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Hard antiphase domain boundaries in strontium titanate
unravelled using machine-learned force fields
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We investigate the properties of hard antiphase boundaries in SrTiO3 using machine-learned force fields.
In contrast to earlier findings based on standard ab initio methods, for all pressures up to 120 kbar the observed
domain wall pattern maintains an almost perfect Néel character in quantitative agreement with Landau-Ginzburg-
Devonshire theory, and the in-plane polarization P3 shows no tendency to decay to zero. Together with the
switching properties of P3 under reversal of the Néel order parameter component, this provides hard evidence
for the presence of rotopolar couplings. The present approach overcomes the severe limitations of ab initio
simulations of wide domain walls and opens avenues toward concise atomistic predictions of domain-wall
properties even at finite temperatures.

DOI: 10.1103/PhysRevMaterials.6.094408

I. INTRODUCTION

Recently, the focus of research on ferroic materials has
shifted from bulk [1,2] to domains [3] and finally to domain
walls (DWs) [4–8]. The discovery of domain wall proper-
ties like vastly increased conductivity [9], superconductivity
[10], ferrielectricity, and ferroelectricity [11–15] has stirred
up much attention [16] for their potential use in nanoelectron-
ics [17,18]. The fact that DWs in ferroics may be created,
moved around, annihilated, and recreated nourishes hopes
for greatly enhanced flexibility of future electronic devices
created by what is nowadays called domain wall engineering
as compared to the functionality offered by conventional static
heterointerfaces between metal oxides. In all this research,
however, theoretically predicting the atomistic structure of a
DW and its stability range with respect to pressure and tem-
perature is a key aspect that is often very difficult to address.

Antiphase boundaries (APBs) between nonpolar bulk
phases (see below for an explanation of this terminology)
are regarded as especially interesting due to their ability to
carry a nonzero polarization [19] that can be switched upon
reversal of an external electric field, a key property for pos-
sible use in ferroelectric (FE) devices. A prime example is
the archetypal perovskite SrTiO3 (STO), for which the ex-
istence of a switchable polarization in APBs was predicted
based on a phenomenological Landau-Ginzburg-Devonshire
(LGD) approach [20]. Recall that at Ts = 105 K, STO under-
goes a well-studied antiferrodistortive (AFD) phase transition
Pm3̄m → I4/mcm. Its three-dimensional order parameter
(OP) components φi, i = 1, 2, 3 resemble the amplitudes of
three AFD soft modes of R25 symmetry [21] corresponding
to alternating rotation angles of the TiO6 octahedra around
the three cubic unit cell axes. Besides this R25 instability,
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however, ab initio calculations [22] also exhibit a polar FE
soft mode of �15 symmetry. Indeed, STO would undergo a
further low-temperature transition to a FE state around Tf ∼
30 K, which is only suppressed by a combination of quantum
fluctuations [23] and a competition between the AFD and FE
modes [24]. In LGD theory, the latter is encoded by a repulsive
biquadratic coupling ∼φ2

3P2
3 [20,25]. Due to the symmetry

reduction at the phase transition, the tetragonal phase can
appear in 6 domain states labeled Si. In this short-hand nota-
tion [26,27], S distinguishes three different orientational states
1 = (φ̄, 0, 0), 2 = (0, φ̄, 0), 3 = (0, 0, φ̄) and the subscript i
specifies the translational state within each orientational state,
e.g., 11 = (φ̄, 0, 0), 12 = (−φ̄, 0, 0), etc., where φ̄ denotes the
modulus of the spontaneous bulk OP. A “hard” APB results
from gluing together, e.g., 31 and 32 with the DW plane nor-
mal to (1,0,0). In OP space, any continuous local OP profile
(0, 0, φ3(x1)) across such a hard APB must vanish at its center
for symmetry reasons. Thus, the effectiveness of the φ2

3P2
3

coupling suppressing the FE mode will break down inside the
APB, and a FE phase transition at Tf may occur in the vicinity
of its center. Moreover, LGD calculations by Tagantsev et al.
[20] predicted that hard APBs in STO develop an additional
(Néel) component φ1(x) with an amplitude that peaks at al-
most φ̄ in the DW center. Interestingly, however, subsequent
density functional theory (DFT)-based calculations of APBs
[28] exhibit several discrepancies with these LGD results. In
particular, although the prediction of an emergent nonzero
Néel-type component φ1(x) was verified, its amplitude was
only a small fraction of that obtained from LGD theory [20]
and the observed width of the hard APB was much smaller.
Conventional DFT approaches are, however, seriously limited
by the accessible system size. This is especially critical in
the present case of a hard APB, where geometrical frustration
between the octahedra on both sides of the wall causes such
walls to spread out over many pseudocubic lattice constants.
Hence, it seems crucial to devise a more efficient general
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framework for predictive atomistic calculations of DW prop-
erties.

In recent years, machine-learned force fields (MLFFs)
[29,30] have emerged as a powerful tool to explore the
potential energy landscape of materials at a small fraction
of the cost of first-principles calculations, but retaining al-
most the same accuracy. In the present paper, we calculate
the structure and properties of hard APBs in STO using
an on-the-fly kernel-based MLFF [31–33]. This allows us
to perform careful and accurate relaxations in supercells
of sizes that were previously far beyond the reach of di-
rect first-principles calculations. The resulting DW profiles
are analyzed in terms of local phonon and polarization am-
plitudes at different pressures and are put into perspective
with corresponding results obtained numerically from LGD
theory.

The outline of the remaining part of the paper is as fol-
lows. We start with a brief discussion of the DFT and ML
approaches used. This is followed by a review of our su-
percell setup and the structural relaxation of DW profiles.
The structural OP and polarization amplitudes carried by the
resulting DW profiles are discussed. Finally, we present evi-
dence for the presence of so-called rotopolar coupling terms
beyond the biquadratic ones in LGD phenomenology of hard
APBs.

II. FIRST-PRINCIPLES CALCULATIONS
AND MLFF TRAINING

Let us start with a brief account of the MLFF method used
throughout the paper.

By mapping structural features onto a set of descriptors,
MLFF models can simultaneously predict the energy, atomic
forces, and stress tensor components of a given system. In this
paper, we adopt the Gaussian approximation potential [34]
approach, where each local atomic energy is expressed as a
linear combination of kernel functions, and we use Bayesian
linear regression to determine the weighting coefficients. We
employ an efficient on-the-fly training method [35], where the
first-principles training data are collected during molecular
dynamics (MD) simulations. In practice, only when the es-
timated Bayesian error of the MLFF is larger than a specified
threshold, a first-principles calculation is performed and the
corresponding data are added to the training set, allowing to
refine the MLFF. A detailed description of the MLFF model,
the descriptors, and the on-the-fly training procedure can be
found in Refs. [32,33].

All DFT and MLFF calculations, including the MLFF
training, are performed using VASP [36,37], while for phonon
calculations we use the PHONOPY package [38]. The MLFF is
trained on the fly during MD simulations in the NpT ensemble
with a time step of 2 fs. A supercell containing 320 atoms
is first heated from 150 K to 350 K at ambient pressure in
150 ps, then starting from 10 K to 150 K in another 150
ps. Additional data are gathered at p = 40 kbar and p = 100
kbar for 100 ps. The training data set thus generated consists
of 831 structures and their relative first-principles energies,
forces, and stress tensors. The first-principles calculations are
performed using the PBEsol exchange-correlation functional,

TABLE I. Lattice constants and energy differences (per formula
unit) of the ideal cubic and tetragonal phases at P = 0 and 40 kbar,
calculated from DFT (PBEsol) and MLFF.

P = 0 kbar P = 40 kbar

PBEsol MLFF PBEsol MLFF

Cubic
a (Å) 3.8934 3.8924 3.8645 3.8649
�Ec-t (meV) 4.5 4.5 4.1 3.8
Tetragonal
a (Å) 3.8848 3.8842 3.8531 3.8533
c (Å) 3.9040 3.9040 3.8791 3.8796
c/a 1.005 1.005 1.007 1.007

a plane-wave cutoff of 700 eV, and a 2 × 2 × 2 Monkhorst-
Pack k-mesh for the 320-atom supercell.

To calculate the descriptors, we set the cutoff radius used
to represent the local environment of each atom to 6 Å,
while the Gaussian broadening for the atomic distribution
functions is 0.2 Å. As radial and angular basis functions,
we use up to 22 spherical Bessel functions and Legendre
polynomials up to order l = 4, respectively. The same pa-
rameters are used for the two- and three-body descriptors.
We use a polynomial kernel with hyperparameter ζ = 4 (Ref.
[39]), and we train the MLFF by weighing energy, force,
and stress data equally when solving the Bayesian regres-
sion problem. The resulting MLFF yields root-mean-square
errors in the energies, forces, and stress tensors for the train-
ing data set of 0.53 meV/atom, 0.03 eV/Å, and 0.50 kbar,
respectively. The calculated zero-temperature lattice param-
eters of the ideal cubic and tetragonal phase are reported in
Table I, both from DFT and the MLFF, which are in almost
perfect agreement. As a further test of the quality of the
MLFF predictions, we show the phonon dispersions and the
double-well potential from the FE instability in the tetragonal
phase, calculated from first-principles and from the MLFF
(Figs. 1 and 2).

III. DOMAIN-WALL SUPERCELL SETUP AND
STRUCTURAL RELAXATION

In setting up the supercells needed to perform our DW
simulations, care is needed to establish compatibility of the
DW structure with the periodic boundary conditions that
are mandatory for DFT calculations. Taking the DW normal
pointing along x1 and the primary OP pointing along x3,
it obviously suffices to go with two pseudocubic unit cells
along each in-plane direction x2, x3 to accommodate the local
nonzero alternating rotation angles φi(x1). In contrast, not to
put any bias on the width of the resulting DW profile, the
x1 dimension of an appropriate supercell should be extremely
elongated. Taking into account that in the chosen geometry the
OP component φ3(x1) changes its sign when passing through
the center of an APB at x1 = 0, which corresponds to a phase
shift of ±π , we must choose an odd total number of pseudocu-
bic unit cell parameters a0 in the ±x1 direction. Potentially,
this setup may conflict with the alternating periodicity of
the OP components φ1(x1), φ2(x1), unless these components
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FIG. 1. Comparison of calculated phonon dispersions in the
tetragonal I4/mcm structure as determined directly from the PBEsol
exchange-correlation functional (dotted lines) and using the MLFF
(full lines).

vanish identically, which, however, is exactly required inside
the bulk tetragonal domains separated asymptotically by the
DW.

The structural relaxations of the DWs are performed using
supercells with periodic boundary conditions containing an
initial structural guess for a single APB at its center that
is subsequently relaxed to the equilibrium structure. As ex-
plained above, this requires an odd number of pseudocubic
unit cells in the x1 direction. Following numerous careful tests,
we adopt supercells of dimensions 59 × 2 × 2, such that each
supercell contains 1180 atoms. Guided by the results of Ref.
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FIG. 2. Energy double well for the mode amplitude �3 at p = 0
along the displacement pattern E3 in the bulk I4/mcm phase cal-
culated directly from DFT using the PBEsol exchange-correlation
functional and from the MLFF. We find that using our MLFF, the
FE instability disappears at p(MLFF) = 10 kbar (blue line in the plot),
while in DFT stabilization sets in at p(DFT) = 13 kbar.

[28], we displace some of the atoms from their ideal cubic per-
ovskite positions by performing alternating displacements of
the transverse Ox and Oy oxygens along the x2 and −x1

directions, respectively, with an amplitude ∼φ̄ tanh(x1/ξ )
resembling the octahedra rotations described by the OP
φ3. In addition, a Gaussian-shaped positive or negative
hump around the DW with a somewhat smaller amplitude
φ1 is superimposed. Subject to hydrostatic pressures p =
0, 10, 20, 40, 60, 80, 100, and 120 kbar, these initial candi-
date structures are relaxed while constraining the atoms in the
boundary layers x1 = ±29 a0(p) to remain in their ideal bulk
positions until forces on each atom have dropped below 0.001
eV/Å. To exclude the possibility of artifacts due to an insuf-
ficient size of the supercell, the resulting relaxed structures
were also compared to those produced by completely uncon-
strained relaxations, with no significant differences found.

Taking the relaxed set of atomic positions as a deformation
of the ideal cubic structure, we compute the resulting set of
(mass-weighted) atomic displacement vectors [40] at each su-
percell lattice site x and locally project them onto normalized
phonon polarization vectors of the ideal cubic reference struc-
ture. In this way we can extract the local amplitudes φi(x), i =
1, 2, 3 corresponding to the cubic AFD soft mode. Since we
assume the DW to be flat, we average these profiles over the
(x2x3) cross sections of our supercells to obtain x1-dependent
profiles φi(x1) = 1

4

∑
x2,x3

φ(x1, x2, x3). The OP component
φ2(x1), which is zero in the initialized structures described
above, is observed to remain zero during the subsequent relax-
ations and will be ignored in what follows. In a similar way,
we determine the local amplitudes �i(x1), i = 1, 2, 3 of the
lowest tetragonal FE soft mode and the local electric polar-
ization components Pi(x1) = (e/�0)

∑
κ∈�0

∑
j Z∗

κ,i juκ j (x1),
where Z∗

κ are the Born effective charge tensors for atom κ and
uκ j (x1) denotes the cross section-averaged displacement of
this atom in the Cartesian direction with respect to the tetrag-
onal bulk reference structure. Technical details of how these
procedures are implemented are provided in the Supplemental
Material (SM) [41].

IV. ANALYSIS OF STRUCTURAL OP AND
POLARIZATION AMPLITUDES

We begin by focusing on the local OP component φ3.
Its local profiles resemble tanh-like kinks passing through
zero at the center of the supercells and are well fitted by
functions φ̄ tanh[(x1/ξ ) exp(ax2

1 + bx4
1 + . . . )]. The resulting

widths δ(p) ≡ 2ξ (p), shown in Fig. 3(a), start out at approx.
15 a0(p = 0) at ambient pressures but are observed to nar-
row under increasing external pressure to about 5 a0(p) at
p = 120 kbar.

In Ref. [20], the Euler-Lagrange equations of LGD for a
hard wall were formulated at zero pressure p = 0 and studied
with analytical approximations. To compare the results of
our atomistic simulations to the predictions of LGD theory
quantitatively, we instead solve these equations numerically
but without any approximations, which yields a corresponding
DW width of δ ≈ 21 a0(0). Even if one takes into account that
pressure scales derived from different exchange-correlation
functionals may not be directly comparable in a one-to-one
manner, this is certainly in much better agreement with the
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FIG. 3. (a) Pressure dependence of the DW width δ(p) measured in units of the pseudocubic lattice constant a0(p). (b) Comparison
of rescaled OP profiles ψ1(x) and ψ3(x) as obtained from our MLFF simulations at pressures p = 0, 10, 20, 40, 60, 80, 100, and 120 kbar
(colored) and numerical solutions of LGD theory (gray). As explained in the text, distances x1 are measured in units of the DW width
δ(p), i.e., x1 ≡ x · δ(p), and OP components φi are normalized with respect to the bulk OP modulus φ̄(p), i.e., ψi(x) = φi(xδ(p))/φ̄(p). (c),
(d) Polarization profiles P1(x) and P3(x), respectively, for pressures p = 20, 40, 60, 80, 100, and 120 kbar. Polarization profiles for unstable
configurations at p = 0 kbar and p = 10 kbar were found to be completely out of scale and were thus deliberately omitted from the plot.

low-pressure values obtained from our MLFF simulations
[Fig. 3(a)] than a value δ(0) ≈ 5.8 a0(0) resulting from a fit
of the data shown in Fig. 3 of Ref. [28].

For the following discussion, it will be convenient to
parametrize distances x ≡ x1/δ(p) in units of the correspond-
ing DW widths δ and to normalize all OP profiles ψi(x) ≡
φi(xδ)/φ̄ with respect to the corresponding bulk OP modulus
value φ̄. Remarkably, as demonstrated in Fig. 3(b), for all
pressures p � 10 kbar the rescaled profiles ψ1(x) and ψ3(x)
obtained from MLFF simulations nicely collapse onto the two
equally rescaled numerical solutions ψ1(x), ψ3(x) obtained
from LGD theory using the parametrization of Ref. [20],
respectively. In particular, in perfect accordance with the pre-
diction of LGD theory, the amplitudes φ1(x = 0) at the DW
center calculated with MLFFs reach about 93% of the bulk
value φ̄, which, however, completely disagrees with the much
smaller amplitude observed in Ref. [28]. At variance with
results for higher pressure, however, Fig. 3(b) reveals that for
low pressures the OP profiles of the component φ1(x1) appear
to deviate from those of ideal localized humps confined to
the region inside the DW. Instead, pronounced oscillations,
which are strongest for p = 0, are also observed throughout
the hypothetical bulk regions, signaling an instability of the

tetragonal bulk phase. To some extent, this behavior is to be
expected [42]. Within the Born-Oppenheimer approximation,
the tetragonal phase presents a FE instability, which is indi-
cated by the presence of imaginary phonon modes at the �

point (cf. Fig. 1).
Hence, performing a structural relaxation with a suffi-

ciently small force relaxation threshold, one is bound to detect
and follow these unstable directions, thereby disrupting the
I4/mcm bulk domains in favor of energetically lower lying
states. It is, however, well-known (cf., e.g., Refs. [24,43]) that
in the cubic phase there is a competition between R25 and
the lowest �15 modes so under increasing pressure the former
softens while the latter hardens. Already at an external hy-
drostatic pressure of p = 10 kbar the above mentioned double
well turns into a stable, albeit shallow potential, and the local
OP profile φ1(x1) becomes much more confined to the vicinity
of the DW (cf. Fig. 2).

Around the distances x1 = ±δ(p) from the DW center,
however, residual traces of these anomalies are found to
survive in φ1(x1) even for pressures up to about 40 kbar in
Fig. 3(b). These side wiggles still hint at a residual activation
of the unstable �15 modes due to coupling with the local
anisotropic strain accompanying the onsets of the DW. Of
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FIG. 4. Pressure evolution of the extrema of the polarization
profile P3(x). Inset: Polarization profiles P1(x1) and P3(x1) for
φ1(x)φ′

3(x) < 0 (label +) and φ1(x)φ′
3(x) > 0 (label –) at pressure

p = 40 kbar.

course, the observed stabilization of the tetragonal bulk phase
of STO with increasing pressure can also be monitored di-
rectly in terms of the profiles �(x1) of the unstable �15-mode
amplitudes (see the SM [41]).

Turning to the components of the local electric polar-
ization vector Pi(x1), inside the DWs nonzero symmetric

polarizations P3(x1) = P3(−x1) and asymmetric components
P1(x1) = −P1(−x1) are seen to emerge [Figs. 3(c) and 3(d)],
while P2(x1) vanishes identically (not shown). All these find-
ings are in perfect agreement with layer group symmetry
analysis [44]. The observed overall sign of the polarization
is, however, found to be fully determined by the particu-
lar OP profiles realized, an observation that has profound
consequences for LGD theory. To appreciate this, recall that
due to the alternating nature of the R25 phonon displacement
patterns, the overall signs of the individual amplitudes φi(x1)
resulting from our analysis of supercell data are not well
defined, but that of the product φ1(x1)φ′

3(x1) is. Indeed, when
performing MLFF relaxations with a flipped sign of the initial
profile guess φ

(init)
1 (x1), the relaxation always yielded a final

configuration in which both the symmetric profiles φ1(x1) and
P3(x1) were exactly reversed, while the asymmetric profile
P1(x1) remained invariant (see inset of Fig. 4). Interestingly,
while the symmetry {±φ1, φ3} is in full accordance with the
corresponding symmetry of the underlying LGD free energy
Gφ (Eq. (1) of Ref. [20]), the terms listed in the polarization-
dependent LGD free-energy contribution GP as listed in Eqn.
(43) of Ref. [20] do not allow us to decide whether a sign
flip of φ1(x1) will be compensated by {P1, P3} → {−P1, P3} or
by {P1, P3} → {P1,−P3}. Since the strain tensor is invariant
under a change of sign of φ1, so-called flexoelectric terms [19]
that couple polarization gradients to strain tensor components
also fail to provide any criterion to decide this question. How-
ever, consider the so-called rotopolar coupling terms [44,45]

GR = W1

[
P1

(
∂φ1

∂x3
φ3 + ∂φ1

∂x2
φ2

)
+ P2

(
∂φ2

∂x3
φ3 + ∂φ2

∂x1
φ1

)
+ P3

(
∂φ3

∂x1
φ1 + ∂φ3

∂x2
φ2

)]

+W2

[
P1

(
∂φ2

∂x2
φ1 + ∂φ3

∂x3
φ1

)
+ P2

(
∂φ1

∂x1
φ2 + ∂φ3

∂x3
φ2

)
+ P3

(
∂φ1

∂x1
φ3 + ∂φ2

∂x2
φ3

)]

+W3

[
P1

(
∂φ3

∂x1
φ3 + ∂φ2

∂x1
φ2

)
+ P2

(
∂φ3

∂x2
φ3 + ∂φ1

∂x2
φ1

)
+ P3

(
∂φ1

∂x3
φ1 + ∂φ2

∂x3
φ2

)]

+W4

[
P1

∂φ1

∂x1
φ1 + P2

∂φ2

∂x2
φ2 + P3

∂φ3

∂x3
φ3

]
, (1)

which involve four independent coupling constants Wi, i =
1, . . . , 4. For a purely x1 ≡ x-dependent problem they reduce
to

GR = W1

(
P2

∂φ2

∂x
+ P3

∂φ3

∂x

)
φ1 + W2(P2φ2 + P3φ3)

∂φ1

∂x

+ P1

2

(
W3

∂ (φ2
2 + φ2

3 )

∂x
+ W4

∂ (φ2
1 )

∂x

)
. (2)

Neglecting the OP component φ2, this simplifies to

GR =
(

W1
∂φ3

∂x
φ1 + W2

∂φ1

∂x
φ3

)
P3

+ P1

2

(
W3

∂ (φ2
3 )

∂x
+ W4

∂ (φ2
1 )

∂x

)
(3)

The two contributions to this expression may be regarded as
bilinear couplings of P3 and P1 to the respective components
of some local effective electric field mediated by the OP. How-
ever, while the effective field component that couples to P1 is
obviously quadratic in the OP components φi, the component
W1

∂φ3

∂x φ1 + W2
∂φ1

∂x φ3 that couples to P3 changes its sign upon
flipping the sign of either φ1 or φ3. This term is precisely
the type of coupling that is capable of inducing the switching
behavior observed in our simulations. Additional evidence for
the presence of such rotopolar couplings may be found in
Fig. 4, as both the central maximum as well as the side minima
seen in the profiles P3(x1) show no tendency to decay to zero,
much like the magnetization in an Ising model never drops to
zero in the presence of a small added magnetic field.

There is evidence that rotopolar couplings of the general
type W1 	= W2 are indeed present in STO. As previously as-
serted by Schiaffino and Stengel [46], they should also play an
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important role in understanding the polarization in ferroelastic
walls, where they are reminiscent of the mechanism under-
lying the emergence of spontaneous polarization in cycloidal
magnetic systems. Indeed, general rotopolar couplings break
the inversion symmetry of a periodic sequence of ferroelastic
DWs (e.g., of the type 31 → 11 → 32), leading to a macro-
scopic polarization of such an arrangement. In view of the OP
value (0.93φ̄, 0, 0) at its center, the Néel-type profile 31 →
(φ1(x), 0, φ3(x)) → 32 that we obtained resembles a structure
extremely close to such a sequence of ferroelastic twins, in-
dicating that rotopolar terms play a similar role also here.
In passing, we note that our full set of rotopolar couplings
(1) reduces to restricted set of invariants given in Eq. (2a) of
Ref. [47] upon constraining W1 = W2.

V. PRELIMINARY RESULTS OF MD SIMULATIONS

In principle, the possibility to carry out MD simulations
to incorporate finite temperature effects to check the thermal
stability of our zero temperature results seems evident once a
precise ML force field is available. Probably the most impor-
tant open question concerns the investigation of the thermal
stability of the Néel-type OR profiles and the accompanying
polarization patterns. Below we discuss preliminary results
obtained from MD simulations based on our MLFFA. How-
ever, a thorough investigation of this topic would certainly
call for new, substantial efforts well beyond the scope of the
present paper.

For the purpose of MD, the 2 × 2 supercell diameter that
we had used for our T = 0 K is clearly insufficient. In a first
attempt, we replaced it with a larger 4 × 4 one. To mimic
the effects of quantum fluctuations, we introduced a barostat
that imposes a 20 kbar background pressure. To this setup,
we added a Nosé-Hoover thermostat to maintain the desired
temperature. The supercells were initialized from the relaxed
DW configuration obtained at zero temperature. To prevent
artifacts stemming from the odd number of unit cells in the
x direction, atoms were fixed at the left and right supercell
boundaries. With this rather minimalistic setup, we ran MD
at temperatures T = 30, 50, and 80 K. OP profiles and polar-
izations resulting from these MD trajectories were analyzed
using the same methodology already discussed above and
in the SM [41], time averages of the polarization profiles
(centered around the fluctuating DW center) were taken over
the whole available trajectory length, and we compiled movies
of each run that are supplied in the SM [41]. Let us briefly
discuss our preliminary results obtained in this way.

(1) At T = 30 K, we observe that the Néel type of OP
profile we obtained at T = 0 persists over the whole trajec-
tory length of 61 ps. The time-averaged centered polarization
profiles display a structure that still remotely resembles
the shape we found at T = 0, albeit at a somewhat re-
duced amplitude. In particular, even the asymmetric shape of
P1(x) can still be observed remarkably well [cf. the movie
NpT_59x4x4_P20kbar_T30K.mp4 included in the SM and
Fig. 5(a)].

(2) At T = 50 K, similar comments still apply, but at
a much higher level of fluctuations. Averaging over con-
figurations along an MD trajectory of length 124 ps, we
observe a further reduction of polarization amplitudes [movie

NpT_59x4x4_P20kbar_T50K.mp4 included in the SM and
Fig. 5(b)].

(3) Running MD at T = 80 K for 117 ps, one can
still recognize a tendency toward preserving a Néel
character of the OP profiles, but the polarization pro-
file shows an increased tendency to disintegrate [movie
NpT_59x4x4_P20kbar_80TK.mp4 included in the SM and
Fig. 5(c)].

(4) The observed reduction of the maximum of the am-
plitude of P3(x) with increasing temperature is shown in
Fig. 5(d). Note the similarity of this behavior with respect to
temperature to the pressure dependence of the maximum of
P3(x) as observed in Fig. 4. We regard this as further evidence
for the presence of the rotopolar couplings discussed above.

Despite all this encouraging evidence, at the present stage
we must still regard the above observations as preliminary.
To obtain conclusive results would certainly at least require
several adjustments to the current setup which will increase
the computational costs of such simulations drastically:

(1) The small 4 × 4 cross section effectively cuts off all
but the largest wavelength fluctuation of capillary modes trav-
eling parallel to the DW, probably at the expense of seriously
underestimating thermal broadening of the DW. At the same
time, for such a small supercell diameter the free energy barri-
ers from a Néel profile to other metastable DW configurations
(e.g., a Néel profile with reversed sign of φ1 or a Bloch type
profile) may easily be crossed, thus erroneously indicating
instability at a given temperature and timescale.

(2) To get rid of the constraint of fixing atoms at the
boundary, which is certainly not desirable in MD, the super-
cell must be replaced by one with an even number of unit
cells in each direction, which is only possible if it hosts two
opposite DWs instead of a single one, further increasing its
size.

(3) On top of this, investigations at low temperatures in
principle require inclusion of nuclear quantum fluctuations
[48]. While we have mimicked these effects here by intro-
ducing a stabilizing background pressure, a more stringent
approach would call for performing, e.g., a path integral MD
simulation, in which machine-learned potentials are combined
with established quantum MD simulation techniques [49],
further increasing the costs of such simulations by one or two
orders of magnitude.

Clearly, each of these steps must be planned and tested
carefully and will require massive computational resources.
Work in this direction is currently underway in our group.

VI. DISCUSSION AND CONCLUSIONS

In summary, our paper highlights the exceptional agree-
ment and mutual fruitful exchange between traditional
symmetry-based LGD approaches and atomistic simulations
of DWs based on ML methods. Using MLFFs trained on
accurate DFT calculations, we were able to perform truly
realistic simulations of hard APBs hosted by STO supercells
requiring sizes that were previously out of reach for standard
ab initio approaches. Our results are in remarkable agreement
with predictions of LGD theory on a qualitative and even
quantitative level. In particular, for a DW geometry normal
to the x1 direction, we observe a DW of Néel type, whose
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FIG. 5. Polarization profiles P1(x) (red), P2(x) (green), and P3(x) (blue) for (a) T = 30 K, (b) T = 50 K, and (c) T = 80 K; (d) temperature
evolution of maxima of polarization component P3(x).

width δ and OP amplitude φ1 are much larger than reported in
Ref. [[28]] and are in excellent agreement with our numerical
solutions of LGD theory. To the best of our knowledge, it is
hard to find better examples of agreement of LGD and ab
initio results anywhere in the DW literature. We also observe
that the DW carries a dominant symmetric P3(x1) in-plane
polarization component and a smaller asymmetric normal
component P1(x1). The observed symmetry properties and
pressure dependence of the OP and polarization profiles are
compatible with the presence of rotopolar couplings. Both in

terms of reachable system sizes and ease of including finite
temperature effects by, e.g., MD or Monte Carlo while main-
taining DFT-like accuracy, ML-based methods will lead to a
huge step forward in the computational study of DWs in the
near future.
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