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Deep learning interatomic potential for Ca-O system at high pressure
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Calcium-containing oxides are fundamental components of the Earth’s crust and mantle. Analysis of their
structural behavior contributes to our understanding of the Earth’s interior, which needs a reliable interatomic
potential. Here, we present an interatomic potential for the Ca-O system using the deep neural network method.
The initial training data set for the deep interatomic potential (DP) consists of snapshots of prototype binary
structures from materials projects and crystal-derived structures based on Ca-O binary compounds, as well as
their molecular dynamic trajectories. The accuracy of the DP is evaluated by predicting forces and energies
in comparison with those from ab initio calculations. We demonstrate that the vibrational and thermodynamic
properties based on DP calculations are in excellent agreement with those from ab initio calculations. Besides,
we also construct a temperature-pressure phase diagram of Ca-O compounds with DP at a lower cost compared to
ab initio methods. Finally, we use the DP to explore Ca-O structures by combining it with the genetic algorithm,
the accuracy of which is validated by a principal component analysis for the local atomic environments. The DP
training procedure used in this work is equally applicable to other systems for accurate atomistic simulations as
an effective method.
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I. INTRODUCTION

Calcium and oxygen are well known as two of the
most abundant elements of the Earth’s crust and mantle,
respectively [1]. Studies on the structures and fundamental
properties in the Ca-O system under high pressure can help us
understand Earth’s interior. It has been shown that the typical
oxide formed by calcium metal is CaO, with the space group
Fm3̄m under ambient conditions, which will transform into
Pm3̄m at high pressure (∼60 GPa) [2]. Recently, using the
ab initio random structure searching (AIRSS) method, Joseph
et al. discovered several stable calcium peroxides (CaO2) at
high temperatures and high pressures, emphasizing the poten-
tial role for CaO2 in Earth’s mantle [3]. Also noteworthy are
the recent theoretical studies that led to the discovery of CaO3

(P4̄21m), which holds unusual divalent ozone anions, provid-
ing new information to understand the cycles of oxygen within
our planet [4]. This successful discovery was confirmed by
experimental synthesis [4]. These results provide a structural
database of Ca-O system for modeling the interior of Earth.

However, to fully understand the Earth’s interior, a more
comprehensive investigation of structural behavior of Ca-O
compounds with variable stoichiometry under high-pressure
conditions is still necessary. In doing so, a reliable inter-
atomic potential is needed to describe complicated atomic
interactions with high accuracy. While density functional
theory (DFT) can offer high accuracy in interatomic inter-
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actions [5,6], such ab initio calculations require expensive
computational costs as a cubic function of the number of
electrons. Alternatively, empirical interatomic potentials are
computationally efficient, but their accuracy and transferabil-
ity are questionable due to their limited algebraic form that is
specifically designed for a few known structures. A legitimate
question is are there any tradeoffs between computational cost
and accuracy to investigate crystal structures?

Recently advances in machine learning potential enables
the evaluation of the free energy of ab initio quality at the
cost of empirical force fields [7–16]. This method can con-
struct a direct mapping of structures to forces and energies by
using a large amount of experimental or computational data,
saving a significant amount of computational time required
for first-principles calculations. The machine learning poten-
tial was initially proposed by Behler and Parrinello in 2007
as the neural network potential (NNP) [9]. In the last few
years, various types of machine learning potentials have been
proposed: Gaussian approximation potential (GAP) [12], the
gradient-domain machine learning (GDML) [15], the moment
tensor potential (MTP) [17], the spectral neighbor analysis
potential (SNAP) [7], and the deep potential for molecular
dynamics (DEEPMD) [18]. In particular, the “deep potential”
and DEEPMD are garnering wide interest recently with appli-
cations to challenging simulations such as the 1D cooperative
diffusion of Ca [19], the phase diagram of water [20], silicon
liquid structure and crystal nucleation [21], proton transfer
at the water-TiO2 interface [22], accurate irradiation damage
simulations [23], nonadiabatic excited-state dynamics [24],
potential for metalloid-containing Pd-Si compounds [25], Al-
Tb alloys [26], etc.
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In this paper, we developed a general deep interatomic
potential (DP) for the Ca-O system and demonstrated how it
can be used to predict forces, energies, and vibrational and
thermodynamic properties. The computational efficiency of
DP makes it possible to construct phase diagrams and perform
a crystal-structure search at a lower cost.

II. METHODS

A. First-principles calculations

Our first-principles calculations were performed by using
the projector-augmented wave (PAW) [27,28] representation
with density functional theory as implemented in the Vienna
ab initio simulation package (VASP) [5,29]. The exchange
and correlation energy was treated within the spin-polarized
generalized gradient approximation (GGA) and parametrized
by the Perdew-Burke-Ernzerhof (PBE) [30] formula. We used
pseudopotential descriptions with valence electronic config-
urations 3s23p64s2 and 2s22p4 for Ca and O, respectively.
A kinetic-energy cutoff of 500 eV was used, and Brillouin-
zone integrations were performed using the Monkhorst-Pack
scheme with a k-point grid resolution of 2π × 0.033 Å−1. The
convergence test results on the wave function energy cutoff
and the k-point density are shown in Tables S3 and S4 of the
Supplemental Material [31].

B. Adaptive genetic algorithm

To collect enough structures as an initial training set,
CaxOy (x, y = 1, 2, 3, 4) was investigated by using the
adaptive genetic algorithm (AGA) crystal structure prediction
method [32], which is a method that combines fast structure
exploration by auxiliary classical potentials and the accurate
ab initio calculations adaptively and iteratively. In the genetic
algorithm (GA) loop, the Ca and O atoms’ initial atomic posi-
tions were randomly generated without assuming the Bravais
lattice type, symmetry, atom basis, or unit cell dimensions.
Some low-enthalpy structures at the end of each GA search
were selected for single point DFT calculations, whose ener-
gies, force, and stress were used to fit the interatomic potential
parameters for the next iteration of GA search. A total of 40
adaptive iterations were performed to explore the complex
potential energy surfaces of Ca-O compounds.

C. Enhanced sampling for training set

As an enhanced sampling method, we used Deep Potential
GENerator (DP-GEN) [33,34] to collect as many local atomic
environments as possible during training. DP-GEN is able to
build uniformly accurate DP models on-the-fly while mini-
mizing data generation costs. In DP-GEN, the PES represented
by the DP model is denoted by Eω(R), where R denotes
atomic positions and ω denotes the parameters. A key point
of DP-GEN of the potential energy surface (PES) was that
an ensemble of models {Eω1, Eω2, . . . , Eωα, . . .}, which were
trained at the same time, using the same training data but
with different parameters for the initialization. In this case,
different parameters in the initialization led to different min-
imizers and thus to different PES models. In certain regions
of the PES where there were sufficient training data, different

PES models should all be reasonably accurate and therefore
produced predictions that were close to each other. That is,
if the predictions of different models deviate significantly for
a new structure, indicating that the PES here has not been
explored comprehensively, the structure would be labeled to
be trained in the next iteration. Considering that force is an
atomic property that is sensitive to local accuracy, we used
the formula to calculate the standard deviation of the predicted
maximum force to assess model consistency,

δF = max
i

√
〈||Fi − 〈Fi〉||2〉, (1)

where i runs over all atoms and the average of the four models
is taken. In this work, those structures generated by DP-based
MD (DPMD) with model deviation 0.05–0.20 eV/Å were
selected and passed to the training data sets.

The LAMMPS package [35] had been interfaced with DP-
GEN to perform DPMD. During the exploration of the PES,
the DPMD simulations were applied to generate serials of new
snapshots of structures with distortions. We performed the
isothermal-isobaric (NPT ) simulations [36] under periodic
boundary conditions at the pressure of 0.1, 0.5, 1, 5, 10, 30,
and 50 GPa, corresponding to the internal pressure of the
Earth [1]. In this work, the number of DPMD steps was set
to 2000 and the length of the trajectory was set to 3 ps.

D. DP training

For the training process of the DP model, the smooth
method of the DEEPMD-Kit software package was used
[18,37], which was constructed from all information (both
angular and radial) of atomic configurations. As seen in
Fig. S1 of the Supplemental Material [31], the local environ-
ment, that was the atomic positions of the Ca-O compound
within the cutoff radius in relation to other neighboring atoms,
would be encoded into the descriptors Di. These descriptors
would then be fed into a high-dimensional neural network to
calculate the atomic energy Ei. In this work, the cutoff radius
of neighbor atoms was set to 5.0 Å. In the DP model, the
relative coordinates of atoms are mapped onto generalized
coordinates x̂ ji = s(r ji )x ji

r ji
to preserve the physical symmetry,

where s(r ji) is a continuous and differentiable scalar weight-
ing function. Here, the inverse distance 1/r decayed smoothly
from 0.5 to 5.0 Å to remove the discontinuity introduced by
the cutoff radius. The filter neural network had three hidden
layers which were {25, 50, 100}, and the fitting network
was {240, 240, 240}, respectively. The neural network was
initialized with random parameters and the total number of
training steps was 1 000 000. During the training, the Adam
stochastic gradient descent method [38] was applied so that
the learning rate decreased exponentially. The decay step and
decay rate were set to 5000 and 0.96. The loss function L was
defined by [18]

L(pe, p f , pξ ) = pe

N
�E2 + p f

3N

∑
i

|�Fi|2 + pξ

9N
‖��‖2,

(2)
where �E , �Fi, and �� denote root mean square (rms) error
in energy, force, and virial, respectively. In this work, the
energy prefactor pe started at 0.02 and ended at 1. At the same
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FIG. 1. (a) Binary structures from MP, whose elements replaced by Ca and O atoms. The color bar represents the number of structures.
(b) Convex hull diagram of the Ca-O system at 20 GPa by AGA.

time, the force prefactor p f started at 1000 and went down to
1 in the end. Since there are no virial data included during the
training progress, pξ is equal to 0.

III. RESULTS AND DISCUSSION

A. Construction of training set

Typically, DP model requires a large number of structures
as a training set. However, there are only a few crystalline
phases available in the materials projects (MPs) [39] for the
CaxOy system (i.e., Ca2O3, CaO, CaO2, CaO3, and CaO10),
which are not sufficient for deep learning. In this work, the
initial training set is divided into two parts. The first part is bi-
nary compounds from the MPs. Figure 1(a) shows all selected
binary compounds from the MP database. Here, structures
are selected based on two criteria: (1) the maximum lattice
constant is smaller than 10 Å, and (2) there are no more than
20 atoms in the unit cell. The colors represent the number
of structures of different stoichiometries. There are a total of
10 980 binary phases from MPs, whose elements are replaced
with Ca and O. The horizontal and vertical axes of Fig. 1(a)
indicate the number of Ca and O atoms in the unit cell,
respectively. It can be found that structures of certain formula
units do not exist in the database (i.e., 5 and 7 f.u.).

For the second part, in order to obtain more low-enthalpy
structures of Ca-O compounds as training data, different sto-
ichiometries of CaxOy (x : y = 3:1, 2:1, 3:2, 4:3, 1:1, 3:4,
2:3, 1:2, 1:3) with different formula units (i.e., 1, 2, 3, 4,
and 6 f.u.) are searched by the AGA method at 20 GPa,
which corresponds to pressures between Earth’s upper and
lower mantle. The relative stability of these predicted Ca-O
compounds was investigated at the corresponding pressures
based on the calculated enthalpies of formation,

�Hf = [H (CaxOy) − xH (Ca) − yH (O)]

x + y
, (3)

where x, y are the numbers of atoms of Ca and O, and H is
the calculated enthalpy of the given structure. Before delving
into the stable structures of Ca-O compounds, the crystal
structures of elemental Ca and O crystal must be clarified. At
20 GPa, our calculated results suggest that Im3m and epsilon

(C2/m) phases are the ground state phase for elemental Ca
and O, respectively, which agrees well with previous stud-
ies [40,41]. Figure 1(b) shows the convex hull of the Ca-O
system at 20 GPa. It can be found that CaO with Fm3̄m
symmetry and CaO2 with P21/c symmetry lie on the convex
hull; these results are also consistent with Refs. [2,3]. Besides
the CaO (Fm3̄m) and CaO2 (P21/c), several low-enthalpy
metastable CaxOy stoichiometries, such as Ca2O (C2/m),
Ca4O3 (C2/m), Ca2O3 (C2/m), and CaO3 (Imm2) are also
identified at 20 GPa. The crystal structures of these stable and
metastable phases are shown in Fig. S3 and their structural
parameters are listed in Table S1 [31].

Based on these stable and metastable Ca-O from the AGA
search, structures with their energies and forces away from
equilibrium state are also considered: (i) The lattice constant
of structures is dilated and compressed uniformly by a′ =
a (1 ± 0.02 × n) (n = 0–4) to sample different interatomic
distances. (ii) The coordinates of atoms in the cell are shifted
by 0.01 Å at random, and a total of 30 perturbations are gener-
ated in this step. In these ways, we can generate 270 structures
for each predicted Ca-O structure. Moreover, more distorted
compounds are also added to the training data sets, which are
generated with ab initio molecular dynamics (AIMD) simula-
tions from the above predicted structures by AGA. Supercells
containing hundreds of atoms are used for these structures.
The AIMD simulations are performed with the NV T ensem-
ble at T = 300 K, under periodic boundary conditions with
Nosé-Hoover thermostat [42,43], in order to generate serial
snapshots of structures with distortions. In summary, for each
of the predicted Ca-O structures, we obtained 5400 configura-
tions for the initial data set, which contained the information
of atomic positions, energies, and forces. The data that are
unconverged should be removed from the data sets.

The Ca2O (C2/m), Ca4O3 (C2/m), CaO (Fm3̄m), Ca2O3

(C2/m), CaO2(P21/c), and CaO3 (Imm2) configurations from
the previous AGA search are also used as the initial struc-
tures for the DP-GEN. Five iterations are performed at 0.1,
0.5, 1, 5, 10, 30, and 50 GPa to enhance the sampling of
PES. The DPMD explorations result in the addition of 18 108
new configurations to the data set. Finally, combining all the
crystal data sets with different compositions, we have 48 468
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TABLE I. The overall information of the training data sets for the Ca-O system. The RMSE of energy predicted by the DP model are the
validation RMSE.

Systems Atoms Training set (90%) Validation set (10%) Energy RMSE (meV/atom)

MP structures 9882 1098 5.6
Ca2O 108 4500 500 2.0
Ca4O3 112 3240 360 4.8
CaO 128 3240 360 2.4

AGA structures
Ca2O3 160 3222 358 6.3
CaO2 108 3240 360 2.4
CaO3 216 3240 360 1.4

DP-GEN structures 16298 1810 7.1

configurations in the training process. A typical split of the
data set is 90% for training and 10% for validation. The
overall information of the training and validation data sets is
summarized in Table I.

B. Reliability and validation of DP

In order to demonstrate the reliability of DP, a comparison
of the predicted energies and forces by DFT and DP will be
necessary. Taking the above predicted CaO3 (Imm2) system
as an example, Fig. 2 shows the predictive accuracy of DP
energies and forces per atom compared with that of DFT for
the CaO3 (Imm2) system in the validating sets. We can see
that the results of DP and DFT are highly correlated. The root-

mean-squared errors (RMSEs) are less than 1.5 meV/atom for
energies and 100 meV/Å for forces. Also, it can be seen that
the RMSEs of the training and validating sets are extremely
close, which suggests that the neural network is not overfitted.
(See Fig. S2 [31] for details on the training set.) Furthermore,
it can be seen in Fig. 2(a) that there is a wide distribution of
energy, which may indirectly reflect the complicated configu-
ration spaces in our exploration of PES.

Due to the dependence on the quality of the matrix of
force constants force constant matrix (dynamical or Hessian
matrix), the phonon density of states (PHDOS) is extremely
sensitive to the accuracy of atomic interactions. Therefore, we
compared the PHDOS and the phonon dispersion relations for
a Ca2O (C2/m) structure at T = 0 K and 20 GPa calculated by

FIG. 2. DP vs DFT energies and forces for CaO3 compounds in the validation data.
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FIG. 3. (a) DFT dispersion relation of the phonons and PHDOS compared to the (b) DP results for the Ca2O (C2/m) structure at T = 0 K
and 20 GPa. (c) Thermal properties of Ca2O (C2/m): specific heat capacity (CV), Helmholtz free energy (F ) and entropy (S) computed from
DFT (solid line) and the DP (color dotted line) as a function of temperature. (d) Pressure-temperature phase diagram of CaO by DP calculations.

DFT and DP. Here, the DP result of PHDOS was calculated
by PHONOPY [44] and its LAMMPS interface PhonoLAMMPS
[45]. As can be seen in Figs. 3(a) and 3(b), compared to the
DFT results, DP is found to accurately predict the location of
the PHDOS peaks and reproduce the phonon dispersion rela-
tions. Some of the differences in the dispersion of the highest
optical phonon modes can be attributed to finite size effects.
With the above phonon dispersion relations and the formalism
from previous studies [46], it is possible to obtain the ther-
modynamic properties such as specific heat (CV), entropy (S),
energy (E ), and Helmholtz free energy (F ), respectively. As
shown in Fig. 3(c), the F , CV, and S are calculated from 0
to 1000 K for the Ca2O structure. The solid line represents
results calculated by DFT and the DP data are given as the
dotted line. Our DP results match the DFT calculations to a
high degree. Notably, the thermodynamic properties such as
CV are the derivative of energy with respect to temperature,
while our training set contains no temperature information.
Thus, the accurate prediction of these thermodynamic prop-
erties implies that our DP model has a high generalization
capability to temperature. Also, the Debye temperature is an
important physical quantity and an appropriate parameter to
describe the physical phenomena in the solid state related
to specific heat, melting point, lattice vibrations, and elastic
constants. For the CaO with Fm3̄m symmetry, the DFT calcu-
lated Debye temperature was 651.5 K, while the DP calculated
value was 670.4 K. The error between the DFT and DP result

is about 3%, which implies the accuracy of the DP model.
Furthermore, we also studied the pressure-temperature phase
diagram by the DP. Usually, the construction of phase diagram
by ab initio calculation is tough work due to the expensive
computational costs [47]. However, with a well-trained DP
model, this cost can be reduced from days to minutes to obtain
the Gibbs free energy at various pressures and temperatures.
To demonstrate its accurately, we calculated the Gibbs free
energy (G) using DFT, then compared with our DP results. As
shown in Fig. S4 [31], the DP results match the DFT calcu-
lations to a high degree. Then we calculated the difference in
Gibbs free energy (G) between the two phases of CaO (B1 and
B2) to assess the stability. The difference in Gibbs free energy
(G) is calculated by the following formulas:

�G(T, p) = GB1(T, p) − GB2(T, p), (4)

where G(T, p) is the calculated Gibbs free energy at given
temperature T and pressure p for a given structure. A positive
value of �G indicates that the B2 phase is stable relative to
B1, while a negative value of �G indicates the B1 phase is
more stable. By calculating the �G at different temperatures
and pressures, the pT diagram of CaO can be obtained, as
shown in Fig. 3(d).

The typical CaO structure is the B1 (NaCl structure) phase
under ambient conditions, which will transform into the B2
(CsCl structure) phase under high pressure and high tempera-
ture. Our DP calculated results show the transition pressure is
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FIG. 4. (a) Flowchart of the DP-GA. (b) Convex hull diagrams of the Ca-O system at 20 GPa by DP-GA. (c) The distribution of G vectors
projected onto the first two principal component axes (PC1 and PC2). (d) Computational cost with DFT and DP versus system size.

52 GPa at 300 K, compared to 50–70 GPa from experiments
[48–50]. Moreover, the phase transition pressure monotoni-
cally decreases when the temperature increases, which is also
consistent with DFT results from Bhardwaj et al. [51] and
Bijaya et al. [52,53].

C. Application of DP for crystal-structure search

Local structure optimization is the most expensive part
of the crystal structure prediction (CSP) process, as each
structure is evaluated using a traditional ab initio calculation
that demands a significant amount of computational effort
[54]. Thus, most searches consider only a limited number
of structures and a few stoichiometries. Here, the DP model
is suitable for CSP due to its efficiency in calculating free
energies and its ability to generalize to large systems. To
demonstrate this, we try to perform a more comprehensive
search for new phases and compounds in Ca-O systems with
a wide range of stoichiometries by interfacing the genetic
algorithm with DP (DP-GA). Figure 4(a) depicts the details
of the DP-GA scheme. First, the initial structures are ran-
domly generated without assuming the Bravais lattice type,
symmetry, atom basis, or unit cell dimensions. During the
GA, the evolutionary operators and random generators, such
as mutation, heredity, and permutation, are used to produce
new structures. Energies of these structures are calculated by
the DP model. Here, the DP is trained on the MP, AGA,

and DP-GEN data sets (see Sec. III A). It is worth noting
that the structures from GA can be used to update the DP
model to ensure the accuracy and generalization capability.
Finally, convergence is considered when the lowest energy
in the structure pool remains unchanged for 300 GA gener-
ations.

Using the DP-GA, CaxOy structures with a wide range
of atomic ratios (x : y = 1:1, 1:2, 1:3, 2:1, 2:3, 3:1, 3:2,
3:4, 3:5, 4:3, 4:5, 5:3, 5:4) were searched. Different formula
units (i.e., 1, 2, 3, 4, and 6 f.u.) were considered. The
maximum system size for our crystal structure prediction is
54 atoms. Figure 4(b) presents the convex hull of the Ca-O
system at 20 GPa. In this work, in addition to the stable
structures CaO (Fm3̄m) and Ca O2 (P21/c), several
metastable structures with enthalpy very close to the
convex hull (less than 100 meV/atom) were identified,
such as Ca2O (C2/m), Ca5O3 (P3m1), Ca3O2 (C2/m), Ca4O3

(C2/m), Ca5O4 (R3̄m), Ca4O5 (P1̄), Ca3O4 (C2/m), Ca2O3

(C2/m), Ca3O5 (Cm), and CaO3 (Imm2). Since the current
calculations do not consider the effect of temperature on
structural stability, these low enthalpy metastable compounds
may become stable at finite temperatures. Here, the structures
searched by previous AGA can be reproduced within a few
generations. Details of all these structures can be seen in
Fig. S3 [31]. For comparison, the corresponding energies
calculated by DFT and DP are also investigated. As shown
in Table S2 [31], the difference between the DP and DFT
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energies of these structures is around 5 meV/atom, indicating
that the DP can accurately describe the PES. Moreover,
our training set did not contain any Ca4O3 structures. The
accurate prediction of these unseen compositions implies that
our DP model has a high generalization capability, which
indirectly reflects our thorough exploration of the local atomic
environments.

To further illustrate this point, principal component analy-
sis (PCA) [55] was used to capture characteristics of the local
atomic environments. The atom-centered symmetry-functions
vector G [56] was selected as collective variables instead of
real atomic positions in order to maintain the symmetry of
structures. As shown in Fig. 4(c), using the PCA, we exam-
ined the G-vector distributions in the training data set and
structures generated by DP-GA for the Ca-O system. It can be
seen that most of the G points of the structures generated by
DP-GA are located within the training set. Thus, we explicitly
confirm that our sampling of the local atomic environment is
adequate, ensuring the accuracy of the CSP.

We also examined the computational efficiency of the DP
method. As computational hardware, we used clusters of
AMD® Opteron Processor 6378 2.4 GHz (8 cores per CPU) to
build the training set, and a NVIDIA® Tesla® V100 GPU to
train the DP model. It took us 3 days to obtain the entire train-
ing set, 21 h to train, and just 10 h to complete 1000 DP-GA
generations. However, the DFT-based GA can only complete
about 500 generations in the same amount of time (4–5 days)
and with the same computational resources. Moreover, we
compared the average time of DP and DFT to evaluate the
energy and force for different system sizes in units of CPU
core seconds. As seen in Fig. 4(d), the DFT calculations
scales in O(N3), whereas DP scale almost linearly with O(N ),

respectively. Thus, computational efficiency of the DP makes
it possible to predict new structures of a larger system.

IV. CONCLUSIONS

In summary, we proposed a way to prepare the train-
ing set and then developed, validated, and applied a DP for
the Ca-O system using the DEEPMD scheme. The DP was
developed using a training set including snapshots of the
prototype binary structures from MP, as well as Ca-O struc-
tures with their molecular dynamic trajectories obtained from
the AGA search. In comparison to DFT, this DP model can
accurately predict the energies, forces, and vibrational and
thermodynamic properties of the Ca-O system at a greatly
reduced cost. In addition, due to its ability to fast calculating
free energies, our DP model makes it efficient to construct
a temperature-pressure phase diagram for CaO at a lower
cost. Combining with the genetic algorithm, DP can also be
used to investigate stable and metastable Ca-O structures,
the accuracy of which is validated by a PCA analysis for
the local atomic environments. Our training approach of DP
presented in this paper provides an effective strategy to study
structural property, which can also be applied to other systems
as well.
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