to warrant experi-
mental attempts to dope these materials with Si. While these

estimates indicate efficient n-type doping may be challenging
for both LiGaO2 and LiAlO2, they would significantly extend
the gap range of UWBG semiconductors. Some compromise
between efficiency of doping and larger band gaps may be
necessary. For comparison, in β-Ga2O3, the conduction band
effective mass is about 0.3 and the dielectric constant about
10, giving a binding energy of order 40 meV. The expected
donor binding energy in LiGaO2 and LiAlO2 are thus rela-
tively high but, on the other hand, still smaller than typical
acceptor binding energies related to p-type doping in, for
example, GaN.

IV. CONCLUSIONS

The main conclusions of this paper are as follows. First,
in terms of structures, the γ phase has the lowest energy but
is very close to the β phase, which may already be stabilized
at slight pressures of about 0.2 GPa. A phase transition from
these tetrahedrally bonded phases to the octahedrally bonded
α phase is predicted to occur near 1 GPa. The band struc-
tures of the three phases were obtained in the QSGW method
and yield band gaps larger than 7 eV with a pseudodirect
gap of 7.69 eV in the γ phase, indirect gap of 8.16 eV in
the β phase, and indirect gap of 9.30 eV in the α phase.
The calculated onset of absorption in the γ phase, slightly
above the pseudodirect gap of 7.7 eV and stemming from
direct transitions along �-M and �-X , is significantly higher
than the until now reported optical absorption onset of about
6.5 eV. We suggested this can be explained by a combination
of finite temperature renormalization effects on the gap due
to electron-phonon coupling and strong excitonic effects in
this ionic material. A fuller investigation of these effects will
require additional work in the future. For future use, we have
provided details of the band structure near the band edges,
including the effective masses. We have also briefly discussed
the possibility of silicon as a donor for γ -LiAlO2, which indi-
cates that n-type doping should be possible although efficient
doping will be challenging due to the relatively high donor
binding energy.
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