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Benchmarking of different strategies to include anisotropy in a curvature-driven
multi-phase-field model
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Two benchmark problems for a quantitative assessment of anisotropic curvature driving force in a phase-field
method were developed and introduced. Both benchmarks contained an anisotropically shrinking grain in a
homogeneous matrix. The first benchmark was a shrinking Wulff shape and in the second, such inclination
dependence of the kinetic coefficient was added so that the shrinkage was isotropic. In both cases, the match
to the expected shape was quantified by means of Hausdorff distance and the shrinkage rate was analytically
expressed. Three different ways of interface energy anisotropy inclusion in a multi-phase-field model were
compared. Because their performance was comparable, they were tested in an additional benchmark problem,
which concerned the direct measurement of equilibrium triple junction angles. Based on this benchmark, only
one of the three strategies to include anisotropy was reliable in strongly anisotropic systems.
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I. INTRODUCTION

In order to confidently and honestly interpret results of
quantitative phase-field simulations, both physical models and
numerical implementations must be validated and verified
[1]. Recent initiative PFHub addresses the need for bench-
marking of the multitude of software and numeric approaches
for solving the phase-field governing equations. However,
benchmarks validating anisotropic interface energy or multi
phase-field models have not been included yet.

Grain coarsening is assumed to be curvature-driven, hence
it is an appealing application for only-interface-driven multi-
phase-field models. Real interfaces (including the grain
boundaries) exhibit anisotropic (inclination-dependent) inter-
face energies [2,3], hence a significant effort was made to
introduce this feature in some multi-phase-field models too
[4–8].

The models have different formulations, but the differ-
ences in their behavior are not obvious, especially because
there is no unified validation procedure for quantitative com-
parison. Systematic and reproducible parametric studies in
well-defined problems are needed for quantitative assessment
of phase-field models reliability.

There are several ways to introduce anisotropic interface
energy in the Allen-Cahn equation (irrespective of whether the
model is single- or multi-phase-field). Tschukin [9] proposes
the terminology of classical and natural models (correspond-
ing to the notation VIW and VIE, respectively, as used by
Fleck [10], standing for Variable Interface Width and Variable
Interface Energy). The classical models [11–15], introduce
anisotropy in the gradient energy coefficient, whereas the nat-
ural models [10,16–18] in both the gradient energy coefficient
and homogeneous energy density barrier. The main difference
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is that in the first case the diffuse interface width varies
proportionally to the local interface energy, whereas in the
latter they are decoupled and the interface width is constant.
Another notable approach uses Finsler geometry to replace the
Euclidean metric in the simulation domain by an anisotropic
one [19,20].

Usually, the validation of models with inclination-
dependent interface energy was carried out by visual com-
parison of the phase-field contours to corresponding Wulff
shapes for single or several values of strength of anisotropy
[4,9,10,14,16]. Such approach does not reveal the limits of
reliability of these models, though.

This paper proposes two benchmarks for quantitative as-
sessment of (a) the anisotropic curvature driving force and
(b) the anisotropic curvature driving force in combination
with anisotropic kinetic coefficient. Both are two-phase sys-
tems, hence could be simulated using a single phase-field
model. Nevertheless, because the multi-phase-field models
allow simulations of multiple phases, they have wider appli-
cation potential than single phase models. For this reason,
the validations are demonstrated on a multi-phase-field model
[18]. However, the nature of these benchmarks is independent
on the model formulation.

In order to provide more complete comparison of the mod-
els, another supplementary benchmark was carried out, which
determined equilibrium triple junction angles.

The multi-phase-field model by Moelans [18] is an es-
tablished [21] quantitative phase-field model of grain growth
with anisotoropic grain boundary properties. Using asymp-
totic analysis, Moelans derived that in the original model
[18], the local interface energy and width are related to three
model parameters. Because these are two equations of three
variables, the system is undetermined and one of the model
parameters is free. This degree of freedom introduces the
possibility of many different parameters assignment strate-
gies, all of which represent the same physical input. The
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effect of different but equivalent parameters choices can thus
be investigated in this model. Moelans proposed such pa-
rameters assignment strategy [18], which assured constant
interface width irrespective of the strength of anisotropy in
interface energy (a kind of natural formulation). Two of the
three model parameters (γ and κ) were made anisotropic
in order to achieve such behavior. However, this approach
(here denoted IWc-Interface Width constant) does not repro-
duce well the angles between interfaces in triple junctions
for stronger anisotropies. This was already first noted by
Moelans in Ref. [22]. An alternative parameters assignment
strategy with only parameter γ anisotropic was used in
Refs. [21,23], but no systematic comparison was made. In this
approach, the interface width is not constant in anisotropic
systems, but it is not simply classifiable as classical anisotropy
formulation, because the gradient energy coefficient is con-
stant. It will be denoted IWvG (Interface Width variable
and Gamma anisotropic). The third compared parameters as-
signment strategy is the classical formulation, varying only
gradient energy coefficient κ to achieve the desired interface
energy anisotropy (denoted IWvK - Interface Width variable
and Kappa anisotropic). Additionally, the inclination depen-
dence of interface energy in IWvG and IWvK have not yet
been addressed in the framework of Moelans’ model.

This paper is organized as follows: firstly, the base model
and its three variants are introduced, including the inclination
dependence in interface energy. Secondly, the methodology
is explained in detail, which involves quantitative matching
of the shrinking shape to the analytic one and also the de-
termination of shrinkage rate (also known analytically). The
approach taken in triple junction angles determination is ex-
plained as well. Then, the validations were carried out in
the order: shrinking Wulff shape, kinetically compensated
anisotropically shrinking circle, and triple junction angles. For
all simulations, the effect of interface width and number of
grid points through the interface are investigated by rerunning
the simulations using different numerical settings.

II. PHASE-FIELD MODEL

The system consists of n nonconserved continuous-field
variables (further denoted phase-fields) η1(r, t ), η2(r, t ), . . . ,
ηn(r, t ), which are functions of space and time. The total free
energy of the system is expressed as a functional of the phase-
fields and their gradients ∇η1(r, t ),∇η2(r, t ), . . . ,∇ηn(r, t )

F =
∫

V

{
m f0(�η) + κ

2

n∑
i=1

(∇ηi )
2

}
dV, (1)

where the homogeneous free energy density f0(�η) =
f0(η1, η2, . . . , ηn) is expressed as

f0(�η) =
n∑

i=1

(
η4

i

4
− η2

i

2

)
+ γ

n∑
i=1

∑
i> j

η2
i η

2
j + 1

4
. (2)

The parameters m, κ, and γ are model parameters, which
together define interface energy and interface width (see the
following section for more details).

The governing equations for each phase field ηp are ob-
tained based on the functional derivative of the free energy
functional with respect to ηp, assuming that the phase-fields

are nonconserved, i.e.,

∂ηp

∂t
= −L

δF

δηp
= −L

[
∂ f

∂ηp
− ∇ · ∂ f

∂ (∇ηp)

]
, (3)

where L is the kinetic coefficient (also dependent on the model
parameters), f is the full integrand in (1) and ∇ · ∂ f /∂ (∇ηp)
is divergence of vector field ∂ f /∂ (∇ηp) defined by relation

∂ f

∂ (∇ηp)
= ∂ f

∂ (∂xηp)
nx + ∂ f

∂ (∂yηp)
ny + ∂ f

∂ (∂zηp)
nz (4)

with ∂x, ∂y, ∂z being operators for unidirectional derivatives
in the corresponding directions and nx, ny, nz coordinate base
vectors.

A. Isotropic model

In a system with uniform grain boundary properties, the
interface energy is equal for all interfaces and hence the phase-
field model parameters m, κ, and γ (and interface width l)
are constant in the system.

Then, using expression (3), the governing equation for each
phase-field ηp takes the following form:

∂ηp

∂t
= −L

[
m

(
η3

p − ηp + 2γ ηp

∑
j �=p

η2
j

)
− κ∇2ηp

]
. (5)

The interface energy σ of the system is related to the model
parameters via

σ = g(γ )
√

mκ, (6)

where g(γ ) is a nonanalytic function of parameter γ . The
interface width l is expressed as

l =
√

κ

m f0c(γ )
, (7)

where f0c(γ ) is the value of f0(ηi,cross, η j,cross ) in the points
where the two phase-fields ηi, η j cross. f0c(γ ) is a nonanalytic
function too. Values of both g(γ ) and f0c(γ ) were tabulated
and are available in Ref. [23]. Both functions are positive and
monotonously rising.

Usually, the interface energy σ is known as material prop-
erty and l is chosen for computational convenience, together
with γ . Then, the parameter values are assigned from the
following formulas

κ = σ l

√
f0c(γ )

g(γ )
≈ 3

4
σ l, (8)

m = σ

l

1

g(γ )
√

f0c(γ )
≈ 6

σ

l
, (9)

L = μ

l

g(γ )√
f0c(γ )

≈ 4

3

μ

l
. (10)

The symbol μ stands for interface mobility. The approximate
relations above hold exactly when γ = 1.5 and are well appli-
cable when 0.9 � γ � 2.65 [18].

B. Anisotropic model and parameters assignment strategies

Two cases of interface energy anisotropy may occur, to-
gether or separately. Firstly, in the system, there may be
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TABLE I. Characterization of the three parameter assignment
strategies: the one with constant interface width (IWc), with variable
interface width and all anisotropy in γ (IWvG) and with variable
interface width and all anisotropy in κ (IWvK). In the latter, it is
inconvenient to choose other value of γ than γ = 1.5. IW stands for
interface width, other symbols have meaning as in the text.

IWc IWvG IWvK

fixed parameters IW, m κ, m γ , m
varying parameters γ , κ IW, γ IW, κ

multiple interfaces with different interface energies (termed
misorientation dependence in Ref. [18], here pairwise isotropy
for greater generality). Secondly, there may be an interface
with inclination-dependent interface energy. Additionally, the
kinetic coefficient L can be inclination dependent.

In both cases of anisotropy in interface energy, some of
the model parameters m, κ, and γ must become spatially
dependent in order to assure correct local representation of
the interface energy and width. In other words, Eqs. (6) and
(7) must hold in every point of the anisotropic system. These
two equations locally form an undetermined system of three
variables, hence one of the model parameters is free and many
different parameters assignment strategies are possible.

In this paper, the parameter m is always a constant, because
when m was spatially varied [18], the model behavior in multi-
junctions was reported to be strongly affected by the interface
width. Such a model would be nonquantitative and thus will
not be further regarded in this paper.

Three different parameters assignment strategies are con-
sidered, which differ in value of m and further in which
of parameters κ, γ is constant and which varies in space to
keep equation (6) valid. The three strategies are denoted: IWc
(variable γ , κ so that interface width is constant [18]), IWvG
(variable interface width and γ [23]) and IWvK (variable
interface width and κ). Table I summarizes, which parameters
are kept constant and which vary to capture the anisotropy in
the different strategies. The detailed procedure of the parame-
ters assignment and ways to control the width of the narrowest
interface are described in Sec. I of Ref. [24]. Note that for
the IWc model we propose a single-step parameters deter-
mination procedure, which is more predictable and simpler
than the original iterative one [18]. The two are equivalent,
though.

Below follow details about the incorporation of pairwise
isotropy and inclination dependence in the model.

1. Systems with pairwise isotropic IE

In the system with n phase fields, there are n(n − 1)/2
possible pairwise interfaces, each of which may have dif-
ferent (mean) interface energy σi, j . The indices i, j denote
interface between phase fields ηi, η j . A set of parameters
m, κi, j, γi, j, Li, j (all scalars) is obtained by appropriate pro-
cedure (depending on the strategy, see Sec. I in Ref. [24]) so
that the relations (6) and (7) are valid for each interface inde-
pendently [Eqs. (8)–(10) hold for each interface (i- j)]. Then,
these are combined together to produce the model parameter

fields κ (r), γ (r), and L(r):

κ (r) =
∑n

i=1

∑n
j>i κi, jη

2
i η

2
j∑n

i=1

∑n
j>i η

2
i η

2
j

, (11)

γ (r) =
∑n

i=1

∑n
j>i γi, jη

2
i η

2
j∑n

i=1

∑n
j>i η

2
i η

2
j

, (12)

L(r) =
∑n

i=1

∑n
j>i Li, jη

2
i η

2
j∑n

i=1

∑n
j>i η

2
i η

2
j

, (13)

which stand in place of κ, γ in the functional in Eq. (1) and
in place of L in the governing equation (3). Notice that from
Table I stems that in IWvG is κ (r) = const by definition (i.e.,
all the κi, js are equal) and similarly in IWvK γ (r) = const =
1.5 (i.e., all γi, js are equal).

The free energy functional for IWc is then (those for IWvG
and IWvK are equal, only with either κ (r) or γ (r) being
constants, respectively):

F =
∫

V

{
m f0(�η) + κ (r)

2

n∑
i=1

(∇ηi )
2

}
dV, (14)

f0(�η) =
n∑

i=1

(
η4

i

4
− η2

i

2

)
+

n∑
i=1

∑
i> j

γi, jη
2
i η

2
j + 1

4
. (15)

Both parameter fields κ (r) and γ (r) are functions of phase
fields �η. This dependence should produce new terms in the
governing equations [from ∂ f /∂ηp in Eq. (3)]. However, be-
cause the denominator of γ (r) cancels out in the functional,
the new terms only arise from ∂κ/∂ηp.

The governing equations then are

∂ηp

∂t
= −L(r)

[
m

(
η3

p − ηp + 2ηp

∑
j �=p

γp, jη
2
j

)

+ 1

2

∂κ

∂ηp

n∑
i=1

(∇ηi )
2 − κ (r)∇2ηp

]
. (16)

The above procedure is fully variational, nevertheless inclu-
sion of the term proportional to ∂κ/∂ηp enables the model
to reduce the total energy of the system by introduction of
so called third phase contributions (also ghost or spurious
phases) at diffuse interfaces [18]. That is a common problem
in multi-phase-field models [5], where a third phase field
attains nonzero value within an interface of two other phase
fields. This mathematical artefact affects triple junction angles
and in general is not physically justified. Several ways of
elimination or suppression of ghost phases were described in
Ref. [5] and the references therein.

In this work, the ghost phases were eliminated by neglect-
ing the term proportional to ∂κ/∂ηp. However, because such
model is not fully variational, the thermodynamic consistency
can no longer be guaranteed in IWc and IWvK. This does
not affect IWvG, because there is ∂κ/∂ηp = 0 anyway. That
accounts for a clear advantage of the IWvG model, as no ghost
phases appear even when fully variational.

2. Systems with inclination-dependent interface energy

The orientation of an interface in 2D system is given by
interface normal, inclined under the angle θ . Local value of
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TABLE II. Inclination dependence of the variable parameters in the respective models. The interface energy is σi, j (θi, j ) = σ 0
i, jhi, j (θi, j ).

Symbols κ0
i, j, γ

0
i, j stand for scalar values of the parameters determined from σ 0

i, j (see Sec. I in Ref. [24]). Expressions for γi, j (θi, j ) follow the so
called weak anisotropy approximation [18], i.e., they assume that the values of γi, j (θi, j ) do not diverge far from 1.5, so that the approximation
g2[γi, j (θi, j )] ≈ 16[2γi, j (θi, j ) − 1]/9[2γi, j (θi, j ) + 1] is applicable (see Ref. [18] for details). Second row contains expressions used in Eqs. (23)
and (24).

model IWc IWvG IWvK

variable parameter(s)

κi, j (θi, j ) = κ0
i, jhi, j (θi, j )

γi, j (θi, j ) = −
9
4 g2

(
γ 0

i, j

)
hi, j (θi, j )+1

9
2 g2

(
γ 0

i, j

)
hi, j (θi, j )−2

γi, j (θi, j ) = −
9
4 [g(γ 0

i, j )hi, j (θi, j )]
2
+1

9
2 [g(γ 0

i, j )hi, j (θi, j )]
2
−2

κi, j (θi, j ) = κ0
i, j[hi, j (θi, j )]2

∂κi, j/∂hi, j and ∂γi, j/∂hi, j

∂κi, j/∂hi, j = κ0
i, j

∂γi, j/∂hi, j = 9g2
(
γ 0

i, j

)
[

9
2 g2

(
γ 0

i, j

)
hi, j (θi, j )−2

]2
∂γi, j/∂hi, j = 18g2

(
γ 0

i, j

)
hi, j (θi, j ){

9
2

[
g
(
γ 0

i, j

)
hi, j (θi, j )

]2
−2

}2 ∂κi, j/∂hi, j = 2κ0
i, jhi, j (θi, j )

interface energy may be a function of local interface inclina-
tion, i.e., σ = σ (θ ). In Moelans’ model [18], the normal at
interface between ηi, η j , denoted n̂i, j , is defined as

n̂i, j = ∇ηi − ∇η j

|∇ηi − ∇η j | =
[

(n̂i, j )x

(n̂i, j )y

]
(17)

and the definite inclination of that normal

θi, j = atan2[(n̂i, j )y, (n̂i, j )x], (18)

which is the standard two-argument arctangent function.
In 2D, the inclination dependence of interface energy can

be expressed as

σi, j (θi, j ) = σ 0
i, jhi, j (θi, j ), (19)

where σ 0
i, j is a scalar and hi, j (θi, j ) is anisotropy function. The

used anisotropy function was

hi, j (θi, j ) = 1 + δ cos(nθi, j ), (20)

with δ being strength of anisotropy and n the order of sym-
metry. Some properties of this anisotropy function and the
resulting Wulff shapes are given in Sec. II of Ref. [24].

The inclination dependence of σi, j implies that some of
the model parameters γi, j, κi, j must be taken inclination-
dependent too. Depending on the model used (IWc, IWvG,
or IWvK), the local validity of Eq. (6) is achieved using
different inclination dependence of the variable parameters
(see Table II for details).

Because the inclination-dependent κi, j and γi, j are func-
tions of components of gradients ∇ηi,∇η j , the divergence
term in the functional derivative [Eq. (3)] produces addi-
tional driving force terms. In the general case with multiple
inclination-dependent interfaces, the divergence term equals

∇ · ∂ f

∂ (∇ηp)
= 2mηp∇ηp ·

[∑
j �=p

η2
j

∂γp, j

∂ (∇ηp)

]

+ 2mη2
p

∑
j �=p

[
η j∇η j · ∂γp, j

∂ (∇ηp)

]

+ mη2
p

∑
j �=p

η2
j

[
∇ · ∂γp, j

∂ (∇ηp)

]

+ 1

2

[
∇ · ∂κ

∂ (∇ηp)

] n∑
i=1

(∇ηi)
2

+ 1

2

∂κ

∂ (∇ηp)
·
[
∇

n∑
i=1

(∇ηi )
2

]

+∇κ (r) · ∇ηp + κ (r)∇2ηp. (21)

The vector field ∂κ/∂ (∇ηp) is

∂κ

∂ (∇ηp)
=

∑n
j �=p

(
∂κp, j

∂ (∇ηp)

)
η2

pη
2
j∑n

k=1

∑
l>k η2

kη
2
l

, (22)

where the sum in the numerator goes through all pairwise
interfaces of ηp(r). The vector fields ∂κp, j/∂ (∇ηp) are ex-
pressed

∂κp, j

∂ (∇ηp)
= 1

|∇ηi − ∇η j |
∂κp, j

∂hp, j

∂hp, j

∂θp, j

[−(n̂i, j )y

(n̂i, j )x

]
. (23)

Note that the above vector field is nonzero only in IWc
and IWvK models at the interfaces (p- j) with inclination-
dependent IE. Likewise, the below vector field is nonzero only
in IWc and IWvG

∂γp, j

∂ (∇ηp)
= 1

|∇ηi − ∇η j |
∂γp, j

∂hp, j

∂hp, j

∂θp, j

[−(n̂i, j )y

(n̂i, j )x

]
. (24)

The multipliers ∂κp, j/∂hp, j and ∂γp, j/∂hp, j differ in indi-
vidual models and are also provided in Table II. The term
∂hp, j/∂θp, j is defined by the inclination dependence at the
interface (p- j).

The governing equation then is

∂ηp

∂t
= −L(r)

[
m

(
η3

p − ηp + 2ηp

∑
j �=p

γp, j (θp, j )η
2
j

)

−∇ · ∂ f

∂ (∇ηp)

]
. (25)

Note that the term proportional to ∂κ/∂ηp was neglected here.
In models with variable interface width (IWvG, IWvK),

at the interfaces with inclination-dependent interface energy,
the interface width is a function of the inclination, i.e., li, j =
li, j (θi, j ). Because the kinetic coefficient Li, j is inversely pro-
portional to the interface width li, j [see Eq. (10)], the kinetic
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coefficient is inclination-dependent as well (even for constant
grain boundary mobility μi, j). The inclination dependence of
Li, j (θi, j ) due to interface width variation is in the IWvG model

Li, j (θi, j ) = Li, jhi, j (θi, j ) (26)

and in the IWvK model

Li, j (θi, j ) = Li, j/hi, j (θi, j ), (27)

where hi, j (θi, j ) is the anisotropy function in interface energy
(19).

Equations (26) and (27) were derived from an alternative
expression for the kinetic coefficient Li, j

Li, j = μi, jσi, j (θi, j )

κi, j (θi, j )
, (28)

where the inclination dependencies of the right-hand side
were expressed correspondingly to the model [see Table II
for κi, j (θi, j )]. Due to varying number of driving force terms
in the three parameter assignment strategies, the governing
equations are different in each and hence it is justified to call
them different models.

3. Systems with inclination-dependent mobility

Let the interface (i- j) have isotropic interface en-
ergy and inclination-dependent grain boundary mobility
with anisotropy function hμ

i, j (θi, j ), i.e., μi, j = μi, j (θi, j ) =
μ0

i, jh
μ
i, j (θi, j ). From Eq. (10), we can see that the kinetic

coefficient must have the same anisotropy, i.e., Li, j (θi, j ) =
L0

i, jh
μ
i, j (θi, j ), where L0

i, j = μ0
i, jg(γi, j )/li, j f0c(γi, j ).

If the interface energy is inclination-dependent as well and
a model with variable interface width is used (either IWvG or
IWvK), the inclination dependence in Li, j (θi, j ) due to the in-
terface width variation must be included similarly like in (26)
and (27). The physical inclination dependence is independent
from the one due to interface width variation, implying the
following expression for IWvG model:

Li, j (θi, j ) = L0
i, jhi, j (θi, j )h

μ
i, j (θi, j ) (29)

and for the IWvK model analogically

Li, j (θi, j ) = L0
i, j

hμ
i, j (θi, j )

hi, j (θi, j )
, (30)

where hi, j (θi, j ) is the interface energy anisotropy function.

C. Interface profiles in different models

The main difference in the model modifications is how
the interface width varies as a function of local interface
energy. Obviously, in IWc the width is constant. In IWvK
(with γ = 1.5), the width of interface i- j can be computed as

li, j = 6
σi, j

m
. (31)

Apparently, in IWvK model the interface width is proportional
to the interface energy, i.e., the larger the interface energy, the
larger the interface width.

In IWvG, the width can be expressed from (7) and (6)
assuming 4

3

√
f0,c(γi, j ) = g(γi, j ) (which holds for small values

of γi, j). Then, it goes approximately

li, j ≈ κ

σi, j
, (32)

and apparently the larger interface energies are associated
with lower interface widths in IWvG.

III. NUMERICAL IMPLEMENTATION

All models were implemented in a single MATLAB func-
tion, where the governing equations were solved by centered
finite differences of second order, explicit Euler time stepping,
and boundary conditions implemented using ghost nodes.
The minimal code to run the simulations is available in the
dataset [25].

During the parameters assignment in models with variable
interface width (IWvG, IWvK), there was assured control
over the minimal interface width, i.e., that there would be
no interface narrower than the user-specified one. That is to
prevent unphysical behavior of the interface due to too small
grid resolution. Different strategies had to be adopted in IWvK
and IWvG, respectively. They are described in Ref. [24] to-
gether with other best practices in parameters determination
for the respective models. The MATLAB functions which were
used for parameters determination were also included in the
dataset [25].

Reference [24] further contains several practical details re-
garding the implementation such as time step determination as
a function of the anisotropy, the used finite-difference stencil
and the driving force localization on the interface for solver
stability.

In the simulations with inclination-dependent interface en-
ergy, the vector field ∂κ/∂ (∇ηp) was computed as in Eqs. (22)
and (23), the fields ∂γp, j/∂ (∇ηp) as in Eq. (24) and their
divergences [see Eq. (21)] were computed numerically (by
centered differences), as well as the gradient ∇κ (r). All the
above terms were computed in the IWc model, whereas in the
models with variable interface width some of them could be
omitted (as explained in Sec. II B 2).

When the anisotropy in the inclination-dependent inter-
face energy was strong (i.e., δ > 1/(n2 − 1) or 	 > 1), the
anisotropy function had to be regularized as described in
Ref. [14] in order to avoid ill-posedness of the governing
equations for interfaces with the missing inclination.

IV. METHODOLOGY

Three different simulation experiments were performed: a
shrinking Wulff shape, kinetically compensated anisotropic
curvature-driven circle shrinkage, and triple junction angles.
The initial-state geometries and grid dimensions are in Fig. 1.
Except for the shrinking circles simulation, a parametric study
was carried out in every experiment in order to validate the
model behavior. Table III summarizes the variable parameters
in every experiment.

Each of the experiments was simulated using all the three
model modifications (IWc, IWvG, and IWvK) successively
and the results were quantitatively compared.

In order to distinguish the behavior of the model from
the artefacts of numeric discretization, the above described
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FIG. 1. Initial conditions in the different numeric experiments
with indicated interface energies. (a) Wulff shape shrinkage, (b) ki-
netically compensated anisotropic curvature-driven circle shrinkage,
and (c) the measurement of the triple junction angle. Grid dimensions
correspond to the base run and 1000IW run (see text for details). All
interfaces have equal mobilities.

series of simulations was rerun for several numeric settings.
Throughout the paper, these large series are called “runs.”

Results of four runs are presented in this paper, the basic
settings of which are summarized in Table IV. The difference
between the runs were (a) the minimal set interface width lmin

and (b) the number of points in the interface. The runs are
denoted base run, IW/2, 14IWpts, and 1000IW. The base run
had rather coarse grid and 7 points in the interface, which
should in general be reliable yet not very computationally
heavy settings. The minimal interface width was lmin = 1
nm. In the run IW/2 the interface width was halved (lmin =
0.5 nm) and the number of points in the interface was 7
again. In the 14IWpts run, the interface width was as in the
base run but the points in the interface were doubled (to
be 14). Physical dimensions of the simulated domain were
equal in the described runs but the grid spacing was halved
in IW/2 and 14IWpts runs. In the last 1000IW run, the grid
was equal as in the base run, but the physical dimensions were
scaled by a factor of 1000, meaning the minimal interface
width lmin = 1 μm. This is the practical settings for the actual
grain growth simulations. The latter run validated that the
meso-scale behavior of the model is equal to that one at the
nanometer scale.

TABLE IV. Numeric settings of different simulation runs (for
each simulation experiment and model). lmin is the minimal interface
width. Nx and Ny are grid dimensions in the base run as shown in
Fig. 1.

base run IW/2 14IWpts 1000IW

grid dimensions Nx×Ny 2Nx×2Ny 2Nx×2Ny Nx×Ny

lmin (nm) 1 0.5 1 1000
points in lmin 7 7 14 7

In the simulation experiments, position of the interface
in the respective geometry was compared to the expected
shape. Depending on the parameters assignment strategy, the
phase-field profiles may not be symmetric about the point 0.5
in Moelans’ model. For this reason, it was considered that
the position of the interface i- j was in points r = (x, y) of
the domain, where ηi(r) = η j (r), i.e., where the two profiles
crossed. This way the contours were always well defined and
could be quantitatively compared to appropriate analytical
models even for Wulff shape simulations, where the profile
shape varies along the interface.

The below sections describe in detail the analytic solutions
of the problems and results processing in the individual simu-
lation experiments.

A. Used anisotropy function and its Wulff shape

The anisotropy function h(θ ) = 1 + δ cos(nθ ) was
used, together with the normalized strength of anisotropy
	 = δ(n2 − 1). 	 easily distinguishes weak from strong
anisotropy, because for 0 < 	 < 1 the Wulff shape is smooth,
whereas for 1 � 	 < n2 − 1 it has corners. Reference [24]
provides more details about this anisotropy function. Fourfold
symmetry was assumed (i.e., n = 4).

The Wulff shape w in 2D is a planar curve, which can be
parametrized by the interface normal angle θ , i.e., w(θ ) =
[wx(θ ),wy(θ )]T, giving [14,26,27]

wx(θ ) = RW [h(θ ) cos(θ ) − h′(θ ) sin(θ )], (33)

wy(θ ) = RW [h(θ ) sin(θ ) + h′(θ ) cos(θ )], (34)

where RW > 0 is the radius of the Wulff shape and h(θ ), h′(θ )
the anisotropy function and its derivative, respectively.

Ill-posedness of the governing equations for forbidden ori-
entations on Wulff shapes for strong anisotropies (	 > 1) was
treated by regularization of the anisotropy function as in [14].

TABLE III. Overview of the simulations carried out in every simulation experiment. Note that these were carried out in every model
modification (i.e., IWc, IWvG, and IWvK) and simulation run (see Table IV). Number of simulations in every experiment is provided in the
column Count. See text for more details.

Experiment Varied par. Values Count

Wulff shape 	 (-) 0.2, 0.4, 0.6, 0.8, 1.0, 2.3, 3.6, 4.9, 6.2, 7.5 10
Kin.comp.aniso. circle 	 (-) 0.1, 0.3, 0.5, 0.7, 0.9 5
Triple junction σ1/σ2 (-) 0.13, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 20

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0
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With h(θ ) = 1 + δ cos(nθ ), the minimal distance Rmin be-
tween the Wulff shape center and the contour can be related
to RW as

Rmin = RW (1 − δ), (35)

which holds for arbitrarily strong anisotropy because the
minimal-radius point normal is always inclined under a
nonmissing angle. This formula was used to find the radius
RW of the phase-field contour. Then, the phase-field contour
was scaled to unit radius and compared to the analytic Wulff
shape (by means of Hausdorff distance, see the next section).

For validation of the kinetics of shrinkage, an analytic
expression for Wulff shape shrinkage rate was derived in
Sec. III of Ref. [24]. Measurement of area/volume occupied
by a grain/phase is trivial in phase-field method, hence the rate
of its change (i.e., the shrinkage rate) can be easily used for
validation or benchmark. The derivation in Ref. [24] delivers
the expression

dAW

dt
= −2πμσ0

CW (	, n)

1 − δ
(36)

where CW (	, n) = AW /Acircle is an anisotropic factor
relating the area of a Wulff shape and a circle of
equal radius. For fourfold symmetry it was numerically
computed and fitted by polynomial CW (	, 4) = ∑4

i=0 ai	
N−i

with a0 = −0.00032, a1 = 0.00639, a2 = −0.04219,

a3 = 0.00034, and a4 = 1.00000 (rounded to the relevant
decimal digits). As can be seen, the analytic shrinkage rate is
a constant, which is consistent with [13].

With isotropic interface energy (δ = 	 = 0) the steady
state shape is a circle and the anisotropic factor is CW /(1 −
δ) = 1, hence the isotropic curvature-driven shrinkage rate of
a circle is (as also, e.g., in Ref. [28])

dA

dt
= −2πμσ0. (37)

B. Quantifying the match in shape

The Hausdorff distance was used for quantification of the
match in shape. Let the 2D curves w and wPF be the analytic
shape and the phase-field contour, respectively. The Hausdorff
distance dH (w,wPF) = λ between them implies, that λ is the
smallest number such that w is completely contained in λ

neighborhood of wPF and vice versa [29]). Formally, it is
defined between sets P and Q as

dH (Q, P) = max(d̃H (P, Q), d̃H (Q, P)), (38)

where

d̃H (P, Q) = max
x∈P

(min
y∈Q

||x − y||) (39)

is directed Hausdorff distance. It is always dH (·, ·) � 0, and
the closer to zero, the more alike the compared sets are. It
has been extensively used for image matching and pattern
recognition [30]. For comparability, in the two validation
experiments with inclination-dependent interface energy, it
is essential that the two curves w and wPF are cocentric and
scaled to unit radius. Note tat the data set [25] includes also
MATLAB functions for the contour shape matching.

C. Quantifying match in shrinkage rate

The shrinkage rate was obtained as mean value of shrink-
age rates in simulation time interval where the area of the
shape was in between 0.95–0.6 fraction of the initial area.
This choice should prevent the diffuse interface from being
too large compared to the shape itself, in which case it would
affect the kinetics. Additionally, this approach turned out to
be rather insensitive to the particular numeric settings, which
is convenient for validations.

The results are presented as relative error δx, defined in the
following convention:

δx = 100
x0 − x

x
%, (40)

where x0 is the measured value and x is the expected one. In
this convention, the shrinkage was slower than expected when
δx < 0, and faster when δx > 0.

D. Wulff shape

Shrinking Wulff shapes with different strengths of
anisotropy were simulated. The match to the analytic shape
was measured in Hausdorff distance. The shrinkage rate was
expressed analytically and used for validation as well.

The Neumann boundary conditions were applied to all
boundaries in a system with initial condition like in Fig. 1(a).
The initial condition in every simulation was the analytic
Wulff shape of the corresponding strength of anisotropy 	

as discretized by the grid. The radius was taken such that the
initial shape occupied the area fraction in the domain of at
least 0.25. Because the initial Wulff shape already minimized
the interface energy, the shrinkage with constant rate as in (36)
was expected and any change in the shape was a departure
from the analytic solution.

E. Kinetically compensated anisotropic circle shrinkage

This simulation experiment validates the inclination de-
pendence of the kinetic coefficient in combination with
inclination-dependent interface energy. Specifically, the
anisotropy of kinetic coefficient was chosen such that it com-
pensated the anisotropic driving force so that the resulting
interface motion was isotropic.

Again, the match to the steady-state shape (a circle) was
quantified by Hausdorff distance and the mean shrinkage rate
was measured when the shape area was a fraction 0.95-0.6
relative to the initial condition. Parametric study in 	 were
carried out to validate the model.

The initial condition for the simulation experiment was as
in Fig. 1(b), i.e., a two-phase-field system of a circular grain
in a matrix. Normal velocity vn of a curvature-driven interface
with inclination-dependent interface energy is [31]

vn(θ ) = μ

�
σ0[h(θ ) + h′′(θ )], (41)

where μ is interface mobility, � is local radius of curva-
ture and σ0[h(θ ) + h′′(θ )] is the interface stiffness. With
h(θ ) = 1 + δ cos(nθ ) the inclination-dependent factor in (41)
is [h(θ ) + h′′(θ )] = 1 − δ(n2 − 1) cos(nθ ) = 1 − 	 cos(nθ ).
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When the interface mobility is set anisotropic as

μ(θ ) = μ0

1 − 	 cos(nθ )
, (42)

the resulting interface normal velocity vn does not depend on
interface inclination θ anymore, i.e., it is isotropic. The shrink-
age rate is then (37). The below presented simulations were
all carried out with 	 < 1, because the kinetic coefficient as
in Eq. (42) is then positive for all interface inclinations.

The ratio of maximal to minimal interface velocity due to
the anisotropic interface energy is (1 + 	)/(1 − 	), which
indicates rather strong kinetic anisotropy when 	 is close to
1. For example, with 	 = 0.9 the ratio of maximal to minimal
interface velocity is 19 (assuming constant � for all inclina-
tions, which holds for a circle). Note that the corresponding
ratio of maximal to minimal interface energy is only 1.0664
(with fourfold symmetry).

F. Triple junction angles

In this experiment, triple junction angles are measured
in systems with different combinations of pairwise isotropic
interface energies. This way it is validated how well the triple
junction force balance is reproduced by the model.

The initial geometry was like in Fig. 1(b) with periodic
left and right boundaries, and Neumann boundary conditions
on the top and bottom ones. The individual interfaces are
isotropic but have different interface energies. The initially
straight interface segments (1-2) and (1-3) with grain bound-
ary energy σ2 turn into circular arcs, which then move towards
the center of curvature, i.e., downwards. The two grains η2

and η3 will shrink and in the steady state the angle α between
the arcs [see Fig. 6(a)] in the triple junction is described by
Young’s law [32] (Sec. 3.3.3):

α = 2acos(σ1/2σ2). (43)

The ratio σ1/σ2 was varied in the parametric study to validate
the model (see Table III). It was always σ1 = 0.3 J/m2 and σ2

was computed from the ratio.
The phase-field contours of interfaces (1-2) and (1-3) were

analyzed by two methods in order to determine the triple
junction angle α. First, the points on both the arcs nearest
to the triple junction were fitted by a straight line [indicated
by red segments in Fig. 6(a)] and second, the remaining arc
points were fitted by a circular arc [see green segments in
Fig. 6(a)]. Simple geometric construction allows to determine
the angle α from the fitted parameters in the latter case [28] as

α = 2acos(x/R), (44)

where R is the fitted circle arc radius and x is the horizontal
distance from the triple junction [see the scheme in Fig. 6(a)].
Width of the interval in which the arcs were fitted by straight
lines [width of pink rectangles in Fig. 6(a)] was set to width
of the interface (2-3) (i.e., half of the width on each side).

Accuracy of the lines fitting is affected especially by the
width of the above interval and that of the circle arc fitting is
mostly affected by the simulated arc shape.

(a) IWc, Ω =0.2 (d) IWvK, Ω =2.3

(b) IWvK, Ω =0.6 (e) IWvG, Ω =4.9

(c) IWvG, Ω =1 (f) IWc, Ω =7.5

FIG. 2. Demonstration of the simulated Wulff shapes for
strengths of anisotropy 	 with the different models (base run). The
white line is the analytic Wulff shape and the colored ones are the
extracted phase-field contours.

V. RESULTS

A. Wulff shapes

Figures 2(a)–2(f) visually compare the Wulff shapes ob-
tained from simulation by the different models (in base run)
to the analytic ones. As can be seen, the overall match is
very good in all the three models, although a rather round
contour near the corners in strong-anisotorpy Wulff shapes
are observed [this is more apparent in Fig. 3(b), which shows
detail of the contours near a corner for 	 = 7.5]. That was
expected, as no special finite difference scheme was used near
corners (in Ref. [14] a one-sided finite difference scheme was
proposed to avoid corners rounding).

Figure 3(a) shows the match to Wulff shape as a function
of normalized strength of anisotropy 	 in the base run. As
can be seen, the IWvG model slightly outperformed the other
two in strong anisotropies because it was able to resolve the
corners the best [see Fig. 3(b)]. However, when the interface
width was halved in the IW/2 run, all the models performed
nearly equally well because with smaller interface width the
rounding near the corners was reduced. Interestingly, the
IWvG model performed comparably in the IW/2 and base
runs, which is in contrast to IWc and IWvK, which improved
markedly with narrower interface width. The best results in
match to Wulff shape were obtained in the 14IWpts run with
IWvG model. IWc and IWvK models performed comparably
in the 14IWpts and IW/2 runs.

103404-8



BENCHMARKING OF DIFFERENT STRATEGIES TO … PHYSICAL REVIEW MATERIALS 6, 103404 (2022)

0 1 2 3 4 5 6 7 8
 (-)

10-4

10-3

10-2

d
H

IWc
IWvG
IWvK

anal.
IWc
IWvG
IWvK

(a)

(b)

FIG. 3. In (a), the match to Wulff shape for the model modi-
fications in the base run as a function of normalized strength of
anisotropy 	. In (b), a detail of the phase-field contours near the
Wulff shape corner for simulation with 	 = 7.5.

The mean shrinkage rates of the Wulff shapes as a function
of strength of anisotropy are in Fig. 4(a) for the base run. At
first sight, all the models perform comparably well, follow-
ing the analytical prediction within an absolute error of 3%.
Figures 4(b) and 4(c) show the time evolution of shrinkage
rate with 	 = 7.5 in the base and IW/2 runs, respectively. It
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FIG. 4. Wulff shape shrinkage rate results. In (a), the mean
shrinkage rate in the base run as a function of normalized strength
of anisotropy 	, in (b) and (c), there is time evolution of shrinkage
rate for 	 = 7.5 in the base and IW/2 runs, respectively. The shaded
areas in (b) and (c) indicate the time interval from which the mean
shrinkage rate was computed.
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FIG. 5. Results for kinetically compensated anisotropic shrink-
age. In (a), the match to circle for the base run, in (b) the mean
shrinkage rate for 14IWpts run, in (c) and (d), the shrinkage rate time
evolution in simulation with 	 = 0.9 in the base run and 14IWpts
runs, respectively.

can be seen that despite the mean shrinkage rates being near
the prediction, in the base run, the shrinkage rate of IWvG
model did not converge to the analytic prediction (see the
inset of Fig. 4(b), where the IWvG curve clearly declines).
In the IW/2 run, the IWvG model did converge close to the
anaytic shrinkage rate [see also the inset of Fig. 4(c)] and
all the mean values are a little closer than in the base run.
Note that in the IWvG model the lowest-energy interface has
the widest interface width and that the cornered Wulff shape
contains only interface orientations with lower energy. For this
reason, it required narrower interface width to reach constant
shrinkage rate.

The relative error in mean shrinkage rate obtained with this
methodology was nearly the same in the base and IW/2 runs
though (both within ±3 %). Apparently, the difference is that
with narrower interface the attained shrinkage rate is more
steady. Additional run with even finer grid was carried out and
no improvement in the mean values of shrinkage rates was
observed. It can thus be concluded that the methodology is
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FIG. 6. Triple junction angles. In (a), the two methods for angles determination are illustrated (points fitted by straight lines in red and
those fitted by circular arc in green). (b)–(d) show the simulation results for different models, these being in (b) IWc, (c) IWvG, and (d) IWvK.
The hollow symbols correspond to the angles determined by arc fitting and crosses to the lines fitting.

robust enough to assess the shrinkage rate even in the domain
100×100 (i.e., base run).

In addition to the four simulation runs discussed so far,
the Wulff shapes simulations were re-run also with 4 and 5
points in the interface. The match to Wulff shape was worse
than with 7 or 14 points, but the shapes were resolved qualita-
tively well regardless. The shrinkage rates were smaller than
expected though, due to grid pinning. 7 points in the interface
were thus confirmed as a reasonable value for the validations
and practical simulations. No significant effect of interface
width scaling in the run 1000IW was found.

B. Kinetically compensated anisotropic circle shrinkage

The quantified match to the circle and the mean shrinkage
rate as functions of strength of anisotropy 	 are in Figs. 5(a)
and 5(b), respectively (results of the base run showed). All
models and runs retained the initial circle well or up to excel-
lent geometrical match. Nevertheless, the IWvG model gave
the best results, except for the strongest anisotropy, where
the IWvK model was better. Only minor improvement in the
match was achieved in the IW/2 run when compared to the
base run. As with Wulff shapes simulations, the best match
was obtained in the 14IWpts run, which also exhibited the
best mean shrinkage rates (for all the three models).

The relative error in shrinkage rates in Fig. 5(b) shows
slightly decreasing trend with 	 for IWc and IWvG models
(i.e., slowing down). The values of IWvK model were not af-
fected and were constant. Apparently, the symmetric profiles
of IWvK model provide an advantage for preserving the ex-
pected kinetics in simulations with strong kinetic anisotropy.

Time evolution of shrinkage rate for the strongest consid-
ered anisotropy (i.e., 	 = 0.9) in Figs. 5(c) and 5(d) (base
and 14IWpts runs, respectively), shows that in both runs the
lines slightly diverge (this being applicable to all 	s). The
convergence was better in IW/2 run, but the mean shrinkage
rates were worse than in the 14IWpts run.

Apparently, optimal results would be obtained here with
more points than 7 in the interface and with smaller interface-
width-to-circle ratio than in the base run and 14IWpts runs.
However, as noted earlier, the kinetic anisotropy is very strong
in the case of 	 = 0.9. For weaker anisotorpy, the discussed
effects are less pronounced and there is little difference in the

shrinkage rates among the models. There was no significant
difference between the results of base and 1000IW runs.

C. Equilibrium triple junction angles

Figures 6(b)–6(d) show the simulation results from the
triple junction simulations as a function of σ1/σ2. Neither
of IWc or IWvK models show good agreement to Young’s
law when deviating farther from an isotropic system (which
has ratio σ1/σ2 = 1). The model IWvG, on the other hand,
always shows very good agreement in at least one of the fitting
methods along the whole range of probed ratios of interface
energies. With σ1/σ2 closer to 2 in IWvG modification, the
grains shape was slightly elongated in the vertical direction,
resulting in too small radius of the fitted arcs to cross in the
triple junction. The angles could not be determined this way
then and the linear fit is more reliable.

For the ratios approximately σ1/σ2 � 0.45, the IWc model
behaves nonphysically. The triple junction was observed to
move in the opposite than expected direction (i.e., upwards, as
if the triple junction angle was larger then 180◦). The overall
shape of contours was not as in Fig. 6(a) because the green
arcs curved in the other way. In IWvK this behavior was not
observed, but the Young’s law is not followed. Qualitative
explanation is that the IWc and IWvK models are not fully
variational.

No significant change was observed in the results of the
triple junction angles in runs IW/2, 14IWpts, or 1000IW
when compared to the base run. Quality of the results is thus
not improved when more points in the interface than 7 are
used. Also it implies, that the model behavior (for all param-
eters assignment strategies) is not affected by reducing the
interface-width-to-feature ratio or the interface width scaling.
The latter confirms that the model is quantitative.

VI. CONCLUSIONS

This paper presented a quantitative methodology for
assessment of the anisotropic curvature driving force in phase-
field method. It was demonstrated in comparison of three
different modifications of a multi-phase-field model. The
match to the expected shape and the shrinkage rate were
quantified in two different benchmark problems. The method-
ology was sensitive enough to capture differences between
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the model modifications and is suitable for validation and
benchmarking of different models and numerical solvers.

The overall performance of the three model modifications
in the benchmarks was comparable. Both match to the steady-
state shapes and the shrinkage rates followed the expected
results as in the anisotropic mean curvature flow. However,
a significant difference was noted in a supplementary bench-
mark simulation where triple junction angles were measured.
It was observed that only the IWvG model modification (with
only the parameter γ anisotropic) reproduced the triple junc-
tion angles in the full interval 0.13–2 of σ1/σ2, whereas IWc
and IWvK modifications failed for ratios farther from 1. It is
noted that these two modifications were not fully variational in
order to avoid ghost phases, whereas IWvG is fully variational
and yet the ghost phases do not appear.

Even though the triple junction benchmark did not involve
interfaces with inclination-dependent interface energies, one
conclusion can be made about that case regardless. As the IWc

and IWvK were shown unreliable in the simpler pairwise
isotropic case, there is no reason why they should be reliable
in the more complicated one. Further development and vali-
dations should thus focus on the IWvG model modification.

No results were significantly affected by the interface
width scaling. Also, it was confirmed that 7 points in the
interface were sufficient for retaining the expected kinetics in
most cases, unless the inclination dependence of the kinetic
coefficient was very strong. The results in this paper are re-
producible with codes provided in the data set [25].
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