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Accurate ab initio modeling of solid solution strengthening in high entropy alloys
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High entropy alloys (HEA) represent a class of materials with promising properties, such as high strength
and ductility, radiation damage tolerance, etc. At the same time, a combinatorially large variety of compositions
and a complex structure render them quite hard to study using conventional methods. In this work, we present a
computationally efficient methodology based on ab initio calculations within the coherent potential approxima-
tion. To make the methodology predictive, we apply an exchange-correlation correction to the equation of state
and take into account thermal effects on the magnetic state and the equilibrium volume. The approach shows
good agreement with available experimental data on bulk properties of solid solutions. As a particular case,
the workflow is applied to a series of iron-group HEA to investigate their solid solution strengthening within
a parameter-free model based on the effective medium representation of an alloy. The results reveal intricate
interactions between alloy components, which we analyze by means of a simple model of local bonding. Thanks
to its computational efficiency, the methodology can be used as a basis for an adaptive learning workflow for
optimal design of HEA.
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I. INTRODUCTION

Concentrated solid solutions with multiple components,
also known as high entropy alloys (HEA), have attracted a lot
of attention because of their exceptional combination of yield
strength and ductility [1–5]. Although the highest strength is
usually achieved in multiphase alloys, HEAs are characterized
by a high yield strength even in the form of single-phase
solid solutions [3]. Especially interesting in this respect are
face-centered-cubic (fcc) HEAs, where a high ductility can
coexist with high strength beyond the usual tradeoff [6].
The high strength in these systems is mainly associated with
the interaction of dislocations with solutes, which impedes the
motion of dislocations, resulting in the solid solution strength-
ening (SSS).

Direct modeling of dislocation motion in multicomponent
alloys is currently possible only within semiempirical ap-
proaches such as classical molecular dynamics [7–9], which
provide a qualitative picture. At the same time, comparable ab
initio simulations of dislocations are not feasible, and one has
to combine them with phenomenological models, reducing
the complex problem of a dislocation interacting with alloy
components to a set of parameters (e.g., effective atomic vol-
umes, elastic moduli, the stacking fault energy, etc.) that can
be obtained by first-principles calculations.

Recently, Varvenne and Curtin (VC) have proposed a gen-
eralized model that does not rely on any assumptions about the
concentration of components and it is specifically designed
to treat HEA systems [10,11]. Similar to earlier dilute-limit
models [12–14], the central mechanism of the VC model is

the occurrence of energy barriers for dislocation motion due
to local effective volume fluctuations caused by alloy compo-
nents, which increases the stress for the onset of dislocation
glide and hence the yield strength [10]. The system is treated
as an effective alloy matrix with solutes interacting with the
matrix by means of stress fields caused by the atomic-size
mismatch between a solute and the effective matrix element.
Thanks to the low Peierls stress in face-centered-cubic (fcc)
metals, the yield stress is then expressed solely in terms of
the average misfit volume of components and linear elas-
tic properties of the alloy. An important feature of the VC
model is that it suggests that the strengthening effect does
not directly depend on the number of components and is not
necessarily maximized by the equimolar composition often
used in experimental work [15]. Instead, the largest yield
stress is achieved by maximizing the average mean-square
misfit volume, while minimizing a potential negative impact
on the elastic properties. This is consistent with experimental
evidence that nonequimolar compositions can show signifi-
cantly improved mechanical properties as compared to alloys
with equimolar ratios of principal elements [16,17].

The VC model has been successfully applied to a number
of systems [18–23]. However, in most of the cases the model
parameters have been determined or estimated from exper-
imental data, which limits the applicability and predictive
power of the model. On the other hand, these parameters
could be calculated ab initio using the density functional
theory (DFT), but the accuracy of the calculation is strongly
affected by the general error that most widely used (semi)local
exchange-correlation (XC) functionals produce for the
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equilibrium volume of an alloy or an element in its ground
state. This leads to an overall discrepancy both in the aver-
age molar volume of the alloy and in the misfit volumes of
constituent elements [22]. The situation becomes even more
involved in the case of HEA based on the iron group of 3d
metals, where finite-temperature magnetism plays an impor-
tant role for relevant temperatures of interest, usually ranging
from room temperature to 1000 K and above.

In this work, we address the above-mentioned limita-
tions of DFT-based modeling by proposing a computationally
inexpensive methodology based on the coherent potential ap-
proximation (CPA) [24,25], which offers a very consistent
way of describing properties of the effective alloy medium
underlying the VC model.

Within this approach, the equilibrium volumes are adjusted
using element-specific corrections, which, in turn, improve
other equilibrium properties. Our methodology also takes into
account finite-temperature effects mediated by magnetic and
phonon degrees of freedom, which are especially important
for describing the temperature dependence of SSS above
room temperature. We create a fully automatized workflow
for calculating all necessary quantities for estimating SSS
and demonstrate it on several well-studied 3d transition metal
HEAs, which are well known for their complex magnetic
behavior.

II. METHODS

A. Exchange-correlation pressure correction

The use of local [e.g., local density approximation
(LDA)] or semilocal [e.g., generalized gradient approxima-
tion (GGA)] exchange-correlation functionals within DFT is
known to lead to systematic errors in equilibrium properties
of solids. Multiple attempts to improve XC functionals have
been made [26–30] but due to general limitations of semilocal
density functionals [31] these implementations often improve
the accuracy for only certain classes of solids, while failing to
do so for others.

One can distinguish two types of errors: (1) the error in
the equilibrium volume (or lattice constant), and (2) the error
in the value of a target quantity at the exact experimental
volume. The motivation for this distinction comes from the
empirical observation that many linear-response properties
can be reproduced reasonably well even by the local den-
sity approximation without gradient corrections, provided that
a calculation is performed at the experimental equilibrium
volume [32]. Whereas type-2 errors are intrinsic to an XC
functional and cannot be remedied without reconsidering the
XC functional itself, type-1 errors can be estimated and elim-
inated since the equilibrium volume of practically all pure
elemental materials is known experimentally, and we only
need to find a way how to use this information to correct
for the volume error of a compound. A naive interpolation of
volumes or lattice constants (Vegard’s law) from experimen-
tal values for pure elements will definitely give poor results
because the interaction between different elements in a com-
pound is completely ignored in this case. Another approach is
to apply linear interpolation only to the deviations between
DFT and experimental results [33]. This way one can get

much better results for solid solutions of similar elements
but this methodology is not well justified in cases when the
ground-state structure of components is different from the
structure of an alloy. For example, it is not clear how one could
correct for the error in determining the equilibrium volume of
a hypothetical zero-temperature fcc structure of Fe (which can
serve as a reference for Fe-based fcc alloys) from the error in
the actual ground-state body-centered-cubic (bcc) structure.

A different approach was put forward by van de Walle
and Ceder [34] who argued that there is an intrinsic source
of errors in the traditional XC functionals (LDA, GGA,
meta-GGA) related to their semilocal nature. Based on their
systematic study of the error in the equilibrium volume of
multiple ordered compounds they concluded that this error
can be largely attributed to a nonlocal contribution responsible
for a significant modification of the exchange-correlation hole
of interstitial (valence) electrons in the region predominantly
occupied by highly localized core electrons.

Under certain rather general assumptions about the form
of this nonlocal contribution, they concluded that its effect on
the total energy can, to a first approximation, be taken into
account by adding to the local density functional another term
that is linear in volume. This results in an additional pressure
correction associated with each atom in a compound.

Importantly, this correction turns out to be also linear
in concentration, implying that most of the error in the
calculation of the equation of state can be eliminated by
introducing an XC pressure correction (XPC), PXC, given
by a sum of individual element-specific contributions PXC =∑

i miP
(i)
XC for elements i of a unit cell, with mi denoting

the element multiplicity. The linear dependence of PXC on
concentrations makes the above ansatz readily applicable to
disordered alloys, where the XC pressure correction will be
given by 〈PXC〉 = ∑

i ciP
(i)
XC,i with ci being the atomic fractions

of alloy components i. Moreover, the simple form of the
correction makes it compatible with the CPA for disordered
systems [24,25], suggesting a simple and efficient approach
for accurate evaluation of the equilibrium volumes and other
properties of solid solutions.

Given the known experimental zero-temperature equilib-
rium volume V (i)

eq (corrected for zero-point vibrations), of

element i, the parameter P(i)
XC correcting a given XC functional,

say LDA, can be determined from

P(i)
XC = −P(i)

LDA

(
V (i)

eq

)
, (1)

where P(i)
LDA(V ) is the LDA (pressure) equation of state for ele-

ment i. This ensures that the corrected pressure P(i)
LDA(V ) + P(i)

XC
equals zero at the exact experimental volume.

Once the average parameter 〈PXC〉 is known, the corrected
equation of state reads as

E (V ) = �EXC + ELDA(V ) − 〈PXC〉V, (2)

where ELDA(V ) is the equation of state within the LDA func-
tional and �EXC is a constant correction term. This term,
�EXC, can be estimated in the same fashion as the pressure
from the difference between the theoretical and experimental
cohesive energies. However, it cancels out for most of the
properties that preserve species balance and we, therefore, do
not consider it in this work. The correction for other semilocal
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functionals, such as Perdew-Burke-Ernzenhof (PBE) [35] or
Perdew-Wang (PW91) [36], is formulated in a similar way.

In this work, we use the exact muffin-tin orbital (EMTO)
[37] code (Lyngby version [38]) implementing a Green’s
function based DFT methodology combined with CPA to
perform total-energy calculations. Screened Coulomb inter-
actions in the CPA are obtained by the use of the locally
self-consistent Green’s function technique [39] implemented
also within the EMTO method [40]. The total energy is ob-
tained within the full charge density formalism [41], making
the results comparable to those from full potential codes. The
paramagnetic state of metallic alloys is described using the
disordered local moment (DLM) approach [42].

B. Finite-temperature effects

Most of the experimental results for alloys are obtained
at room temperature. Moreover, for many technological al-
loys it is vital to understand their behavior at even higher
temperatures. We, therefore, need to extend calculations of
the equation of state to finite temperatures. For the ambient
pressure we replace the total energy with the Helmholtz free
energy

F (V, T ) = Fel(V, T ) + Fph(V, T ), (3)

where we consider two main contributions: electronic,
Fel(V, T ), containing the XC pressure correction as well as
eventual high-temperature magnetic fluctuations, and phonon,
Fph(V, T ). Such a decomposition is possible because phonon
degrees of freedom evolve on a much longer timescale than
the electronic ones.

The electronic part of the free energy can, in turn, be
split into the one-electron part Fone(V, T ) and the magnetic
part Fmag(V, T ). The one-electron entropy is calculated using
the usual Sommerfeld formula with energy contour integra-
tion weighted by the Fermi function. Unlike the one-electron
part, the magnetic contribution to the free energy Fmag(V, T )
is more difficult to tackle in a consistent manner. Although
DLM is supposed to describe the paramagnetic state at high
temperatures, in its original form it works only for elements
(Fe and Mn) which preserve the localized character of spin
magnetic moments in the DLM state. To get the correct mag-
netic behavior for elements with primarily itinerant character
of magnetism (Cr, Ni, Co) one has to take into account
temperature-induced longitudinal spin fluctuations (LSF). In
this work, we use a semiclassical model presented earlier
in Refs. [38,43]. Within this model, we perform DLM cal-
culations and take into account LSF by adding an entropic
contribution −T Smag[M] to the electronic free energy and to
the self-consistent potential. Here, M is the magnetic moment
of a specific component obtained self-consistently within the
DFT cycle. For elements with primarily itinerant magnetic
character, the entropy has a form Smag[M] = a log M, where
coefficient a is element specific and furthermore depends on
the magnetic behavior of an element in a particular alloy
system. The coefficient can be chosen based on a series of
fixed-spin-moment calculations for the element in a given
alloy [38]. For elements with more localized behavior, i.e.,
Fe (at large volumes) and Mn, the entropy term is taken to
be equal to Smag[M] = log(1 + M ). We note that this model

TABLE I. Alloys used for testing the pressure correction on
equilibrium volume and bulk modulus.

Composition Magnetic state T (K) Structure Ref.

Ni Paramagnetic 700 fcc [49,50]
NiCo Paramagnetic 300 fcc [51]
NiCoCr Paramagnetic 300 fcc [51]
NiCoCrMnFe Paramagnetic 300 fcc [51,52]
NiCoFe Paramagnetic 300 fcc [51]
NiCoCrFe Paramagnetic 300 fcc [51]
Fe0.2Cr0.8 Paramagnetic 300 bcc [53,54]
Fe0.88Co0.8 Ferromagnetic 300 bcc [53]
W0.3Cr0.7 Nonmagnetic 300 bcc [55]
W0.8Cr0.2 Nonmagnetic 300 bcc [55]
Fe0.94Re0.06 Paramagnetic 300 bcc [53]

of LSF has been producing very consistent results for alloys
based on iron-group metals, including Fe-based fcc solid so-
lutions, which is generally a rather difficult case for modeling
[33,44–46].

The phonon free energy is calculated within the Debye-
Grüneisen model [47,48], with the parameters (the bulk
modulus, the Grüneisen constant) derived from the equa-
tion of state calculated at the respective temperature. This
way, basic coupling between magnetic and phonon degrees
of freedom related to the volume dependence of the magnetic
moment (the invar/anti-invar effect) is taken into account.

The described methodology was benchmarked by apply-
ing it to a series of alloys for which reliable experimental
data on the equilibrium volume and elastic properties are
available (Table I). For reference calculations of magnetic 3d
metals their respective ground-state magnetic structures were
considered. The spin-density wave magnetic state of Cr was
approximated by a collinear antiferromagnetic state of [001]
type. The magnetic state of α-Mn has been approximated by
a collinear antiferromagnetic state structure [56].

In the calculations with XC pressure correction we choose
LDA as the reference functional. This choice is motivated, on
one hand, by better magnetic moments that this functional
tends to produce at the experimental volume. On the other
hand, the relatively large error in the equilibrium volume is
anyway corrected by the pressure correction. In contrast to
LDA, the most commonly used gradient approximation, PBE,
is known to overestimate magnetic effects [32,57] and it is,
hence, less preferable for systems where magnetism is crucial.
The results of the benchmark calculations with LDA-XPC
compared to a fully ab initio PBE and to experimental data
[50–55,58–60] are displayed in Fig. 1. Pure LDA results were
omitted from the figure due to their largely underestimated
equilibrium volumes compared to LDA-XPC and PBE. As
one can see, equilibrium volumes obtained with LDA-XPC
calculations are in better agreement with experiment for most
of the cases except for three systems where PBE performs
slightly better but both methods give a rather small error in
these cases. At the same time, when it comes to the bulk
modulus, LDA-XPC always performs significantly better than
PBE, reducing the relative error from more than 16% to less
than 10%.

103602-3



MOITZI, ROMANER, RUBAN, AND PEIL PHYSICAL REVIEW MATERIALS 6, 103602 (2022)

.

.

FIG. 1. Comparison of the experimental and calculated atomic
volume and bulk modulus for disordered paramagnetic and nonmag-
netic alloys. (× red): LDA with XC pressure correction (LDA-XPC).
(+ blue): PBE. Phonon contributions to the thermal expansion are
included in all cases. Magnetic entropy is considered for the param-
agnetic alloys.

C. Solid solution strengthening

The VC model predicts the critical resolved shear stress
(CRSS) at any temperature and strain rate for any given al-
loy composition, with CRSS defined as a stress required to
initiate slip in a perfect single crystal. It can be considered
as a material-specific and temperature-dependent constant,
independent of the microstructure of a sample and the specific
measurement method. In HEAs considered in this work, the
CRSS is mostly determined by SSS since the Peierls stress
can be disregarded in fcc random alloys [10,61].

Within the VC model, the temperature-dependent yield
stress is characterized by two thermal activation models spe-
cific to certain temperature ranges. In the low-temperature
range, �τ (T ) is given by

�τ (T ) = τy0

[
1 −

(
kT

Eb
ln

ε̇0

ε̇

) 2
3

]
, (4)

whereas for higher temperatures,

�τ (T ) = τy0 exp

(
− 1

0.51

kT

Eb
ln

ε̇0

ε̇

)
. (5)

Both models give essentially equal results for moderate
temperature range (100–400 K). We employ, therefore, the
high-temperature model only for calculations above 400 K,
where some notable difference can be seen. In the above

equations, τy0 and Eb are, respectively, the zero-temperature
yield stress and the activation barrier, given by the following
expressions:

τy0 = Aτ

( �

b2

)− 1
3
(
μV 1 + νV

1 − νV

) 4
3
δ

4
3 , (6)

�Eb = AE

( �

b2

) 1
3
b3

(
μV 1 + νV

1 − νV

) 2
3
δ

2
3 , (7)

with b, � = αμ〈110〉/{111}b2 being the Burgers vector and the
dislocation line tension (α = 0.125 is the edge dislocation
line tension parameter for fcc metals); μ〈110〉/{111} is the shear
modulus for fcc slip on the {111} plane in the 〈110〉 direction;
μV and νV are the Voigt average of shear modulus and Pois-
son’s ratio, respectively; δ is the misfit parameter describing
the collective effect of the individual solute misfit volumes.

The reference strain rate ε̇0 is set to 104 s−1 as in previous
works [22]. The actual strain rate ε̇ is always set to be the same
as in the respective experiment. Prefactors Aτ = 0.048 65 [1 −
(A − 1)/40] and AE = 2.5785 [1 − (A − 1)/80] are associ-
ated with a typical fcc dislocation core structure consisting
of two well-separated partial dislocations plus a small cor-
rection for elastic anisotropy related to the Zener anisotropy
A = 2C44/(C11 − C12).

Note that apart from the explicit temperature depen-
dence, all material parameters entering the expressions can
be temperature dependent by themselves. For instance, elas-
tic moduli generally decrease with temperature, while the
lattice constant (hence the volume and Burger’s vector b)
increase. This has often been neglected in earlier works but, as
we will show in the next section, these additional temperature
dependencies lead to an effective thermal behavior deviating
from the naive Arrhenius law.

The central quantity of the VC model that introduces the
chemical dependence of the dislocation-solute interaction is
the misfit parameter δ = √∑

i ci(�Vi )2/(3Valloy), where �Vi

are element-specific misfit volumes

�Vi = Vi − Valloy, (8)

with Valloy being the specific atomic volume of the alloy and
Vi the apparent (effective) volume of alloy component i. The
misfit volumes themselves are expressed in terms of concen-
tration derivatives of the alloy volume,

�Vi = ∂Valloy

∂ci
−

∑
j

c j
∂Valloy

∂c j
, (9)

and the derivatives can be calculated by numerical differ-
entiation. To get these derivatives in practice, we perform
a series of CPA calculations for systems with small devia-
tions from the composition of the original alloy. The obtained
volume points are then fitted to a linear function of concen-
tration. Based on convergence tests (see Appendix A), we
found that four volume points per alloy component, with
the concentration of the respective element varied by −δ,
−δ/2, δ/2, δ (δ = 0.012) with respect to the original alloy, is
sufficient to get reliable derivatives ∂Valloy

∂c . For an N-element
alloy 4 × N + 1 calculations are performed including the
original alloy composition. The linear elastic constants are ob-
tained from volume-conserving monoclinic and orthorhombic
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distortions following the computational details described in
Refs. [62,63].

Local lattice relaxations induced by the atomic-size mis-
match of the alloy components have found to be essential for
the stability and properties of HEA. As a single-site theory,
CPA does not take into account local lattice distortions. How-
ever, previous supercell calculations of special quasirandom
structures (SQS) [64,65] showed that the equilibrium parame-
ters involved in the VC model are not significantly affected by
local lattice distortions. Upon including relaxation explicitly,
the change in the lattice parameter for iron-group fcc HEA
was found to be around 0.1%–0.2%. Also, the effect on the
elastic constants was reported as insignificant in the case of
similar sized constituents.

III. RESULTS

We applied the methodology described in the previous
sections to calculate and analyze solid solution strengthening
of three alloys: NiCoCr, FeNiCoCr, and FeMnNiCoCr. All of
them are well studied both experimentally and theoretically,
which enables us to carry out an extensive benchmarking.

A. NiCoCr

The solid solution alloy NiCoCr is a rare example where
a direct experimental measurement of misfit volumes was
undertaken [23]. At the same time, DFT simulations accom-
panying experiment in Ref. [23] showed significant deviations
both in misfit and apparent volumes. This system, thus, rep-
resents an ideal case for testing our proposed methodology.
First, we perform calculations at room temperature where
most of the SSS measurements are done. Since the equimolar
NiCoCr alloy is already paramagnetic above 4 K [66], with its
components exhibiting itinerant magnetism, this alloy is espe-
cially hard to model at this temperature. To treat the magnetic
effects, we apply the LSF model described in Sec. II B. Fol-
lowing the recipes from [38], the constant a for the magnetic
entropic contributions is chosen for each component based on
fixed spin-moment calculations at zero temperature:

Ni : Smag = 3 log M, (10)

Co : Smag = 2 log M, (11)

Cr : Smag = 3 log M. (12)

We start by analyzing apparent and misfit volumes of in-
dividual components (Ni, Co, and Cr), as they are the key
quantities in the VC model. The results are shown in Fig. 2,
where we compare them to the experimental measurements
and earlier DFT calculations from Ref. [23]. Furthermore,
we show how our methodology is getting more and more
accurate by gradually including finite-temperature effects and
exchange-correlation corrections.

The biggest effect on the calculated equilibrium volume
can be seen from using XC pressure correction, which is
expected for LDA, since it is known to underestimate the
volume of 3d metals considerably. It changes the equilib-
rium volume by more than 8% [from 10.20 Å3 (LDA-0) to
11.03 Å3 9XPC-0)]. Including thermal electronic and phonon

FIG. 2. Comparison of experimentally measured and calculated
apparent, misfit (×, +, 
) and equilibrium volumes (−). Dashed-
dotted line indicates the experimental equilibrium volume. Ref.
(1): volumes extracted from experimental measurements [23]. DLM
Ref. (2): CPA-DLM calculations [23]. SQS Ref. (3): SQS calcu-
lations [23]. For our calculations, results of applying successively
finite-temperature effects and exchange-correlation corrections are
displayed. (LDA-0) and (XPC-0): CPA-DLM with LDA calculation
at 0 K without and with applying the exchange-correlation correc-
tion. (XPC-300): Applying finite-temperature phonon contributions
within the Debye-Grüneisen model at 300 K. (XPC-300-LSF):
Additionally adding LSF. (GGA-300-LSF): Conventional PBE cal-
culation combined with DLM-LSF and phonon contributions at
300 K for comparison.

contributions leads to an additional increase in volume to
11.20 Å3. Finally, taking also the LSF contributions into ac-
count, we obtain a volume of 11.44 Å3 (XPC-300-LSF).

One can see that XC pressure correction and finite-
temperature contributions (both with and without LSF) lead
to the equilibrium volume very similar to the experimental
one. At the same time, the agreement with experiment of
the equilibrium volume calculated using the common PBE
functional (with all finite-temperature contributions included
but without XPC) seems to be as good as with our LDA-XPC
approach (PBE result: 11.18 Å3). However, previous PBE
results without LSF (both DLM-CPA and SQS) from Ref. [23]
underestimated the equilibrium volume of the NiCoCr alloy
[by about 0.4 Å3, see Ref. (1), Ref. (2) in Fig. 2]. The ob-
served agreement can, thus, be attributed to the well-known
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overestimation of magnetic moments by the PBE functional
[57], which, with the help of LSF, compensates for the error in
the equilibrium volume. On the other hand, this compensation
effect is not consistent and fails to reproduce the misfit and
apparent volumes. In contrast to the equilibrium volume, cal-
culated misfit and apparent volumes are more sensitive to the
accuracy of the underlying methodology because they depend
on concentration derivatives of the alloy volume. More pre-
cisely, any imbalance in the XC error produced for individual
alloy components can lead to enhanced errors in the misfit
volumes. Indeed, previous PBE calculations within DLM-
CPA and SQS approaches from Ref. [23] showed considerable
deviations of the misfit volumes from the ones obtained from
experiment. In particular, the calculations underestimated the
misfit volumes of Ni and Cr. Moreover, because of the their
smaller equilibrium volume the apparent volumes of Co and
Cr were lower than in experiment. In contrast, the com-
bination of XC pressure correction and finite-temperature
contributions results in a very good agreement of misfit and
apparent volumes, as seen in Fig. 2 (XPC-300-LSF).

In particular, the misfit volume of Cr (0.99 Å3) is practi-
cally the same as in experiment (0.99 Å3), while the results
for Ni and Co (misfit volumes −0.28 and −0.71 Å3, respec-
tively) are only slightly different from the experimental ones
(−0.49 and −0.50 Å3, respectively). Taking into account the
good agreement of the equilibrium volume noted above, the
apparent volumes also turn out to be close to experiment. It
is clear from Fig. 2 that the success in producing good misfit
volumes in this particular alloy can be largely attributed to XC
pressure correction, while the finite-temperature contributions
are responsible for a more accurate equilibrium volume and
hence apparent volumes of components.

Next, we calculate how the SSS contribution to the yield
stress evolves with temperature and compare it to experi-
mental measurements. In Fig. 3, theoretical and experimental
CRSS are compared for each of our alloys: Poly. Expt. and
Sing. Expt. denote experimental values from polycrystalline
and single-crystalline samples, respectively; DFT refers to
the CRSS from our methodology with all material param-
eters being calculated for the respective temperature; 0 K
DFT corresponds to our theoretical CRSS using the material
parameters at 0 K, however, still considering the alloy to
be paramagnetic and with the temperature dependence be-
ing determined solely by the Arrhenius-type expression from
Eqs. (5) and (4). Furthermore, we also added an uncertainty
estimate for the calculated CRSS (�DFT), which shows how
differences between the predicted and experimental elastic
constants, misfits, and equilibrium volume influence the final
result of the CRSS. In order to get the experimental values
of the CRSS from the polycrystalline measurements, we are
using the Taylor factor of 3.06 to get the single-crystalline
values and then subtract the grain-size-dependent contribution
obtained from the Hall-Petch fit. For the case of NiCoCr,
polycrystalline tensile results from Ref. [75] with a Hall-Petch
contribution of 39 MPa from Ref. [23] were used.

For NiCoCr, Fig. 3(a) clearly shows that the full account
of temperature dependence of the material properties results
not only in qualitative but also in a very good quantitative
agreement of the calculated CRSS with the experimental one,
in a wide temperature range from 77 to 673 K. In contrast,

.
.

.
.

.
.

FIG. 3. Comparison of CRSS �τ from calculations and experi-
ments versus temperature of NiCoCr (a), FeNiCoCr (b), and FeMn-
NiCoCr (c). (Poly. Expt.): Experimental polycrystalline measure-
ments with subtracted Hall-Petch contribution [67,68]. (Sing. Expt.):
Experimental single-crystalline measurements [69–73]. (DFT): The-
oretical CRSS with all material parameters calculated for the given
temperature and uncertainties (filled curves) due to deviations from
experiment. (DFT 0 K) (dashed lines): Theoretical CRSS with all
material parameters calculated once for 0 K and then used for the
whole temperature range.

using only 0-K parameters throughout the whole tempera-
ture range leads to an obviously different behavior at higher
temperatures. According to Eqs. (5) and (4), the tempera-
ture dependence of the CRSS is mostly determined by the
energy barrier �Eb, which is itself a function of the misfit
volumes, elastic moduli, and volume [Eq. (7)]. As can be seen
in Fig. 4(a), the misfit volumes of NiCoCr are only slightly
affected by finite-temperature effects and stay almost constant
up until 600 K. Together with the moderate increase of the
equilibrium volume this also leads to an almost constant misfit
parameter δ [Fig. 5(a)]. At the same time, the shear modulus
GV decreases linearly with temperature, as can be inferred
from Fig. 5(b), where we also provide room-temperature
experimental values from Ref. [74] for comparison. This soft-
ening, in turn, reduces the energy barrier �Eb for dislocation
glide, resulting in an additional reduction of the yield stress on
top of the simple thermal activation process. Note also that the
CRSS is reduced even further because of decreasing τ0y whose
T dependence is similar to that of �Eb. It is also worth noting
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(a)

(b)

(c)

FIG. 4. Comparison of misfit volumes of the individual compo-
nents for the (a) NiCoCr, (b) FeNiCoCr, and (c) FeMnNiCoCr alloy
versus temperature.

that the uncertainties, which are mainly stemming from the
overestimated shear modulus, are rather small, with values of
around 10 MPa at low temperatures (below 100 K) and around
4 MPa above room temperature (RT).

Finally, we take a closer look at the CRSS at room tem-
perature and compare our calculated value �τ = 63 MPa to
earlier works. Single-crystal tensile measurements in Ref. [69]
yielded 69 MPa. A slightly different value of 63 MPa was
found in Ref. [23] by extrapolating the Hall-Petch relation to
infinite grain size and by dividing the results for polycrys-
talline samples by the Taylor factor. A comparable value of
59 MPa was calculated using the same VC model, with the pa-
rameters estimated from experimental data [10]. At the same
time, previous ab initio calculations seem to have failed to
predict the yield stress of NiCoCr. For instance, Liu et al. [78]
used the Peierls model to estimate the zero-temperature CRSS
to be equal to 214 MPa. This significantly overestimates our
0-K prediction of 158 MPa. Finally, Yin et al. [23] have
obtained the CRSS at room temperature of about 19 MPa,
whereby they have applied the VC model, with the parameters
calculated using the PBE functional and a SQS setup for the
alloy, finite-temperature contributions being neglected.

B. FeNiCoCr

FeNiCoCr is paramagnetic at room temperature [79] with
a Tc of around 85 K and can be produced as a single-phase fcc

(a)

(b)

(c)

.
.

.

FIG. 5. Comparison of the main parameters of the VC model
from calculations and experiments versus temperature of (a) NiCoCr,
(b) FeNiCoCr, and (c) FeMnNiCoCr. (a) Calculated and experi-
mental [23] misfit parameter δ. (b) Calculated Voigt-averaged shear
modulus and experimental values of the shear modulus [52,74–77].
(c) Calculated results for energy barrier �Eb.

alloy [67,70] without detectable long-range order [59]. How-
ever, its paramagnetic behavior differs from that of NiCoCr.
Specifically, unlike Ni, Co, and Cr, the magnetic moment of
Fe is strongly localized and remains significant even at zero
temperature [80,81]. We, therefore, use the LSF entropy term
for localized moments: Smag = log(1 + M ) [38]. To summa-
rize, the following magnetic entropy contributions are chosen
for each component:

Fe : Smag = log(1 + M ),

Ni : Smag = 3 log M,

Co : Smag = 2 log M,

Cr : Smag = 3 log M.

As in the previous case, we have calculated all temperature
points with the DLM-LSF approach. This includes also the
first experimental point at 77 K that lies below the mag-
netic transition temperature. However, since this point is very
close to Tc = 85 K, we expect a significant magnetic disorder,
which is better described by DLM than the ferromagnetic state
[82].
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The results for FeNiCoCr are presented in the middle panel
of Fig. 3, where again, one can see a very good agreement
for the calculated �τ (T ) (DFT) with experimental data from
Refs. [67,70]. The difference between the full (DFT) and no
(0 K DFT) temperature dependence of material parameters is
even more pronounced than in the NiCoCr alloy, where the
latter fails to reproduce the significant drop in strength below
RT. It is also clear that the CRSS turns out to be considerably
lower than in NiCoCr. To analyze this difference, we examine
individual contributions to the value of �τ .

The calculated Voigt-averaged shear modulus GV is dis-
played in the middle panel of Fig. 3 along with experimental
values from Ref. [75] for comparison. The value of GV is
similar to that of NiCoCr, with a slightly more enhanced soft-
ening with temperature. As already seen in the analysis of the
uncertainties, small differences in the shear modulus between
the two alloys cannot explain the much stronger difference
in the CRSS. The equilibrium volume of FeNiCoCr at room
temperature, 11.32 Å3 [59], is practically the same as that of
NiCoCr. Our equilibrium volume of 11.44 Å3 calculated at
room temperature also agrees quite well with this experimen-
tal value.

Next, we consider the misfit volumes of alloy components
[Fig. 4(b)] and the average misfit parameter δ [Fig. 5(a)]. De-
spite having almost the same equilibrium volume as NiCoCr,
the misfit volumes of Ni, Co, and Cr components in FeNiCoCr
differ significantly from those in the ternary system. While
the order has remained the same (�VCo < �VNi < �VCr), the
difference between the smallest (Co) and the largest (Cr)
components in FeNiCoCr at RT is 1.27 Å3, which is 25%
smaller than in NiCoCr, where the difference between Co and
Cr is 1.7 Å3 (see previous subsection). On the other hand, Ni
and Fe have negligible contributions to the average misfit δ in
FeNiCoCr. The net effect is the reduction of δ from 2.1% in
NiCoCr to 1.6% in FeNiCoCr, which has the largest impact
on the final values of �τ (T ). The consequently lower-energy
barrier �Eb causes the CRSS to fall off significantly below RT
[Fig. 3(b)]. The T dependence of the misfit volumes and hence
of the average misfit δ in FeNiCoCr is practically absent below
the RT and remains relatively weak at higher temperatures up
until 673 K.

We can also compare our calculated CRSS to other
experimental data measured at selected temperatures. Single-
crystalline CRSS measurements from Wu et al. [70] yielded
�τ = 89 MPa for 77 K and 39 MPa for RT. For the same
temperatures, the extrapolated polycrystalline CRSS from
Ref. [67] are 95 and 30 MPa, respectively. This is to be com-
pared to our calculated values for the same two temperatures:
77 and 25 MPa, respectively.

C. FeMnNiCoCr

As a third example, we consider solid solutions of FeMn-
NiCoCr whose equimolar composition is known as the Cantor
alloy, for which we also study the effect of concentration
variations. A wide range of compositions of FeMnNiCoCr
systems were studied, with their microstructure being claimed
to be a single-phase fcc solid solution [21,83,84]. This makes
it especially interesting as a playground for property optimiza-
tion. FeMnNiCoCr is paramagnetic at room temperature, with

Tc being around 38 K [85]. The magnetic moments of Mn
show localized behavior with a nonvanishing moment at zero
temperature [80,81] similar to Fe. The following magnetic
entropy contributions are chosen for each component:

Fe : Smag = log(1 + M ),

Mn : Smag = log(1 + M ),

Ni : Smag = 3 log M,

Co : Smag = 3 log M,

Cr : Smag = 3 log M.

From the results presented in Fig. 3, one can immediately
see that the behavior of the Cantor alloy is generally more
involved than in the two previous cases. First of all, we see that
the calculated CRSS has an appreciably weaker temperature
dependence than in NiCoCr and FeNiCoCr. The CRSS at
RT is practically the same (26 MPa) as in FeNiCoCr despite
being significantly smaller at lower temperatures. The more
so, our calculations seem to systematically underestimate the
CRSS compared to experiment [68,75]. Especially at lower
temperatures, we see differences of more than 30 MPa. Before
discussing possible reasons for such a discrepancy, let us
analyze the behavior of the alloy in more details.

First, the addition of Mn results in the increase of the
equilibrium volume compared to NiCoCr and FeNiCoCr, with
the calculated volume being 11.62 Å3 at RT, which nicely
compares to the experimental value 11.56 Å3 [58]. On the
other hand, the shear modulus is only marginally smaller than
in FeNiCoCr with the RT value for GV being 95 GPa. Over-
all, the calculated shear modulus as function of temperature
is somewhat larger compared to experimental values from
Ref. [76], as can be seen in Fig. 5(b). Temperature-induced
softening is slightly more pronounced as compared to the
previous two alloys. The anti-invar behavior poses a problem
for the precise and unambiguous determination of the bulk
modulus. As a result, a comparably large uncertainty in CRSS
�τ arises [�DFT in Fig. 3(c)].

The apparent volumes of Co, Cr, and Fe at RT are sim-
ilar to those of FeNiCoCr causing the misfit volumes to be
just shifted because of the difference in equilibrium volumes
[Fig. 4(c)]. Ni appears to be even larger than Cr in the Cantor
alloy, making it a significant strengthener in contrast to the
other two alloys. Compared to the previous two cases, the
misfit volumes of the Cantor alloy exhibit a significant tem-
perature dependence above RT with Mn being most strongly
affected. At low temperatures, the previously found order of
misfit volumes is retained, with Co being the smallest, fol-
lowed by Fe, Ni, and Cr. Mn lies in-between Ni and Cr. At
600 K, however, Mn has by far the largest apparent volume
and Ni and Cr are switching places, with Ni becoming larger
than Cr. Starting from a value of 0.67 at RT, the misfit volume
of Mn reaches a value of 2.00 at 600 K. Combined with
the decreasing misfit volumes of Cr and Co, this leads to an
effective doubling of misfit parameter δ from RT to 600 K.
This compensates for the effect of elastic softening, giving
rise to both the energy barrier �Eb and the zero-temperature
yield strength τy0 to gradually increase again starting from RT.
This, finally, results in a plateau in the T dependence of �τ

above RT.
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FIG. 6. CRSS �τ of nonequimolar FeMnNiCoCr Cantor alloys
with varying concentrations. x denotes the concentration of the com-
ponent that is varied, while the remaining component concentrations
are kept equimolar.

Next, we take a closer look at how our theoretical find-
ings of CRSS compare with the available experimental data.
At RT, the yield stress ranges from 33–50 MPa [71–73]
(single-crystal results) to 49–55 MPa [2,68] (extrapolated
polycrystalline data), which is above our calculated value of
26 MPa. For 77 K we get 67 MPa compared to 105 MPa [73]
and 100 MPa [68], which indicates a considerable underes-
timation, even when the calculation uncertainty of 15 MPa
is taken into account. The discrepancy can be attributed to a
likely deviation of the structure of the Cantor alloy from the
idealized solid solution assumed in the calculations. Specif-
ically, the five-component system has a strong tendency to
phase separation observed in multiple experiments [2,86–88].
On top of that, even a single phase of a HEA can experience
partial ordering or clustering on individual sublattices, which
would appear as a homogeneous phase and could be detected
only by experimental techniques capable of resolving a homo-
geneous short-range order [89].

To further investigate the complex interplay of the Can-
tor alloy components and to understand its behavior better,
we also study the CRSS as a function of concentrations of
components in the vicinity of the equimolar composition.
In particular, we always vary one component concentra-
tion, while keeping the composition of the remaining system
equimolar. Figure 6 summarizes the CRSS for all component
variations. Judging by the misfit volumes of the equimolar
composition, one would expect that increasing the concen-
tration of elements with large absolute misfit volumes, such
as Mn and Cr, would also positively affect the CRSS. Sur-
prisingly, the result for Mn and Cr is the opposite, while
increasing the concentrations of Co turns out to be marginally
beneficial for the strength. By examining the behavior of in-
dividual contributions (see Appendix B), we conclude that for
Mn the outcome is related to considerable softening of elastic
constants, compensating the increasing misfit parameter δ. At
the same time, both the shear modulus and the misfit param-
eter are decreasing with concentration of Cr, resulting in the
reduced CRSS. On the other hand, lowering the Fe content
increases δ, while reducing the elastic constants only moder-
ately, which gives rise to a positive impact on the CRSS. This

counterintuitive behavior of the CRSS is the result of complex
interactions between the components. We will discuss these
interactions in more details in the next section.

IV. DISCUSSION

Naturally, one would expect that a higher number of
elements would enhance solid solution strengthening and
ultimately lead to a higher yield stress. However, previous
experimental work of tensile tests of polycrystalline samples
yield strength measurements on single-crystal and hardness
measurements show a different trend for the NiCoCr, FeNiC-
oCr, and FeMnNiCoCr alloys [67,90]. Specifically, it is the
ternary NiCoCr that has the highest SSS contribution, while
the five-component Cantor and the quaternary FeNiCoCr al-
loy have almost the same SSS, with the latter having the
lowest value. At the same time, specific volume and linear
elastic constants are very similar for these alloys, which leaves
the average misfit volume as a parameter of the VC model
mainly responsible for the differences in the SSS. Results
presented in the previous section show that that our theoret-
ical findings confirm the trends observed in experiments. In
particular, NiCoCr has the largest SSS, with the four- and
five-component alloys having considerably lower effect of
solutes on strengthening.

Modeling also confirms that the differences between the
alloys clearly correlate with the magnitude of the average
misfit volumes. We can therefore understand the mechanism
of strengthening better by analyzing the behavior of misfit
volumes. Since direct measurements of misfit/apparent vol-
umes are relatively difficult, they are often estimated from
measured volumes of a set of simpler alloys containing cor-
responding elements, whereby a linear dependence of the
alloy volume on concentrations (Zen-Vegard’s law [91]) is as-
sumed. Apparent volumes obtained in this way for iron-group
3d metals usually follow the order similar to the well-known
trend followed by the corresponding elemental compounds
[10,11,21]. Specifically, starting from Ni and going down the
row, the volume steadily increases, reaching its maximum at
Mn and then slightly decreasing for Cr. However, our calcula-
tions suggest that the apparent volumes are strongly system
dependent and generally do not follow the naive elemental
trend. For instance, for all three alloys considered in this work,
Ni is never the smallest element and exhibits even a larger
volume than that of Cr in the five-component Cantor alloy
(see Appendix B). Furthermore, previous works suggested
that the average misfit δ is increasing for FeNiCoCr, NiC-
oCr, and FeMnNiCoCr (respectively, values of 1.72%, 1.67%,
1.85% were obtained in Ref. [11] and 1.24%, 1.07%, 1.89%
in Ref. [21]), while our results clearly show that it is NiCoCr
that has the largest average misfit volume among these three
alloys (with the RT value of 2.1% compared with 1.31% and
1.61% for FeNiCoCr and FeMnNiCoCr, respectively).

The failure of the simple Vegard’s law in predicting the
misfit volumes can be attributed to two main phenomena.
First, the magnetic behavior of the iron-group elements is
pretty complex and has a considerable influence on the
misfit volumes. In particular, Fe and especially Mn exhibit
strong magnetovolume coupling, which effectively makes
their local magnetic moments dependent on their respective
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apparent volumes. Second, chemical and magnetic interac-
tions between components in multicomponent HEA lead to
appreciable deviations of the concentration dependence of the
volume from Vegard’s law.

Because of magnetism, formulating a tractable general
model for predicting misfit volumes is a nontrivial task. Nev-
ertheless, basic aspects of interatomic interactions beyond
Vegard’s law can be rationalized within a relatively sim-
ple framework that we will present below. The behavior of
volumes in a multicomponent alloy is best inferred from
the Gibbs free energy of a system G(T, P, {ci}), which is a
function of temperature T , pressure P, and concentrations of
components ci. Once the Gibbs free energy is known, the
concentration-dependent volume of the alloy for a given tem-
perature (which we will omit for clarity) is readily obtained
as

V ({ci}) = ∂G(P, {ci})

∂P
, (13)

which is then used to evaluate misfit volumes according to
Eq. (9).

A standard way to analyze the free energy would be to use
the cluster expansion, which for a completely random alloy
of n components can be written as a series over powers of
concentrations,

G(P, {ci}) =
∞∑

k=1

∑
p1 p2...pn

g(k)
p1 p2...pn

(P)cp1
1 cp2

2 . . . cpn
n , (14)

where g(k)
p1 p2...pn

(P) are effective intercomponent interactions
of kth order, with p1 + p2 + · · · + pn = k. The interactions
depend only on the pressure and component types and can
formally be obtained as a sum over corresponding cluster
interactions. However, this series is generally slowly conver-
gent in the order of interactions, making it impractical for
a model description. The situation gets worse in magnetic
alloys, where magnetic interactions and the concentration de-
pendence of local magnetic moments of components render
the above series even slower convergent (or not convergent at
all).

A much more compact description can be obtained if we
introduce two major assumptions: (i) effective interactions
g(k) can be made explicitly dependent on the local magnetic
moments of the components mi; (ii) given the local magnetic
moments, effective interactions depend on the component
types only through the average number of d electrons per
k-site cluster, N (k) = (p1N1 + · · · + pkNk )/k, with Ni being
the number of d electrons for component i. This approxima-
tion is known as a virtual bond approximation (VBA) [92]
and its idea is to reduce complex intercomponent interactions
to simpler universal (virtual bond) functions of the average
valence in the spirit of the Pettifor theory of bonding in
transition metals [93]. Virtual bond parameters can also be
loosely connected to tight-binding bond order parameters,
which reflect the dependence of the bond energy on electron
filling [94]. Another similar approach is a model proposed in
Ref. [95], which expresses the alloy lattice parameter in terms
of a second-order polynomial in concentrations. Within the

VBA model, Gibbs free energy and the equilibrium volume of
an alloy can be written as

G(P, {ci}) =
∑

i

cig
(1)(P, Ni, mi )

+
∑

i j

cic jg
(2)(P, Ni j, mi, mj ) + . . . , (15)

V ({ci}) =
∑

i

ci v
(1)(Ni, mi )

+
∑

i j

ci c j v
(2)(Ni j, mi, mj ) + . . . , (16)

where v(k) = ∂g(k)(P = 0)/∂P, Ni j = (Ni + Nj )/2. Note that
i and j can stand for the same element. In particular, the
equilibrium volume of an element i will be given by Vi =
v(1)[Ni] + v(2)[Nii] with Nii ≡ Ni. The expansion can be writ-
ten up to an arbitrary order but we will limit ourselves to the
second order.

To determine the unknown interaction parameters v(k), we
perform a series of calculations of equilibrium volume for
equimolar binary alloys containing all possible combinations
of 5 elements, Cr, Mn, Fe, Ni, Co (10 binary alloys in to-
tal). Combined with 5 elemental compounds, this gives 15
reference systems in total. Importantly, the calculations are
performed with the local moments mi fixed to that of the target
alloy. Also, their structure is considered to be the same as
the target. In practice, we fix the local moments to those of
the Cantor alloy since their values in NiCoCr and FeNiCoCr
are not significantly different. Since the model is linear in
interaction parameters v(k), one way to find them would be
to perform a linear regression on the entire set of reference
systems. However, one can simplify the fitting procedure by
noticing that the model with second-order terms (v(2)) omitted
is equivalent to Vegard’s law, with v(1) just being the simple
elemental equilibrium volume. Any deviation from Vegard’s
law, �V = Valloy − 〈V 〉, will thus be determined solely by
interaction terms v(2). In more details, for an equimolar binary
AB the deviation �VAB = VAB − 〈V 〉AB is given by

�VAB = 1
2v(2)[NAB] − 1

4v(2)[NA] − 1
4v(2)[NB], (17)

which results in a (generally overdetermined) system of
equations in terms of parameters v(2), with �VAB obtained
from the calculated equilibrium volumes of the binary alloys.
Subsequently, v(1) is obtained trivially from the equilibrium
volumes of reference systems using Eq. (16). If the model
consistently describes the reference systems we expect param-
eters v(k) to come out as smooth functions of the valence. This
is indeed the case, as one can see in Fig. 7, where we show
that the obtained parameter values can be fitted with low-
order polynomials. It is also clear that although the volume
is dominated by the first-order parameter v(1), the variation of
v(2) is significant and it can result in nontrivial contributions
to the equilibrium volume and its concentration derivatives for
multicomponent alloys.

Misfit volumes derived from Vegard’s law and the VBA
model for the three alloys, NiCoCr, FeNiCoCr, FeMnNiCoCr,
are displayed in Fig. 8, where they are compared to the cal-
culated values (denoted by “C”). To get the model estimates
we use the polynomial fits of v(1) and v(2) as functions of
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FIG. 7. VBA parameters v(1) and v(2) as functions of the average
number of d-valence electrons. Discrete values (×, ∗) were obtained
from equilibrium volumes of elemental compounds and binary alloys
as described in the main text. Solid lines are polynomial fits (third
order for v(1) and fifth order for v(2)).

the valence, which allows us to evaluate these parameters at
an arbitrary value of the d-electron filling. Furthermore, we
use either nominal valences of elements (“M1” in the figure)
or the actual fillings including charge transfers (“M2” in the
figure) obtained from the calculations. From Fig. 8 one can
see that the naive Vegard’s law (“V”) works fairly well only
for NiCoCr, while failing completely to reproduce the signs
and relative sizes of calculated misfit volumes in FeNiCoCr
and FeMnNiCoCr. In the latter case, even the order of ele-
ments turns out to be wrong with a strongly overestimated
value for Cr and underestimated values for Ni and Mn. The
reason for this failure is clear: Since the volumes of the three
alloys are very similar, the obtained misfit volumes simply
follow the trend for the volumes of 3d elements. However,

FIG. 8. Comparison of the misfit volumes obtained from Ve-
gard’s law (V), from virtual bond approximation with nominal
valences (M1), with charge transfers taken into account (M2), and
calculated directly (C).

FIG. 9. Comparison of the directly calculated and model predic-
tions of misfit volume of the Cantor alloy for concentration variations
of Ni.

we have seen already that the misfit volumes in the four- and
five-component alloys deviate considerably from this trend.

In contrast, misfit volumes from the VBA (M1 and M2)
exhibit much better agreement with calculations. In particular,
the signs are always correct and values are mostly in the right
ballpark. The order of the elements is also generally correct
except for the significant underestimation of Mn misfit volume
in the Cantor alloy by the simpler version (M1) of the model.
However, this error is mitigated if one takes charge transfer
into account (M2), which gives an overall better agreement in
all cases. The considerable improvement of the VBA misfit
volumes over those from Vegard’s law signify the importance
of including intercomponent interactions into the model.

Another important feature of the VBA model is that it can
be used to predict the evolution of the misfit volumes when
the composition of a HEA is varied away from the equimolar
point. An example is shown in Fig. 9, where the VBA misfit
volumes are compared to the calculated ones as functions of
the concentration of Ni in the Cantor alloy while keeping the
other components equimolar. As expected from the second-
order model, it can result only in a linear dependence on
the concentration. The concentration dependence of the local
magnetic moments is ignored here. Including changes in the
d fillings with concentration have a weak effect. Nevertheless,
most of the trends are correctly reproduced. In contrast, Veg-
ard’s law would give values shifting uniformly in the same
direction with composition only because of the variation of
the equilibrium volume itself.

The presented model could, in principle, be used for pre-
dicting misfit volumes of HEA based on experimental data
on binary and ternary subsystems. However, the inference of
parameters v(k) for iron-group HEA is complicated by the
complex magnetic behavior of elements, especially Mn and
Fe. In particular, one would need an additional model to pre-
dict the local moments of components and to take into account
their effect on v(k). These issues will be addressed in future
publications.
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FIG. 10. Atomic volumes calculated for different concentration
variation of the NiCoCr alloy used for obtaining misfit volumes.
The label Ni (red), Co (blue), or Cr (green) refers to the elemental
component which concentration is varied, while the other two com-
ponent concentration ratios are kept constant. The markers refer to
volumes obtained with our methodology. The lines correspond to a
linear hyperplane fitted with the volumes. Ni and Co show a linear
trend over a the large concentration range. Cr is starting to deviate
for concentration changes larger than 3 at.%.

V. CONCLUSIONS

We have shown that a quite reliable description of such
a complex alloy property as the critical resolved shear stress
is possible using DFT combined with CPA, provided that (a)
the equilibrium volume is estimated correctly, and (b) impor-
tant finite-temperature effects, such as the thermal expansion
and spin fluctuations, are taken into account. An accurate
value of the equilibrium volume is obtained using an element-
specific XC pressure correction, which is a key feature of
our approach. The improved equilibrium volume also leads
to significantly more accurate results for other equilibrium
properties, such as elastic constants, magnetic moments, etc.
Furthermore, temperature effects mediated by phonons and
magnetic fluctuations are taken into account, which allows us
to predict the behavior of alloys at finite temperatures.

We validate the computational approach against avail-
able experimental data for a series of alloys. In particular,
we have obtained a very good estimate of the misfit vol-
umes in the case of NiCoCr, where we can juxtapose them
with the corresponding experimental data. The methodol-
ogy is applied to modeling of solid solution strengthening.
Specifically, we have calculated alloy-specific parameters (lat-
tice constant, misfit parameter, elastic moduli) at respective
temperatures and employed the Varvenne-Curtin model to
evaluate the temperature-dependent CRSS for three alloys
(NiCoCr, FeNiCoCr, FeMnNiCoCr) for which corresponding
experimental data are available. We get a good quantitative
agreement for the temperature-dependent CRSS for NiC-
oCr and FeNiCoCr. For the five-component system we get
somewhat underestimated values, which we attribute to the
complexity of the alloy structure. We have shown that the
trends in the strength of the three alloys in question are
mostly determined by the misfit parameter δ. By examining

FIG. 11. Effects on properties upon changing the concentration
x in FexMn(1−x)/4Ni(1−x)/4Cr(1−x)/4Co(1−x)/4.

the contributions of individual elements into the average mis-
fit parameter, we conclude that misfit volumes are subject
to intricate intercomponent interactions and can behave in a
nonintuitive way as functions of concentrations.

Finally, to examine complex interaction effects we pro-
pose a simple model describing local bond strength between
individual elements. The model yields qualitatively good esti-
mates of misfit volumes of individual components, describing
the differences in the behavior of the three considered alloys.
Moreover, the model is capable of capturing trends in the
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FIG. 12. Effects on properties upon changing the concentration
x in Fe(1−x)/4Mn(1−x)/4Ni(1−x)/4CrxCo(1−x)/4.

evolution of misfit volumes as functions of concentrations
in the FeMnNiCoCr alloy. We argue that the model could
potentially be used in conjunction with available experimen-
tal data on 3d-metal alloys, provided that the description of
magnetism is improved.

ACKNOWLEDGMENTS

We are grateful to V. Razumovskiy for discussions. This
work was supported by the Forschungsförderungsgesellschaft

FIG. 13. Effects on properties upon changing the concentration
x in Fe(1−x)/4Mn(1−x)/4Ni(1−x)/4Cr(1−x)/4Cox .

(FFG) Project No. 878968 “ADAMANT,” Austrian Sci-
ence Fond (FWF) Project No. P33491-N “ReCALL,” and
COMET program IC-MPPE (Project No. 859480). This pro-
gram is supported by the Austrian Federal Ministries for
Climate Action, Environment, Energy, Mobility, Innovation
and Technology (BMK) and for Digital and Economic Affairs
(BMDW), represented by the Austrian research funding asso-
ciation (FFG), and the federal states of Styria, Upper Austria,
and Tyrol. All calculations in this work have been done using
Vienna Scientific Cluster (VSC-3).

103602-13



MOITZI, ROMANER, RUBAN, AND PEIL PHYSICAL REVIEW MATERIALS 6, 103602 (2022)

FIG. 14. Effects on properties upon changing the concentration
x in Fe(1−x)/4MnxNi(1−x)/4Cr(1−x)/4Co(1−x)/4.

APPENDIX A: CONVERGENCE OF MISFIT VOLUMES

To see how sensitive our approach is to the variation of
the mesh resolution, we also perform convergence tests for
the concentration steps used to obtain the misfit volumes (a
figure is enclosed in this Appendix). We found that con-
vergence is achieved already with a concentration step as
large as 5 at.% validating the mesh used in experiment from
Ref. [23]. Specifically, NiCoCr exhibits a large linear con-
centration dependence of the equilibrium volumes. Often, the

FIG. 15. Effects on properties upon changing the concentration
x in Fe(1−x)/4Mn(1−x)/4NixCr(1−x)/4Co(1−x)/4.

apparent and misfit volumes are calculated under the assump-
tion of linearity of the average properties with respect to
composition within a range of 5–10 at.% (local Vegard’s law)
[11,21,22,33]. Our findings generally confirm this assump-
tion, but also demonstrate that these previous studies were
choosing meshes that had already been at the limit where
noticeable non-linearity starts to set in. It is worth noting that
misfit volumes not only affect the yield stress at 0 K, but also
its temperature dependence, which can explain, for instance,
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the underestimated SSS at elevated temperatures in Ref. [33],
resulting from underestimated misfit volumes.

As aforementioned, the misfit volumes require the deter-
mination of the concentration dependency of the equilibrium
volumes of the respective alloy. For the NiCoCr linear depen-
dency of the concentration is present for a large concentration
range. Figure 10 depicts the changes on the volume on varying
always one component while the ratio of the other two is kept
constant. Changing the concentration of Ni and Co leads to
a linear behavior over the whole range, as can be seen by
comparing to lines representing a linear fit. In contrast, Cr
shows deviations starting from concentration changes larger
than 5 at.%. Overall, the deviations are small for this type of
alloy.

APPENDIX B: CONCENTRATION VARIATION AROUND
THE EQUIMOLAR COMPOSITION OF CANTOR ALLOY

Figures 11–15 give an overview of the influence of con-
centration changes on the elastic properties and apparent
volumes. In all cases, one alloy component is changed with
respect to the equimolar Cantor while the ratios of the remain-
ing components are kept constant. The following properties
can be seen in the overview figures: (1) apparent volume and

the corresponding equilibrium volume of the alloy, (2) Voigt
averages shear modulus GV and the average misfit delta δ,
(3) critical resolved shear stress at 300 K and the energy
barrier, (4) bulk modulus, and (5) magnetic moments of the
components at the equilibrium volume.

Several interesting observations can be made in the figures.
Changes in the apparent volumes of Fe and Co are relatively
weak compared to other elements, except for the case of the
varying Ni concentration, where all elements are effected.
Another counterintuitive aspect is that in many cases (except
for Cr) the variation of an element concentration has less
impact on its own apparent volume than on the apparent vol-
ume of other elements. For instance, varying Fe concentration
changes the apparent volumes of Mn, Ni, and Co, but its own
apparent volume remains practically constant.

One could expect that most of these variations are related to
the changes in the local magnetic moment. However, the fig-
ures (bottom panels) show that the magnetic moments evolve
significantly only in the case of varying Ni and Cr concen-
trations. And, even in these cases, it is only the variations of
concentrations of Fe and Mn that can be attributed to the well-
known magnetovolume coupling inherent to these elements in
the fcc lattice. In all other cases, the results can be explained
only taking into account intercomponent (pair or higher-order)
interactions.
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