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Structure and glide of Lomer and Lomer-Cottrell dislocations: Atomistic simulations for model
concentrated alloy solid solutions
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Lomer (L) and Lomer-Cottrell (LC) dislocations have long been considered to be central to work hardening in
face-centered cubic (FCC) metals and alloys. These dislocations act as barriers of motion for other dislocations,
and can serve as sites for twin nucleation. Recent focus on multicomponent concentrated FCC solid solution
alloys has resulted in many reported observations of LC dislocations. While these and L dislocations are
expected to have a role in the mechanical behavior of these alloys, little is understood about how variations
in composition and associated fault energies change the response of these dislocations under stress. We present
atomistic simulations of L and LC dislocations in a model Cu-Ni system and find that changes in composition and
applied stress conditions result in a wide variety of responses, including changes in core configuration and (100)
glide. The results are compared to and extend previous literature related to the nature of L/LC core structures and
how they vary with respect to intrinsic materials properties and stress states. This study also provides insights
into mechanisms such as twin nucleation that could have important implications for work hardening in FCC
solid-solution alloys.
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I. INTRODUCTION

Understanding the stability of Lomer (L) and Lomer-
Cottrell (LC) dislocations is crucial for insight into a variety
of deformation and microstructural behaviors in face-centered
cubic (FCC) metals and alloys. L and LC dislocations have
historically been proposed as major contributors to work hard-
ening in these systems [1–3], which is a property that has been
shown to depend on stress orientation in single crystal tensile
tests [4,5]. Recent transmission electron microscope (TEM)
observations of deformed FCC high-entropy alloys have re-
ported the presence of LC dislocations [6–10], suggesting
that these dislocations may play a role in the properties of
these alloys. LC dislocations have also been considered as
possible twin nucleation sites [11–13], which can increase
ductility and strength (e.g., through a dynamic Hall-Petch
effect). Additionally, glide of L dislocations in the (100) plane
could aid in deformation at higher temperatures through direct
motion of L dislocations [14] or through L dislocations acting
as kink pairs for a screw dislocation dissociated on a compact
plane migrating in a (100) plane [15]. A reaction involving a L
dislocation has previously been used to explain the motion of
a low-angle 〈110〉 tilt boundary in FCC aluminum [16]. The
results summarized here are representative of previous litera-
ture that clearly demonstrate the important role of L and LC
dislocations in the deformation behavior and microstructures
of FCC metals and alloys.

Lomer and Lomer-Cottrell dislocations are formed by the
reaction of a 60◦ mixed dislocation with a Burgers vector of
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a
2 [1̄10] on the (111) plane with another 60◦ mixed dislocation
with a Burgers vector of a

2 [101] on the (1̄11) plane [Fig. 1(a)],
where a is the FCC lattice constant [17]. The L dislocation
is formed through the reaction of the 60◦ mixed dislocations
at the intersection of the (111) and (1̄11) planes to form a
dislocation with a a

2 [011] Burgers vector and line direction
along [01̄1] [Fig. 1(b)]:

a

2
[1̄10] + a

2
[101] → a

2
[011]. (1)

The (100) glide plane of the L product dislocation is not a
closed-packed plane, and will thus have a higher barrier for
glide than dislocations gliding on the {111} planes. The L
dislocation thus acts as an obstacle for subsequent dislocations
gliding on the intersecting (111) and (1̄11) planes.

In the FCC crystal structure, the 60◦ mixed dislocations
will dissociate into two Shockley partial dislocations bound-
ing a stacking fault [Fig. 1(c)] through the following reactions:

a

2
[1̄10] → a

6
[1̄21̄] + a

6
[2̄11], (2)

a

2
[101] → a

6
[11̄2] + a

6
[211]. (3)

An alternative reaction to Eq. (1), with the same net Burgers
vector, can be written as

a

6
[1̄21̄] + a

6
[11̄2] + a

6
[2̄11] + a

6
[211]

→ a

6
[011] + a

6
[2̄11] + a

6
[211]. (4)
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FIG. 1. (a) Two perfect 60◦ mixed dislocations lying on inter-
secting {111} planes. (b) A Lomer dislocation on a (100) plane.
(c) Two dissociated 60◦ mixed dislocations lying on intersecting
{111} planes. (d) A Lomer-Cottrell dislocation. Black symbols
represent perfect dislocations, grey symbols represent partial dislo-
cations, and red lines represent intrinsic stacking faults. The circled
dot in (b) represents the direction out of the page.

The product configuration of Eq. (4) is the LC dislocation
[Fig. 1(d)] with the reactants being partial dislocations from
the two 60◦ mixed dislocations. The leading partial dislo-
cations of the two 60◦ mixed dislocations form a sessile
stair-rod partial dislocation with a Burgers vector of a

6 [011].
This dislocation is connected to the other two partial disloca-
tions through stacking faults on the intersecting closed-packed
planes. The LC configuration is conventionally considered to
be a stronger barrier than the compact L dislocation against
subsequent dislocation motion due to the sessile nature of the
stair-rod partial dislocation.

While dislocations tend to be dissociated in FCC crystal
structures, the LC dislocation is not guaranteed to form from
two dissociated 60◦ mixed dislocations. It is possible to form
the L dislocation instead. Predicting the product configuration
from linear elasticity theory is difficult without the knowl-
edge of dislocation core energies [18,19]. Alternatively, the
core configuration can be directly modeled through atomistic
simulations.

Previous linear elasticity-based analyses on these disloca-
tions, while lacking consideration of the dislocation core, have
resulted in useful insights. Linear elasticity theory, with either
anisotropic [20] or isotropic [21] elastic constants, has been
used to predict an asymmetrical dissociation of LC disloca-
tions across the closed-packed planes, a conclusion that was
later verified with atomistic simulations [19]. Stroh [22] has
proposed that under an applied stress it may be possible for a
LC dislocation to have its partial dislocations recombine into
a L dislocation to glide in a (100) plane or that it may decom-
pose into the reactant dislocations from which it was formed.
An anisotropic linear elasticity-based dislocation dynamics
model of a LC junction in FCC metals and its response to
stress through an unzipping mechanism [23], which causes the

L/LC configuration to decompose into its parent dislocations,
was able to replicate many of the details of a quasicontin-
uum method that treated atoms near the junction with an
interatomic potential [24]. This led the authors of the former
study to conclude that knowledge of elastic interactions and
stacking fault energy is all that is needed to determine the
junction structure. Challenges are associated with extending
such analyses, as described above. Specifically, it is difficult
to predict if the L or LC configuration is lower in energy
without knowledge of core energies [18,19], contrary to sug-
gestions of previous authors [23]. The importance of the core
structure is also emphasized by Stroh [22] in the context of
possible transformations of a LC dislocation. Further under-
standing of L and LC dislocations, and by extension their
role in the mechanical properties of FCC metals and alloys,
thus requires an accurate description of the dislocation core
structure.

Specifically, it is important to understand how a variation
in composition affects the resistance of a L or LC dislocation
against glide, which gives a measure of their capacity to
harden the material by blocking the glide of other disloca-
tions. Further, it is important to understand how composition
affects the different possible core transformations, such as the
nucleation of a nanotwin, that can occur. These core trans-
formations can result in further hardening of the material,
especially if they produce faults that intersect glide planes. In
addition, understanding the stress orientation dependence of
glide resistance and core transformations may reveal insights
into the orientation dependence of work hardening in FCC
alloys. While the previously mentioned unzipping mechanism
has been studied as a stress-induced response of these dislo-
cations [23,24], additional responses are expected to occur.
Evidence for this is present in the form of TEM studies of
glide dislocations on (100) planes in high- [25] and low-
[26] stacking fault energy FCC alloys. In the latter case, a
constriction of a LC dislocation to a L dislocation is expected
to occur to facilitate glide. The competition between these
(and potentially other) responses is likely due to a combina-
tion of pinning, line tension, stress field, and core structure
effects.

Motivated by these questions, we undertake in this paper
the modeling of L and LC dislocations through atomistic
simulations using elastic- and lattice-Green’s-function flex-
ible boundary conditions in a Cu-Ni average-atom system
described by an embedded-atom method (EAM) potential
[27,28]. The equilibrium structure of these dislocations are
surveyed under different compositions, shear stress orienta-
tions, and magnitudes to probe their resistance to glide and
different possible core transformations. We find that depend-
ing on the shear stress orientation, the relative resistance
against glide on a (100) plane is not solely due to the rela-
tive value of the unstable stacking-fault energy on that plane.
Additionally, core transformations involving faults can occur
for materials with both low (Cu-rich compositions) and high
(Ni-rich compositions) fault energies, depending on the orien-
tation and magnitude of the stress field. The paper presented
here thus represents a systematic study of L and LC dislo-
cations as a function of composition and stress orientation
that extends previous atomistic and continuum studies of this
topic.
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FIG. 2. (a) Schematic of a LC configuration under pure shear. Partial dislocations are represented by grey half crosses and intrinsic
stacking faults are represented by red lines. The directions are given in the crystal basis. (b) Normalized Peach-Koehler (P-K) forces for
partial dislocations in (a) as a function of θ . The meaning of the sign of the P-K forces is given in the text.

II. MODEL AND METHODS

A. Applied pure shear stress states

As we will be considering an array of variables including
solute composition, stress orientation, and stress magnitude,
we will simplify the analysis by focusing on a few shear
stress orientations. We consider a LC configuration such as
that shown in Fig. 2(a). In this configuration, three partial
dislocations are present: the stair-rod partial dislocation (SRP)
which lies on a (100) plane with a Burgers vector of a

6 [011], a
Shockley partial dislocation (SP1) which lies on one of the
{111} planes intersecting the (100) plane and is connected
to SRP through a short intrinsic stacking fault, and another
Shockley partial dislocation (SP2) which lies on the other
{111} plane intersecting the (100) plane and is connected to
SRP through a long intrinsic stacking fault. SP1 and SP2 have
Burgers vectors of either a

6 [211] or a
6 [2̄11], depending on if

the dislocation is to the left or right of SRP, respectively.
We consider a pure shear state, represented by the follow-

ing stress tensor in the supercell basis (the x direction, which
is represented by [011] in the crystal basis, is represented by
[100] in the supercell basis):

� =
⎡
⎣

−σ 0 0
0 σ 0
0 0 0

⎤
⎦. (5)

As the crystal is rotated counterclockwise (or, alternatively,
the stress field is rotated clockwise) about the z axis by an
angle θ , the resulting stress field with respect to the crystal
coordinates becomes

�′ = Q�QT , (6)

where Q is the rotation matrix:

Q =
⎡
⎣

cosθ sinθ 0
−sinθ cosθ 0

0 0 1

⎤
⎦. (7)

The different partial dislocations will have a different
Peach-Koehler (P-K) force as a function of θ . The P-K force
per unit length ( �F PK ) is defined as [29]

�F PK = (�′ · �b) × �l, (8)

where �b is the Burgers vector and �l is the unit line direction of
the dislocation. The normalized P-K forces (with σ , |�b|, and
|�l| set to one for each dislocation) are calculated and plotted in
Fig. 2(b) for values of θ between 0–90◦, assuming SP1 to be to
the left of SRP. In the supercell basis, the unit Burgers vectors
for SRP, SP1, and SP2 are [100], QT (θ = 54.74◦) · [100],
and QT (θ = −54.74◦) · [100], respectively, and the unit line
direction is [001]. The value of θ is taken as the angle between
the Burgers vector of SRP with SP1 or SP2. Positive values
for SP1 and SP2 represent motion toward SRP, while positive
values for SRP represent motion to the right. The normalized
P-K force on SRP is also equivalent to the normalized P-K
force on the compact L dislocation (the absolute P-K force
will be three times larger for the L dislocation than SRP as
the magnitude of its Burgers vector is three times larger). The
varying P-K forces will result in different responses of L and
LC dislocations under applied stresses with different values
of θ . To simplify for further analysis, we consider five values
of θ : 0.5◦, where SRP has a P-K force near zero and SP2
has a slightly higher P-K force than SP1, 9.74◦, where SP2
has its maximum normalized P-K force, 35.26◦, where SP1
has a P-K force of zero, 45◦, where SRP has its maximum
normalized P-K force, and 90◦, where both SP1 and SP2 want
to move away from SRP, which has a P-K force of zero. We
will explore the effect of stresses given by Eq. (6) at these
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FIG. 3. The simulation cells used for relaxing L and LC dis-
locations are represented by this example for a fully relaxed LC
dislocation in pure Cu in the same orientation as Fig. 2. The di-
rections are given in the crystal basis. The region highlighted in
magenta represents the GF region. Atoms colored in cyan, red, and
grey represent FCC, HCP, and other environments according to the
common neighbor analysis scheme [30] as implemented in OVITO
[31].

orientations through the methodology presented in the next
section.

B. Computational details

We employ atomistic simulations using flexible boundary
conditions, as described in Ref. [32], to model L and LC dis-
locations. The setup of the simulations is shown in Fig. 3. The
supercell is partitioned into three regions: an inner atomistic
region, an outer continuum region, and a buffer Green’s func-
tion (GF) region. The atomistic region has a radius of 60 Å for
pure Cu, and is scaled based on the lattice constant for other
compositions. The GF region has a thickness of 13 Å, which
is larger than twice the cutoff of the EAM potential (REAM

cutoff),
and the distance between the boundary of the GF region to
the surface of the continuum region is larger than 2REAM

cutoff.
The thickness of the cell in the z direction (the dislocation
line direction) is a/

√
2. Periodic boundary conditions are

applied along the z direction, simulating an infinitely straight
dislocation. All atoms are initially displaced according to the
anisotropic linear elasticity theory solution for displacements
around a L dislocation centered in the atomistic region using
the BABEL package [33]. The atomistic region is then relaxed
using the FIRE algorithm [34,35] as implemented in LAMMPS

[36] with a force tolerance of 10−7 eV/Å or until 100 000
minimization steps are reached (the maximum two-norm of
the global force vector in the atomistic region from these cases
is 1.34 × 10−5 eV/Å). Following this step, forces on atoms in
the GF region are output for GF relaxation. With these forces,
the positions of all atoms in the cell are updated through

the addition of displacements obtained from the following
relation [32]:

um
i =

∑
n

Gi j (rmn) f n
j , (9)

where f n
j is the force in the j direction on atom n in the GF

region, um
i is the resulting displacement in the i direction for

atom m, and Gi j is the GF which maps f n
j to a displacement

as a function of rmn, the vector between the positions of atoms
m and n. The relaxation process starting from the atomistic
relaxation step is repeated until the magnitude of forces on
each atom in the GF region are less than 10−5 eV/Å or after
15 total iterations have been exceeded. The maximum force
magnitude on an atom in the GF region in the latter case has
a wide range of values and is discussed further in the Results
section. Reaching the maximum number of iterations occurs
due to dislocations approaching, or in some cases gliding
into, the GF region, which is an inevitable consequence of
using a finite sized supercell. Cases where this occurs will
be discussed below in relation to trends at lower stresses and
other compositions.

The use of this approach requires Gi j (rmn) to be evaluated.
As the setup of the simulation results in a two-dimensional
problem, forces in the GF region are treated as line forces. For
a sufficiently large |rmn|, Gi j (rmn) for a line force can be eval-
uated through the use of anisotropic linear elasticity theory
[37]. However, as |rmn| tends to 0, Gi j (rmn) must be evaluated
using an interatomic potential. Therefore, we express Gi j (rmn)
as

Gi j (rmn) =
⎧⎨
⎩

Gel
i j (r

mn), |rmn| � RGF
cutoff

Glat
i j (rmn), |rmn| < RGF

cutoff

(10)

where Gel
i j (r

mn) is the elastic GF, Glat
i j (rmn) is the lattice GF,

and RGF
cutoff is an imposed cutoff representing the minimum

value of |rmn| before the elastic GF can be used. The elastic
GF is calculated following Ref. [37], which only requires the
anisotropic elastic constants (rotated to the desired orientation
of the crystal) and the lattice constant as input. While there are
various ways to calculate the lattice GF [38–40], we choose to
follow a similar procedure as that found in Ref. [32] due to its
simplicity. A perfect lattice in the same orientation as Fig. 3
is created with a length of approximately 40 Å in the x and y
directions, and a thickness in the z direction of a/

√
2. A fixed

line force of 5 × 10−6 eV/Å2 in either the x, y, or z direction
is applied on the center atom. Resulting displacements on all
other atoms are applied using the elastic GF. Maintaining a
fixed force on the center atom, a region within a 20 Å radius of
the center atom is relaxed using LAMMPS below a 10−7 eV/Å
force tolerance. Using the resulting displacements and the
force on the center atom, the lattice GF as a function of rmn

is tabulated using Eq. (9) with RGF
cutoff set to 5a/aCu Å, where

aCu is the lattice constant for pure Cu. We chose this value as
it is similar in magnitude to that used in previous work [32],
although it should be mentioned that the error of the elastic
GF compared to the lattice GF scales with (1/RGF

cutoff )
2 [38]. In

the dislocation geometry, we assume that the lattice GF can
be approximated by that obtained from the perfect lattice, and
use a lattice GF value corresponding to the best matching rmn
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vector between two atoms. We found that the predicted LC
dislocation core structure for pure Cu using GFs obtained in
this way agreed with the converged core structure obtained
from a fixed boundary condition method with increasing sys-
tem size (see Supplemental Material, Fig. S1 [41]).

To apply a desired stress state �′, displacement gradients
are applied according to the following linear elasticity rela-
tion:

(ui, j + u j,i )/2 = εi j = Si jkl�
′
kl , (11)

where ui, j is a component of a displacement gradient tensor
(where ui, j = u j,i = εi j for pure shear, as all components of
the infinitesimal rotation tensor are zero [42]), εi j is a com-
ponent of the strain tensor, and Si jkl is a component of the
compliance tensor, which is obtained from an inversion of
the elastic constant tensor. Displacements (um

i ) corresponding
to the displacement gradient (um

i = ui, j rm
j + Ci, where rm

j is
the reference position of atom m in the j direction and Ci is
a constant set to keep the atoms within the simulation box)
with σ equal to 100 MPa and a given value of θ are added
to the reference unstressed, relaxed configuration. The result-
ing structure is then relaxed through the approach described
above, and if the GF region force criterion is met, displace-
ments corresponding to the same displacement gradient are
added by treating the new relaxed structure as the reference
state. Assuming linear elasticity holds, the addition of these
new displacements increases the applied value of σ by 100
MPa. This procedure is iterated until a given configuration
reaches the maximum number of GF relaxation iterations. We
assume that the GF does not change significantly under the
applied stresses in this study. To avoid the possibility of atoms
coming in and out of the region defined by RGF

cutoff, we change
the criteria for the application of the lattice GF in Eq. (10) to
be

(
rmn

x

)2

[
(1 + ε11)RGF

cutoff

]2 +
(
rmn

y

)2

[
(1 + ε22)RGF

cutoff

]2 < 1. (12)

Instead of a circular cutoff as represented by Eq. (10), the
above equation represents the resulting ellipse when the
system is strained in the x and y directions (ε11 and ε22,
respectively).

We choose to investigate Cu-Ni solid solutions between
0–100 at.% Ni in increments of 10%. This system is chosen
because it allows for the monotonic change of a low-stacking
fault energy system (Cu) to a high-stacking fault energy sys-
tem (Ni) with an increase in Ni. In an actual alloy, the GF
will be a function of atom type, and any response to stress
will become dependent on the dislocation length. Since the
intent of the current study is to understand general trends, we
circumvent these complications by making use of an average-
atom representation of the Cu-Ni alloy through appropriate
averaging of the EAM potential [28], as described in Ref. [27].
Using the average-atom description, we calculate lattice and
elastic constants for each composition to carry out the above
procedures for relaxation. We also calculate stable and unsta-
ble stacking fault energies to gain insight into the behavior of
these dislocations. These, along with results of the dislocation
relaxations, are reported in the next section.

FIG. 4. Calculated stacking fault energies for the Cu-Ni average-
atom alloy systems. The symbols in the legend are defined in
Sec. III A.

III. RESULTS

A. Material properties

Figure 4 displays the calculated stacking fault energies
for the Cu-Ni average-atom alloys. The results show that the
addition of Ni causes the stacking fault energies to increase.
We have calculated five different stacking fault energies: the
unstable and stable intrinsic stacking fault energies (γ UISF

(111)

and γ ISF
(111)) on the (111) plane, the unstable and stable ex-

trinsic stacking fault energies (γ UESF
(111) and γ ESF

(111)) on the (111)
plane, and the unstable stacking fault energy (γ USF

(100)) on the
(100) plane. Lower values of γ ISF

(111) are expected to favor the
dissociated LC structure relative to the compact L structure.
The lower the value of γ UESF

(111) , the more we would expect an
extrinsic fault (or nanotwin) to be able to nucleate from the
dislocation under the appropriate applied stress. The lower
the value of γ USF

(100), the easier it would be for a compact L
dislocation to glide. Of course, the actual details of such sce-
narios depend on the core structure as shown in the following
subsections.

The lattice and elastic constants of the average alloys are
displayed in Fig. S2 in the Supplemental Material [41]. The
results show that with the addition of Ni, the lattice constant
decreases, while the elastic constants increase.

B. Equilibrium core structures

The equilibrium core structures at their unstressed state for
all compositions relaxed to the force convergence criterion.
Figure 5 shows the structure of the dislocation cores found
in pure Cu, Cu-30% Ni, Cu-40% Ni, and pure Ni. As can be
clearly seen, intrinsic stacking faults (colored in red in Fig. 5)
are not present at compositions above 30% Ni. This suggests
a transition between LC to L dislocations in a region between
30–40% Ni. Note that whether or not SP2 is to the right or left
of the SRP for a LC dislocation depends on slight differences
of where the center of the linear elasticity solution is placed
with respect to the lattice. The LC dislocation being the stable
configuration in pure Cu and the L dislocation being the stable
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FIG. 5. Relaxed equilibrium core structures for (a) pure Cu,
(b) Cu-30% Ni, (c) Cu-40% Ni, and (d) pure Ni. Atoms are colored
similar to Fig. 3. Colored dots near grey atoms represent the end of
dislocation lines found by the DXA algorithm [44] as implemented in
OVITO [31]. The green, magenta, and blue dots represent SP1/SP2,
SRP, and L dislocations, respectively.

configuration in pure Ni is in agreement with results from
Ref. [43] using different potentials for the pure elements.

The LC configurations present in 0–30% Ni are all
asymmetric, in agreement with elasticity predictions [20,21].
However, the ratio of the distance between SP2 and SRP (d2)
to the distance between SP1 and SRP (d1) using elasticity
theory is predicted to be 3.82, independent of the material
system. Using the DXA algorithm [44], we find the d2/d1
ratio to be 2.36, 2.34, 2.11, and 1.92 for the pure Cu, Cu-10%
Ni, Cu-20% Ni, and Cu-30% Ni systems, respectively. This
seems to be due to a decrease in d2 with increasing γ ISF

(111) (45
to 60 mJ/m2), as d1 maintains a value of approximately 9.8 Å
across these systems. Ref. [19] found the d2/d1 ratio to be 3.4
and 3.6 when modeling LC dislocations in pure Cu and Ag,
respectively. The value of γ ISF

(111) from the interatomic poten-
tials used in Ref. [19] was calculated to be 36 mJ/m2 for Cu
and 23 mJ/m2 for Ag. The potential used in the present paper
results in a γ ISF

(111) value of 45 mJ/m2 for Cu. Thus it is expected
that the linear elasticity description for the LC structure is only
applicable in the limit of low values of γ ISF

(111). Otherwise, the
calculation of an accurate dislocation core structure requires
atomistic modeling to capture near-core effects.

We further analyze the core structures by looking at dif-
ferential displacement (DD) maps [45] for pure Cu and pure
Ni as shown in Fig. S3 in the Supplemental Material [41].
For Cu, three different projections are shown corresponding
to the Burgers vectors of the different partial dislocations in
the LC configuration. For Ni, the three different projections
include the two Shockley partial dislocation Burgers vectors
of the LC configuration, and the Burgers vector of the L
dislocation. While the L configuration in pure Ni does not
show any intrinsic stacking faults in Fig. 5(d) [the value of
γ ISF

(111) for pure Ni is 125 mJ/m2], the DD maps show the

FIG. 6. Dislocation states at a given value of σ and Ni content
for a pure shear stress state with θ equal to 90◦. The top data point
at each composition reached the maximum number of GF iterations.
The black dashed line represents a boundary between different dislo-
cation states.

presence of displacements associated with the projection of
Shockley partial dislocation Burgers vectors in a (1̄11) or
(111) plane just under the L dislocation. The small amount of
core spreading in these planes appears to impact the response
of the core under certain stress states, as will be discussed
further below.

C. Effect of an applied shear stress

Here we present the results of applying different stresses
on L/LC dislocations in the order of orientations that show the
simplest responses. Simulations are terminated when the GF
iterations exceeds 15 total iterations. As discussed above, we
find that this occurs when a partial or full dislocation moves
close to the GF region, as shown in Fig. S4 [41], which can
occur both at relatively low or high stresses depending on the
available core states. The range of the maximum magnitude
of the force in the GF region is given for each value of θ

below. The resulting core structures are classified using the
DXA algorithm [44]. Note that before applying any stress,
SP2 is to the right of SRP for 0–20% Ni, while for 30% Ni SP2
is to the left of SRP. Accounting for this, a value of −θ was
used for 30% Ni for the cases where θ equals 9.74◦, 45◦, and
35.26◦ to be consistent with the P-K force values in Fig. 2(b).
However, we tested +/− values of θ for the mentioned angles
for 0–30% Ni and did not find significant differences in the
results.

1. Pure shear with θ = 90◦

The results for a pure shear stress state with θ equal to
90◦ are shown in Fig. 6. Each column in the plot represents
a composition, and each row represents a value of σ . The
different symbols represent different states of the dislocation
as described in the legend. In this scenario, dislocations that
start as LC configurations at zero stress remain in the LC
configuration, while dislocations that start as L configurations
transition to the LC configuration at a high enough stress.
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FIG. 7. Dislocation states at a given value of σ and Ni content
for a pure shear stress state with θ equal to 9.74◦. The top data point
at each composition reached the maximum number of GF iterations.
The black dashed lines represent boundaries between different dislo-
cation states.

This occurs because the P-K force on SP1 and SP2 favors
motion away from SRP, which has a P-K force of zero at this
value of θ . The stress at which this transition occurs increases
with increasing Ni content, which makes intuitive sense as the
values of γ ISF

(111) and γ USF
(111) increase with Ni content.

The maximum magnitude of a force vector on an atom
in the GF region at the terminated state ranged from 1.1 ×
10−5 eV/Å to 3.3 × 10−3 eV/Å. These forces are relatively
small and are not expected to have a significant effect on the
final core structure. Additionally, the final core structure of the
terminated states being LC dislocations is consistent with the
trend of the converged calculations in Fig. 6.

2. Pure shear with θ = 9.74◦

The results for a pure shear stress state with θ equal to
9.74◦ are shown in Fig. 7. In this scenario, dislocations that
start as L configurations at zero stress remain in the L con-
figuration until a high enough stress is reached where the
dislocation begins to glide away from its initial position on
the (100) plane. Dislocations that start as LC configurations
at zero stress eventually transition into a L configuration with
increasing stress, and eventually glide on the (100) plane. This
occurs because the P-K force on both SP1 and SP2 drives
them to combine with SRP to form a L configuration, which
has a nonzero P-K force for glide. The stress at which glide on
the (100) plane occurs increases with increasing Ni content,
which makes intuitive sense as the value of γ USF

(100) increases
with Ni content.

The maximum magnitude of a force vector on an atom
in the GF region at the terminated state ranged from 2.8 ×
10−3 eV/Å to 5.2 × 10−2 eV/Å. As all of the terminated
states at this value of θ result in a L dislocation gliding toward
the GF region (which begins early on in the GF relaxation cy-
cle), the forces at the GF region do not change the conclusion
that the dislocation is expected to glide in an infinite medium.

3. Pure shear with θ = 45◦

The results for a pure shear stress state with θ equal to 45◦
are shown in Fig. 8(a). In this scenario, dislocations that start
as LC configurations at zero stress remain in the LC configura-
tion. For Ni concentrations in the range of 40 − 80%, there is a
transformation from an initial L configuration to a LC config-
uration, and the stress at which this transition occurs increases
with increasing Ni content. The resulting LC configurations
are strongly asymmetrical, as there are opposite driving forces
at θ = 45◦ for SP1 and SP2 as shown in Fig. 2(b). However,
above 80% Ni, the L dislocations glide on the (100) plane
instead of transforming into a LC configuration. Surprisingly,
the stress at which this occurs for 100% Ni is lower than that
for 90% Ni, which is also lower than the stress for the L to LC
transition at 80% Ni.

To investigate the reason for this, we analyze the L core
structure in more detail. Specifically, we consider three atoms
[colored in black in the inset of Fig. 8(b)]. The first atom (A),
is the atom near the bottom of the core. The other two atoms (B
and C) are to the left and right of A, respectively. These atoms
are chosen because they are close to the core and because the
A-B atom pair and A-C atom pair each bound one of the two
{111} planes that the dislocation can spread in. We define a
core asymmetry parameter as a function of stress (λ(σ )) as

λ(σ ) = |dAB(σ )| − |dAC (σ )|
a

(13)

where dAB(σ ) and dAC (σ ) represent the distance of atoms B
and C, respectively, to atom A at a given value of σ . This
parameter describes how much the dislocation core is spread
in the plane between atoms A and B compared to the plane
between atoms A and C. We track this parameter while the
dislocation core remains in the static L configuration at com-
positions of 80%, 90%, and 100% Ni [shown in Fig. 8(b)].
For 80% Ni, we find that λ(σ ) monotonically increases with
σ . This is consistent with the fact that this structure will even-
tually transform into a strongly asymmetric LC structure with
the largest stacking fault present in the plane between atoms
A and B. For 90% and 100% Ni, λ(σ ) initially increases with
σ until a maximum is reached, after which the value begins
to decrease. The maximum for 100% Ni is smaller than that
for 90% Ni and seems to appear at a lower value of σ than
the maximum for 90% Ni. This can be rationalized through
the fact that a higher amount of Ni content results in higher
values of γ UISF

(111) and γ ISF
(111), so it is increasingly difficult to

have core spreading in the {111} planes, which is why a LC
configuration is not observed at the 90% and 100% Ni com-
positions. When there is more core spreading in {111} planes,
it becomes difficult for the dislocation to glide on the (100)
plane, even though this orientation represents the maximum
normalized P-K force for glide on the (100) plane. This is why
the L dislocation at 100% Ni glides at a lower stress than at
90% Ni. This situation represents a competition in normalized
P-K forces and fault energies for different planes.

The maximum magnitude of a force vector on an atom in
the GF region at the terminated state below 80% Ni ranged
from 1.0 × 10−5 eV/Å to 1.7 × 10−3 eV/Å. These relatively
low values, as well as the trend in Fig. 8(a), suggest that the
LC core structure should still be the expected configuration
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FIG. 8. (a) Dislocation states at a given value of σ and Ni content for a pure shear stress state with θ equal to 45◦. The top data point at each
composition reached the maximum number of GF iterations. The black dashed line represents a boundary between dislocation states. (b) Values
of the core asymmetry parameter defined in Eq. (13) as a function of stress for 80%, 90%, and 100% Ni. Inset: View of a L dislocation core
where the black atoms are the atoms considered for the core asymmetry parameter.

at the given values of σ of the terminated states. At 80%
Ni and above, these values ranged from 1.8 × 10−2 eV/Å to
5.2 × 10−2 eV/Å. For 80% Ni, this is due to one of the partial
dislocations belonging to the LC core approaching very close
to the GF region. A LC core structure at this composition is
still expected as it is consistent with the trend in λ(σ ) with
increasing σ . Glide above 80% Ni is also expected based on
the trend in λ(σ ).

4. Pure shear with θ = 35.26◦

The results for a pure shear stress state with θ equal to
35.26◦ are shown in Fig. 9(a). All cores that initially start in
the L configuration at zero stress (as well as the 30% Ni con-
figuration) glide on the (100) plane when σ equals 1.5 GPa.
We expect that the reason for this lack of dependence on Ni
content is due to a similar effect as in the previous case, which
is that for lower Ni content, there is more core spreading in
{111} planes, making it difficult for the core to stay compact
enough to glide on the (100) plane except at higher stresses.
For higher Ni content, there is less core spreading, but the

barrier to glide on the (100) plane is higher. These effects
cancel out at this value of θ leading to a constant glide stress
in the range of 30–100% Ni.

All cores that start in a LC configuration transition into a
configuration similar to that shown in Fig. 9(b), where the par-
tial dislocation colored in light blue represents a Frank partial
dislocation (with a Burgers vector of a

3 〈111〉) as identified by
the DXA algorithm [44]. With further applied stress, cores
at 0% and 10% Ni transform into an obtuse configuration,
similar to the configuration shown in Fig. 9(c), where the
yellow partial represents a Hirth partial dislocation (with a
Burgers vector of a

3 〈100〉) as identified by the DXA algorithm.
The upper fault in Fig. 9(c) contains an extrinsic stacking
fault, or a nanotwin. The transition from an acute lock to an
obtuse lock with an extrinsic stacking fault shares similarities
with the findings in a study by Baskes et al. [46], where the
authors strain an initially obtuse lock and find an intermediate
state of an acute lock with an extrinsic stacking fault. The
Burgers vector of the partial dislocation at the apex of their
acute lock is a

6 [011] (a stair-rod partial dislocation), and that

FIG. 9. (a) Dislocation states at a given value of σ and Ni content for a pure shear stress state with θ equal to 35.26◦. The top data point
at each composition reached the maximum number of GF iterations. The black dashed lines represent boundaries between dislocation states.
(b) Core structure at 0% Ni and σ equal to 1.9 GPa, and (c) 2.0 GPa.
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FIG. 10. (a) Dislocation states at a given value of σ and Ni content for a pure shear stress state with θ equal to 0.5◦. The top data point
at each composition reached the maximum number of GF iterations. The black dashed lines represent boundaries between dislocation states.
(b) Core structure at 70% Ni and σ equal to 2.5 GPa, (c) 2.6 GPa, (d) 3.3 GPa, and (e) 3.8 GPa. The black atom is highlighted to show the
transition of the L core in (b) to the intermediate state in (c).

of the partial dislocation at the apex of their obtuse lock is
a
3 [100] (a Hirth partial dislocation). This suggests that these
locks are related to each other by the removal or addition of
an extrinsic stacking fault. For 20% and 30% Ni, the state with
a Frank partial dislocation does not transition into an obtuse
lock with further applied stress, but instead eventually glides
on the (100) plane. We expect that this is due to a competition
between γ ESF

(111) to form the obtuse configuration and γ USF
(100) for

glide on the (100) plane.
The maximum magnitude of a force vector on an atom in

the GF region at the terminated state for 0% and 10% Ni was
2.8 × 10−2 eV/Å and 5.4 × 10−3 eV/Å, respectively. The ob-
tuse configuration of these terminated states are just extended
structures of the similar states found at smaller values of σ ,
so the obtuse configuration is still expected at the terminated
state. Above 10% Ni, the maximum magnitude of the force
vectors range from 1.8 × 10−3 eV/Å to 1.3 × 10−1 eV/Å. As
these states represent the glide of a L dislocation, the expected
state would still be a continuous glide.

5. Pure shear with θ = 0.5◦

The results for a pure shear stress state with θ equal to 0.5◦
are shown in Fig. 10(a). All cores that initially start in the LC
configuration at zero stress transition into the L configuration,
and eventually emit two dissociated mixed dislocations. At
40% Ni, the final state is an emission of two mixed disloca-
tions as well. For dislocations that start in the L configuration
at 50% Ni or more, a transformation occurs that results in an
extrinsic stacking fault/nanotwin with a Frank partial dislo-
cation as shown in Fig. 10(d). This is confirmation of the
proposed twin nucleation mechanism from a L dislocation as
mentioned in Refs. [12,13]. There is a large jump in stress
required for the emission of mixed dislocations at 40% Ni and
the creation of a nanotwin at 50% Ni. This is because before
creating a nanotwin, the L core at 50% Ni and above begins to
glide on the (100) plane but becomes stuck in an intermediate
state [Fig. 10(c)]. This intermediate state [labeled as pretwin
in Fig. 10(a)] prevents the emission of mixed dislocations, and
eventually a nanotwin is nucleated. The small nonzero value

of θ gives a small driving force for glide in the (100) plane
to access the intermediate state, as well as a stronger driving
force for nanotwin nucleation to the left of the core than to the
right.

For 70% Ni, there is a further transformation observed
where a second nanotwin is nucleated to the right of the core
as shown in Fig. 10(e), with the Frank partial dislocation
transitioning into a stair-rod partial. Presumably, if the cell
sizes were larger, this second nanotwin would nucleate for
other compositions in the range of 50%–100% Ni, as there is a
driving force to do so. The reason this does not occur for these
compositions is due to the partial dislocation associated with
the first nanotwin approaching the GF region, which results
in the simulation terminating after a maximum number of
iterations.

The maximum magnitude of a force vector on an atom in
the GF region at the terminated state below 50% Ni ranged
from 0.30 eV/Å to 1.7 eV/Å. This is due to the mixed dislo-
cations in these states entering the GF region. In an infinite
environment, it is expected that the mixed dislocations will
continue to glide, especially since this starts early on in the GF
relaxation cycle. For 50% Ni, the maximum force magnitude
is 0.18 eV/Å. While this is high, the state remains a nanotwin
similar to the states found at lower values of σ . For composi-
tions above 50%, the maximum force magnitude ranged from
1.3 × 10−5 eV/Å to 1.2 × 10−3 eV/Å, which are relatively
low values. Additionally, the terminated states represent the
formation of a nanotwin, which is consistent with the trend of
the converged calculations in Fig. 10(a).

IV. DISCUSSION

From the presented simulation results, it is clear that L
and LC dislocations can attain a number of different con-
figurations depending on the composition and applied shear
stress state. We find that L dislocations can readily transform
into LC configurations and vice versa. The ability for a LC
dislocation to transform to a L configuration is in agreement
with the analysis by Stroh [22] as well as TEM observations
of glide on the (100) plane in a Cu-Al alloy, which has lower
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fault energies than pure Cu [26]. Additionally, the stresses at
which glide on the (100) plane can occur at θ equal to 9.74◦
is lower for compositions that start with a LC configuration
than for compositions that start with a L configuration. This
suggests that the presence of a sessile SRP does not guarantee
a stronger barrier against glide compared to the glissle L
dislocation and that the role of fault energies are important.
However, this depends on the value of θ , as for the cases where
θ equals 45◦ or 35.26◦, dislocations in environments with a
higher Ni content began to glide while dislocations with lower
Ni concentrations did not. The orientation dependence of the
glide of these dislocations may play a role in the orientation
dependence of work hardening in single-crystal FCC alloys
[4,5].

The orientation dependence of work hardening in FCC
alloys may also be influenced by the orientation dependence
of twin formation. We find the L and LC dislocations can
nucleate an extrinsic stacking fault, or a nanotwin, when θ

is equal to 0.5◦ or 35.26◦. The values of σ to form a nanotwin
at these orientations are quite high, beyond the values likely
to be measured in tensile stress-strain curves of FCC alloys
(an exception to this is the 1.9 GPa tensile strength observed
in a compositionally complex steel which exhibited twinning
in the FCC matrix [47]). However, high internal stresses can
be achieved through mechanisms such as planar slip of dislo-
cations, which is also orientation dependent [5]. Short-range
ordering or clustering of solutes can also promote planar slip
through slip-plane softening [48] and through the suppression
of cross-slip [49]. While it is plausible that a local stress
concentration can provide a source for twin nucleation from L
and LC dislocations, there are a variety of possible twinning
mechanisms in FCC metals and alloys that could be activated
[13].

A number of assumptions were required to carry out the
present paper. We assumed that the stress state of the system
could be described by linear elasticity, while in reality we
are controlling the strain state. In pure Cu and Ni, we find
that for high values of compressive and tensile strain in the
x direction, the bulk system (without a dislocation) starts to
deviate from linear elasticity (Fig. S5 in the Supplemental
Material [41]). Accounting for this would require calculations
of higher-order elastic constants. However, after measuring
the stress state from the GF region of converged dislocation
structures in LAMMPS, we found that other stress components
did not have as strong of a deviation from the linear elasticity
prediction (Fig. S6 in the Supplemental Material [41]).

We have also assumed that the behavior of the disloca-
tions under stress can be captured using a two-dimensional
simulation. Thus, any change in core structure occurs ho-
mogeneously along the dislocation line. Studying the same
dislocation behavior in a three-dimensional system may al-

low for changes to occur through the formation of a critical
nucleus of a bow-out configuration of a fault [22] or of a kink-
pair facilitating L dislocation glide [14]. Additionally, since
the difference in energy between a L and LC dislocation is
expected to be small [19], at temperature the cores may exhibit
a polymorphic structure along the dislocation line, analogous
to that recently observed in simulations of 〈a〉-type screw
dislocations in hexagonal Ti [50]. A local variation of com-
position may also lead to a polymorphic structure. Exploring
the formation of a critical nucleus requires knowledge of the
initial and final states, a polymorphic structure at temperature
is more likely to be found in regions of stress-composition
space near core transitions, and the effect of local composition
variation could be linked to different core structures available
at different compositions. All of these considerations will
be greatly facilitated by and motivated by the different core
structures mapped out as a function of applied stress and
composition in the current paper.

V. CONCLUSIONS

We have presented results of atomistic simulations of L
and LC dislocations in model FCC Cu-Ni alloys modeled
with an average-atom potential, under various compositional
and stress environments using a flexible boundary condition
approach. We observe a variety of transformations, including
L to LC, L to (100) glide, LC to L to (100) glide, L to nan-
otwin (and double nanotwin) nucleation, and LC to an obtuse
configuration with a nanotwin. The variety of transformations
under different values and orientations of pure shear stress are
expected to play a role in the orientation dependence of work
hardening in FCC alloys.
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