Single crystal growth and magnetism of Sr₃NaIrO₆ and Sr₃AgIrO₆: Tracking the J = 0 ground state of Ir^{5+}

Peng-Bo Song (宋鹏博),^{1,2} Zhiwei Hu,³ Su-Yang Hsu⁰,⁴ Jin-Ming Chen,⁴ Jyh-Fu Lee,⁴ Shan-Shan Miao (苗杉杉),¹ You-Guo Shi (石友国),^{1,2,5,*} and Hai L. Feng (冯海)^{1,5,†}

¹Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China ²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

³Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany

⁴National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China

⁵Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

(Received 26 July 2022; accepted 22 September 2022; published 29 September 2022)

Single crystals of Sr_3NaIrO_6 and Sr_3AgIrO_6 have been successfully grown using hydroxides flux. Sr_3NaIrO_6 and Sr_3AgIrO_6 crystallize in the K₄CdCl₆-type structure with the space group *R*-3*c* (no. 167). Sr₃NaIrO₆ and Sr₃AgIrO₆ are electrically insulating with estimated activation gaps of 0.68 and 0.80 eV, respectively. Sr₃NaIrO₆ and Sr₃AgIrO₆ show paramagnetic behavior down to 2 K. In this work, the observed effective moments, μ_{eff} , for Sr₃NaIrO₆ single crystals are $0.31\mu_{\rm B}$ for $H\perp c$ and $0.28\mu_{\rm B}$ for $H\parallel c$, which are much smaller than that of $0.49\mu_B$ previously reported for the polycrystalline Sr₃NaIrO₆ samples. For Sr₃AgIrO₆ single crystals, a much larger value of $\mu_{eff} = 0.57 \mu_B$ is observed as compared with Sr₃NaIrO₆ single crystals. The x-ray absorption spectroscopy and low-temperature specific heat data indicate that the Ir in Sr₃NaIrO₆ has an almost pure Ir⁵⁺ valence state, while the Ir in Sr_3AgIrO_6 is slightly lower than +5. The estimated low limits of magnetic impurity Ir^{4+} are about ~1.7% and ~9.2% for Sr_3NaIrO_6 and Sr_3AgIrO_6 , respectively. These magnetic impurities are likely to fully explain the observed $\mu_{\rm eff}$ values for Sr₃NaIrO₆ and Sr₃AgIrO₆ single crystals, supporting the J = 0 ground state of Ir⁵⁺ in Sr₃NaIrO₆ and Sr₃AgIrO₆.

DOI: 10.1103/PhysRevMaterials.6.094415

I. INTRODUCTION

In 3d transition metal oxides, the valence electrons are strongly correlated and the Hubbard U plays an important role [1-5]. In comparison with 3d electrons, the orbitals of 5d electrons are more extended and the U in the 5d system becomes weaker while the spin-orbit coupling (SOC) becomes much stronger due to their larger atomic number [6,7]. In the strong SOC regime, the SOC can split three t_{2g} orbitals in the octahedral crystal field into an upper j = 1/2doublet and a lower j = 3/2 quadruplet [8,9]. For example, in tetravalent iridate Sr_2IrO_4 ($Ir^{4+}: 5d^5$) the SOC-assisted Mottinsulating state is explained with the J = 1/2 ground state [9]. Resonant inelastic x-ray scattering measurements on pentavalent osmates (Os^{5+} : $5d^3$) reveal the SOC controlled J = 3/2ground state [10]. In such a scenario, if there are four 5delectrons filling the lower quadruplet, the ground state should be j = 0. Long-range magnetic orders reported in Ir^{5+} (5 d^4) double perovskite oxides Sr₂YIrO₆ and Ba₂YIrO₆ with effective moment (μ_{eff}) of 0.91 μ_{B} /Ir and 1.44 μ_{B} /Ir, respectively, raise concerns about the ground state of $5d^4$ oxides [11,12]. These results have been challenged by other studies reporting that no magnetic order was found in $Ba_2 YIrO_6$ [13] and Sr₂YIrO₆ [14] down to ~430 mK. Studies on A_2 YIrO₆ (A =

Sr, Ba) and other Ir5+ double perovskite oxides generally reveal a weak paramagnetic behavior with small $\mu_{\rm eff}$ values of 0.19–0.63 $\mu_{\rm B}/{\rm Ir}$ [13–25] which are much lower than the theoretical spin-only $\mu_{\rm eff} = 2.83 \,\mu_{\rm B}/{\rm Ir}$ demonstrating a SOC dominated ground state. The origin of these finite magnetic moments is still ambiguous. Quench of the J = 0 state for Ir⁵⁺ due to IrO₆ octahedra distortion in Sr₂YIrO₆ was proposed by Cao et al. [11]. However, this scenario cannot explain the paramagnetic moment observed in cubic Ba₂YIrO₆ where there is no structural distortion, and the studies on Ba_{2-x}Sr_xYIrO₆ do not find correlations between μ_{eff} values and the degree of structural distortions [19,26]. The existence of magnetic impurities has been suggested by studies on Sr_2YIrO_6 [14] and $Ba_2 YIrO_6$ [17]. Fuchs *et al.* confirmed the existence of Ir⁴⁺ and Ir⁶⁺ magnetic defects which are responsible for the magnetism in Ba_2 YIrO₆ [18]. The antisite disorder in double perovskites has also been suggested to play an important role [16,20]. Laguna-Marco *et al.* suggest that the Ir^{4+} and Ir^{6+} magnetic impurities may locate in the antisite disorder region [20]. Condensation of J = 1 triplon excitations of $5d^4$ oxides is also a possible source for the observed magnetic moments [27,28]. Chen et al. proposed that the condensation is unlikely in Sr₂YIrO₆ and Ba₂YIrO₆ with the ideal crystal structure, but the antisite disorder between Y^{3+} and Ir^{5+} can break down the local nonmagnetic singlets [16]. Recent studies on A_2BIrO_6 (A = Ba, Sr; B = Lu, Sc) also support the J = 0 ground state for these Ir^{5+} oxides and indicate that the magnetic signals are from extrinsic sources, such as magnetic impurities and antisite disorder [21].

^{*}Corresponding author: ygshi@iphy.ac.cn

[†]Corresponding author: hai.feng@iphy.ac.cn

To narrow down the possible explanations, it is better to consider studies on Ir^{5+} oxides with less antisite disorder. Recently, studies on K_4CdCl_6 -type polycrystalline Ir^{5+} oxide Sr₃NaIrO₆ have been reported and indicate a possible quantum spin liquid ground state (reported $\mu_{eff} = 0.49 \,\mu_{B}/\text{Ir}$) [22]. In comparison with A_2 YIrO₆ (A = Sr, Ba), where the $Ir^{5+}O_6$ octahedra are separated by $Y^{3+}O_6$, the $Ir^{5+}O_6$ octahedra are separated with $Na^{1+}O_6$ octahedra in the Sr₃NaIrO₆. The larger charge difference would reduce the antisite disorder between Na¹⁺ and Ir⁵⁺ in Sr₃NaIrO₆ as compared with Sr₂YIrO₆ and Ba₂YIrO₆. Thus, the K₄CdCl₆-type iridate is a good platform to investigate the ground state of Ir^{5+} ions. To track the J = 0 ground state for Sr₃NaIrO₆, it is better to grow single crystals to minimize any by-phases and lattice defects. In this work, we successfully grow single crystals of K₄CdCl₆-type iridate oxides Sr₃NaIrO₆ and Sr₃AgIrO₆. Magnetic measurements reveal that the μ_{eff} for Sr₃NaIrO₆ single crystals is about $0.31\mu_B$ for $H\perp c$ and $0.28\mu_B$ for H||c which are smaller than that of 0.49 $\mu_{\rm B}$ reported for the polycrystalline Sr_3NaIrO_6 [22]. The presence of a few percent of magnetic Ir⁴⁺ impurity is indicated by the analysis of lowtemperature specific heat data which is likely to fully explain the observed μ_{eff} , supporting the J = 0 ground state of Ir⁵⁺ in Sr₃NaIrO₆.

II. EXPERIMENT

The SrOH \cdot 8H₂O, NaOH, and Ir with a molar ratio of 3:50:1 (for Sr₃NaIrO₆) and SrOH \cdot 8H₂O, Ag₂O, and Ir with a molar ratio of 3:0.5:1 (for Sr₃AgIrO₆) were weighted, respectively. The mixtures were placed into Al₂O₃ crucibles with lids, then heated to 873 K for 1 h and annealed for 12 h before cooled to room temperature by stopping the heating. Single crystals were separated by washing with deionized water.

Single-crystal x-ray diffraction (SCXRD) measurements were conducted on a Bruker D8 Venture diffractometer at 300 K using Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were corrected for absorption effects using the multiscan method (SADABS). The crystalline structures were refined by the fullmatrix least-squares method on F² using the SHELXL-2018/3 program.

Single crystals of selected samples were used for magnetic susceptibility (χ), longitudinal resistivity ρ , specific heat, and x-ray absorption spectroscopy (XAS). The magnetic properties were measured under different applied magnetic fields in field-cooling (FC) and zero-field-cooling (ZFC) modes using a superconducting quantum interference device and vibrating-sample magnetometer in a magnetic properties measurement system (MPMS). Isothermal magnetization (M-H)was measured at several fixed temperatures. These transport measurements (both resistivity and specific heat) were measured by a physical property measurement system (Quantum Design) using the standard DC four-probe technique and a thermal relaxation method, respectively. XAS spectra at the $Ir-L_3$ edges were studied at the Taiwan Light Source (TLS) beamline 17C of the National Synchrotron Radiation Research Center (NSRRC).

FIG. 1. Crystal structures of $Sr_3AgIrO_6(Sr_3NaIrO_6)$ view along (a) [110] and (b) [001] directions. Panels (c) and (d) show optical photos of Sr_3NaIrO_6 and Sr_3AgIrO_6 single crystals, respectively.

III. RESULTS AND DISCUSSION

Single crystals for Sr₃NaIrO₆ with dimensions of ~2 mm × 0.3 mm × 0.3 mm and single crystals for Sr₃AgIrO₆ with ~0.3 mm × 0.3 mm × 0.3 mm were obtained as shown in Figs. 1(c) and 1(d), respectively. Analysis of the room temperature SCXRD data confirms that Sr₃NaIrO₆ and Sr₃AgIrO₆ crystallize in the K₄CdCl₆-type structure with the space group *R*-3*c* (no.167). The refined lattice parameters were a = 9.6408(3)Å and c = 11.5508(5)Å for Sr₃AgIrO₆. Detailed crystallographic data obtained from the SCXRD were summarized in Table I. The crystallographic information files for Sr₃NaIrO₆ and Sr₃AgIrO₆ are attached in the Supplemental Material [29].

In the crystal structures of Sr_3NaIrO_6 and Sr_3AgIrO_6 , Na/Ag atoms occupy the 6a site, Ir atoms occupy the 6b site, Sr atoms occupy the 18e site, and O atoms occupy the 36fsite (see Tables II and III). The crystal structure of Sr_3NaIrO_6 and Sr_3AgIrO is shown in Fig. 1. The IrO_6 octahedra are connected with NaO_6/AgO_6 octahedra through face sharing, forming one-dimensional chains. During the analysis of single crystal x-ray diffraction data, we checked the possibility of antisite between Na/Ag and Ir sites and found no indication of antisite disorder. The bond lengths for Ir-O are 1.984 and 1.989 Å for Sr_3NaIrO_6 and Sr_3AgIrO_6 , respectively. The bond valence sum for Ir ions calculated from the Ir-O bond length is 4.99 and 4.92 for Sr_3NaIrO_6 and Sr_3AgIrO_6 , respectively, which are close to the nominal Ir^{5+} oxidation states.

It is well known that hard x-ray absorption spectroscopy (XAS) at the 5*d* elements *L* edge is highly sensitive to their oxidation states, since the energy position of the strong white line shifts to higher energy by one or more eV with an increase of the valence state of 5*d* metal ion by 1 [30–34]. Figure 2 shows the Ir- L_3 XAS spectra for Sr₃NaIrO₆ and Sr₃AgIrO₆ together with the Ir⁴⁺ reference La₂CoIrO₆ and the Ir⁵⁺ reference Sr₂CoIrO₆ [35]. The energy position of Sr₃NaIrO₆ shifts about ~1.3 eV toward higher energy in comparison with La₂CoIrO₆, supporting the Ir⁵⁺ oxidation state. The energy position of Sr₃NaIrO₆ and Sr₂CoIrO₆, and is about ~1 eV higher than La₂CoIrO₆, indicating that the oxidation state of the Ir ion in Sr₃AgIrO₆ is a little lower than +5. From these XAS spectra we can

Chemical formula	Sr ₃ AgIrO ₆	Sr ₃ NaIrO ₆
Formula weight	658.94 g/mol	574.05 g/mol
Radiation	Mo <i>K</i> α, 0.71073 Å	Mo <i>K</i> α, 0.71073 Å
Temperature	300 K	300 K
Crystal system	trigonal	trigonal
Space group	<i>R</i> -3 <i>c</i>	<i>R</i> -3 <i>c</i>
Unit cell dimensions	a = 9.5996(3) Å	a = 9.6408(3) Å
	c = 11.9032(6) Å	c = 11.5508(5) Å
Volume	949.95(8) Å ³	929.76(7) Å ³
Z	6	6
Density (calculated)	6.911g/cm^3	$6.152 \mathrm{g/cm^3}$
Absorption coefficient	49.048 mm^{-1}	47.117 mm^{-1}
No. reflections	5112	6376
No. independent reflections	265	261
No. observed reflections	256	256
F (000)	1716	1500
Theta range for data collection	4.21–28.29°	4.23–28.36°
Index ranges	$-12 \leqslant h \leqslant 12$	$-12 \leqslant h \leqslant 12$
	$-12 \leqslant k \leqslant 12$	$-12 \leqslant k \leqslant 11$
	$-15 \leqslant l \leqslant 15$	$-15 \leqslant l \leqslant 15$
Goodness of fit	1.265	1.118
$R1 \ (I > 2\sigma_1)$	0.0230	0.0103
$\omega R2 \ (I > 2\sigma_1)$	0.0735	0.0258
<i>R</i> 1 (all data)	0.0237	0.0106
$\omega R2$ (all data)	0.0740	0.0261
Weighting scheme	$w = 1/[\sigma^2 F_o^2 + (0.0423P)^2 + 38.8002P]$	$w = 1/[\sigma^2 F_o^2 + (0.0141P)^2 + 6.8962P]$
	where $P = (F_o^2 + 2F_c^2)/3$	where $P = (F_o^2 + 2F_c^2)/3$
Refinement software	SHELXL-2018/3	SHELXL-2018/3

TABLE I. Crystallographic and structure refinement data for Sr₃AgIrO₆ and Sr₃NaIrO₆.

conclude that the oxidation state of Ir ion in Sr₃NaIrO₆ is Ir⁵⁺, but we cannot exclude the presence of a few percent of Ir⁴⁺ or Ir⁶⁺ ions [35]. For Sr₃AgIrO₆, the average Ir oxidation state is a little lower than Ir⁵⁺ and a moderate amount of Ir⁴⁺ ions coexist with the major Ir⁵⁺ ions.

The temperature-dependent resistivity, $\rho(T)$, for Sr₃NaIrO₆ and Sr₃AgIrO₆ are shown in Figs. 3(a) and 3(b). The $\rho(T)$ curves show semiconducting behavior. The ρ increases with cooling and is out of range below 250 and 260 K for Sr₃NaIrO₆ and Sr₃AgIrO₆, respectively. The high-temperature data (>320 K) are used to estimate the gap according to the Arrhenius equation, $\rho \propto \exp^{E_a/2k_BT}$ [see the insets in Figs. 3(a) and 3(b)]. The estimated activation gap, E_a , is ~0.80 eV for Sr₃NaIrO₆ and ~0.58 eV for Sr₃AgIrO₆.

Single crystals of Sr₃NaIrO₆ are large enough (~ 2 mm along the *c* axis) to measure their anisotropic magnetic properties. The temperature-dependent magnetic susceptibility curves, $\chi(T)$, of Sr₃NaIrO₆ single crystals measured with magnetic fields perpendicular to the *c* axis ($H \perp c$) and parallel

to the *c* axis (*H*||*c*) are shown in Figs. 4(a) and 4(b). The ZFC and FC curves are overlapping, and only FC curves are shown. There is no sign of magnetic order down to 2 K. The $\chi(T)$ data above 50 K can be fitted with the Curie-Weiss law, $\chi = \chi_0 + C/(T-\theta_W)$, where C, θ_W , and χ_0 are the Curie constant, Weiss temperature, and the temperature-independent component, respectively. For the case of $H \perp c$, the fitting results in a *C* of 0.012 emu mol⁻¹ Oe⁻¹ and a θ_W of -34 K. For the case of H||c, a *C* of 0.008 emu mol⁻¹ Oe⁻¹ and a θ_W of 1 *K* is obtained from the fitting. The χ_0 values for Sr₃NaIrO₆ are 6.2×10^{-4} and 5.4×10^{-4} emu mol⁻¹ Oe⁻¹ for $H \perp c$ and H||c, respectively. The μ_{eff} calculated from the *C* is about $0.31\mu_B$ for $H \perp c$ and $0.28\mu_B$ for H||c.

Regarding the Sr₃AgIrO₆ single crystals, anisotropic magnetic measurement is not possible due to their small size (~300 μ m) and crystal morphology. A total weight of ~19-mg Sr₃AgIrO₆ single crystals were collected without orientation for magnetic measurement. The $\chi(T)$ curves measured under varied *H* for Sr₃AgIrO₆ single crystals without

TABLE II. Refined atomic positions and temperature parameters for Sr₃NaIrO₆.

Atom	x	у	Z	Occupancy	$U_{ m eq}({ m \AA}^2)$	Site
Ir1	2/3	1/3	5/6	1	0.00379(9)	6 <i>b</i>
01	0.4882(2)	0.3102(2)	0.7336(2)	1	0.0075(4)	36 <i>f</i>
Sr1	0.3090(1)	1/3	7/12	1	0.0069(1)	18e
Na1	2/3	1/3	7/12	1	0.0090(6)	6 <i>a</i>

Atom	x	у	z	Occupancy	$U_{\rm eq}({\rm \AA}^2)$	Site
Ir1	2/3	1/3	1/3	1	0.0061(3)	6 <i>b</i>
01	0.6896(7)	0.5138(6)	0.2373(4)	1	0.0099(10)	36 <i>f</i>
Sr1	0.6896(1)	2/3	5/12	1	0.0094(3)	18e
Ag1	2/3	1/3	1/12	1	0.0230(5)	6 <i>a</i>

TABLE III. Refined atomic positions and temperature parameters for Sr₃AgIrO₆.

orientation are shown in Fig. 4(c). Only FC curves are shown because the ZFC and FC curves are overlapping. There is no sign of magnetic order down to 2 K. The $\chi(T)$ data above 50 K can also be fitted with the Curie-Weiss law, resulting in a χ_0 of 3.27×10^{-4} emu mol⁻¹ Oe⁻¹, *C* of 0.04 emu mol⁻¹ Oe⁻¹, and a θ_W of -35 K. The μ_{eff} calculated from the *C* is 0.57 μ_B .

Figure 5 shows the $C_p(T)$ curves of Sr₃NaIrO₆ and Sr₃AgIrO₆. There is no indication of magnetic order down to 1.8 K for Sr₃NaIrO₆ and Sr₃AgIrO₆. The low-temperature C_p/T vs T^2 data, shown in the insets in Fig. 5, show rough linear behaviors except for the upturns at the lowest temperatures. The linear parts were analyzed with the approximated Debye model, $C_p/T = \gamma + \beta T^2$, where the γ is the electronic specific heat coefficient and the β is related to the Debye temperature. Fitting of the linear parts results in a $\gamma = 0.07$ mJ mol⁻¹ K⁻² and $\beta = 2.64 \times 10^{-4}$ J mol⁻¹ K⁻⁴ for Sr₃NaIrO₆ and $\gamma = 3.0$ mJ mol⁻¹ K⁻² and $\beta = 9.05 \times 10^{-4}$ J mol⁻¹ K⁻⁴ for Sr₃AgIrO₆. The small γ value indicates the vanishing of the density of states, which is consistent with the insulating nature of Sr₃NaIrO₆ and Sr₃AgIrO₆.

The low-temperature C_p/T vs T curves measured without and with varied magnetic fields are shown in Figs. 6(a) and 6(b) for Sr₃NaIrO₆ and Sr₃AgIrO₆, respectively. The C_p/T vs T curves measured without fields show small anomalies below ~3.5 K. These anomalies shift towards higher temperatures and broaden with increasing applied magnetic fields, suggesting their magnetic origin. To estimate the magnetic contribution (C_{mag}), we subtract the $C_p(T)$ data below 12 K measured under 90 kOe with an estimated lattice con-

FIG. 2. Ir- L_3 XAS spectra of Sr₃NaIrO₆ and Sr₃AgIrO₆ in comparison with an Ir⁴⁺ reference La₂CoIrO₆ and an Ir⁵⁺ reference Sr₂CoIrO₆.

tribution $C_{\text{lat}} = \gamma T + \beta T^3$, and the resulting C_{mag}/T vs *T* curves are shown in Figs. 6(c) and 6(d) for Sr₃NalrO₆ and Sr₃AgIrO₆, respectively. These curves show broad maximums around 3–4 K for Sr₃NaIrO₆ and Sr₃AgIrO₆. It should be noted that these values may be underestimated because the entropy below 1.8 K is not counted in these cases. The estimated magnetic entropy (S_{mag}) for Sr₃NaIrO₆ and Sr₃AgIrO₆ is about 0.06 and 0.33 J mol⁻¹ K⁻¹, respectively. Assuming these magnetic contributions are from Ir⁴⁺ impurities, these values are about ~1.7% and ~9.2%, respectively, of the averaged entropy $S_{\text{mag}} = 3.6 \text{ J mol}^{-1} \text{ K}^{-1}$ reported for the Ir⁴⁺ double perovskite La₂MgIrO₆ and La₂ZnIrO₆ [36]. These results are consistent with the XAS results that the Ir ions in Sr₃NaIrO₆ are Ir⁵⁺ (but cannot exclude the presence of a few percent of magnetic Ir⁴⁺ or/and Ir⁶⁺) while a moderate amount of Ir⁴⁺ ions coexists with the Ir⁵⁺ ions in Sr₃AgIrO₆.

FIG. 3. The temperature dependence of resistivity for (a) Sr_3NaIrO_6 and (b) Sr_3AgIrO_6 . The insets show corresponding data fitted with the Arrhenius equation.

FIG. 4. Temperature dependence of magnetic susceptibility and the inverse magnetic susceptibility for (a) Sr_3NaIrO_6 ($H\perp c$), (b) Sr_3NaIrO_6 ($H\parallel c$), and (c) Sr_3AgIrO_6 .

The μ_{eff} , θ_W , and χ_0 values for Sr₃NaIrO₆ and Sr₃AgIrO₆ reported in this work are summarized in Table IV in comparison with other Ir⁵⁺ oxides crystalizing in double perovskite or K₄CdCl₆-type structures. The χ_0 summarized in Table IV are of the magnitude of 10^{-4} emu mol⁻¹ Oe⁻¹. The χ_0 reported in this work for Sr₃NaIrO₆ and Sr₃AgIrO₆ single crystals are in the reported range. Except for the large μ_{eff} of 0.91 μ_B /Ir and of 1.44 μ_B /Ir once reported for Sr₂YIrO₆ [11] and Ba₂YIrO₆ [12], respectively, other studies on Sr₂YIrO₆, Ba₂YIrO₆, and the other Ir⁵⁺ double perovskite and K₄CdCl₆-type oxides reveal relatively small μ_{eff} values of 0.19–0.63 μ_B /Ir [13–25]. The μ_{eff} values for single crystals of Sr₃NaIrO₆ and Sr₃AgIrO₆ in this work are within this range.

In comparison with polycrystalline Sr_3NaIrO_6 (0.49 μ_B/Ir), the observed μ_{eff} values for Sr_3NaIrO_6 single crystal (0.31 μ_B/Ir for $H \perp c$ and 0.28 μ_B/Ir for H||c) are reduced. The valence state is also confirmed to be mainly Ir^{5+} in polycrystalline Sr_3NaIrO_6 [22]. Thus, the reduction of μ_{eff} for the single crystal samples may be related to the decrease of by-phases and lattice defects because in polycrystalline samples synthesized by solid-state reactions it is difficult to

FIG. 5. Temperature dependence of specific heat C_p for (a) Sr₃NaIrO₆ and (b) Sr₃AgIrO₆. The insets show the corresponding C_p/T vs T^2 curves.

avoid the minute number of by-phases and they usually have more lattice defects than the single crystal samples.

Though our XAS spectra confirm that the oxidation state of Ir in Sr₃NaIrO₆ is mainly Ir⁵⁺, one cannot exclude the presence of a few percent of magnetic Ir⁴⁺ or/and Ir⁶⁺ ions. The presence of Ir⁴⁺ and/or Ir⁶⁺ magnetic defects has been confirmed in Sr₂YIrO₆ [20], Sr₂CoIrO₆ [35], and Ba₂YIrO₆ [18]. Studies on Ir⁴⁺ double perovskites La₂ZnIrO₆ and La₂MgIrO₆ have reported μ_{eff} values of 1.71 μ_B and 1.42 μ_B , respectively, which are close to the theoretical value of 1.73 μ_B for Ir⁴⁺ (J = 1/2) [36]. If we assume

FIG. 6. Temperature-dependent C_p/T data under varied magnetic fields for (a) Sr₃NaIrO₆ and (b) Sr₃AgIrO₆. Temperaturedependent C_{mag}/T and S_{mag} data for (c) Sr₃NaIrO₆ and (d) Sr₃AgIrO₆.

Material	Crystal structure	$\chi_0 \ (10^{-4} \ emu \ mol^{-1} \ Oe^{-1})$	$\mu_{\mathrm{eff}}~(\mu_{\mathrm{B}}/\mathrm{Ir})$	$\theta_{\mathrm{W}}\left(\mathrm{K}\right)$	Reference
Ba ₂ YIrO ₆	DP		0.3	-10	[15]
Ba ₂ YIrO ₆	DP	4.8	0.63	-5	[16]
Ba ₂ YIrO ₆	DP	5.4	0.52	-4	[16]
Ba ₂ YIrO ₆	DP	5.4	0.50	-8	[16]
Ba ₂ YIrO ₆	DP	5.83	0.44	-8.9	[13]
Ba ₂ YIrO ₆	DP		0.31		[17]
Ba ₂ YIrO ₆	DP		0.48	-16	[18]
Ba ₂ YIrO ₆	DP	-3.9	1.44	-149	[12]
Ba _{1.26} Sr _{0.74} YIrO ₆	DP	4.4	0.64	-18	[12]
$Ba_{2-x}Sr_{x}YIrO_{6}$	DP		0.47		[19]
Sr ₂ YIrO ₆	DP		0.91	-229	[11]
Sr ₂ YIrO ₆	DP	5.90	0.21	-2.8	[14]
Sr ₂ YIrO ₆	DP		0.3		[20]
Sr _{1.6} Ca _{0.4} YIrO ₆	DP		0.6		[20]
Sr ₂ LuIrO ₆	DP	5.49	0.27	-2.55	[21]
Ba ₂ LuIrO ₆	DP	4.98	0.42	-13.2	[21]
Sr ₂ ScIrO ₆	DP	5.43	0.32	-10.7	[21]
Ba ₂ ScIrO ₆	DP	5.10	0.48	-18.7	[21]
Bi ₂ NaIrO ₆	DP	6.3	0.19	-6.8	[23]
LaSrMgIrO ₆	DP	3.5	0.61	7	[24]
LaSrZnIrO ₆	DP	3.9	0.46	1	[24]
Sr ₃ NaIrO ₆	K ₄ CdCl ₆		0.49	-23.6	[22]
Sr ₃ LiIrO ₆	K ₄ CdCl ₆		0.4	-21	[25]
Sr ₃ LiIrO ₆	K ₄ CdCl ₆		0.45	-71	[25]
Sr ₃ NaIrO ₆	K ₄ CdCl ₆	6.2	$0.31(H \perp c)$	-34	this work
		5.4	0.28(H c)	1	
Sr ₃ AgIrO ₆	K_4CdCl_6	3.3	0.57	-35	this work

TABLE IV. Magnetic properties of Ir⁵⁺ oxides with double perovskite (DP) and K₄CdCl₆ structures.

the observed $\mu_{\rm eff} \approx 0.3\mu_{\rm B}$ for Sr₃NaIrO₆ single crystals is solely contributed from magnetic Ir⁴⁺ ($\mu_{\rm eff} = 1.73 \,\mu_{\rm B}$) while Ir⁵⁺ ions are nonmagnetic (J = 0), there should be about ~3.0% of Ir⁴⁺ magnetic impurities according to $\mu_{\rm eff}^2 =$ $(1 - x)(\mu_{\rm eff}$ -Ir⁵⁺)² + $x(\mu_{\rm eff}$ -Ir⁴⁺)². The existence of magnetic Ir⁴⁺ with a low limit of ~1.7% for Sr₃NaIrO₆ is suggested from the analysis of low-temperature $C_{\rm p}(T)$ data, which is not far from the theoretical amount of ~3.0%.

In comparison with Sr₃NaIrO₆, the average valence state of Ir in Sr₃AgIrO₆ is a little lower than Ir⁵⁺, indicating the presence of a moderate amount of Ir⁴⁺ ions. The presence of magnetic Ir⁴⁺ with a low limit of ~9.2% is estimated for Sr₃AgIrO₆ by the analysis of the low-temperature $C_p(T)$ data. The observed μ_{eff} for Sr₃AgIrO₆ single crystals is ~0.57 μ_B . Assuming the observed μ_{eff} of 0.57 μ_B for Sr₃AgIrO₆ is solely contributed from magnetic Ir⁴⁺ while Ir⁵⁺ ions are nonmagnetic, there should be about ~10.9% of magnetic Ir⁴⁺ according to $\mu_{eff}^2 = (1x)(\mu_{eff}$ -Ir⁵⁺)² + $x(\mu_{eff}$ -Ir⁴⁺)², which is comparable to the low limit of Ir⁴⁺ (~9.2%) estimated from $C_p(T)$ data of Sr₃AgIrO₆ single crystals.

In comparison with A_2 YIrO₆ (A = Sr, Ba), where the Ir⁵⁺O₆ octahedra are separated by Y³⁺O₆, and the Ir⁵⁺O₆ octahedra are separated by Na¹⁺O₆/Ag¹⁺O₆ octahedra along the one-dimensional chain in Sr₃NaIrO₆ and Sr₃AgIrO₆. The much larger charge difference would significantly reduce the antisite disorder between Na¹⁺/Ag¹⁺ and Ir⁵⁺ in Sr₃NaIrO₆

and Sr_3AgIrO_6 as compared with Sr_2YIrO_6 and Ba_2YIrO_6 . Thus, the contributions to the magnetic moment from antisite disorder as discussed for Sr_2YIrO_6 and Ba_2YIrO_6 should be much reduced in Sr_3NaIrO_6 and Sr_3AgIrO_6 .

From these analyses, the paramagnetic moments observed in Sr₃NaIrO₆ and Sr₃NaIrO₆ single crystals are likely contributed solely by the magnetic Ir^{4+} , supporting the J = 0ground state for Ir⁵⁺. This is consistent with the studies on Ir⁵⁺ double perovskites A_2BIrO_6 (A = Ba, Sr; B = Y, Lu, Sc) which support the J = 0 ground state for Ir^{5+} and indicate the magnetic moments are from extrinsic sources [14,17,18,20,21]. Studies on the layered oxide Sr₂Co_{0.5}Ir_{0.5}O₄ also support the J = 0 ground state for Ir⁵⁺ and show that the energy gap between the singlet state and the excited triplet state is large [37]. The presence of magnetic Ir^{4+} indicates that a small number of oxygen vacancies exist in our Sr₃NaIrO₆ and Sr₃AgIrO₆ single crystals. The possibility of thermodynamic instability of stoichiometric Ir5+ oxides and a partial reduction of Ir^{5+} to Ir^{4+} has been suggested by Jansen *et al.* [23].

It should be noted that the θ_W values are anisotropic in our magnetic measurements on Sr₃NaIrO₆ single crystals. For the polycrystalline Sr₃NaIrO₆, the reported θ_W is -23.6 K. For our Sr₃NaIrO₆ single crystals, the θ_W is about 1 K for the case of H||c but is about -34 K for $H \perp c$, indicating that the magnetic exchange interactions are negligible along the one-dimensional chain (H||c) and are mainly for interchains $(H \perp c)$. In the ideal Sr₃NaIrO₆ structure, there is no direct superexchange Ir-O-Ir path, and the magnetic exchange interactions are mediated by the extended superexchange path Ir-O-O-Ir [38,39]. The nearest Ir-Ir is about 5.78 Å along the chain which is a little bit shorter than the length of 5.89 Å for interchains, but the nearest O-O distance between nearest IrO₆ octahedra along the one-dimensional chain (3.50 Å) is much longer than that of 2.99 Å for interchains, which may be responsible for the magnetic exchange interactions being mainly for interchains in the Sr₃NaIrO₆ single crystals.

IV. CONCLUSIONS

Single crystals of Sr₃NaIrO₆ and Sr₃AgIrO₆ have been successfully grown using hydroxides flux. Analysis of room temperature SCXRD data found that Sr₃NaIrO₆ and Sr₃AgIrO₆ crystallize in the K₄CdCl₆-type structure with the space group *R*-3*c* (no. 167). Sr₃NaIrO₆ and Sr₃AgIrO₆ are electrically insulating with estimated activation gaps of 0.68 and 0.80 eV, respectively. The magnetic results show paramagnetism down to 2 K for both Sr₃NaIrO₆ and Sr₃AgIrO₆. In comparison with polycrystalline Sr₃NaIrO₆ (0.49 μ_B), our Sr₃NaIrO₆ single crystals display smaller μ_{eff} values (0.31 μ_B for $H \perp c$ and 0.28 μ_B for $H \parallel c$). The μ_{eff} for Sr₃AgIrO₆ single crystals is about 0.57 μ_B . Combined analyses of the XAS spectra and the low-temperature $C_p(T)$ data indicate that the Ir ions are mainly Ir^{5+} in Sr_3NaIrO_6 but there is a low limit of ~1.7% of magnetic Ir^{4+} ions. For Sr_3AgIrO_6 , the Ir ions are a little lower than Ir^{5+} and it contains magnetic impurity Ir^{4+} with a low limit of ~9.2%. The magnetic impurities are likely to fully explain the observed μ_{eff} values for Sr_3NaIrO_6 and Sr_3AgIrO_6 single crystals, supporting the J = 0 ground state for Ir^{5+} in Sr_3NaIrO_6 and Sr_3AgIrO_6 .

ACKNOWLEDGMENTS

H.L.F. thanks Professor L. H. Tjeng for insightful comments. This work was supported by the Beijing Natural Science Foundation (Grant No. Z180008), the National Natural Science Foundation of China (Grants No. 12104492 and No. U2032204), the National Key Research and Development Program of China (Grants No. 2021YFA1400401 and No. 2017YFA0302900), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010000), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), and the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102). We also acknowledge support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials.

- [1] I. H. Inoue, I. Hase, Y. Aiura, A. Fujimori, Y. Haruyama, T. Maruyama, and Y. Nishihara, Systematic Development of the Spectral Function in the $3d^1$ Mott-Hubbard System Ca_{1-x} Sr_xVO₃, Phys. Rev. Lett. **74**, 2539 (1995).
- [2] A. E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame, and A. Fujimori, Electronic structure of 3d-Transition-Metal compounds by analysis of the 2p core-level photoemission spectra, Phys. Rev. B 46, 3771 (1992).
- [3] I. S. Lyubutin, S. G. Ovchinnikov, A. G. Gavriliuk, and V. V. Struzhkin, Spin-Crossover-Induced mott transition and the other scenarios of metallization in 3dⁿ metal compounds, Phys. Rev. B 79, 085125 (2009).
- [4] L. Huang, T. Ayral, S. Biermann, and P. Werner, Extended dynamical mean-field study of the hubbard model with long-range interactions, Phys. Rev. B 90, 195114 (2014).
- [5] F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schönberger, Calculations of hubbard u from first-principles, Phys. Rev. B 74, 125106 (2006).
- [6] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Correlated quantum phenomena in the strong spin-orbit regime, Annu. Rev. Condens. Matter Phys. 5, 57 (2014).
- [7] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Spin-Orbit physics giving rise to novel phases in correlated Systems: iridates and related materials, Annu. Rev. Condens. Matter Phys. 7, 195 (2016).
- [8] S. J. Moon, H. Jin, K. W. Kim, W. S. Choi, Y. S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and T. W. Noh, Dimensionality-Controlled Insulator-Metal Transition and Correlated Metallic State in 5 D Transition Metal Oxides Sr_{n+1} Ir_n O_{3n+1} (n = 1, 2, and ∞), Phys. Rev. Lett. **101**, 226402 (2008).

- [9] B. J. Kim, H. Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem, J. Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, and E. Rotenberg, Novel J_{eff} = 1/2 Mott State Induced by Relativistic Spin-Orbit Coupling in Sr₂ IrO₄, Phys. Rev. Lett. **101**, 076402 (2008).
- [10] A. E. Taylor, S. Calder, R. Morrow, H. L. Feng, M. H. Upton, M. D. Lumsden, K. Yamaura, P. M. Woodward, and A. D. Christianson, Spin-Orbit Coupling Controlled J = 3/2 Electronic Ground State in 5d³ Oxides, Phys. Rev. Lett. 118, 207202 (2017).
- [11] G. Cao, T. F. Qi, L. Li, J. Terzic, S. J. Yuan, L. E. DeLong, G. Murthy, and R. K. Kaul, Novel Magnetism of Ir⁵⁺ (5d⁴) Ions in the Double Perovskite Sr₂YIrO₆, Phys. Rev. Lett. **112**, 056402 (2014).
- [12] J. Terzic, H. Zheng, F. Ye, H. D. Zhao, P. Schlottmann, L. E. De Long, S. J. Yuan, and G. Cao, Evidence for a low-temperature magnetic ground state in double-perovskite iridates with Ir⁵⁺ (5d⁴) ions, Phys. Rev. B **96**, 064436 (2017).
- [13] T. Dey, A. Maljuk, D. V. Efremov, O. Kataeva, S. Gass, C. G. F. Blum, F. Steckel, D. Gruner, T. Ritschel, A. U. B. Wolter, J. Geck, C. Hess, K. Koepernik, J. van den Brink, S. Wurmehl, and B. Büchner, Ba₂YIrO₆: a cubic double perovskite material with Ir⁵⁺ ions, Phys. Rev. B **93**, 014434 (2016).
- [14] L. T. Corredor, G. Aslan-Cansever, M. Sturza, K. Manna, A. Maljuk, S. Gass, T. Dey, A. U. B. Wolter, O. Kataeva, A. Zimmermann, M. Geyer, C. G. F. Blum, S. Wurmehl, and B. Buchner, Iridium double perovskite Sr₂YIrO₆: a combined structural and specific heat study, Phys. Rev. B **95**, 064418 (2017).
- [15] A. Nag, S. Bhowal, A. Chakraborty, M. M. Sala, A. Efimenko, F. Bert, P. K. Biswas, A. D. Hillier, M. Itoh, S. D. Kaushik,

V. Siruguri, C. Meneghini, I. Dasgupta, and S. Ray, Origin of magnetic moments and presence of spin-orbit singlets in Ba₂YIrO₆, Phys. Rev. B **98**, 014431 (2018).

- [16] Q. Chen, C. Svoboda, Q. Zheng, B. C. Sales, D. G. Mandrus, H. D. Zhou, J.-S. Zhou, D. McComb, M. Randeria, N. Trivedi, and J.-Q. Yan, Magnetism out of antisite disorder in the *j* = 0 compound Ba₂YIrO₆, Phys. Rev. B **96**, 144423 (2017).
- [17] F. Hammerath, R. Sarkar, S. Kamusella, C. Baines, H.-H. Klauss, T. Dey, A. Maljuk, S. Gaß, A. U. B. Wolter, H.-J. Grafe, S. Wurmehl, and B. Büchner, Diluted paramagnetic impurities in nonmagnetic Ba₂YIrO₆, Phys. Rev. B 96, 165108 (2017).
- [18] S. Fuchs, T. Dey, G. Aslan-Cansever, A. Maljuk, S. Wurmehl,
 B. Büchner, and V. Kataev, Unraveling the Nature of Magnetism of the 5d⁴ Double Perovskite Ba₂YIrO₆, Phys. Rev. Lett. 120, 237204 (2018).
- [19] B. F. Phelan, E. M. Seibel, D. Badoe, W. Xie, and R. J. Cava, Influence of structural distortions on the ir magnetism in $Ba_{2-x}Sr_xYIrO_6$ double perovskites, Solid State Commun. 236, 37 (2016).
- [20] M. A. Laguna-Marco, E. Arias-Egido, C. Piquer, V. Cuartero, L. Hernández-López, P. Kayser, J. A. Alonso, J. A. T. Barker, G. Fabbris, C. A. Escanhoela Jr., and T. Irifune, Magnetism of Ir⁵⁺-based double Perovskites: unraveling its nature and the influence of structure, Phys. Rev. B 101, 014449 (2020).
- [21] A. A. Aczel, Q. Chen, J. P. Clancy, C. dela Cruz, D. Reig-i-Plessis, G. J. MacDougall, C. J. Pollock, M. H. Upton, T. J. Williams, N. LaManna, J. P. Carlo, J. Beare, G. M. Luke, and H. D. Zhou, Spin-Orbit Coupling Controlled Ground States in the Double Perovskite Iridates A₂BIrO₆ (A = Ba, Sr; B = Lu, Sc), Phys. Rev. Mater. 6, 094409 (2022).
- [22] A. Bandyopadhyay, A. Chakraborty, S. Bhowal, V. Kumar, M. M. Sala, A. Efimenko, F. Bert, P. K. Biswas, C. Meneghini, N. Büttgen, I. Dasgupta, T. Saha Dasgupta, A. V. Mahajan, and S. Ray, Breakdown of atomic spin-orbit coupling picture in an apparently isolated pseudo-one-dimensional Iridate: Sr₃NaIrO₆, Phys. Rev. B **105**, 104431 (2022).
- [23] B. E. Prasad, T. Doert, C. Felser, and M. Jansen, On $j_{eff} = 0$ ground state Iridates(V): tracking residual paramagnetism in new Bi₂NaIrO₆, Chem. Eur. J. **24**, 16762 (2018).
- [24] K. K. Wolff, S. Agrestini, A. Tanaka, M. Jansen, and L. H. Tjeng, Comparative study of potentially j_{eff} = 0 ground state Iridium(V) in SrLaNiIrO₆, SrLaMgIrO₆, and SrLaZnIrO₆: comparative study of potentially j_{eff} = 0 ground state Iridium(V) in SrLaNiIrO₆, SrLaMgIrO₆, and SrLaZnIrO₆, Z. Anorg. Allg. Chem. **643**, 2095 (2017).
- [25] A. Bandyopadhyay, A. Chakraborty, S. Bhowal, V. Kumar, M. M. Sala, A. Efimenko, C. Meneghini, I. Dasgupta, T. Saha Dasgupta, A. V. Mahajan, and S. Ray, Sr₃LiIrO₆: A Potential Quantum Spin Liquid Candidate in the One Dimensional d⁴ Iridate Family, arXiv:2111.00925.
- [26] B. Ranjbar, E. Reynolds, P. Kayser, B. J. Kennedy, J. R. Hester, and J. A. Kimpton, Structural and magnetic properties of the iridium double perovskites Ba_{2-x} Sr_x YIrO₆, Inorg. Chem. 54, 10468 (2015).
- [27] G. Khaliullin, Excitonic Magnetism in Van Vleck–Type D⁴ Mott Insulators, Phys. Rev. Lett. **111**, 197201 (2013).

- [28] O. N. Meetei, W. S. Cole, M. Randeria, and N. Trivedi, Novel magnetic state in d⁴ mott insulators, Phys. Rev. B 91, 054412 (2015).
- [29] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevMaterials.6.094415 for the crystallographic information files (Cif) for Sr₃NaIrO₆ and Sr₃AgIrO₆.
- [30] S. J. Mugavero, M. D. Smith, W.-S. Yoon, and H.-C. zur Loye, Nd₂ K₂ IrO₇ and Sm₂ K₂ IrO₇: Iridium(VI) oxides prepared under ambient pressure, Angew. Chem. Int. Ed. 48, 215 (2009).
- [31] J. Chen, X. Wang, Z. Hu, L. H. Tjeng, S. Agrestini, M. Valvidares, L. Nataf, K. Chen, F. Baudelet, M. Nagao, Y. Inaguma, A. A. Belik, Y. Tsujimoto, Y. Matsushita, T. Kolodiazhnyi, R. Sereika, M. Tanaka, and K. Yamaura, Enhanced magnetization of the Highest-T_C ferrimagnetic oxide Sr₂ CrOsO₆, Phys. Rev. B **102**, 184418 (2020).
- [32] Y.-Y. Chin, H.-J. Lin, Z. Hu, C.-Y. Kuo, D. Mikhailova, J.-M. Lee, S.-C. Haw, S.-A. Chen, H. Ishii, W. Schnelle, Y.-Fa. Liao, N. Hiraoka, K.-D. Tsuei, A. Tanaka, L. H. Tjeng, C.-T. Chen, and J.-M. Chen, Relation between the Co-O bond lengths and the spin state of co in layered Cobaltates: a high-pressure study, Sci Rep. 7, 3656 (2017).
- [33] H. L. Feng, S. Calder, M. P. Ghimire, Y.-H. Yuan, Y. Shirako, Y. Tsujimoto, Y. Matsushita, Z. Hu, C.-Y. Kuo, L. H. Tjeng, T.-W. Pi, Y.-L. Soo, J. F. He, M. Tanaka, Y. Katsuya, M. Richter, and K. Yamaura, Ba₂ NiOsO₆: a dirac-mott insulator with ferromagnetism near 100 k, Phys. Rev. B **94**, 235158 (2016).
- [34] K. Baroudi, C. Yim, H. Wu, Q. Huang, J. H. Roudebush, H.-J. Grafe, E. Vavilova, V. Kataev, B. Buechner, H. Ji, C. Kuo, Z. Hu, T.-W. Pi, C. Pao, J. Lee, D. Mikhailova, L. H. Tjeng, and R. J. Cava, Structure and properties of α-NaFeO₂-Type ternary sodium iridates, J. Solid State Chem. **210**, 195 (2014).
- [35] S. Agrestini, K. Chen, C.-Y. Kuo, L. Zhao, H.-J. Lin, C.-T. Chen, A. Rogalev, P. Ohresser, T.-S. Chan, S.-C. Weng, G. Auffermann, A. Völzke, A. C. Komarek, K. Yamaura, M. W. Haverkort, Z. Hu, and L. H. Tjeng, Nature of the magnetism of iridium in the double perovskite Sr₂CoIrO₆, Phys. Rev. B 100, 014443 (2019).
- [36] G. Cao, A. Subedi, S. Calder, J.-Q. Yan, J. Yi, Z. Gai, L. Poudel, D. J. Singh, M. D. Lumsden, A. D. Christianson, B. C. Sales, and D. Mandrus, Magnetism and electronic structure of La₂ZnIrO₆ and La₂MgIrO₆: candidate $j_{\text{eff}} = 1/2$ mott insulators, Phys. Rev. B **87**, 155136 (2013).
- [37] S. Agrestini, C.-Y. Kuo, K. Chen, Y. Utsumi, D. Mikhailova, A. Rogalev, F. Wilhelm, T. Förster, A. Matsumoto, T. Takayama, H. Takagi, M. W. Haverkort, Z. Hu, and L. H. Tjeng, Probing the *j*_{eff} = 0 ground state and the van vleck paramagnetism of the Ir⁵⁺ ions in layered Sr₂Co_{0.5}Ir_{0.5}O₄, Phys. Rev. B 97, 214436 (2018).
- [38] Y. Shi, Y. Guo, S. Yu, M. Arai, A. Sato, A. A. Belik, K. Yamaura, and E. Takayama-Muromachi, Crystal growth and structure and magnetic properties of the 5d oxide Ca₃LiOsO₆: extended superexchange magnetic interaction in oxide, J. Am. Chem. Soc. **132**, 8474 (2010).
- [39] S. Calder, M. D. Lumsden, V. O. Garlea, J. W. Kim, Y. G. Shi, H. L. Feng, K. Yamaura, and A. D. Christianson, Magnetic structure determination of Ca₃LiOsO₆ using neutron and x-ray scattering, Phys. Rev. B 86, 054403 (2012).