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Morphological evolution via surface diffusion learned by convolutional,
recurrent neural networks: Extrapolation and prediction uncertainty
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We use a convolutional, recurrent neural network approach to learn morphological evolution driven by surface
diffusion. To this aim we first produce a training set using phase field simulations. Intentionally, we insert in such
a set only relatively simple, isolated shapes. After proper data augmentation, training and validation, the model
is shown to correctly predict also the evolution of previously unobserved morphologies and to have learned
the correct scaling of the evolution time with size. Importantly, we quantify prediction uncertainties based on a
bootstrap-aggregation procedure. The latter proved to be fundamental in pointing out high uncertainties when
applying the model to more complex initial conditions (e.g., leading to the splitting of high aspect-ratio individual
structures). The automatic smart augmentation of the training set and design of a hybrid simulation method are
discussed.
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I. INTRODUCTION

The intensive use of machine learning (ML) methods in
recent years has proven a valuable tool in materials science
and condensed matter physics [1–5]. ML techniques have
proven to be comparable or superior to traditional methods
in tasks such as phase identification [6], experimental images
processing [7] and device property estimation [8]. One of the
areas that is attracting the most interest is the application
of regression techniques to the development of interatomic
potentials [9,10]. The leverage of ML tools such as neural
networks (NN) [11–14] and Gaussian processes [15–19] al-
lowed for the construction of force fields far more accurate
than classical semi-empirical potentials which however can
be evaluated at a fraction of the computational effort of full
ab initio calculations [20]. This computational speed-up
makes it possible to tackle systems intractable by standard
density functional theory approaches [21,22].

Despite these improvements, the possibility of simulating
complex mesoscale phenomena is still a hard task, both for the
spatial and the time scales involved. In this respect, resorting
to continuum scale methods is often the only solution.

The smoothing of discrete atomistic behavior in continuum
fields typically leads to the formulation of evolution laws in
the form of partial differential equations (PDEs). It should
nevertheless be remembered that even within continuum
approaches the computational cost can be remarkable. For in-
stance, fine meshes are sometimes required by finite-element
method (FEM) solvers, and/or stiff equations involving high-
order derivatives might be involved (typical examples include
Navier-Stokes equations in fluid dynamics [23] or degenerate
Cahn-Hilliard equations in the presence of strong anisotropy
[24]). In the last few years, indeed, the interest in applying
ML techniques for treating PDEs problems grew substantially
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[25–30]. Several of these new methods exploit the possibility
of encoding spatial information of PDE solutions in images
(when on 2D domains) or 3D volumetric data. This permits to
leverage well-established ML techniques which have proven
extremely successful in computer vision tasks. Among the
different ML approaches that can be applied to predict image
sequences, we find particularly intriguing the convolutional,
recurrent neural network (CRNN) approach introduced in
2015 by Shi et al. [31] who modified the original long-short
term memory (an instance of recurrent neural networks) re-
placing fully connected units with convolution operations.
This variant, originally applied in the context of precipitation
nowcasting, allows for pixel-wise prediction of the next image
in a sequence, exploiting an efficient synergy of computer
vision and recurrent NN approaches.

More recently, Young et al. [30] applied CRNNs (including
the refinement introduced in Ref. [32]) to some materials-
science relevant phenomena, notably spinodal decomposition
and dendritic growth as obtained from phase-field models. In
this paper, instead, we apply CRNNs to another key problem
in materials science, i.e., morphological evolution via sur-
face diffusion [33,34]. Additionally, we implement a simple
but effective scheme based on an ensemble model capable
of providing an on-the-fly estimate of the prediction uncer-
tainty. This allows one to understand under which conditions
the model reliably handles extrapolation and when, instead,
generated sequences are untrustworthy. With this respect,
after building a convenient dataset based on phase-field sim-
ulations, we train, validate, and test the CRNN model on
progressively harder tasks also involving heavy extrapolation.

The paper is organized as follows. In Sec. II, we present
the phase-field model of surface diffusion and the selection
criteria of the evolution produced to construct the datasets.
Section III is devoted to the discussion of the specific
implementation of our NN architectures, details the train-
ing procedure and presents how the prediction uncertainty
estimation scheme is implemented. In Sec. IV, we report
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performances on challenging settings, involving, for example,
generalization to longer evolutions and more complex initial
conditions. Finally, Sec. V summarizes the current work and
presents some of the possible future extensions.

II. DATA GENERATION

A simple curvature-driven surface diffusion model [33,34]
is considered for the evolution of a two-dimensional profile �.
Local material fluxes J are set along the surface coordinate s
as a function of the surface gradients of the profile curvature
κ so that �Js = −Ms∇sκ , with Ms a mobility constant. The
resulting PDE problem is conveniently solved by a phase-field
approach, tracking the profile implicitly by means of an order
parameter ϕ, equal to 1 and 0 in the inner and outer domains
delimited by the curve � and with a diffuse interface along
it, with finite, possibly small thickness ε. By convention, the
sharp profile is identified as the ϕ = 0.5 isoline. The surface
dynamics can then be rewritten in terms of the time evolution
of the phase-field itself, resulting in the Cahn-Hilliard (CH)
equation set [34]:

∂ϕ

∂t
= ∇ · M(ϕ)∇κ

g(ϕ)κ = −ε∇2ϕ + 1

ε
W ′(ϕ) (1)

with W (φ) = 18ϕ2(1 − ϕ)2 a double-well potential with min-
ima in the two “bulk phases” ϕ = 0 and 1 and g(ϕ) =
(5/3)W (ϕ) a stabilizing function introduced for numeri-
cal convenience [35–37]. The degenerate mobility function
M(ϕ) = Ms(36/ε)ϕ2(1 − ϕ)2 is used to restrict the dynamics
within the interface region, thus returning the proper surface
diffusion behavior in the sharp-interface limit for ε → 0. The
numerical solution of the PDE system (1) is performed by
finite-element method, using the adaptive multidimensional
simulations (AMDiS) [38,39] toolbox. Both a semi-implicit
time-integration scheme and adaptive local mesh refinement
are exploited for numerical efficiency. The length scale in the
simulations has been scaled with respect to the interface thick-
ness ε. A 400×400 domain is considered to embed all test
geometries with finest mesh resolution of ∼1/7 to properly
represent the diffuse interface. Time is scaled with respect
to the surface mobility coefficient Ms. A fixed time step of
10−5 is set and a total evolution time of 0.6 is considered for
all simulations, as sufficient to reach a convex shape for all
initial conditions considered. The choice of a fixed integra-
tion time step over more sophisticated adaptive schemes has
been chosen since the CRNN structure considers sequence
elements as equally spaced in time. This parameter set has
been tested to ensure numerical convergence and stability for
all geometries considered in the present study, offering the
best tradeoff between accuracy and execution speed, the latter
being important to produce a sufficiently large dataset for
the ML training. As an example, the evolution of a simple
rectangular domain is shown in Fig. 1(a).

For the present study, the dataset was constructed consid-
ering only prototypical shapes which could be obtained by
rectangles and simple intersection of rectangles: simple bars,
symmetrical crosses, asymmetrical crosses and 45 crosses.
An example for all possible initial topologies is reported

FIG. 1. (a) Prototypical evolution of a rectangular domain by
isotropic surface diffusion. Intermediate steps present a characteristic
hourglass shape, while the final state is circular. (b) Examples of
shapes present in the training set (from left to right: Simple bars,
symmetrical crosses, asymmetrical crosses and 45 crosses).

in Fig. 1(b). Different dataset elements were constructed by
scanning rectangles aspect ratios between 1 and 20, keeping
the short side at 8 units of ε. The limitation in the aspect ratios
prevents domain splitting due to Rayleigh-like instability [40].
All the constraints in the dataset construction were intentional,
as one of the objectives of our work was to understand to
which extent a machine learning algorithm is able to general-
ize to unobserved configurations given a simple and controlled
set of examples.

III. MACHINE LEARNING METHODS

A. Convolutional, recurrent neural network

As stated in the introduction, PDEs in 2D can be con-
veniently encoded as images. This approach is particularly
straightforward in the case of phase field models, since the
value of the order parameter ϕ can be restricted between 0
and 1. Successive states of the morphological evolution of
an initial shape under surface diffusion, therefore, can be
represented by sequences of gray-scale images.

In recent years, convolutional neural networks (CNN) have
proven to be one of the most effective machine learning ar-
chitectures for tasks involving data with spatial structures.
Invented in the late eighties [41,42], they are at present one of
the standard tools in tasks such as audio data analysis [43,44],
image classification [45,46] and inference from volumetric
data [47,48]. The main building block of CNNs consists in
the convolution operation. Starting from raw data, hierarchi-
cally more complex “abstract” features may be extracted by
successive application of convolutional kernels (typically in
the form of square matrices) containing learnable parameters.
Recently, convolutional structures revealed their potential also
in condensed matter and materials science research. For in-
stance, they have proven effective in analyzing experimental
images [7], in accelerating or reducing the dimensionality of
complex continuum model simulations [25–28] and in tack-
ling mesoscale simulations [30].

The CNNs’ capability of identifying spatial correlations is
effective in tasks involving PDEs because they encode several
mathematical properties by design [49,50]. First, convolutions
are local operations: pixels which are farther apart than the
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kernel size are not allowed to “communicate.” If CNNs are
used to approximate PDEs, this directly translates in the lo-
cality of (partial) differential operators. In the present case,
for instance, the isotropic Cahn-Hilliard equation predicting
the evolution of a domain only depends on its local curvature.

A second important property of convolution transforma-
tions is that they are equivariant with respect to the group
of spatial translations. This is beneficial to the training pro-
cedure, both in terms of training time and quality of the
final result, as the NN does not need to learn the underlying
symmetry group. Correspondingly, predicted evolution will
not depend on the absolute position of the initial shape by
construction. The use of convolution operators also allows
for a straightforward implementation of periodic boundary
conditions, which can be simply obtained by using a so-called
“circular padding” [51,52].

Last, if all transformations in the NN are either convolu-
tions or pixelwise (fully convolutional NNs), the model can
operate on images of arbitrary size. In practice, this means
that the CNN can be trained on images representing small sim-
ulation cells and, once parameters are optimized, the learned
evolution rules can be applied on much bigger domains, con-
sidering the pixel dimension as fixed [49,50]. This allows
one to tackle mesoscale systems with simulation cells several
time the size of the original dataset, an advantage clearly
demonstrated in [30].

While CNNs are suited for dealing with local spatial cor-
relations, the goal of the current work is to approximate
morphological time evolution. This kind of task involves ana-
lyzing and generating temporal sequences. In this field, RNNs
emerged as one of the most effective machine learning strate-
gies. Recurrent structures usually exploit a hidden state, which
can be considered as a sort of “memory” of previous states
of the system and is capable of capturing time correlations
[53]. There are several possible implementations for RNNs,
but in the last years long-short term memory (LSTM, [54])
and gated recurrent units (GRU, [55]) have emerged as the
most used and effective. In our case, we opted for the latter, as
GRUs often offer performances comparable to LSTMs with
a lower number of parameters [56], which translates to faster
evaluation and a reduced possibility of overfitting.

Similarly to fully convolutional NNs, which can transform
images of any size, RNNs can elaborate sequences of arbitrary
length. This means that a RNN based model can use a partial
evolution of any length (possibly a single initial state) as an
input and then generate sequences of arbitrary length as well
[49,50].

As the objective of the current work is approximating
the time evolution of systems described by PDEs, the spa-
tial features learning capabilities of CNNs and the temporal
ones of RNNs should be used simultaneously. Following
Refs. [31,57], we implemented a convolutional GRU (Con-
vGRU) cell as the building block of our NN structure. The
main idea consists in having a hidden state which is itself
structured as a (multiple channel) image and in replacing lin-
ear transformations of regular GRUs with convolutions. The
result is a neural network capable of learning spatiotemporal
correlations on a pixel level. Notice that our approach, while
similar to the one of Ref. [30], does not require convolutions
involving temporal variables, thus using a smaller number of

parameters. Additionally, we note that, from a purely technical
point of view, extension of the present approach to three
spatial dimensions is straightforward, but the actual problem
stems in GPU requirements and in the effort needed to gener-
ate the dataset.

Here, for the sake of reproducibility, we list all hyper-
parameters. The paragraph can be skipped by uninterested
readers. The overall CRNN structure used in the current work
is composed of two stacked ConvGRU cells, for a total of
∼2.8×105 parameters. Both hidden states have 35 channels,
convolution kernels are set to 5×5, stride 1 (i.e., the convo-
lution runs over all pixels), and circular padding encoding
periodic boundary conditions by construction are used. The
hidden layer is converted to the next state by a 3×3 convo-
lution, stride 1 and circular padding followed by a sigmoid
activation function reducing the output image in the range
[0,1]. This set of hyperparameters produced the most satisfy-
ing results while containing computational costs in our tests.

Pooling and batch normalization are common techniques
used in image processing [49,50], to reduce the dimen-
sionality of the feature map and re-scale the intermediate
representation respectively. Preliminary tests showed a neg-
ligible impact on the quality of the learned models for the
present, simple application. Therefore they were not used in
the current work. It is still worth noticing that pooling layers,
due to their intrinsic capability of compressing the spatial
resolution of the representations, may become important for
dynamics involving long-range interactions. Composition of
pooling, convolutions and transposed convolutions may in-
deed allow the flow of information from and to pixels which
are farther apart than the kernel size, similarly to a U-net
architecture [58].

We conclude this section by emphasizing the fact that all
computational operations involved in a trained CRNN are
typically much cheaper computationally than a FEM solver
(by orders of magnitude for all examples discussed in the
paper). Additionally, they can easily be implemented on par-
allel machines (or GPUs). Lastly, the time steps between
one state and the following in the evolution obtained by ma-
chine learning is much longer than the one used in traditional
schemes. All these advantages contribute in compressing the
computational times of the predicted evolution, allowing to
tackle configurations which would be inconvenient to simulate
by traditional methods (e.g., long-time evolutions, large, or
complex systems).

B. Equation symmetries and training

As specified in the previous section, one of the main advan-
tages of CRNN is the encapsulation of some symmetries of the
underlying equation. In particular, Cahn-Hilliard equation is
equivariant with respect to spatial translations i.e., if ϕ(�x, t ) is
a solution of the equation with a given initial condition ϕ0(�x),
then ϕ(�x + �R, t ) is the solution given the initial condition
ϕ0(�x + �R) for any vector �R. This property is maintained by
convolution operations. Moreover, the CH equation is local, as
the evolution of the phase field at some point �x only depends
on the value of ϕ and its spatial derivatives at that point.
In a picture in which convolutions provide finite difference
approximations of derivatives, there is a finite kernel size
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which is capable of providing the evolution law. Standard con-
volutions, however, do not encode other symmetries which are
nonetheless present in the degenerate Cahn-Hilliard equation.
In order to leverage these additional features, we employed
two strategies: Modification of the loss function and data
augmentation.

In supervised machine learning tasks, the objective of the
training procedure consists in the minimization of a loss func-
tion L, which can be considered as the deviation between the
predicted output and the correct one present in the training
set. The base for the loss function used in this work was the
commonly used in regression tasks mean squared error loss:

L(θ ) = 1

NT ST

NT S∑
i=1

T∑
t=1

〈(ϕi(t ) − ϕ̂i(t |θ ))2〉x. (2)

Here, θ represents the set of NN parameters, i indexes the
training set elements, t indexes the time step and runs from 1
to the total length of the sequence T , ϕ is the true sequence of
the system temporal evolution in the training set, ϕ̂ is the time
evolution as predicted by the CRNN and 〈.〉x denotes spatial
average.

As the CH equation encodes the continuity law [34], it im-
plies the global conservation of the order parameter ϕ. It must
therefore hold that at each timestep the spatial integral of the
approximated phase field is equal to the integral predicted by
FEM. This condition is equivalent to the equality of the spatial
mean of the phase fields, at any time t and for every evolution
in the training set i, as the two quantities are proportional.
In order to enforce this global conservation condition, the
original loss function has been therefore modified by adding
an L2 loss term with respect to this spatial average of the phase
field:

L̃(θ ) = 1

NT ST

NT S∑
i=1

T∑
t=1

〈(ϕi(t ) − ϕ̂i(t |θ ))2〉x (3)

+α(〈ϕi(t )〉x − 〈ϕ̂i(t |θ )〉x )2, (4)

where α sets the penalization strength. In our tests, we ob-
served that a value of α = 2 led to the best performances.

Another symmetry to be taken into account is the equiv-
ariance of the evolution with respect to rotations of the initial
condition. In order to enforce it, we adopted a data augmen-
tation strategy, in which every time sequence is rotated by a
random angle before being passed to the neural network. This
approach regularizes parameters in convolutional kernels,
forcing them to approximately respect rotational equivariance.

A last data augmentation procedure has been used to en-
code in the neural network the symmetry in the double well
potential and mobility function with respect to the transfor-
mation ϕ → 1 − ϕ (see Sec. II). This means that the negative
version of evolution in Fig. 1(a) is still a valid solution to the
Cahn-Hilliard equation. The physical interpretation of this is
that holes in a material matrix will undergo the same morpho-
logical evolution as a material domain with an identical initial
shape. Being a discrete symmetry, it is possible to expose the
CRNN to all sequences both in the positive (ϕ) and negative
(1 − ϕ) version. This way, gradients in the backpropagation
algorithm are never computed on positive or negative only
variants, reducing biases with respect to this symmetry.

C. Prediction uncertainty estimation

One of the main pitfalls that can be encountered during
the training of NNs and other machine learning models is that
it is not clear if the produced answer is reliable or the model
is being used in extrapolation conditions [59]. This problem
is particularly critical in the current case, as the training
set was restricted on purpose to simple initial conditions, in
order to avoid evolution which require computationally inten-
sive simulations and specialized algorithms (see discussion
in Sec. IV). In general, a prediction uncertainty quantifica-
tion is essential to detect such issues. A common strategy to
asses this problem is through testing: model performances are
monitored on an ad-hoc test set, representing typical tasks
the machine learning model will encounter once deployed
[49,50]. In our case, however, the construction of a proper test
set presents several challenges. For example, it is not clear
how a representative set of initial conditions should be built.
Furthermore, such set should comprise also configurations
presenting complex interactions which, as it was already men-
tioned, are inconvenient to simulate in high number because
of computational effort.

An alternative solution is leveraging a resampling proce-
dure known as bootstrap aggregation (bagging) [60]. This
technique allows for the construction of an ensemble of
models, whose prediction capabilities are higher than the
individual models’ one. In addition, the dispersion of the en-
semble predictions represents an estimation of the prediction
uncertainty [61].

In our case, we opted for a simple implementation of
bagging. Starting from the original training set composed
of N sequences, a number of new sets with the same size
are generated by random extraction with replacement. These
new sets are called bootstrap samples (BS). Extraction with
replacement guarantees that BSs, though drawn from the same
original set, are different. For each BS an independent model
is fitted, thus generating the neural network ensemble. It can
be proven from a statistical point of view that, if the learned
models present an unstable enough training procedure, the
aggregate prediction of the ensemble is more robust and re-
liable than individual ones [62]. Another key advantage is
that variance and/or standard deviation between individual
predictions of the models in the ensemble can be calculated.
In the current framework, this allows for the definition of an
on-the-fly, pixelwise prediction uncertainty, thus the identifi-
cation of regions and instants in which the predicted evolution
is unreliable.

To form the aggregate prediction, we used simple mean. On
a qualitative level, when models inside the ensemble provide
diverging predictions, aggregation of the individual predic-
tions will produce a gray “halo,” as the mean of the predicted
values of ϕ is different from 0 or 1. At the same time, the
ensemble standard deviation allows for the definition of a
confidence interval on a quantitative level.

In order to maximize the independence in the training
procedure, bootstrapping has been applied on both training
(∼1200 sequences) and validation (∼250 sequences) sets and
an ensemble of 15 models was constructed. This value was
chosen as a reasonable compromise between the ensemble
size, training times and prediction computational costs, the
latter two scaling linearly with the number of models.
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FIG. 2. Scheme of the training procedure. A single parameters optimization step consist in a random extraction of a batch of sequences
which are converted to the right resolution size, randomly rotated and passed to the CRNN together with their negative versions.

D. Training, validation, and testing

As anticipated, training has been performed with the mod-
ified mean squared error loss L̃ reported in Eq. (3). NNs’
parameters were optimized using the standard ADAM algo-
rithm [63], as implemented in the PYTORCH library [64].

Training and validation sets are composed by sequences
of 150 snapshots, starting 0, 25 and 50 time steps from
the initial state of the system. This choice allows for the
exposure of the models to different initial conditions. The
time difference between each timestep is 250 time integration
steps of the high-fidelity phase-field FEM solver (see Sec. II).
Sequences originating from the same initial condition were
exclusively inserted in either the training or the validation set,
in order to remove correlations which would affect validation
loss.

From a practical standpoint, training is summarized in
Fig. 2 and proceeds as follows. A batch of sequences is
extracted from the training set, converted to a 90×90 pixels
format and randomly rotated. The batch is then augmented
with the negative version of the evolution through the transfor-
mation ϕ → 1 − ϕ. Next, truncated subsequences are passed
to the Convolutional Recurrent structure, whose task is to
generate its completion. The truncation point is selected at
random for every batch. This choice allows for a compro-
mise between the full, more demanding task of generating
a sequence starting from a single initial state and the easier
(but far from the actual application mode) task of completing
a partial sequence. The produced sequence is then compared
with the one in the training set, loss function is evaluated and
parameters are updated.

A training plot is reported for an individual model in the
bootstrap aggregate in Fig. 3(a). Validation loss is always
calculated by providing the model only the initial state of the
evolution, as this is the actual task the network is required
to tackle with new, unobserved initial conditions. Although
noisy, after ∼75 epochs (in one epoch all elements in the
training set are presented once to the NN model) the validation
loss settles, indicating the training procedure has converged.
No increasing trends can be observed, confirming the absence
of overfitting. Oscillations in the loss value as a function of
epochs are induced by the randomness of the optimization
procedure. The evolution of a validation initial condition as

predicted by the model is reported in figure Fig. 3(b), con-
firming the model parameters have converged.

As an additional confirmation of the training procedure
results, we inspected evolution predicted starting from previ-
ously unobserved and qualitatively different Y shapes. Arms
of these new initial conditions have the same thickness as
rectangles and crosses present in the original dataset. In-
spection of the example evolution reported in Fig. 4 reveals
that predicted evolution exhibits only negligible deviations
from the true one. At the same time, prediction uncertainty
is low, confirming that the aggregate model is not in extrap-
olation conditions even though the total number of frames
predicted is 300, double the 150 used during training, suggest-
ing good generalization capabilities to long-time evolutions.
We emphasize that the close agreement on this specific test
configurations cannot be considered as an indication of per-
formances on general initial conditions, as a single class of
shapes has been tested. Our concern, here, is instead to check
the ensemble model behavior for progressively harder tasks.

IV. RESULTS AND DISCUSSION

In the following section, we test the capabilities of the
presented machine learning approach in predicting long term
morphological evolution (i.e., for times much longer than the
150 time steps used in training) and in capturing important
scale-dependent behaviors which were not explicitly inserted
in the training set. We conclude the section by inspecting gen-
eralization capabilities and limitations in the case of complex
initial conditions with many interacting shapes.

A. Stationary state stability

One of the main concerns that should be addressed is the
stability of the NN prediction for long-time evolution. While
a simple test was provided with the evolution of Fig. 4, we
perform now a more in depth analysis which also considers
an unobserved topology. In particular, the time evolution of
an annular shape stationary state configuration is considered.
The goal of this test is threefold: the first check consists in ver-
ifying that the aggregate model correctly predicts that the hole
in the center of the domain is a stable configuration (as the
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FIG. 3. (a) Training and validation loss value as a function of the epoch number for one model in the ensemble. (b) Example predicted
evolution for a validation set element and the corresponding high-fidelity FEM sequence.

curvature and, thus, the chemical potential is uniform); sec-
ond, we check if the stability is predicted for times exceeding
150 time steps, indicating good time generalization capabili-
ties of the model; third, we verify that prediction uncertainty
rises if and as soon as the generated evolution diverges from
the correct one.

The evolution and the corresponding aggregate model stan-
dard deviation is reported in Figs. 5(top) and 5(bottom),
respectively. As it can be clearly observed, the annular con-
figuration is stable for times corresponding to approximately
500 snapshots, more than 3 times the length of the training
sequences. This confirms that the NN model is both effective
in recognizing this unobserved steady state configurations and
in generalizing to sequences longer than the ones provided
during training.

After 500 snapshots, a progressive deviation of the evolu-
tion, caused by models in the aggregate unphysically filling
the hole, can be observed. As soon as this happens, however,
a clear increase in the prediction uncertainty is reported by
the formation of the halo visible in the predicted ϕ at t = 750.
Correspondingly, an increase of the standard deviation in the
hole region can be observed, confirming the extrapolation
recognition capabilities of our approach.

FIG. 4. Example evolution of a Y shape for testing the aggregate
model performances (not included in training). The lack of high
model variance regions confirms that this example is far from ex-
trapolation conditions. Generated sequences are twice as long as the
ones of the training procedure.

B. Size-dependent trends

As reported in Sec. III D, training and validation shapes, as
well as the initial test on Y configurations, all shared a com-
mon characteristic arm thickness. In order to check the ability
of this ML method to replicate scale-dependent phenomena,
we decided to analyze to evolution of ellipsoidal domains.
Self-similar shapes present a self-similar evolution under the
(degenerate) Cahn-Hilliard equation [65–67]. Therefore, el-
lipsoidal domains will progressively reduce their aspect ratio
(AR) starting from the initial value and reaching a circular
equilibrium shape with a rate depending on the size of the
initial condition.

To check if the CRNN was capable of capturing this trend,
we compared the evolution of ellipses with an initial AR
of 3 as simulated by FEM solver and by the ML approach.
Figure 6(a) reports such comparison. As can be observed, the
NN evolution closely follows the high-fidelity phase field one.
In Figs. 6(b) and 6(c), the aspect ratio as a function of time is
also reported for the smallest and biggest ellipse, as a further
proof of consistency. We emphasize again that the number of
snapshots in these evolution is greater (more than 3 times) that
of the sequences used during training.

The sequence of Fig. 6 also highlights another characteris-
tic of the NN approach. While PF evolutions of ellipses have
been run independently, in the ML based prediction the evo-
lution of all domains is calculated simultaneously by placing
all of them in the same simulation cell. This does not increase
computational costs for a cell of fixed size, as the number of

FIG. 5. Evolution (top) and aggregate model standard deviation
(bottom) of a stable annular configuration. This kind of topology was
not present in the training set. As soon as the evolution trajectory
deviates from the correct stable configuration, aggregate uncertainty
increases.
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FIG. 6. (a) Evolution of elliptical domains. The learned model
has implicitly learned time scaling rules with the initial shape
size. As computational costs depends on the size of the image for
Convolutional Recurrent Neural Networks, all domains are evolved
concurrently in the same simulation cell. (b) and (c) aspect ratio evo-
lution for the smaller and bigger ellipses respectively as a function of
frame number. Blue continuous line represents the AR predicted by
the machine learning approach and dashed orange line reports the”
True” aspect ratio as obtained by FEM solver.

operations for a convolutional neural network only depends on
the number of pixels present in the image. This is in contrast
to phase field approaches based on FEM, whose cost depends
on the complexity of shapes due to mesh refinement. As all
ellipses can be fitted in a single image, the overall compu-
tational cost is equivalent to treating ellipses independently.
Additionally, this example shows explicitly how the machine
learned evolution is both equivariant with respect to the group
of spatial translations and local.

C. Extension to complex conditions

Finally, we show performances of our method in the case
of complex initial conditions containing multiple interacting
material domains and discuss limitations of our approach in
these settings. We recall that the training set did not contain
any evolution involving interacting domains, therefore these
conditions represent an extrapolation test. Figure 7 shows
the evolution of one of such configurations. Notice that an
important computational effort would be required in order to
treat the problem with traditional FEM solvers, as fine meshes
are required to track the domain boundaries topology. On the
other hand, NN evolution is orders of magnitude cheaper, as
discussed in previous sections. As it is clear from Fig. 7,
the predicted evolution quickly exhibits a strong increase in
prediction uncertainty in regions where nontrivial topological
changes occur. This is made evident by the formation of halos
and the increase of the variance between predictions of models
in the ensemble.

These topological changes arise from well known behav-
iors in systems evolving by surface diffusion. In particular,
high aspect ratio configurations undergo a Rayleigh-like in-
stability and split into two or more domains as a result of
a phenomenon known as pinch-off [40]. Notice that, even
though such configurations were not present in the train-
ing set, the implemented prediction uncertainty estimation
scheme is capable of identifying regions of the simulations
where topological changes are likely to happen.

A less evident source of prediction uncertainty is present
in the evolution of Fig. 7. Due to the existence of a lower
bound in the representable physical dimension induced by
the pixel discretization of the phase field, domains separated
by less than such length are spuriously connected by gray
regions. This can be noticed in Fig. 7 at t = 1: When the
distance between two domains is comparable or smaller than
the pixel size, gray areas are formed due to resolution limits.
This affects the subsequent evolution, as the NN model has no
access to information on the high-resolution FEM counterpart.
Regions containing close domains at t = 1 also exhibit high
uncertainty at subsequent times. While this phenomenon is

FIG. 7. Evolution of complex initial conditions comprising many interacting domains. Critical topological changes such as pinching, which
was not present in the training set, are marked as high prediction error areas.
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still detected by the aggregate model standard deviation as a
source of uncertainty, initial conditions for full NN evolutions
should be considered carefully to avoid such pathological
states. A possible approach, though not tested in depth in
the current work, is to exploit the CRNN ability to process
subsequences and feed the ML model more than a single state
of the FEM evolution as an initial condition. The information
lost by resolution downscaling may therefore be recaptured in
temporal correlations between successive states of the system.

V. CONCLUSIONS

In this paper, we have shown that CRNN can be con-
veniently used to learn morphological evolution via surface
diffusion. Even by training the model over a dataset including
only extremely simple evolutions (simple shapes, single do-
mains throughout the whole evolution), reliable extrapolation
to both more complex shapes and long timescales has been
proven.

After introducing a convenient on-the-fly estimate of the
uncertainty prediction, we showed that the model, instead, be-
comes less reliable during some critical evolution, involving,
e.g., lateral aggregation and splitting of a single domain via

pinching. Limitations induced by the pixel-level discretization
of the computational domains have also been discussed. Our
results naturally open two further directions for future work:
smart completion of the shape-evolution dataset by focusing
solely on the high uncertainties regions, and designing a hy-
brid ML-PF approach where one automatically switches [29]
between the (computationally expensive) high-fidelity PF ap-
proach to the RCNN one based on the uncertainty prediction.
The latter would also remove pathological behaviors induced
by finite resolution, as FEM solvers are capable to refine
meshes as needed.

Finally, while here the methodology was tested under sim-
ple isotropic conditions and in the absence of external fields,
suitable extensions to treat phenomena such as faceting [24],
kinetically limited growth [68] and/or heteroepitaxy [69] are
envisaged.
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