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Two-dimensional transition metal dichalcogenides (TMDs) can adopt one of several possible structures, with
the most common being the trigonal prismatic and octahedral symmetry phases. Since the structure determines
the electronic properties, being able to predict phase preferences of TMDs from just the knowledge of the
constituent atoms is highly desired, but has remained a long-standing problem. In this study, we applied
high-throughput quantum mechanical computations with machine learning algorithms to solve this old problem.
Our analysis provides insights into determining physiochemical factors that dictate the phase preference of
a TMD, identifying and going beyond the attributes considered by earlier researchers in predicting crystal
structures. A knowledge of these underlying physiochemical factors not only helps us to rationalize, but also to
accurately predict structural preferences. We show that machine learning algorithms are powerful tools that can
be used not only to find new materials with targeted properties, but also to find connections between elemental
attributes and the target property/properties that were not previously obvious.
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I. INTRODUCTION

Layered transition metal dichalcogenides (TMDs), given
by the formula MX2 (M = transition metal; X = chalcogen),
represent a chemically well-defined family of materials. As
bulk crystals, TMDs are formed from weakly-bonded van der
Waals stacks of MX2 layers, and were studied extensively in
the 1960s–1980s [1–4]. Interest in TMDs was revived nearly
two decades ago when it was realized that bulk TMD crystals
can be separated into two-dimensional (2D) monolayers and
few-layer thick crystals [5]. Hence, a considerable experi-
mental effort has been dedicated to their synthesis [6–12].
The diverse electronic, magnetic and topological properties
of TMDs [13–17] makes them attractive for a number of
technologies [18–28]. With the recent creation of novel Janus
TMD crystals, MXY, in 2017 (X and Y are two different
chalcogens on two faces) [29], it has become clear that the
TMD family is growing larger, along with the list of their
properties, which now includes ferroelasticity and ferroelec-
tricity [29–31].

Unlike 2D layered materials such as graphene and hexago-
nal boron nitride, TMDs can exist in multiple crystal phases.
Both traditional (MX2) and Janus (MXY) TMDs most com-
monly adopt either a trigonal prismatic phase (1H phase) or
an octahedral symmetry phase (1T phase). As the structure
determines their properties, knowledge of factors that deter-
mine phase-preferences of TMDs is very important and has
long been debated in the literature [3,4]. These earlier works,
using chemical and physical considerations, showed how the
structural preferences are related to different factors, such as:
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(i) the Pauling’s cationic to anionic radius ratio [32], with the
ratio obtained by combining the structural constraints with
the the fractional ionicity of bonds within a TMD layer [3],
and (ii) the d electron counts of the transition metals [4]. All
of these earlier studies involved traditional TMDs that were
known at the time of the respective studies. Due to the rapid
materials discoveries in recent years, which include discover-
ies of novel TMDs, it is important to develop phase-prediction
methods that can predict preferred structures for a much larger
chemical phase-space and are generalizable to even different
classes of materials, while still having roots in physical and
chemical intuition.

In this paper, we created a generalizable framework for
predicting phase preferences of TMDs by combining high-
throughput quantum mechanical computations with machine
learning (ML) algorithms (see detailed discussion within the
Supplemental Material [33]). This powerful combination can
help to explore the materials phase space more economically,
and has been successfully deployed in several studies [34–40].
We also went beyond the known TMDs, creating novel com-
binations of transition elements and chalcogen atoms, thereby
expanding the chemical phase space over which our analysis
is valid. Density functional theory (DFT) calculations were
used to generate a database of formation energies (�E f ) for
different TMDs. Machine learning models were then trained
and tested for their ability to predict chemical stability and
phase preference of the TMDs. We quantitatively show that
the most important factors determining the formation energy,
as well as the crystal structure of a TMD, are the relative el-
emental dipole polarizabilities, electronegativities, ionization
energies, and commonly exhibited valencies of the elements
comprising the TMD structure. Two additional attributes that
play a role (albeit to a lesser extent) are the electron-affinities
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FIG. 1. Schematic representation of (a) 1H and (b) 1T phase, traditional and Janus TMD monolayers. The Janus structure consists of
two different chalcogens (X and Y) on two faces of a TMD. (c) Periodic table highlighting the transition elements and the chalcogen atoms
considered for the combinatorial study. (d) Flow chart of systematic combinatorial search of traditional and Janus monolayers. (e) Pie charts
showing the % distributions of the most stable magnetic orderings—ferromagnetic (FM), antiferromagnetic (AFM), and nonmagnetic (NM)—
for 1H phase and 1T phase TMDs.

and heat of gas-phase formation. We also found that swapping
the dipole polarizabilities with covalent radii, and vice versa,
in our analysis yields nearly equivalent ML models. This is
not surprising because an atom’s dipole polarizability is a
size-dependent attribute and is a measure of the covalency of
the bonds that it forms. The relative radii, degree of ionicity
(as given by the difference of electronegativities) and rela-
tive valencies (related to d-electron counts), are expected to
contribute to the relative stability of the 1H and 1T phases.
These dependencies are in accordance with the papers by
Gamble [3] and by Kertesz et al. [4] who used chemical and
physical arguments to rationalize phase preferences, while
the other features represent previously unknown contributors.
Hence, by employing ML algorithms to find new connections
between relative elemental attributes of the constituents and
the target property/properties of the resulting compounds, we
are able to both rationalize and predict chemical stabilities and
structural preferences of the TMDs.

II. TECHNICAL DETAILS

A. High-throughput first principles calculations

In this paper, we used ML algorithms to identify relation-
ships between phase-stability of TMDs and their respective
chemistries in a high-dimensional space of independent vari-
ables. Since the accuracy of datasets as well as their sizes
dictate the accuracy of ML models trained on these datasets,
it was important to go beyond known TMDs. Hence, we

performed high-throughput first principles calculations to
generate both conventional and Janus TMDs [Figs. 1(a) and
1(b)] from different combinatorial possibilities of chalcogens
(X, Y = S, Se, Te) and transition metal (TM) atoms belong-
ing to the 3d-, 4d- and 5d series [highlighted in Fig. 1(c)].
There were a total of 360 chemically- and structurally-distinct
crystals (i.e., 1H phase and 1T phase structures) formed from
30 transition elements (Sc-Zn, Y-Cd, and La-Hg), and three
chalcogen atoms. Since these structures can be magnetic, each
TMD was further allowed to adopt ferromagnetic (FM), anti-
ferromagnetic (AFM), and nonmagnetic (NM) configurations,
yielding a total of 1080 candidate structures [see Fig. 1(d)].
Our spin-resolved DFT calculations were performed using
the Vienna ab initio simulations package (VASP) [41,42].
The Perdew, Burke, and Ernzerhof (PBE) generalized gradient
approximation [43] was used to account for the exchange-
correlation effects. In order to minimize interactions between
the periodic images of the monolayers, a large vacuum of
20 Å was used in the direction normal to the 2D layers. In
order to determine if the TMDs will be magnetic, we calcu-
lated the energy differences (per formula unit) between the
nonmagnetic and magnetic structures, where the latter can
have either FM or AFM alignments of the moments. For
the FM alignment, we performed a spin resolved calculation,
wherein the moments on the atoms within a unitcell were
initialized to non-zero values. This generated a ferromagnetic
structure since the periodic boundary conditions ensured that
the moments (if nonzero) in the cell and its images were all
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aligned. To create magnetic structures with AFM alignment
of moments, we doubled the size of the unit cell in one
of the lateral directions, and initialized the moments on the
magnetic species in the neighboring cells so as to align them
antiferromagnetically [44,45]. All structures were optimized
using an energy cutoff of 550 eV and a �-centered k-point
mesh [46], which was equivalent to a 21×21×1 grid for a
unit cell, until the force on each of the atoms was less than
1 meV/Å and the total energy values converged to better than
10−7 eV.

Formation energies for different TMD monolayers were
calculated using

�E f = EMXY − (EM + EX + EY ). (1)

Here, EMXY is the total energy of the monolayer. EM , EX ,
and EY are the total energies for the the transition metals (M)
and the chalcogens (X, Y), respectively, in their most stable
bulk form. Formation energy is an indicator of a material’s
chemical stability, although it does not account for possible
mechanical instabilities. For the latter, one needs to deter-
mine dynamical stability by calculating the phonon spectra,
and thermal stability using ab initio molecular dynamics at
different temperatures. It is also worth mentioning that some
of the materials that may display mechanical instabilities as
freestanding monolayers can possibly be stabilized on appro-
priate substrates. However, determining mechanical stability
and/or conditions under which a monolayer can be stabilized
is beyond the scope of present paper.

B. ML-based materials property prediction

1. Primary descriptor/feature dataset

Choosing an optimal set of independent
descriptors/features is of utmost importance in building
effective machine learning models. As a first step, our
goal was to find easily accessible descriptors that can
uniquely describe the system and provide a meaningful
mapping to the target property. To achieve this goal, we
initially chose thirteen elemental properties of the atoms that
form the TMD monolayers. More specifically, the primary
atomic and bulk elemental descriptors considered here are:
heat of gas-phase formation (HF), metallic radius (MR),
specific heat (SP), covalent radius (CR), electron affinity
(EA), atomic weight (AW), electronegativity (EN), heat of
fusion (HS), atomic radius (AR), dipole polarizability (DP),
ionization energy (IE), valency (VS), and Shannon ionic
radius (IR) of the elemental species forming the TMDs
[47,48]. Since we studied compounds in this paper, we
actually needed compound descriptors/features that could
describe a TMD with a particular combination of elements.
Hence, instead of the aforementioned elemental attributes in
their unchanged forms, we considered different combinations
of the elemental descriptors to form compound descriptors.
We also refrained from using properties of TMDs themselves
(e.g., lattice constants) that one obtains only after performing
a DFT-calculation or an experiment on a TMD, which would
have defeated the purpose of using machine learning. The
compound descriptors formed from the elemental descriptors
were divided into three sets: (i) Set A, formed by finding
the ratio between the elemental attributes of the metal and

the averaged attributes of the chalcogens forming each
of the TMDs, such that a compound attribute in Set A is
given by FM/X̄ = 2FM/(FX + FY) = FM/FX̄, where FM,
FX, FY and FX̄ are the elemental attributes of atoms M,
X, Y, and the averaged attributes of the chalcogen atoms
[FX̄ = (FX + FY)/2], respectively. (ii) Set B, obtained
by finding the difference in the averaged attributes of the
chalcogen atoms and the elemental attributes of M atoms,
such that a compound attribute in this set is represented
by FX̄M = FX̄ − FM. (iii) Set C, obtained by finding the
difference of the elemental properties of the two chalcogens
involved in the formation of different TMDs, such that a
compound attribute is given by FXY = FX − FY. Sets A–C
thus contained a total of 39 compound descriptors. In order
to identify independent compound descriptors, we calculated
the Pearson correlation coefficients between the features.
Formally, the Pearson correlation coefficient (or bivariate
correlation) between two variables is obtained by finding
the covariance of the two variables and dividing it by the
product of their standard deviations. The Pearson correlation
coefficient P , when applied to the features is effectively
obtained by taking the inner product,

P (�u, �v) =
∑N

j=1[u j − ū][v j − v̄]√∑N
j=1[u j − ū]2

√∑N
j=1[v j − v̄]2

. (2)

Here, �u and �v are any two of the M descriptors, and are
N × 1-dimensional vectors, N being the total number of
materials. The mean value of the descriptor �u is given by
ū = (1/N )

∑N
j=1 u j , where u j is the jth component of �u. As

the inner product in Eq. (2) is normalized, the lower and
upper bounds of P are −1 and +1, corresponding to strong
negative and positive linear relationships between the features,
respectively. A value of P = 0 indicates that the features are
completely independent.

2. Machine learning algorithms

The down-selected features were used as inputs in super-
vised learning of formation energies. For this, we employed
two ML algorithms—random forest (RF) and Kernel ridge
regression (KRR).

Random forest algorithm. The RF algorithm was used for
two tasks: (i) regression to predict formation energies of the
TMDs and (ii) classification to predict the phase of the TMDs
[49]. RF consists of constructing a large number of individual
uncorrelated decision trees (models) that work as an ensemble
[50]. In order to ensure that the different models (decision
trees) are uncorrelated, each independently-constructed de-
cision tree randomly samples the dataset with replacement,
thereby avoiding overfitting. The final prediction is made by
aggregating, either by averaging or with a simple majority
vote. This ML method has only two parameters: (i) the num-
ber of variables in the random subset at each node and (ii) the
number of trees in the forest. Although RF is not very sensitive
to the specific values chosen for these two parameters, it is
generally desirable to optimize these parameters during the
model training stages.

Kernel ridge regression. In addition to RF regression, we
also applied KRR to verify the robustness of our predictions.
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FIG. 2. Heatmaps showing calculated formation energies (in eV per formula unit) of traditional and Janus TMD monolayers of (a) 3d-,
(b) 4d-, and (c) 5d-series elements in their most stable phase. The values printed in black (red) color correspond to the TMDs that prefer the
1H phase (1T phase). Black boxes highlight examples of TMDs that have already been synthesized in either the 1H phase or 1T phase, whereas
those in pink already exist in multilayers or in bulk, with a possibility of creating monolayers from those structures.

KRR implements the L2 regularization to prevent overfitting
of the data, and takes into account different nonlinear effects
by invoking various kinds of kernel functions. Within KRR,
the predicted target property, f ML( j), of the jth material is
expressed as f ML( j) = ∑n

i αiK(�xi, �x j ) Here, the summation
is carried out over the entire training set with n materials,
αi’s are the weights and K(�xi, �x j ) is the kernel function, rep-
resenting the Euclidean distance between the feature vectors
of the ith material from the training set and the jth material.
To predict the formation energies of TMDs, we have used the
Gaussian kernel, defined as: K(�xi, �x j ) = exp(−γ |�xi − �x j |2).
Training the KRR model involves finding the optimized val-
ues of the kernel coefficients αi, and the Gaussian width γ ,
through iterative minimization of the errors in the prediction.

III. RESULTS AND DISCUSSION

A. Monolayer TMD dataset

The flowchart depicted in Fig. 1(d) outlines our systematic
combinatorial search of different 2D TMD monolayers. Start-
ing with 1080 total structures that consisted of FM, AFM,
and NM magnetic orderings for both 1H and 1T phases of
the TMDs, we obtained the lowest energy structures from
amongst the three possible magnetic orderings. This provided
us with 180 structures within each of the two phases. These
360 structures were subsequently used to create machine
learning models (detailed discussion in the next section).
The pie chart in Fig. 1(e) shows the relative percentages of
the structures that are FM, AFM, or NM for the TMDs in the
1H and 1T phases. In both phases, most of the TMDs are

nonmagnetic, consistent with previous results for already
known TMDs [51,52]. Nevertheless, there is still a signif-
icant fraction of TMDs that adopt FM or AFM structures
and can potentially have tremendous technological impact as
2D magnets. The pie charts in Fig. 1(e), also reveal that a
larger percentage of structures in the 1H phase (as compared
to those in 1T phase) adopted either FM or AFM ordering.
The preferred magnetic orderings of each TMD in the 1H and
1T phases, along with their spin polarization energies and ex-
change energies per formula unit (f.u.) are provided within the
Supplemental Material (see Tables S1– S3) [33]. Moreover,
these results are in agreement with previous experimental and
theoretical reports [52–58].

In order to study the chemical stability of the screened
traditional and Janus TMDs, we computed the formation
energies of the relaxed structures using Eq. (1). Further com-
parison between the two phases for each of the TMDs reduces
the number of lowest energy structures to 180 (either 1H or
1T phase). Out of these 180 structures, 74 TMDs preferred
to be in the 1H phase and 106 preferred to be in the 1T
phase. Figure 2 shows the computed formation energies/f.u.
of monolayers of the 180 TMDs in their most favored phase.
The formation energy values given in black and red corre-
spond to the TMD monolayers that preferentially form in
the 1H phase and 1T phase, respectively. Some of these 180
TMDs have already been synthesized (examples indicated by
black boxes in Fig. 2). TMDs encased in pink boxes in Fig. 2
are examples of those materials for which bulk counterparts
exist, with a possibility of creating the monolayers from those
structures. We find that several TMDs exhibit small energy
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differences (less than 30 meV/f.u.) between the 1H and 1T
phases, and are therefore promising phase-change materials.
These are: VTe2, VSTe, VSeTe, ZnSe2, YSe2, YSSe, RuS2,
RuSe2, TaTe2, and OsTe2 (see Tables S1– S3 within the
Supplemental Material [33]). The small energy differences
suggest that these TMDs, can either exist in both phases (one
of them being metastable), or can readily undergo a phase
transition between the two phases upon application of external
stimuli, such as gating, doping and applying strain. Owing
to a similar energy difference in two of its lowest energy
phases, one of the well-known TMDs, MoTe2 undergoes a
phase transition from the 1H phase to the distorted octahedral
symmetry, T ′ phase [21,27]. The latter phase was not included
in this study. Also note that a few of the TMDs, such as
WTe2, ReS2, and ReSe2, are known to form in low-symmetry
distorted phases—T ′ and T ′′ [54,59,60]. However, as the 1H
and 1T phases are the most common phases among TMDs,
we have not included the other possible structures at this
stage. In addition, it is also possible for these materials to
exist in higher symmetry phases (which may be metastable
states for the crystals). Nevertheless, the dynamical and ther-
mal stabilities as well as distances from the convex hull of
the most promising novel TMDs, which are predicted to be
chemically stable in this work (listed in Tables S1– S3 within
the Supplemental Material [33]), need to be explored in future
studies.

Figures 2(a)–2(c) show which of the TMDs are thermody-
namically stable (i.e., have negative values for the formation
energy). These formation energies become less negative
across the TM series (e.g., across the 3d series) and finally be-
come positive, suggesting that the TMDs, which involve TM
elements at the end of the series, are unstable. The inclusion
of a large number of conventional and Janus TMDs in this
paper allowed us to effectively capture and recognize physico-
chemical trends in thermodynamically stable TMDs. The data
trends in the calculated formation energies (Fig. 2) hint at
two different connections. First, the number of d electrons
increases, while the atomic radii of the TM atoms generally
decrease as we go across a period (e.g., from left to right in
the 3d series of TM). As mentioned above, the stability of
the TMDs also decreases as the TM radii decrease across a
period, implying that the TM radii and the d electron counts
play a major role in the stability of the structures. Second,
for a fixed transition element (e.g., Mo), the formation energy
decreases as one goes from S → Se → Te (for example,
see the �E f s listed in Fig. 2 for MoS2, MoSe2, and MoTe2).
This trend is generally seen for most of the stable traditional
and Janus TMDs, though not for all. For a fixed TM, what
has varied are the properties of the chalcogens, such as their
electronegativities and their radii, which generally increase as
one goes down a group.

The aforementioned observations are consistent with Paul-
ing’s rules [32] for ionic solids, and the work by F. R. Gamble
[3] on layered dichalcogenides, according to which the ratio of
the atomic radii of the cations and anions, and the difference
in their electronegativities play an important role in deciding
the geometrical phase preferences of these materials. They are
also consistent with the findings of Kertesz et al. [4], who
explained the dependence of phase stability on d electron
counts. Hence, even before we apply ML algorithms, the

observed trends hint at relationships between the formation
energies and different attributes of the elements within the
TMDs. Nevertheless, a deeper analysis is required to reveal
and quantify the connections between different attributes of
elements involved in a TMD, and its formation energy and
phase stability.

B. Down-selection of features

A large number of descriptors increases the dimensional-
ity and complexity of the machine learning model, not only
making it difficult to interpret the results, but also leading
to over-fitting. As there were a large number of compound
descriptors (see Sec. II Technical Details), we first needed to
find a subset of highly relevant feature vectors in this large
phase space of variables. To do so, we calculated the pairwise
Pearson correlation coefficients for all feature vectors, as well
as the correlation coefficients between the feature vectors and
the target property vector (i.e., formation energy), which was
calculated using DFT. If any two compound features showed
|P| > 0.85, only the one with the larger correlation with the
target property was kept. Simultaneously, we also required the
feature vectors to have |P| > 0.15 with the property vector.
We found that the feature vectors from Sets A and B not only
have large pairwise correlations with each other, but also have
comparable pairwise correlations with the target property (see
Table S4 within the Supplemental Material [33]). In addition,
we found that compound feature vectors from Set C, created
by subtracting the elemental attributes of the two chalcogen
atoms (involved in a TMD), showed poor correlation with the
target property and hence, were discarded. Therefore, in order
to reduce the complexity of the model, we considered only the
feature vectors of Set B.

The pairwise correlations of the feature vectors from Set B
amongst themselves and with the target property are shown
in a correlogram chart in Fig. 3(a). The absolute values of
feature-feature and feature-target property correlations are
pictorially represented through pie charts in the upper triangle
and colored boxes in the lower triangle, both presenting the
same information. The blue and red colors corresponds to
positive and negative correlations, and the relative intensity of
their colors corresponds to the relative strengths. Figure 3(a)
shows that not only are the covalent radii and dipole polar-
izabilities highly correlated, even their feature-target property
correlations are comparable, being 0.81 for CRX̄M and 0.83
for DPX̄M. The large linear dependence between the covalent
radii and dipole polarizabilities is understandable because
the atomic dipole polarizability is highly correlated with an
atom’s size. The larger the size, the more polarizable an atom
is, and in turn, the more readily it will form covalent bonds.
It should also be pointed out that it is the differences in the
covalent radii of the atoms involved that are more important
as a feature as compared to the differences in ionic radii [see
Fig. 3(a)]. In contrast, in the earlier paper by Gamble [3],
wherein the author studied deciding factors that determine
phase preferences (though not the formation energies), it was
found that the ionic radii are more important attributes. How-
ever, TMDs are mostly covalent, with a very small fractional
ionic character [3,61]. Our correlation analysis highlights
this fact by assigning a much greater correlation fraction
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FIG. 3. Down-selection of features: Pearson correlation for (a) all thirteen features from Set B and (b) seven down-selected features from
Set B, summarizing the pairwise correlation of different features among themselves and with the target property vector (formation energy
�Ef ). The target property and the features are listed along the diagonal; the blue and red color correspond to positive and negative correlation
coefficients, respectively. The boxes in the lower triangle and the pie charts in the upper triangle are two different pictorial representations of
the same information, with the absolute value of the associated Pearson correlation coefficient given by either the lighter and darker shades
of the colors in the boxes, or the filled fraction of the pie chart. (c) Relative importance of Set B feature vectors in predicting the formation
energies of TMDs computed using the RF algorithm. The subscript X̄M indicates that the down-selected compound features are obtained as
differences of the average of attributes of the chalcogens with the that of the metal atom’s attributes.

to covalent radii differences as compared to the ionic radii
differences. As the covalent radii and dipole polarizabilities
show comparable feature-target property correlations, we de-
cided to create two different subsets of down-selected features
based on our aforementioned criteria—one subset included
DPX̄M and another included CRX̄M. From this point forward,
we present our analysis for the short-listed feature subset
(from set B) that includes DPX̄M, while the analysis for the
CRX̄M -containing subset is presented within the Supplemen-
tal Material [33].

The correlogram chart in Fig. 3(b) summarizes the pairwise
correlations between the DPX̄M-containing subset of seven
down-selected features. Thus far, we have used Pearson cor-
relation for the first round of feature down-selection, which
helped to reduce the dimensionality of the problem. The next
round of down-selection of features from Set B came from the
ML algorithms themselves. In this round of down-selection,
we calculated the relative feature importances using an RF
model, aiming to predict the thermodynamic stability of the
TMDs. As mentioned in the previous section, the RF re-
gression algorithm has two main hyperparameters: number of
trees and maximum allowable depth. Tuning these parameters
is essential to avoid suboptimal performance and overfitting of
the model. Therefore, to find optimal values of these parame-
ters, we trained the RF regression algorithm over 90% of the
dataset and tested the model with 10% unseen data for each
set of hyperparameters. The ML model was trained over 20
randomly distributed train/test splits of data for different k-
fold cross-validations (with k = 5, 8, 10). We then computed
the average root mean squared error (RMSE) and R2-score
(goodness-of-fit score) using the dataset from the 1H phase of

the TMDs. The average R2-scores and RMSEs for different
cross-validations are given in the Table S5 within the Supple-
mental Material [33]. A 10-fold cross-validation was used in
the rest of the paper as it shows very good training and testing
R2-scores and RMSE values. The optimized number of trees
and maximum allowable depth for 10-fold cross-validation are
48 and 16, respectively. Using the optimized values of hyper-
parameters, we computed the importance of different features
in predicting the formation energies of the TMDs. The bar
graph in Fig. 3(c) shows the mean values of the relative feature
importance, with the error bars representing their standard
deviations, obtained from 20 randomly distributed train/test
splits of data. Figure 3(c) shows that DPX̄M, ENX̄M, and IEX̄M
are the most important features, with a relatively small con-
tribution from VSX̄M, EAX̄M, and HFX̄M, corroborating the
results from our pair-wise correlation study. Since HSX̄M has
a negligible effect on the prediction accuracy of the forma-
tion energy, following the general principle of parsimony, we
excluded HSX̄M from the down-selected feature set. The six
chosen features were used to design machine learning models.

Before implementing the ML algorithms, we would like
to further elaborate upon the physically-intuitive results that
emerge from our down-selection analysis of the feature set.
In Fig. 4, we plot the down-selected features as a function
of the formation energy for the 1H [Figs. 4(a)–4(f)] and 1T
[Figs. 4(g)–4(l)] phases. Overall, one can see a strong depen-
dence of formation energy on DPX̄M (equivalently, CRX̄M in
Fig. S1 within the Supplemental Material [33]), ENX̄M, IEX̄M,
and VSX̄M, making them the key features. Figures 4(a) and
4(g) show that the data are more scattered as the difference
in dipole polarizabilities (DPX̄M) decreases (same trend for
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FIG. 4. Formation energy vs the down-selected feature vectors for different TMDs in: [(a)–(f)] the 1H phase and [(g)–(l)] 1T phase. Along
the x axis, the compound feature vectors are computed from elemental features according to FX̄M = 1

2 (FX + FY) − FM.

covalent radii), indicating that dipole polarizabilities (covalent
radii) alone are not a deciding factor in the thermodynami-
cal stability of TMDs. Another important key feature vector
is the difference in electronegativities of the TM atom and
chalcogens (ENX̄M), which accounts for the fractional ionic
character [Figs. 4(b) and 4(h)]. The fractional ionic character
fi, as defined by Pauling is given by fi = 1 − exp[−(ENA −
ENB)2/4], where ENA and ENB are the respective elemental
electronegativities of a binary compound of elements A and B.
Although there is a spread of the formation energy values, the
overall trend shows a decrease in the formation energy with
increasing values of ENX̄M. The relative ionization energies of
atoms forming the materials (IEX̄M) is generally related to how
readily the respective atoms enter into chemical reactions and
form bonds with each other. It is, therefore, not surprising that
this is one of the important features selected by the correlation
analysis [Figs. 4(c) and 4(i)]. Lastly, the relative difference in
valencies of the cations and anions VSX̄M shows a correlation
with the formation energies, displaying a U-shaped trend, with
the bottom of the U shape at VX̄M = 2 [Figs. 4(d) and 4(j)].
In the compound attribute VSX̄M, the average valency of the
chalcogens is fixed as we go from one TMD to the next,
while that of the transition element changes according to its d-
electron count. This trend for VSX̄M is understandable, based
on work by Kertesz et al. [4], who explained how the stability
of TMDs changes as a function of d-electron counts. Although
no such obvious trends can be seen for the EAX̄M [Figs. 4(e)
and 4(k)] and HFX̄M [Figs. 4(f) and 4(l)] feature vectors, they
were included when creating an ML regression model because
the calculated feature importance [Fig. 3(b)] for these two
attributes is comparable to that for the valence state.

C. Machine learning algorithms for regression and classification

1. Regression algorithms for formation energies

Having established the physical rationale behind the down-
selected feature vectors, we applied regression algorithms to
predict the formation energy of TMDs. The robustness of
the statistical models was tested in several steps, which are
described below. Unless stated otherwise, all ML regression

models were trained on 1H, 1T or the complete datasets using
20 different randomly selected train/test splits of 90%/10%.
The resulting average R2-scores and RMSE values were then
calculated to determine each model’s performance.

We first trained the RF regression model to predict for-
mation energies of TMDs in the 1H phase. With the six
down-selected features, the average training and test R2-
scores are 98.7% and 96.3%, respectively. The corresponding
average RMSEs for the training and test data points are
0.17 eV and 0.28 eV, respectively. The prediction performance
of the model for the 1H dataset is shown in Fig. 5(a). Most of
the data points lie on or are near the straight line (so-called line
of accuracy), suggesting that the model is highly accurate. The
deviation from the line of accuracy is quantified by calculating
the error in predicting the DFT computed formation energy at
each point and is indicated by an error bar. The error bars for
the data points with negative formation energies are relatively
smaller than those for data points with positive formation
energies, indicating that our trained RF regression model is
able to accurately predict systems that are structurally stable.
We also went one step further and tested the prediction per-
formance of our ML model trained on the 1H data and testing
it with 10% of the 1T phase dataset, with accuracy scores of
91.5%.

Figure 5(b) plots the prediction performance of the RF
model trained on the 1T dataset. This model achieves an
average accuracy of 98.5% for training data and 96.1% for test
data, with the corresponding RMSEs of 0.19 eV and 0.31 eV
respectively. The prediction performance of our ML model
trained on the 1T data was also tested on 10% of the 1H-phase
dataset, with an accuracy score of 94.0%. The average RMSEs
numbers for the 1H and 1T testing datasets are comparable
[see Figs. 5(a) and 5(b)], showing the robustness of the ML
model in predicting the chemical stability of both crystal
geometries. Hence, these results show that the six-feature ML
model is efficient in predicting the formation energy over a
vast chemical space and for different phases. Furthermore, we
verified the robustness of the ML model by showing that our
results are insensitive to the train/test split (see Tables S6 and
S7 within the Supplemental Material [33]).
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FIG. 5. Parity plots of formation energies of: (a) 1H, (b) 1T phases of TMD monolayers, and (c) the entire dataset. The DFT computed
formation energies are along the abscissa and those predicted using RF along the ordinate. Each dataset is divided such that 90% of the data
is used to train the RF regression model and 10% data is used for validation of the model. The error bars on each data point correspond to
prediction errors.

So far, the ML model focused on predicting formation
energies of TMDs in either the 1H or 1T phase. We further
checked the prediction performance of our model by applying
a more stringent test. We considered the entire dataset of 1080
candidate structures and augmented the feature set by four
additional feature vectors (one feature vector each to indicate
FM, AFM, or NM ground state, and one feature vector cor-
responding to the phase). We then trained the RF regression
model with the set of hyperparameters that were optimized
using the 1H dataset alone. The calculated R2-score and RM-
SEs are shown in Fig. 5(c). The prediction performance of
the enhanced ML model across a different dataset suggests
that it can be further generalized to other TMDs that prefer-
entially form configurations different from either the 1H or
1T phases.

In order to check the validity of our results over different
algorithms, we also applied KRR to the 1H dataset. The
key hyperparameters of the KRR model, namely, α and γ

were obtained through iterative minimization of the errors
in the prediction. In our case, we calculated these hyper-
parameters by training the KRR model over 20 randomly
distributed train/test splits of data in the ratio of 90%/10%
and minimizing the root mean squared error (RMSE) of the
model. In order to avoid overfitting in the model, we used
a 10-fold cross-validation. Using this scheme, we calculated
the optimized values of α and γ to be 0.0001 and 0.0001,
respectively. We then separately trained KRR model on the
1H and 1T datasets using the optimized hyperparameters of
KRR model. For the 1H dataset, we calculated the average
R2-score and RMSE over 20 random train/test data splits to
be 98.7%/95.3% and 0.17/0.30 eV, respectively. The average
R2-score and RMSE for the 1T phase were 99.1%/96.3% and
0.14/0.28 eV, respectively. The parity plots of these trained
datasets using KRR algorithm are shown in Fig. S5 within the
Supplemental Material [33]. From Figs. 5 and S5, we can see
that the corresponding accuracies of the RF regression and the
KRR models are comparable, proving that our down-selected
features are robust across different algorithms and describe

the material properties of TMDs with a fairly high degree of
accuracy.

2. Random forest classification algorithm for
predicting phase preference

So far, we have shown that we have built an efficient and
accurate machine learning model to predict the formation
energies of different TMDs using six descriptors. We next
tested our model to see if it can predict the phase preferences
of TMDs [see Fig. 2]. Starting with the down-selected features
and the hyperparameters from the RF regression model dis-
cussed above, we augmented the feature set by the addition of
one categorical feature to indicate the preferred phases of the
TMDs. We then trained the RF classification model and used
it to predict the phase preferences of the TMDs, classifying
them as 1H and 1T phase crystals. In order to avoid overfitting
with respect to the randomly selected data, and to ensure that
our results were converged, we trained the model over differ-
ent numbers of random train/test splits of data, predicting the
unseen data each time. We found that the correctly predicted
phases do not change if we use more than 55 different random
train/test splits of data. This analysis yielded a high training
and test score of 98.6% and 91.8%, respectively. The preferred
phases predicted for the 180 down-selected traditional and
Janus structures are shown in Fig. 6. We were able to accu-
rately predict the phases of 172 monolayers. We note that for a
small fraction of materials, the RF classification model did not
predict the phase preference accurately; these are marked with
an “X” in the figure. A comparison of Figs. 2 and 6 shows that
some of the TMDs for which our model could not predict the
phases accurately are the chemically unstable ones (positive
formation energies). However, some of the chemically stable
TMDs are also predicted inaccurately (e.g., RuSe2, RuTe2,
and LaSeTe). There may be several reasons for these inaccu-
racies. Some of these systems either have a relatively smaller
differences in energies between the 1H and 1T phases, or they
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FIG. 6. Phase-preference prediction performance of RF classification algorithm for the 180 down selected TMDs (see Fig. 2). The boxes
marked with an “X′′ correspond to systems that were not predicted accurately by our model. We consider our prediction to be accurate if we
obtain the correct phase at least 90% of the time.

may prefer other distorted phases (1T′ or ZT), which were not
considered in this study.

It is interesting to note that the same set of down-selected
compound features account for both the chemical stability and
the relative phase stability of the TMDs. This implies that
the RF regression algorithm itself can be used to predict the
correct phase ordering by determining the differences between
predicted formation energies for 1H- and 1T-phase TMDs.
Figure S6 within the Supplemental Material [33] shows that
the RF regression model indeed predicts the formation en-
ergies for the two phases at the level of accuracy needed to
predict phase preferences for the TMDs, correctly predicting
the crystal structures of 169 out of 180 TMDs.

IV. CONCLUSIONS

Predicting phase preferences of TMDs from just the knowl-
edge of the constituent atoms is important, but has remained
a long-standing problem. Earlier works had used packing
fraction considerations (starting with Pauling [32] for ionic
crystals), an empirical measure consisting of ionic radius ra-
tios and degree of ionicity (Gamble [3]), and/or electronic
factors (d-electron counts by Kertesz et al. [4]) to rationalize
the observed structures of the traditional TMDs. Our machine
learning-based quantitative analysis not only rediscovers each
of these different physicochemical factors, but also uncov-
ers previously unknown relative attributes of the constituent
atoms that govern chemical stability and crystal structures of
TMDs. Establishing different connections between compound

attributes of the TMDs and the target property/properties en-
abled us to not only rationalize, but also to accurately predict
phases for 172 out of 180 TMDs. The framework developed
here can be generalized for other classes of materials, and
provides a path forward in materials research.
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