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Impurity-induced excitations in a topological two-dimensional ferromagnet/superconductor
van der Waals moiré heterostructure
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The emergence of a topological superconducting state in van der Waals heterostructures provides a new
platform for exploring novel strategies to control topological superconductors. In particular, impurities in van
der Waals heterostructures, generically featuring a moiré pattern, can potentially lead to the unique interplay
between atomic and moiré length scales, a feature absent in generic topological superconductors. Here we
address the impact of nonmagnetic impurities on a topological moiré superconductor, both in the weak and strong
regime, considering both periodic arrays and single impurities in otherwise pristine infinite moiré systems. We
demonstrate a fine interplay between impurity-induced modes and the moiré length, leading to radically different
spectral and topological properties depending on the relative impurity location and moiré lengths. Our results
highlight the key role of impurities in van der Waals heterostructures featuring moiré patterns, revealing the key
interplay between length and energy scales in artificial moiré systems.
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I. INTRODUCTION

The design of artificial topological superconductors is one
of the most active areas in designer quantum materials [1–15],
fueled by their fundamental interest and their potential for
future topological computing architectures [16–19]. Engi-
neering topological superconductivity requires three different
ingredients, magnetism, spin-orbit coupling, and supercon-
ductivity, features that have been harvested in a variety
of platforms, including semiconducting nanowires [20–22],
atomic chains [5,23], topological insulators [24,25], and
van der Waals materials [26–28]. In particular, besides all
the rich physics of topological superconductors, van der
Waals topological superconductors such as CrBr3/NbSe2 het-
erostructures [26–28] display a unique feature stemming from
their van der Waals nature [29,30], the emergence of a moiré
pattern.

Artificial van der Waals topological superconductors, and
moiré heterostructures in general, display two length scales,
the original lattice constant and the emergent moiré length
[31–35]. The existence of a moiré pattern leads to a super-
conducting state with an associated moiré electronic structure,
and more importantly, a spatially modulated structure directly
inherited from the moiré pattern [36,37]. In particular, atomic
defects in two-dimensional materials including substitutional
elements and vacancies have a relevant length scale stemming
from the microscopic lattice constant [38–42], and therefore
can give rise to a rich interplay with the moiré length. While
impurities in uniform topological superconductors have been
widely studied [43–49], the interplay between local impurities
in moiré systems has remained relatively unexplored [50–53].

In this paper, we address the impact of nonmagnetic im-
purities on artificial moiré topological superconductors. We
show that interplay between the moiré pattern and local impu-
rities gives rise to radically different impacts of the defects

depending on the specific location. Our paper is organized
as follows. First, in Sec. II we introduce the model for a
moiré topological superconductor. In Sec. III we address the
impact of strong impurities in the topological state. In Sec. IV
we address the impact of weak impurities in the moiré su-
perconductor. In Sec. V we study the interplay between the
amplitude of the moiré pattern and the location of the impu-
rity. In Sec. VI we address the emergence of in-gap modes for
single impurities in otherwise pristine systems. In Sec. VII we
examine the emergence of topological moiré edge modes in
the defective and pristine topological moiré superconductor.
Finally, in Sec. VIII we summarize our conclusions.

II. MODEL

Here we will consider a generic topological superconduc-
tor realized in a van der Waals heterostructure, as realized
in a CrBr3/NbSe2 heterostructure [26]. In this material, the
relative lattice mismatch and rotation between the CrBr3

ferromagnet and the NbSe2 superconductor leads to the emer-
gence of a moiré pattern, as shown in Fig. 1(a). In particular,
the moiré pattern is expected to directly impact the under-
lying Hamiltonian of the system due to the local structural
modulation [54–58]. Such a modulation directly imprints Yu-
Shiba-Rusinov states following the moiré pattern [28]. Due to
the structural modulation, including the local hoppings [59],
induced spin-orbit coupling [54], chemical potential [60], ex-
change field [61], and superconducting proximity [62] will
be modulated. For the sake of concreteness, here we will
focus on the two parameters whose modulation is expected
to be most sizable, the local superconducting order and the
proximity-induced exchange field. It is worth noting that,
beyond the currently realized CrBr3/NbSe2 heterostructure
displaying topological superconductivity [26–28], a variety of
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FIG. 1. (a) Schematic view of an artificial CrBr3/NbSe2 moiré
topological superconductor. Panels (b) and (c) show the real-space
modulation of exchange coupling J (r) (b) and superconductivity
�(r) (c) in the moiré unit cell. Panels (d), (e), and (f): Electronic
band structure of a (d) uniform, (e) moiré, and (f) moiré with an
impurity topological superconductor. We used J0 = 2�0, λ = 2�0,
μ = 3t , δJ = 2J0, δ� = 1.4�0.

other artificial van der Waals systems can potentially lead to
topological superconductivity. As two-dimensional ferromag-
nets, materials such as CrBr3 [63], CrI3 [64], and CrBr3−xIx

[65] provide potential out-of-plane ferromagnetic monolay-
ers, whereas NbSe2 [66], NbS2 [67], TaS2 [68], and TaSe2

[69] and their alloys [70] would provide van der Waals super-
conductors. For all the combinations between ferromagnets
and superconductors above, the resulting heterostructure will
show a moiré pattern between a honeycomb ferromagnet and
a triangular superconductor, displaying an approximate C3

rotational symmetry.
With the previous platforms in mind, we now turn to

address a minimal effective model for the previous het-
erostructures. While the specific parameters of the model
for each material combination should be estimated using
first-principles calculations [54–58], here we will focus on
addressing the universal features that arise due the interplay
of the moiré superconductor and the local impurities [50–53].
The structure moiré pattern directly gives rise to a modulation
in the induced exchange coupling and an s-wave superconduc-
tivity, whose spatial profiles are shown in Figs. 1(b) and 1(c).
The electronic structure of the heterostructure is modeled with
an atomistic Wannier orbital per Nb site forming a triangular
lattice, where the moiré pattern is incorporated in the mod-

ulation of the Hamiltonian parameters. The full Hamiltonian
takes the form

H0 = Hkin + HJ + HR + HSC (1)

with

Hkin = t
∑
〈i j〉,s

c†
i,sc j,s +

∑
i

μ(r)c†
i,sci,s, (2)

where c†
n,s (cn,s) denotes the creation (annihilation) fermionic

operator with spin s in site n, t is the hopping parameter, 〈i, j〉
runs over nearest neighbors, and μ is the chemical potential.
The term

HJ =
∑
i,s,s′

J (r)σ s,s′
z c†

i,sci,s′ (3)

is the exchange coupling induced by the underlying ferromag-
net, obtained by integrating out the degrees of freedom of the
magnetic monolayer. The term

HR = iλ
∑

〈i j〉,ss′
di j · σ s,s′

c†
i,sc j,s′ , (4)

is the Rashba spin-orbit coupling arising due to the broken
mirror symmetry at the NbSe2/CrBr3 interface, σ are the spin
Pauli matrices, λ controls the spin-orbit coupling constant and
di j = ri − r j . The term

HSC =
∑

i

�(r)c†
i,↑c†

i,↓ + H.c. (5)

is the s-wave superconducting order. J (r) and �(r)
parametrize the exchange coupling and induced s-wave su-
perconductivity.

Local nonmagnetic impurities are included adding a poten-
tial scattering term of the form

Himp = w
∑

s

c†
n,scn,s, (6)

where Himp defines the impurity Hamiltonian at site n with
an on-site potential w. The full Hamiltonian of the defective
system takes the form

H = H0 + Himp. (7)

As noted above, the moiré profile in our effective model
arises from the combination of modulated exchange coupling
and s-wave superconductivity [71]. The interplay between the
exchange field and the superconducting order, as two compet-
ing orders, results in an opposite modulated superconductivity
and therefore exhibits a modulated moiré pattern in the whole
platform. We account for this by defining a potential in real
space with the functional form of

f (r) = c0 + c1

3∑
n=1

cos(Rnq · r), (8)

where q is the moiré superlattice wave vector, Rn is the ro-
tation matrix which conserves C3 symmetry, and c0, c1 are
chosen so that f (r) ∈ (0, 1). The spatial profiles J (r) and
�(r) are written in terms of the previous spatial dependence
as

J (r) = J0 + χδJ f (r),

�(r) = �0 + χδ�[1 − f (r)]. (9)
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J0 and �0 control the average magnitude of the modulated
exchange and superconducting profiles, whereas δJ and δ�

control the amplitude of the moiré modulation, respectively.
We introduce χ ∈ (0, 1) as a parameter which allows us to
adiabatically switch between a uniform or moiré system, and
here it is taken to be 1. As noted above, the relative signs of
f (r) in J (r) and �(r) are taken so that when the exchange is
maximum, the local superconducting order is minimum. We
now elaborate on the mechanism that yields those two pa-
rameters as the dominating modulations. The stacking heavily
influences the value of the exchange, and ultimately it can
also impact its sign [72,73]. This strong modulation of the
exchange directly affects the local superconducting order, as
a finite exchange field locally quenches the s-wave pairing.
Therefore the superconducting and exchange modulations are
anticorrelated. This is the behavior directly expected from the
pair-breaking effect of the exchange field in an s-wave super-
conductor [74,75], and arises naturally from a self-consistent
treatment of the superconducting state in the presence of
the moiré modulated exchange. Experimentally, the impact
of moiré modulations in NbSe2/CrBr3 has been directly
observed by imaging the spatial dependence of the Yu-Shiba-
Rusinov bands at energies inside the gap, directly reflecting
the modulation of the exchange coupling [28]. We note that,
for the superconductor taken as NbSe2, the closest saddle
point to the Fermi energy that will have the strongest moiré
effect is located at the M point [76]. Finally, of course the
moiré can also influence the other parameters, but their effect
is expected to be be substantially smaller in comparison with
the exchange field.

We now briefly elaborate in the procedure to solve the
previous Hamiltonian. We take as starting point the effective
Hamiltonian for a periodic moiré supercell, that takes the form

H =
∑

�
α,β

i, j,s,s′c
†
i,α,sc j,β,s′ +

∑
(�αc†

i,α,↑c†
i,α,↓ + H.c.),

(10)
where c†

i,α,s denotes the creation operator at unit cell i,

site α, and spin s, and �
α,β

i, j,s,s′ contains the hopping, spin-
orbit coupling, and exchange proximity effects. The previous
Hamiltonian, periodic in the supercell, can be diagonalized by
defining the Bloch operators

c j,α,s =
∑

k

eik·Rj ck,α,s, (11)

leading to the Hamiltonian in momentum space

H =
∑

�
α,β

s,s′ (k)c†
k,α,sck,β,s′ +

∑
(�αc†

k,α,↑c†
−k,α,↓ + H.c.),

(12)
where �

α,β

s,s′ (k) is the Fourier transform in the unit cell

indexes i, j of the matrices �
α,β

i, j,s,s′ . To diagonalize the
previous Hamiltonian, we define new fermionic operators
c†

k,s ≡ (c†
k,1,s, . . . , c†

k,n,s) and 

†
k = (c†

k,↑, c†
k,↓, c−k,↓, c−k,↑).

The Hamiltonian in this basis can be written as

H = 1

2

∑



†
kHBdG
k, (13)

where the Bogoliubov–de Gennes (BdG) Hamiltonian HBdG

is diagonalized in terms of the new operators, leading to a

diagonal form

H = 1

2

∑
εk,α


†
k,α
k,α, (14)

where εk,α are the BdG eigenvalues and 

†
k,α the BdG

eigenstates.
In practice, the calculation of the electronic structure for a

moiré supercell requires diagonalizing a 4n × 4n matrix, with
n the number of sites per supercell. To compute the electronic
structure in a ribbon geometry, an analogous procedure to
the one outlined above is carried out for the supercell of the
nanoribbon, that contains several moiré unit cells. Finally, to
compute surface spectral functions, the embedding formalism
described later in the paper is directly applied to the matrices
defined by the BdG Hamiltonian.

It is instructive to first look at the electronic structure and
topological character of the uniform system of Eq. (1) when
the moiré potential is switched off. For the Hamiltonian pa-
rameters we choose the following setup: J0 = 2�0, λ = 2�0,
and the chemical potential set to μ = 3t . In the uniform limit,
for a supercell of size 9 × 9 as shown in Fig. 1(d), the system
shows a finite gap of topological character, where the energy
is measured in terms of the topological gap of the uniform
system �T

0 . This topological superconducting gap is obtained
by taking appropriate ratios of the exchange field, Rashba
spin-orbit coupling, superconducting order, and chemical po-
tential, and features a topological gap with Chern number
C = 2 [26].

Keeping the same average values of the exchange, su-
perconductivity, Rashba spin-orbit coupling, and chemical
potential, we now move on to the moiré system, switch-
ing on the exchange and superconducting modulation δJ and
δ�, which are set to δJ = 2J0, δ� = 1.4�0. The electronic
structure of the modulated system is shown in Fig. 1(e), and
features a topological gap with Chern number C = 2, where
the energy is measured in terms of the topological gap of the
moiré system �T . We note that there is not a simple analytic
relation between both gaps, and in our calculations we explic-
itly compute both. Phenomenologically, in the regime we will
target we find that the moiré modulation slightly decreases
the topological gap, in the worst-case scenario by up to a
factor three in comparison with the uniform case. In this last
moiré superconductor, we now consider the impact of a single
strong nonmagnetic impurity per moiré unit cell with w = 2t .
The electronic structure of the moiré modulated system with a
single impurity is shown in Fig. 1(f). It is clearly observed that
the gap gets drastically reduced in comparison with the moiré
pristine limit of Fig. 1(e). The dramatic impact of the local
impurity is a consequence of the unconventional nature of the
topological superconducting gap of the moiré heterostructure.
While this feature also appears in generic artificial topological
superconductors [43–49], the existence of the moiré pattern
gives rise to a complex interplay between the local impurity
and the moiré length as we address in the next sections.

III. STRONG IMPURITIES IN TOPOLOGICAL
MOIRÉ SUPERCONDUCTORS

We now examine in detail the case of a strong-impurity
potential. Strong impurities in the effective model are
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FIG. 2. (a) Gap as a function of impurity location in the strong-
impurity regime w = 2t . Panels (b), (c), and (d) show the electronic
structure for three impurity locations, showing that halfway between
exchange maxima, the gap is minimal (b). In comparison, close to
the exchange maxima, the gap remains nearly unchanged [(c), (d)].
We used J0 = 2�0, λ = 2�0, μ = 3t , δJ = 2J0, δ� = 1.4�0.

associated with chemical impurities [41,77–79] and vacancies
[80] in the dichalcogenide superconductor, and give rise to a
strong scattering center. In particular, for the dichalcogenide
superconductor, chemical impurities such as oxygen [42] will
give rise to a strong disruption of the electronic structure.
Substitutional oxygen impurities, in particular, are expected to
create a strong local scattering, comparable to and even higher
than the hopping of the low-energy Wannier orbitals [78]. In
contrast, atomic replacements such as substitutional S atoms
in NbSe2 and TaSe2 would give rise to weaker scattering
centers [70,81].

It is worth noting that, since the scattering potential
induced by the previous impurities is nonmagnetic, the emer-
gence of in-gap modes stems from the nontrivial nature of the
superconducting gap in the moiré system [43]. In particular,
nonmagnetic impurities in conventional s-wave superconduc-
tors are well known to not give rise to in-gap states as
given by Anderson’s theorem [82–85]. In contrast, topological
superconductors with nonzero Chern number feature in-gap
modes in the presence of nonmagnetic impurities, rendering
artificial topological superconductors vulnerable to disorder
[86–89]. This weakness to disorder stems from the fact that
nonmagnetic scattering has a pair-breaking effect [43,83] in
unconventional superconductors due to the nontrivial sign
structure of the superconducting order [84].

It is first instructive to examine the gap of the moiré system
as a function of the location of a strong impurity (w = 2t)
in a 9 × 9 supercell, as shown in Fig. 2(a). We focus here
on the case with a periodic array of impurities in the system
following the moiré pattern, with a single impurity per moiré

unit cell, and we keep the same parameter values that we have
introduced in Sec. II. Figure 2(a) shows the full gap of the
moiré pattern, for a single impurity per moiré unit cell located
at each potential location. The gap is measured in units of
the topological gap for the topological pristine system �T .
In particular, it is observed that the location of the impurity
strongly impacts the gap of the system [90]. The resulting
gap of the defective system can range from the pristine value,
observed for impurities at the exchange maximum, to nearly
zero, observed for impurities away from the exchange max-
imum [Fig. 2(a)]. The previous phenomenology is directly
reflected in the electronic band structure for different locations
of the impurity [Figs. 2(b)–2(d)]. The electronic structure for
an impurity halfway between two exchange maxima is shown
in Fig. 2(b), which in particular shows a dramatically smaller
gap than the pristine system. In stark contrast, for two loca-
tions of the impurities close to the exchange maxima as shown
in Figs. 2(c) and 2(d), the gap of the system remains nearly the
same as in the pristine system. In particular, the system retains
its topologically nontrivial Chern number C = 2 with a nearly
identical gap for the central impurities shown in Figs. 2(c) and
2(d), whereas the gap is drastically reduced for the location of
Fig. 2(b).

The previous phenomenology highlights that the location
of the nonmagnetic impurity in the moiré pattern has a critical
impact on the superconducting gap of the system. Such strong
spatial dependence is fully absent both in nontopological
moiré superconductors due to Anderson’s theorem [82] and
in non-moiré artificial topological superconductors due to the
equivalence of the sites.

It is interesting noting that in a moiré superconductor there
is a large mismatch between the length scales of the Bloch
states and the impurity, in comparison with a uniform su-
perconductor. While there is certainly a mismatch of length
scales, our results show that the effect of impurities is com-
parable both in the absence and presence of a moiré. From
the low-energy point of view, a local impurity in real space
can be considered like a delta function potential, which cre-
ates scattering between all wave vectors in reciprocal space.
In the presence of a moiré, the minibands span a small portion
of the original Brillouin zone of the material. Nonetheless,
due to the mixing between all wave vectors driven by a local
impurity, its effect in the minibands is comparable.

IV. WEAK IMPURITIES IN TOPOLOGICAL
MOIRÉ SUPERCONDUCTORS

In this section, we examine the electronic structure of the
moiré modulated model when a periodic array of weak impu-
rities is distributed in the unit cell, with a single impurity per
moiré unit cell. In particular, we examine the evolution of the
gap as a function of the impurity location, which highlights
the fine interplay between the moiré length and atomic defect.
It is worth noting that examining the gap for weak impurities
allows tracking small changes in the gap as a function of the
impurity location, guaranteeing that the system remains in a
topological phase. As noted above, weak impurities would
correspond to chalcogen substitution, such as S in NbSe2,
leading to a local potential smaller than the bandwidth of the
low-energy states.
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FIG. 3. (a) Gap as a function of impurity location in the weak-
impurity regime w = t/2. Panels (b), (c), and (d) show the electronic
structure for three impurity locations, showing that halfway between
exchange maxima, the gap is minimal (b). In contrast, close to the
exchange maxima, the gap remains nearly unchanged [(c), (d)]. We
used J0 = 2�0, λ = 2�0, μ = 3t , δJ = 2J0, δ� = 1.4�0.

We first look at the map of the spectral gap as a function
of impurity location. We take a moiré unit cell with the size
of 9 × 9, as shown in Fig. 3(a). It is observed that similarly
to the strong-impurity regime of Sec. III, the gap remains
maximal close to the maximum of the exchange profile, be-
coming smaller in the other locations of the moiré unit cell. In
comparison with the strong-impurity limit, the weak impurity
allows keeping a sizable topological gap even for the most
detrimental locations away from the exchange maxima. The
previous phenomenology can also be observed by examining
the electronic structure for different locations of the impurity,
shown in Figs. 3(b)–3(d). In particular, it is observed that
the electronic structure remains similar for the three impurity
locations, apart from small rearrangements that account for
the reduced topological gap.

The previous spatial dependence for different impurity lo-
cations can be analyzed as a function of the moiré length. The
gap for a single impurity per moiré unit cell, computed for
different moiré lengths, is shown in Fig. 4, where we consider
11 × 11 [Fig. 4(a)], 13 × 13 [Fig. 4(b)], 15 × 15 [Fig. 4(c)],
and 17 × 17 [Fig. 4(d)]. In particular, we observe that close
to the exchange maxima, the local impurity has a relatively
weak impact, with the exception of the exact center. Away
from the exchange maxima, the impurity shows some of the
most sizable effects, having also a complex dependence with
the moiré length. This complex dependence naturally emerges
from the interplay between the moiré length and the spatial
dependence of the in-gap mode, and is intrinsic to any non-
magnetic impurity in a moiré topological superconductor. In
particular, the interference between the in-gap state and the
moiré pattern will be further addressed in Sec. VI, where we

FIG. 4. Topological gap as a function of the location of an im-
purity in a moiré unit cell, for (a) 11 × 11, (b) 13 × 13, (c) 15 × 15,
(d) 17 × 17 supercells. A direct correlation is observed between the
location of the impurity in the unit cell and the moiré pattern, leading
to drastic changes in the energy gap. We used J0 = 2�0, λ = 2�0,
μ = 3t , δJ = 2J0, δ� = 1.4�0.

will consider a single impurity in an otherwise pristine moiré
system.

In this section, we have focused on addressing the fine
interplay between a periodic array of impurities and the moiré
pattern. In particular, one observes a dramatic dependence
of the spectral gap on the location of the impurity, directly
correlated with the underlying moiré pattern. In contrast with
the strong-impurity case, weak impurities will keep the topo-
logical gap unchanged, and in particular, all the defective
superconducting states of this section show the pristine Chern
number C = 2.

V. IMPACT OF THE MOIRÉ AMPLITUDE

In a moiré superconductor, the moiré pattern is charac-
terized by the amplitude of the modulation and its average
value. In this section, we analyze in detail the effect of moiré
amplitude, allowing us to interpolate from the uniform to
the modulated limit. In particular, in the uniform limit, the
location of the impurity in the unit cell must lead to identical
gaps. In contrast, as the moiré pattern is switched on, the
gap in the presence of an impurity will develop a strong
dependence on its location. To track the evolution with the
moiré pattern, we keep the average values of the exchange and
superconductivity constant, as well as keeping constant ratios
of their modulated amplitude and varying the χ parameter,
defined in Eq. (9), between 0 and 1, which allows interpolating
between the uniform and moiré limit.

The topological gap for different locations of the impurity
and moiré unit cells as a function of the moiré amplitude is
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FIG. 5. Normalized topological gap as a function of moiré am-
plitude [Eq. (15)] for weak [(a), (c)] and strong [(b), (d)] impurity,
for a 9 × 9 [(a), (b)] and a 11 × 11 [(c), (d)] moiré. It is observed
that in the absence of the moiré the location of the impurities does not
impact the magnitude of the gap, whereas with moiré, the topological
gap shows a strong dependence on the size and location of the
impurity. We used J0 = 2�0, λ = 2�0, μ = 3t .

shown in Fig. 5. We consider two different moiré unit cells,
a 9 × 9 moiré unit cell [Figs. 5(a) and 5(b)] and a 11 × 11
moiré unit cell [Figs. 5(c) and 5(d)], and two strengths of the
impurity w = t/2 [Figs. 5(a) and 5(c)] and w = 2t [Figs. 5(b)
and 5(d)]. For different locations of the impurities, we com-
pute the gap of the moiré system normalized to the gap of a
uniform system with impurities,

�(χ ) = G(χ,w)

G(χ = 0,w)
, (15)

where G is the gap of the system. The ratio �(χ ) allows
us to directly observe the dependence on the location of the
impurity for different moiré modulations.

We now focus on the three locations of the impurities
shown in Fig. 5, one close to the exchange maximum of the
moiré (red), halfway between two exchange maxima (blue),
and close to the center formed by three exchange maxima
(green). In the absence of a moiré modulation, the three lo-
cations lead to the same topological gap, while as the moiré
χ is turned on, the gap shows a dependence on the location.
In particular, we observe that in most of the instances, the
biggest gap is obtained for an impurity close to the exchange
maxima (Fig. 5), consistent with the results obtained in Fig. 4.
For the locations away from the exchange maxima, the gap
is maximized for different locations depending on the moiré
length, as observed by comparing Fig. 5(a) with Fig. 5(c),
and Fig. 5(b) with Fig. 5(d). This phenomenology is also
consistent with the moiré dependence observed in Fig. 4. It
is worth noting that, as long as the gap remains open, the

Chern number will remain the same all the time. It is finally
interesting to note that, for a strong impurity, the location in
the moiré unit cell leads to substantially bigger changes in the
gap than a weak impurity. This phenomenology is consistent
with the results observed in Figs. 2 and 3.

The previous findings highlight that, in the presence of a
moiré modulation, the location of an impurity leads to dif-
ferent gaps, especially in the strong-coupling limit. Beyond
the cases shown in Fig. 4, we note that even at the center
of the unit cell, strong impurities can give rise to a strong
impact in the topological phase and ultimately lead to a topo-
logical phase transition. For other locations, the topological
gap shows a complex interplay between the location of the
impurity and the moiré length. These results consider a single
impurity per moiré unit cell, leading to strong overlap and
interference between each in-gap mode.

We finally comment on what would be the impact if
disorder were included in every single site. In such limit,
as the strength of the disorder increases, the value of the
topological gap will decrease. For weak disorder, the gap
will remain finite, yet smaller than the non-disordered case.
However, for strong enough uniform disorder, the system
will effectively become gapless due to the pair-breaking ef-
fect of the impurities. This phenomenology is analogous
to other unconventional non-s-wave superconductors, where
nonmagnetic disorder quenches the underlying topological
superconducting gap.

VI. SINGLE-IMPURITY LIMIT

In the sections above, we have focused on considering a
periodic array of impurities in the moiré system. Here we will
focus on a complementary limit, namely the case of a single
impurity on an otherwise pristine moiré system. In this case,
the moiré system with a single impurity will lack any type
of translational symmetry, and therefore an electronic band
structure associated with a moiré Bloch theorem cannot be
computed. In order to study the single-impurity limit, we will
use the Green’s function embedding method, which allows us
to compute exactly single defects in otherwise infinite pristine
systems [91,92].

The embedding method relies on writing down the Dyson
equation for the defective system, that takes the form

GV (ω) = [ω − HV − �(ω) + i0+]−1, (16)

where GV (ω) is the Green’s function of the defective model,
HV the Hamiltonian of the defective unit cell, and �(ω) the
self-energy induced by the rest of the pristine system. Solving
the previous equation requires deriving the self-energy of the
pristine system �(ω). The self-energy �(ω) can be obtained
by writing down the Dyson equation for the pristine model

G0(ω) = [ω − H0 − �(ω) + i0+]−1, (17)

with H0 the Hamiltonian of the pristine unit cell. We can now
take the Bloch representation of the pristine unit cell Green’s
function

G0(ω) = 1

(2π )2

∫
[ω − Hk + i0+]−1d2k, (18)

where Hk is the Bloch Hamiltonian. By obtaining G0 from
Eq. (18), the self-energy �(ω) can be obtained from Eq. (17),
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FIG. 6. Density of states [(a)–(d)] and local density of states [(e)–(h)] at the energy of the in-gap state εV for a single impurity in an
otherwise pristine system. Panels (a) and (e) correspond to the uniform case, whereas panels (b), (c), (d), (f), (g), and (h) to different locations
of a single impurity [insets in (f), (g), (h)] for the moiré case. Both in the absence (a) and presence [(b), (c), (d)] of a moiré, a strong nonmagnetic
impurity gives rise to an in-gap state. It is observed that in the presence of the moiré pattern, the in-gap state leads to a strong interference with
moiré length, yielding a spatial dependence with respect to the location of the impurity [(f), (g), (h)]. We used J0 = 2�0, λ = 2�0, μ = 3t ,
δJ = 2J0, δ� = 1.4�0, and moiré 5 × 5.

which in turn allows us to obtain the Green’s function of the
defective unit cell from Eq. (16).

Using the previous methodology, we can extract both the
total and local densities of states for a single defect in the
moiré topological superconductor. The local density of states
ρ(x, ω) and full density of states A(ω) are obtained as

ρ(x, ω) = − 1

π

∑
s,τ

〈x, s, τ |Im[GV (ω)]|x, s, τ 〉 (19)

and

ρ(ω) = − 1

π
Tr{Im[GV (ω)]}, (20)

where s runs over spin and τ over electron-hole sector. With
the previous methodology, we now compute the density of
states with a single impurity for the topological superconduc-
tor without the moiré pattern (Fig. 6).

It is first instructive to consider the impurity in the uniform
topological superconductor, shown in Figs. 6(a) and 6(e).
In particular, it is observed that the existence of a strong
nonmagnetic impurity (w = 2t) gives rise to an in-gap state
[Fig. 6(a)], and that the spatial profile of such in-gap mode
is localized around the impurity [Fig. 6(e)] and features in-
tensity oscillations in space. These results in the uniform
limit directly suggest that the moiré pattern will give rise to
a rich interference pattern with the in-gap state, ultimately
responsible for the strong dependence of the location of the
impurity observed in previous sections.

We now move on to consider the case with a finite moiré
pattern and single impurity, whose density of states is shown

in Figs. 6(b)–6(d) and the local density of states is shown
in Figs. 6(f)–6(h), for a different location of the impurity
with respect to the center of the moiré pattern, shown by
the insets in (f)–(h). In particular, we consider three different
locations of the impurities. As shown in Figs. 6(b)–6(d) for
all the locations of the impurities, we observe in-gap modes
at energies εV . When computing the local density of states
associated with those in-gap modes εV , shown in Figs. 6(f)–
6(h), it is observed that the interference pattern between the
bound state and the moiré pattern leads to a strong dependence
depending on the location of the impurity [93]. Furthermore,
it observed that the in-gap mode spans over several moiré unit
cells, highlighting that for the periodic array considered in the
sections above the in-gap modes between different unit cells
have a strong overlap.

The previous results highlight that impurities in the moiré
pattern give rise to in-gap states whose wave functions can
potentially span over several unit cells, and lead to strong
interference effects with the moiré modulation. The previous
phenomenology accounts for the strong dependence of the
topological gap as a function of the impurity location observed
in Sec. IV and Sec. III.

VII. EDGE STATES

Finally, we analyze the emergence of edge states associated
with the moiré topological superconducting state in a ribbon
with the structure, inset in Figs. 7(d) and 7(h), displaying a
schematic of the boundary conditions, which is periodic along
the x direction and finite along the y direction.
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FIG. 7. Moire topological superconducting states of a pristine system [(a), (b), (c), (d)] and of a defective system [(e), (f), (g), (h)]. Panels
(a) and (e) show the electronic structure of a ribbon infinite in the x direction and finite in the y direction. Panels (b) and (f) show the
momentum-resolved edge spectral function, and panels (c) and (g) the momentum-resolved bulk spectral function. Panels (d) and (h) show
the local density of states at ω = 0, highlighting the emergence of topological zero modes at the top and bottom edges following the moiré
pattern. The structure insets in (d) and (h) show a schematic of the boundary conditions used. We used J0 = 2�0, λ = 2�0, μ = 3t , δJ = 2J0,
δ� = 1.4�0, and moiré 5 × 5.

In particular, we will consider both pristine and defective
cases, and show that in both instances, the edge modes reflect
the underlying moiré pattern. We first take a pristine system
displaying the moiré topological superconducting state, as
shown in Figs. 7(a)–7(d). The electronic structure of a ribbon,
infinite in the x direction, is shown in Fig. 7(a), display-
ing both the existence of a gap in the bulk and propagating
edge modes. Those two features are more clearly seen by
computing the edge [Fig. 7(b)] and bulk [Fig. 7(c)] spec-
tral functions as shown in Figs. 7(b) and 7(c). A(k, ω) is
the momentum-resolved spectral function in the surface and
bulk of a semi-infinite ribbon, with k the momentum in the
translationally invariant direction of the ribbon. It is computed
from the momentum-resolved Green’s function as A(k, ω) =
− 1

π
Tr{Im[G(k, ω)]} where G(k, ω) is computed with a renor-

malization algorithm [94]. In particular, it is observed that the
edge hosts two co-propagating modes [Fig. 7(b)], consistent
with the electronic structure of the moiré ribbon of Fig. 7(a).
Beyond the existence of edge modes, the moiré pattern gives
rise to a unique feature in real space, namely the modulation
of the edge modes following the moiré pattern. This can be
clearly seen in Fig. 7(d), where it is observed that the zero-
energy modes directly reflect the underlying moiré pattern in
the Hamiltonian.

We now move on to consider the defective system. In
particular, we focus on a moiré superconductor with a single
strong impurity per moiré unit cell. We emphasize that, de-
pending on the location of the impurity and the moiré length,
the topological phase can remain the same, become gapless,
or a topological phase transition can take place. For the sake

of concreteness, here we take a location of an impurity that
strongly disrupts the original topological state, giving rise to
a topological phase transition to a phase with Chern number
C = −1. The electronic structure of the defective ribbon is
shown in Fig. 7(e), where we observe the existence of a
small bulk gap and edge modes. Those modes can be more
clearly observed by computing the edge [Fig. 7(f)] and bulk
[Fig. 7(g)] spectral function as shown in Figs. 7(f) and 7(g).
In particular, the edge spectral function now displays a single
edge mode as shown in Fig. 7(f), as expected from the bulk
Chern number C = −1. It is also observed that the topological
edge states avoid the location of the impurity, marked with a
green star in Fig. 7(f), as expected from the strong-impurity
limit. The edge modes reflect the moiré periodicity again as
shown in Fig. 7(h), leading to the imprinting of the moiré
pattern in the topological edge modes.

The defective case considered above focuses on a periodic
array of strong impurities. In real experiments, impurities can
appear either randomly distributed or can be engineered in
arrays using atomic manipulation. The first case would cor-
respond to chemical impurities intrinsically appearing during
synthesis of the material. In this situation, depending on the
density of impurities and their respective location, the original
moiré topological phase will be disrupted, either by decreas-
ing its topological gap or ultimately by leading to a gapless
state due to the proliferation of in-gap modes. In the situation
in which a periodic array of impurities is engineered by means
of atomic manipulation [95–105], specific arrangements as
those considered in Figs. 7(e)–7(h) can give rise to a topo-
logical state with different Chern number. We have verified

094010-8



IMPURITY-INDUCED EXCITATIONS IN A TOPOLOGICAL … PHYSICAL REVIEW MATERIALS 6, 094010 (2022)

that solely by changing the location in which the impurity is
deposited in the moiré unit cell, the resulting electronic struc-
ture could result in topological phases with different Chern
number, trivial phases, or even gapless phases. The previous
results highlight that atomic manipulation on top of moiré
topological superconductors provides a new potential degree
of freedom to engineer tunable topological superconductors
[106], by exploiting the interplay between the moiré length
and local impurities [50–53].

We finally note that this analysis focuses on a mini-
mal model that accounts for the physics of van der Waals
ferromagnet/superconductor heterostructures [26–28]. From
the quantum chemistry point of view, our model does not ac-
count for all the microscopic parameters, but rather focuses on
an effective model capturing the physics of this family of het-
erostructures. In order to provide a microscopically accurate
description, calculations would need to be carried out with
Wannierization procedures based on first-principles density
functional methods [107]. In particular, these methodologies
would account for the modulations in all the Hamiltonian pa-
rameters, including spin-orbit coupling, hoppings, and on-site
energies. Furthermore, relaxation effects would be directly
captured with these methodologies [107]. We note, however,
that for the current system, first-principles density functional
theory methodologies are beyond the computational capa-
bilities, in particular in the presence of spin-orbit coupling,
due to the large number of atoms in the unit cell for such a
moiré structure. As a results, our discussions focus on a model
Hamiltonian, yet without aiming to reach chemical accuracy
for NbSe2/CrBr3 heterostructures.

VIII. CONCLUSION

To summarize, here we addressed the interplay be-
tween local impurities and moiré effects in topological
moiré superconductors, as those realized in CrBr3/NbSe2

heterostructures. In particular, our results highlight that, in
contrast with conventional artificial topological superconduc-
tors, the impact of impurities on a moiré system can give rise
to radically different properties depending on their location
in the moiré pattern. For strong impurities, we observed that
solely depending on the location of the impurity in the moiré
pattern, the electronic structure can show a topological gap
similar to that in the pristine limit, a nearly gapless state, or a
topological phase transition to a topologically different state.
For weak impurities, we showed that the topological super-
conducting gap shows a dependence on both the location of
the impurity and the moiré length, yet maintaining its topolog-
ical nature for all locations. Furthermore, using an embedding
formalism we addressed the impact of single nonmagnetic
impurities in otherwise infinite pristine moiré systems. In par-
ticular, the absence of interference between impurities allows
us to clearly identify that the moiré modulation drastically
impacts the spatial profile of the in-gap mode created by the
nonmagnetic scatterer. Ultimately, we showed that the moiré
modulation further emerges in the topological edge modes
of the topological superconductor, in both the pristine moiré
limit and the defective limit. Our results highlight the rich
interplay between local impurities and topological moiré su-
perconductors, and put forward engineered atomic impurities
as a powerful and versatile strategy to engineer artificial van
der Waals moiré topological superconductors.
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Ganguli, O. J. Silveira, S. Głodzik, A. S. Foster, T. Ojanen,
and P. Liljeroth, Topological superconductivity in a van der
waals heterostructure, Nature (London) 588, 424 (2020).

[27] S. Kezilebieke, O. J. Silveira, Md N. Huda, V. Vaňo, M. Aapro,
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