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Identifying topological superconductivity in two-dimensional transition-metal dichalcogenides
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We study the superconducting pairing instabilities and gap functions for prototypical two-dimensional (2D)
transition-metal dichalcogenides (TMDCs) WS2, MoTe2, and MoS2 in the 2H phase under both hole and electron
doping at 10 K. Our first-principles quantum many-body Green’s function approach allows us to treat the full
d and p manifold of orbitals with strong spin-orbit coupling, yielding pairing predictions with material-specific
detail. The resulting gap functions exhibit a variety of mixed-parity superconducting states, including s, p, d , f ,
d ± id , and p ± ip pairing modes. In particular, we predict 3% and 4% hole-doped WS2 to be a chiral p ± ip
topological superconductor. For 1% hole-doped MoS2, we find a competition between three doubly degenerate
chiral and nonchiral instabilities. Overall, the relative pairing strengths are found to follow the Fermi-surface
topology, due to nesting between the Fermi-surface sheets. Finally, we discuss our predictions in relation to
available experimental data and classify the topology of the predicted superconducting pairing symmetries.
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I. INTRODUCTION

Spurred by the promise of quantum information process-
ing that outperforms classical supercomputers, significant
advances have been made in realizing quantum supremacy.
In just the last few years, quantum computational advan-
tage [1] has been successively achieved using superconduct-
ing Josephson junctions (Sycamore) [2] and photonic-based
(Jiuzhang and Zuchongzhi) [3,4] quantum processors. Other
demonstrations include implementing quantum approximate
optimization algorithms on trapped-ion processors [5] and
using bosonic modes to perform computationally hard prob-
lems [6].

With our entrance into the noisy intermediate-scale quan-
tum (NISQ) era, the next frontier is to achieve quantum
advantage for practical problems. For quantum-based proces-
sors to deliver breakthroughs in currently intractable problems
in genetics, chemistry and molecular dynamics, materials sci-
ence, and data encryption, errors must be pushed to better than
1 in 109. However, despite recent advances, leading qubit ar-
chitectures still suffer from intrinsic limitations of coherence
times ∼1 ms [7,8] and an operating fidelity of ∼99.9% [7–9],
placing greater focus on quantum error mitigation to enable
sustainable quantum supremacy. Multiple schemes have been
introduced to spread the information of one qubit out over a
few auxiliary qubits, thus making the calculation less suscep-
tible to a single point fault. The simplest of these approaches
employs seven [10] to nine [11] auxiliary qubits to encode one
logical qubit. However, when scaled to hundreds or thousands
of logical quibits, which is necessary for tackling hard practi-
cal problems, the overhead can easily become unmanageable
even with the most modest error rates. Therefore, other routes
must be examined.
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One such path forward is to use topological qubits. Topo-
logical qubits provide a path towards error-tolerant quantum
computing by embedding quantum information into the global
ground-state properties of a system [12,13], thereby making
them intrinsically immune to decoherence stemming from
spurious perturbations. Specifically, fault-tolerant quantum
computations would be carried out by “braiding” non-Abelian
anyons, quasiparticles that obey non-Abelian statistics and
accordingly are neither fermions nor bosons. As a conse-
quence, these quantum processors inherently push errors to 1
in 107 [14], providing a much more reasonable starting point
for applying any error mitigation methodologies.

Currently, quantum spin liquids [15,16] and topological
superconductors [17–20] are the most intensely studied fam-
ilies of material systems for realizing topological qubits. In
particular, Majorana bound states are the most promising
non-Abelian topological quantum states for quantum com-
putation and naturally arise in quantum spin liquids the
fundamental fractional spin excitations, and in topological
superconductors, due to the native particle-hole symmetry
and nontrivial topology. So far, very few material realizations
have been theoretically predicted, let alone experimentally
verified.

Current experimental efforts in identifying topological
superconductors have been centered on four families of ma-
terials: proximity induced and heterostructures [21], complex
oxides [22], doping and intercalation of topological insula-
tors [23], and heavy-fermion compounds [24]. Nevertheless,
each material candidate possesses its own challenges such as
required fabrication precision, dopant aggregation and inho-
mogeneity, or toxicity. This then begs the following question:
Are there “simple” material platforms with intrinsic topologi-
cal superconductivity?

Atomically thin two-dimensional (2D) materials have
proven to be one of the most exciting platforms exhibiting
an extensive range of novel electronic [25], excitonic [26],
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valley [27], topological [28], and charge density waves [29].
The 2D transition-metal dichalcogenides (TMDCs), in par-
ticular, encompass an expansive phase space of pristine
compounds allowing for a range of spin-orbit-coupling
strengths, d-electron counts, and crystal structures. Further-
more, superconductivity has already been observed in a
number of TMDCs either intrinsic or induced by chemical
doping, electrostatic doping, or applied pressure [30,31]. But,
the pairing symmetry and a complete microscopic mechanism
still remain to be determined. Due to the strong spin-orbit
coupling and the presence of superconductivity in many of
the TMDCs, these materials provide a promising alternative
route to engineer Majorana fermions in solid-state systems.

Despite the advanced experimental efforts, robust theoret-
ical predictions for new topological superconducting material
platforms are still lacking. Presently, theoretical insights are
typically given by limited low-energy models designed to
extract specific physical properties for a general class of ma-
terials. If we wish to tackle even the “simplest” of materials,
such as the TMDCs, the theoretical framework employed
must be able to address the intertwining of strong spin-orbit
coupling, multiple active local orbitals at the Fermi level,
correlation effects, and lattice vibrations on the same footing.
This is essential for a transparent theoretical examination of
the microscopic mechanism of topological superconductivity
in material-specific detail.

In this paper we present a first-principles quantum many-
body Green’s function approach to examine the mechanism
of topological superconductivity in material-specific detail.
Starting from the two-particle Green’s function, we sys-
tematically derive a spin-orbital-dependent self-consistent
expression for the effective pairing interaction and super-
conducting gap. This effective pairing potential follows in
the spirit of the Kohn-Luttinger mechanism and is composed
of a generalized set of random phase approximation (RPA)

type equations. To analyze the resulting spin and orbital gap
functions, we introduce a symmetry-agnostic scheme so as
to not introduce any biasing assumptions. We then apply
this treatment to WS2 in detail since it displays a rich vari-
ety of Fermi-surface topologies, strong spin-orbit coupling,
and d-orbital character. Since the carriers in the TMDCs as
a whole have strong d-orbital character, correlation effects
are expected to be important. This has been confirmed by a
number of experimental studies reporting magnetism in MoS2

and various other TMDCs [32–35], along with a recent study
observing an unconventional scaling of the superfluid density
with critical temperature similar to the high-Tc cuprates [36].
Therefore, this study focuses on correlation-driven supercon-
ductivity, with phonon effects to be added in future works
since they are predicted to be weaker [37]. Finally, we com-
pare the results of three prototypical 2D TMDCs: WS2,
MoTe2, and MoS2, and discuss our prediction in relation to
available experimental data and classify the topology of the
predicted superconducting pairing symmetries.

The outline of this paper is as follows: In Sec. II the formal
theoretical approach is laid out along with a summary of the
computational details. In Sec. III a detailed examination of the
pairing instabilities and symmetries of WS2 is presented for
both electron- and hole-doping cases. In Sec. IV the predicted
pairing symmetries of MoTe2 and MoS2 are compared to
WS2. In Sec. V we classify the topology of our predicted gap
symmetries and discuss our results in relation to experiment.
Finally, Sec. VI is devoted to the conclusions.

II. THEORETICAL DETAILS

A. Hamiltonian and basic notations

The Hamiltonian for a general quantum material system
with spin- and orbital-dependent interactions is given by

Ĥ =
∑
αl
βl ′

∫
d3r ψ̂

†
αl (r)h0

αl,βl ′ (r)ψ̂βl ′ (r) + 1

2

∑
αβγ δ
i jkl

∫∫
d3r d3r′ψ̂†

αi(r)ψ̂†
β j (r

′)vlk;i j
δγ ;αβ (r, r′)ψ̂γ k (r′)ψ̂δl (r), (1)

where the Greek and Latin letters denote the spin and orbital
degrees of freedom, respectively. Our interaction index notion
follows an inr inr′ ;outroutr′ scheme inline with the diagram-
matic representation. For a multiorbital system, the onsite
energy of the lth orbital is given by h0

αl,βl (r) matrix element.
If the orbitals on the various atomic sites are close enough for
their wave functions to overlap, electrons can hop from one
orbital to another. The amplitude of this hopping from orbital
l ′ to orbital l is h0

αl,βl ′ (r). Here, r is defined over R3 and the
field operators acting on a specific orbital of an atomic site in
the crystal, l , can be written as ψ̂l (r) ≡ ψ̂ (r + Rl ), where Rl

is the position of the atom in the unit cell.
The generalized two-particle interaction v

lk;i j
δγ ;αβ (r, r′) is a

four-point function that takes the full spin and orbital config-
uration into account. To gain some intuition into the physical
content of v and aid our analysis later, we expand the spin
degrees of freedom into the Pauli matrices σ x,y,z augmented

with the identity σ 0, yielding

v
lk;i j
δγ ;αβ (r, r′) = σ I

αδv
lk;i j
IJ (r, r′)σ J

βγ , (2)

where I, J ∈ {0, x, y, z}. Now, the interaction is clearly com-
posed of three distinct classes: (i) the usual Coulomb
interaction

σ 0
αδv

lk;i j
00 (r, r′)σ 0

βγ , (3)

(ii) a spin-spin interaction

σ n
αδv

lk;i j
nm (r, r′)σ m

βγ , (4)

and (iii) a spin-orbit-coupling term

σ n
αδv

lk;i j
n0 (r, r′)σ 0

βγ , (5)

where n, m ∈ {x, y, z}. We note that in strongly spin-orbit-
coupled systems, e.g., heavy-fermion systems, the two-
particle interaction can be modified to consider JJ coupling
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TABLE I. The nonzero matrix elements of the bare electron-
electron interaction parametrized by a set of local spin- and
orbital-dependent Hubbard parameters.

v
lk;i j
IJ 00 xx yy zz

ii; ii U
2 −U

2 −U
2 −U

2

i j; i j U ′ − J
2 − J

2 − J
2 − J

2

i j; ji J − U ′
2 −U ′

2 −U ′
2 −U ′

2

ii; j j J ′
2 − J ′

2 − J ′
2 − J ′

2

rather than the Russell-Saunders LS coupling [38,39]. More-
over, the orbital degrees of freedom can also be classified
based on the orbital and the point-group symmetries of the
crystal [40].

In our numerical calculations below, we will restrict our-
selves to considering only local interactions similar to the
multiorbital Hubbard model [41]. Specifically, we parametrize
the bare electron-electron interaction as

vii;ii
σ σ̄ ;σ σ̄ = U, vi j;i j

σσ ;σσ = U ′, v
i j;i j
σ σ̄ ;σ σ̄ = U ′, (6a)

vi j; ji
σσ ;σσ = J, v

i j; ji
σ σ̄ ;σ σ̄ = J, v

ii; j j
σ σ̄ ;σ σ̄ = J ′, (6b)

where U is the standard onsite Hubbard term, U ′ character-
izes the interorbital Coulomb repulsion, J is the so-called
Hund’s coupling, and J ′ describes spontaneous interorbital
pair hopping. After rotating into the Pauli basis, the nonzero
spin and orbital matrix elements of the bare electron-electron
interaction are given in Table I.

To keep the results and discussion general we define all
operators in the imaginary-time Heisenberg picture

O(z) = U (τ0, τ )OU (τ, τ0), (7)

with the time arguments τ and τ0 running along the imaginary
axis of the Keldysh contour, where τ0 is an arbitrary initial
time and the time-evolution operator U (τ, τ0) evolves an op-
erator O from τ0 to τ along the imaginary axis. In this picture
the operators are explicitly time dependent whereas the wave
functions are not. This allows us to introduce the time ordering
on the contour and Wick’s theorem, connecting our results to
many-body perturbation theory [42].

In order to treat the electronic many-body dynamics at
finite temperature, we define the time-dependent ensemble
average of operator O(τ ) as

〈O(τ )〉 = Tr
{
T exp

[− ∫ β

0 d τ̄ H (τ̄ )
]
O(τ )

}
Tr

{
T exp

[− ∫ β

0 d τ̄ H (τ̄ )
]} , (8)

where T is the imaginary-time ordering operator, and 〈O(τ )〉
is the overlap between the initial state in thermodynamical
equilibrium (for temperature β) at τ0 with the time-evolved
state at τ .1

To obtain the exact expression for the effective quasiparti-
cle interactions and the vertex function, along with the various

1For an excellent historical overview of the Schwinger Green’s
function method and Schwinger’s personal retrospective on the in-
fluence of Green’s functions on his work, see Refs. [115,116].

other quantities, we will use the Schwinger functional deriva-
tive approach [43,44]. To do so, we couple the Hamiltonian to
an auxiliary time-dependent electromagnetic field that probes
the charge, spin, and orbital degrees of freedom. The coupling
between the auxiliary fields and our system is given in a
compact form by

π̂ (τ1) =
∫

d2r π I
ll ′ (1)ψ̂†

αl (1)σ I
αβψ̂βl ′ (1). (9)

Now if we wish to find the infinitesimal change in the ensem-
ble average of a generic, contour-ordered product of operators

iOi(τi ) with respect to field π I

ll ′ (1) along the imaginary-time
axis, we arrive at the following identity:

− δ

δπ I
ll ′ (1)

〈T {
iOi(τi )}〉

= 〈
T

{

iOi(τi )ψ̂

†
αl (1)σ I

αβψ̂βl ′ (1)
}〉

− 〈T {
iOi(τi )}〉
〈
T {ψ̂†

αl (1)σ I
αβψ̂βl ′ (1)

}〉
. (10)

In general this identity is valid for equal time and mixed
operators, including electronic and bosonic (for more details
see Ref. [42]).

B. Relation between quasiparticle interactions
and the vertex function

Since the fermionic field operator satisfies the Heisenberg
equation of motion

d

dτ1
ψ̂αn(1) = [H, ψ̂αn(1)], (11)

we can straightforwardly derive the equation of motion of the
single-particle Green’s function,(

− d

dτ1
δl ′nδαβ − h0

αn,βl ′ (1)

)
Gβl ′,σm(1, 2)

= δ(1, 2)δασ δnm + vlk;in
δγ ;ξα (3, 1)G(2)

γ k,δl,ξ i,σm(1, 3, 3+, 2),
(12)

where the single- and two-particle Green’s functions along the
imaginary-time axis are given by

Gβl ′,σm(1, 2) = −〈ψ̂βl ′ (1)ψ̂†
σm(2)〉 , (13)

G(2)
γ k,δl,ξ i,σm(1, 3, 3+, 2) = 〈ψ̂γ k (1)ψ̂δl (3)ψ̂†

ξ i(3
+)ψ̂†

σm(2)〉 ,

(14)

where the superscript (+) in ψ̂
†
η j (3

+) denotes this opera-

tor should be placed infinitesimally after ψ̂γ k (3) when the
time-ordering operator is applied. The electron creation and
annihilation operators were also taken to obey the canonical
anticommutation relations on the contour

{ψ̂αl (1), ψ̂†
βl ′ (2)} = δαβδll ′δ(1 − 2), (15a)

{ψ̂αl (1), ψ̂βl ′ (2)} = {ψ̂†
αl (1), ψ̂†

βl ′ (2)} = 0, (15b)

where we have introduced the shorthand ψ̂
†
βl ′ (2) ≡

ψ̂
†
βl ′ (x2, τ2). For convenience we use the convention where a

repeated index or variable implies a summation or integration,
provided the repeated indices are on the same side of the
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equation. Finally, the full spin- and orbital-dependent Hedin’s
equations can be derived, and to be complete we have
provided them in Appendix A.

Since we are interested in describing the interaction be-
tween quasiparticles in an interacting many-body system,
and ultimately their pairing, we first relate the two-particle
propagator to the scattering vertex to find the effective
electron-electron interaction in the interacting system. By us-
ing Eq. (10), we can write G(2) in terms of the single-particle
propagator as

G(2)
γ k,δl,αi,σm(2, 4; 3, 1)σ I

αδ

= Gγ k,σm(2, 1)Gδl,αi(4, 3)σ I
αδ

− Gγ k,μs(2, 5)
δG−1

μs,νt (5, 6)

δπ I
il (3, 4)

Gνt,σm(6, 1), (16)

where we have used the identity δG
δπ

= −G δG−1

δπ
G to recover

the screened vertex function δG−1

δπ
. We further simplify by writ-

ing δG−1

δπ
in terms of the vertex δ�

δG and iterating the resulting
expression to separate the propagators and interaction terms,
such as

δG−1

δπ
= δG−1

0

δπ
+ δ�

δG
GG

δG−1

δπ
= δG−1

0

δπ
− �̄GG

δG−1
0

δπ
,

(17)

with

�̄ =
[
δ�

δG
+ δ�

δG
GG

δ�

δG
+ · · ·

]
, (18)

describing a multiple scattering process of two quasiparticles
with the vertex. Then, by defining the screened, bare, and

kernel vertices as � = − δG−1

δπ
, �0 = − δG−1

0
δπ

, and I = − δ�
δG ,

respectively, and inserting � back into Eq. (16), we find the
two-particle Green’s function decomposed into three terms:

G(2)
γ k,δl,αi,σm(2, 4; 3, 1) = Gγ k,σm(2, 1)Gδl,αi(4, 3)σ I

αδ − Gγ k,μi(2, 3)Gνl,σm(4, 1)σ I
μν

+ Gγ k,μs(2, 5)Gνt,σm(6, 1)�̄μs,η j,νt,ξn(5, 7; 6, 8)Gξn,λi(7, 3)Gρl,η j (4, 8)σ I
λρ. (19)

The first two terms of G(2) describe the free propagation of two quasiparticles, where they may flow directly from point to point
or exchange positions due to particle indistinguishability. The last term captures the mutual scattering between two quasiparticles
due to the effective interaction �̄. To gain more insight into the structure of the effective interaction �̄, we pull out factors of the
vertex δ�

δG from the left and right and regroup the resulting terms, yielding

�̄μs,η j,νt,ξn(5, 7; 6, 8) = Iμs,η j,νt,ξk (5, 7; 6, 8) − Iμs,θa,νt,εb(5, 11; 6, 12)Rθa,τd,ωc,εb(11, 14; 13, 12)Iωc,η j,τd,ξk (13, 7; 14, 8),

(20a)

Rθa,τd,ωc,εb(11, 14; 13, 12) = Gθa,ωc(11, 13)Gτd,εb(14, 12) + Gθa,�x(11, 15)Gπy,εb(16, 12)

× [−I�x,λw,πy,ρm(15, 17; 16, 18)]Rλw,τd,ωc,ρm(17, 14; 13, 18). (20b)

�̄ is composed of two classes of quasiparticle interactions, the
first an effective direct interaction and the second an effective
exchange interaction. The direct interaction is constructed
from a single δ�

δG vertex, whereas the exchange part is a gen-
eralized infinite ladder sum [45–47]. Here, we have written
the generalized ladder sum so as to isolate the system’s two-
particle exchange response R. In general, R is not explicitly
solvable, due to the momentum and energy mixing between
ladder rungs. However, if the interaction I is a constant or
energy independent and separable in momentum [48], e.g.,
I (q − p) = i(q)i′(p),2 so as to decouple the rungs, the infinite
sum reduces to a geometric series that is readily solvable.
By inspection, it is clear that the overall sign of the effec-
tive interaction is dictated by the delicate balance between
direct and exchange interaction strengths, similar to that found
for excitons [49,50]. Furthermore, this balance is, in part,

2For a static potential I (q − p) this can easily be archived on a finite
grid of momenta by diagonalizing with respect to q and p, yielding
I (q − p) = ∑

i V q
i λiV

†p
i , thus converting the ladder sum to a linear

algebra problem.

governed by the charge, spin, and orbital fluctuations present
in the material system.

C. Effective pairing interaction

All of the preceding expressions up to this point are exact
and fully describe the interaction between two quasiparticles
in an interacting many-body system. However, much like
Hedin’s equations, approximations must be made to make any
calculations tractable. To evaluate the vertex δ�

δG and proceed
to characterize the pairing between particles, we invoke the
GW approximation for the self-energy �. The GW approx-
imation has demonstrated success in providing a reasonable
description of the screening environment for 2D materials,
yielding excellent predictions of particle-hole pairing (exci-
tons) [51–54]. For more details on the GW approximation,
including its physical interpretation, derivation, and conse-
quences, please see Refs. [49,54–57] for a detailed review.
Finally, we restrict the generalized two-particle interaction
[Eq. (2)] to be onsite and constant [Eqs. (6a) and (6b) and Ta-
ble I]. In the orbital- and spin-dependent basis the self-energy

094001-4



IDENTIFYING TOPOLOGICAL SUPERCONDUCTIVITY IN … PHYSICAL REVIEW MATERIALS 6, 094001 (2022)

FIG. 1. A diagrammatic representation of the effective pairing interaction.

in the GW approximation is given by

�μs,νt (5, 6) = − σ J
μγ Gγ k,αa(5, 6)W LJ

tk;as(6, 5)σ L
αν, (21)

and therefore the vertex δ�
δG assumes the following form:

Iμs,η j,νt,ξn(5, 7; 6, 8) = −δ�μs,νt (5, 6)

δGη j,ξn(7, 8)

= σ L
ξνW LJ

t j;ns(6, 5)σ J
μηδ(5, 7)δ(6, 8).

(22)

Inserting the above expressions into Eqs. (20a) and (20b),
converting the spin indices to the Pauli basis using the def-
initions given in Eqs. (2), defining the exchange interaction
as

v
lk;i j
ex IJ (r, r′) = − 1

4σ I
δαv

lk; ji
δγ ;βα (r, r′)σ J

γ β, (23)

and applying this effective interaction to two particles with
a zero center-of-mass momentum, we arrive at the effective
pairing interaction and corresponding response functions

�̄
Kνt,−Kη j
Pξn,−Pμs = σ L

ξνW LJ
t j;ns(K − P)σ J

μη − σ L
μνv

LM
ex ta;sbRMN

ad;bc(K + P)vNL′
ex d j;cnσ

L′
ξη, (24a)

W LJ
ak;bn(K − P) = [

1 − vLM
ad;bcχ

MN
0 c f ;dg(K − P)

]−1
vLJ

ak;bn, (24b)

RMN
ad;bc(K + P) = [

1 − χMI
0 ay;bx(K + P)vIK

ex yw;xm

]−1
χMN

0 ad;bc(K + P), (24c)

χMN
0 c f ;dg(q) = 1

β

∑
κ

σ M
α′β ′Gβ ′c,αg(κ + q)σ N

αβGβ f ,α′d (κ ), (24d)

where the bare interaction was used in the exchange to keep
the direct and exchange terms on the same footing. Figure 1
presents a diagrammatic representation of �̄. Additionally, �̄

is written in |ina,inb
outa,outb notation for clarity and the Matsubara

frequencies are suppressed for brevity. Since the Coulomb
potential is Hermitian,

v
lk;i j
δγ ;αβ = v

∗i j;lk
αβ;δγ , (25)

and the polarizability observes the symmetry

χ
αα′;ββ ′
0 i j;kl (q, ω) = χ

∗ββ ′;αα′
0 kl;i j (−q,−ω), (26)

the effective potential �̄ is found to be Hermitian. The na-
ture of �̄ (positive or negative) originates from the spin
and charge (orbital) fluctuations in the material, obtained
here from the generalized RPA-type expressions for W and
R.3 The emergence of an attractive potential from a nomi-
nally repulsive Coulomb interaction follows the spirit of the
Kohn-Luttinger mechanism [58,59] wherein electron-electron
pairing is driven by the intrinsic screening processes present

3We note that due to the multiorbital Hubbard parametrization of
the Coulomb interaction, the exchange ladder response (R) takes
the form of an RPA-like equation similar to the bubble sum of the
direct interaction term (W ). In general, however, these two terms are
different in nature.

in the many-body electron system. Such an approach has
also shed light on the cuprates, the Fe-pnictides, and the
doped graphene [60], where our treatment can be seen as a
fully spin- and orbital-dependent generalization of the simple
single-band case [61–63].

To calculate the effective pairing interaction for a specific
material, we assume a noninteracting ground state such that
the fully interacting dressed Green’s function (G) is replaced
by the noninteracting Green’s function

G0 β f ,α′d (κ, iωn) =
∑

i

V(β f ),iV ∗
(α′d ),i

iωn − εi
, (27)

where iωn is the Matsubara frequency and V(β f ),i = 〈β f |i〉 are
the matrix elements connecting the orbital spin and the band
spaces found by diagonalizing the Hamiltonian. By introduc-
ing the material-specific details in this manner, our approach is
able to utilize model or ab initio derived tight-binding Hamil-
tonians [64] and projected localized orbitals derived directly
from the Kohn-Sham wave functions [65] allowing for max-
imum flexibility. Moreover, further correlation and phonon
effects may be straightforwardly accommodated by swapping
G0 for G, and W for W = Wele + Wph [66], respectively.

Using G0, the polarization function [Eq. (24d)] can be
simplified by performing the Matsubara frequency summa-
tion and analytically continuing iωn → ω + iδ, for δ → 0+.
Since we will mainly be concerned with the ω → 0 limit, the
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particle-hole propagator may be recast to produce numerically
stable results (see Appendix B for details). Additionally, since
the pairing potential depends sensitively on the noninteracting
polarizability χ

αα′;ββ ′
0 i j;kl (q, ω), we enforce the internal symme-

try in Eq. (26) to remove any spurious numerical differences
and guarantee Hermiticity of the pairing potential.

Finally, the screened direct and exchange response func-
tions are obtained by performing efficient matrix-matrix
multiplication and matrix inversion operations on block
matrices D = vLM

ad;bcχ
MN
0 c f ;dg and F = χMI

0 ay;bxv
IK
ex yw;xm. Since

Eqs. (24b) and (24c) take the form of a generalized set of
RPA-type equations, extra care must be taken to make sure
the various response functions are stable for all temperatures
and interaction strengths considered. That is, in the process
of solving for W (R) we have introduced the matrix inverse
of 1 − D(F ). This forces the response functions to be valid
if and only if 1 − D(F ) is nonsingular. Therefore, to check
the stability of W (R) for a given set of parameters we diag-
onalize D(F ) and ensure that the maximum eigenvalue does
not exceed 1. If 1 − D(F ) is indeed nonsingular, the hierarchy
and momentum dependence of the eigenvalue spectrum pro-
vides additional insight into the various competing fluctuation
modes that may mediate pairing.

D. Superconducting gap equation

Following Nozières [67], the superconducting gap equa-
tion is given by

�νt,η j (K) = −�̄
Kνt,−Kη j
Pεb,−Pθa Gωc,εb(P)Gτd,θa(−P)�ωc,τd (P),

(28)

where � is the momentum-, spin-, and orbital-dependent gap
function. Assuming � is frequency independent and �̄ is
evaluated at the Fermi level, we can perform the Matsubara
frequency sum and convert Eq. (28) to band space, giving

�mn(K) = −�̄Km,−Kn
Px,−Py λP

xy�xy(P). (29)

Here, we have used the diagonalized single-particle Green’s
function

Gωc,εb(P) = V P
(ωc),xgx(P)V †P

x,(εb), (30)

and similarly defined the superconducting gap and pairing
potential in band space as

�xy(P) = V P
(ωc),x�ωc,τd (P)V −P

(τd ),y (31)

and

�̄Km,−Kn
Px,−Py = V K

(νt ),mV −K
(η j),n�̄

Kνt,−Kη j
Pεb,−Pθa V †P

(εb),xV
†−P

(θa),y, (32)

respectively. Finally, the pairing susceptibility λP
xy is defined

as

λP
xy = 1 − nx

F (P) − ny
F (−P)

�x
P + �

y
−P

, (33)

where nx
F (P) is the Fermi-Dirac function 1/[exp (�x

P/kBT ) +
1], and �x

P is the quasiparticle energy at momentum P and
band x in the superconducting state.

Since we aim to characterize and predict superconducting
order, and their associated symmetries, in real materials, we
keep our analysis generic. In contrast to the literature, where

FIG. 2. (Top) Diagrammatic representation of the superconduct-
ing gap equation in band space. (Bottom) A schematic of the allowed
pairing channels: intraband pairing connects electrons within the
same Fermi sheet (black circle), whereas interband pairing connects
electrons between two different Fermi sheets within the Fermi sur-
face while maintaining a zero center-of-mass momentum.

it is common to pick a particular pseudospin basis or a specific
effective irreducible band symmetry [68–75], we do not place
any such restrictions on the pairing between the various band
(orbitals and spins) configurations present in a given material
system.4 This agnostic approach lets the resulting gap func-
tions �mn(K) inform our symmetry analysis, rather than the
other way around, and allows for the emergence of exotic
pairing states prevalent in multiorbital systems with spin-orbit
coupling and nonsymmorphic crystal structures [76–80]. Fig-
ure 2 shows (top panel) a diagrammatic representation of the
superconducting gap equations, along with (bottom panel) a
schematic of the allowed pairing channels. Intraband pairing
connects electrons within the same Fermi surface (black cir-
cles), whereas interband pairing connects electrons between
two different Fermi surfaces while maintaining a zero center-
of-mass momentum. Furthermore, since incoming (outgoing)
electrons can be on different bands, we automatically allow
for Fermi surfaces composed of an arbitrary number of de-
generate bands.

In general, the self-consistent gap equation [Eq. (29)]
presents a significant computational challenge. However, to
gain insight into the hierarchy of competing superconduct-
ing instabilities and their associated pairing symmetry, we
consider the solution in the region of T ≈ Tc. In this case,
�mn(K ) � 1, allowing us to invoke the approximation that the

4We note that interband pairing is typically quite small compared
to intraband pairing channels. It is also proposed [117] that when
the hybridization among orbitals is strong in a multiband system,
both intraband and interband pairings could arise at the Fermi sur-
face obeying Anderson’s theorem. In this work, we follow this
notion by opening up our approach to this possibility due to the
highly hybridized set of bands at the Fermi level in transition-metal
dichalcogenides.
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quasiparticle energy spectrum �x
P is given by the eigenvalue

of the normal-state Hamiltonian εx
P, thereby linearizing the

gap equation. Then by inserting �α into Eq. (29) we recast
the gap equation into a generalized eigenvalue problem

�α
mn(K)�α = −�̄Km,−Kn

Px,−Py λP
xy�

α
xy(P), (34)

where α enumerates the various superconducting modes and
�α is the corresponding pairing strength. When �α = 1, we
recover the original gap equation, thus signaling that the nor-
mal state is unstable to Cooper pairing. Moreover, it can be
shown that the highest eigenvalue has the lowest free energy in
the superconducting state [81]. Even though the magnitude of
�mn(K ) no longer has any direct physical meaning, the matrix
and nodal structure of the eigengaps still allows us to clas-
sify the various pairing symmetries of each superconducting
mode.

Our approach to modeling superconductivity instabilities
in quantum material systems is similar to those employed by
Hirschfeld et al. [62,82–84] and Scalapino et al. [61,85–87],
wherein a realistic multiband treatment is used to evaluate the
doping and temperature-dependent pairing scenarios within
a generalized RPA-type scheme. In the present treatment,
we generalize the methodology to allow for strong spin-orbit
coupling and nonsymmorphic crystal structures, making a re-
alistic examination of topological superconducting candidate
materials possible.

E. Symmetry analysis of the superconducting eigengap solutions

The analysis of the superconducting eigengap functions
may be carried out from a number of different points of

view [83,88–93], such as working within a pseudospin, band,
or orbital basis, and so on. Here, we work within the orbital
basis, not the band basis, because it allows for a simple
description of the symmetries even for intermediate- to strong-
coupling regimes [93]. We classify the various pairing modes
as follows.

A general superconducting gap function is fully antisym-
metric under the exchange of the quantum numbers of the pair
as dictated by the Pauli exclusion principle, and is diagonal in
momentum space assuming translational invariance

�α
νt,η j (K) = −�α

η j,νt (−K). (35)

To classify the various pairing gap eigenfunctions we express
�νt,η j as a linear combination of spin and orbital basis func-
tions

�α
νt,η j (K) = �α

τ I (K)Aτ
t jγ

I
νη, (36)

where summation of repeated indices is assumed. The spin
part of the pairing γ is generally described by the Balian-
Werthamer matrices as

γ I
μν = [iσ Iσ y]μν, (37)

where σ I is the set of Pauli matrices augmented by the iden-
tity matrix σ 0. The three matrices γ x,y,z form the symmetric
(triplet) part of the spin component of the pairing function,
whereas the antisymmetric (singlet) part is represented by the
zeroth matrix γ 0.

Similarly, Aτ serves as a basis in orbital space and is
defined as a set of Norbital × Norbital matrices enumerating all
intraorbital and interorbital (anti)symmetric pairing pathways.
Specifically, we define the individual intraorbital and interor-
bital subsets of A as

Aintra :

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0

0 0 . . .
...

0 0 . . . 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0

0 0 . . .
...

0 0 . . . 0

⎞
⎟⎟⎠, . . . ,

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

0 0 . . .
...

0 0 . . . 1

⎞
⎟⎟⎠,

Ainter
sym :

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0

0 0 . . .
...

0 0 . . . 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0

1 0 . . .
...

0 0 . . . 0

⎞
⎟⎟⎠, . . . ,

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0

0 1 . . .
...

0 0 . . . 0

⎞
⎟⎟⎠,

Ainter
asym :

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0

0 0 . . .
...

0 0 . . . 0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 0

1 0 . . .
...

0 0 . . . 0

⎞
⎟⎟⎠, . . . ,

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0

0 1 . . .
...

0 0 . . . 0

⎞
⎟⎟⎠,

where Aintra describes the pairing between electrons occupy-
ing the same orbital j,

ψ̂α j (K)ψ̂β j (−K). (38)

In contrast, Ainter
sym and Ainter

asym pick out the symmetric

ψ̂α j (K)ψ̂βi(−K) + ψ̂αi(K)ψ̂β j (−K) (39)

and antisymmetric

ψ̂α j (K)ψ̂βi(−K) − ψ̂αi(K)ψ̂β j (−K) (40)

pairing between electrons residing on different orbitals i, j.5

�α
τ I can be constructed from our numerical calculations per-

5We note that the total number of Aτ matrices is N2
orbital, composed

of Aintra, Ainter
sym , Aintra

asym subsets of sizes Norbital,
(Norbital

2

)
, and

(Norbital
2

)
,

respectively.
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TABLE II. The values of the multiorbital Hubbard parameters
used in this work.

x < 0 U U ′ J J ′

WS2 0.75 0.5 0.125 0.125
MoTe2 0.3325 0.2216 0.055416 0.055416
MoS2 0.55 0.366 0.0916 0.0916

x > 0 U U ′ J J ′

WS2 0.5 0.333 0.083 0.083
MoTe2 0.3325 0.2216 0.055416 0.055416
MoS2 0.35 0.2333 0.05833 0.05833

formed in band space by inverting Eq. (31) and utilizing the
unitarity of γ and A:

�α
τ I (K) = [

V †K
νt,m�α

mn(K)V †−K
η j,n

]
A†τ

t j γ
†I
νη . (41)

Finally, to gain insight into the dominant pairing gap symme-
tries it will be useful to take the maximum of |�α

τ I (K)| over
momenta K, to enable a simple comparison of the various
matrix elements and construct a table of predicted dominant
pairing gap symmetries.

F. Computational details

First-principles band structure calculations were carried
out within density functional theory framework using the
generalized-gradient approximation (GGA) as implemented
in the all-electron code WIEN2K [94], which is based on
the augmented-plane-wave + local-orbitals (APW+LO) basis
set. Spin-orbit coupling was included in the self-consistency
cycles. The effective pairing interaction was performed by
employing a real-space tight-binding model Hamiltonian,
which was obtained by using the WIEN2WANNIER inter-
face [95]. For the various compounds studied, the S-3p, Te-5p,
Mo-4d , and W-5d states were included in generating the Wan-
nier functions. The response functions W (R) were evaluated
over a 153 × 153 × 1 k mesh. When solving the linearized
gap equation we invoke a small energy cutoff δc around
the Fermi surface, and allow for Cooper pair formation for
all electronic states εx

P ∈ [−δc, δc]. The stringency of δc was
adjusted depending on the size of the various Fermi-surface
sheets, with values of δc ranging between 9.0 and 18.0 meV.
Throughout this work we perform all calculations at 10 K, in
line with the typical superconducting transition temperature
in the transition-metal dichalcogenides. To limit the number
of Hubbard parameters, we assume the Coulomb potential
to be rationally invariant, imposing U ′ = U − 2J , where we
have taken J = J ′. We further restrict the value of J to fulfill
J/U = 1

6 , which is typical for the transition metals studied.
Correlation effects on the sulfur atoms were ignored. Numer-
ically, U is maximized for both electron and hole dopings
such that a superconducting instability at 10 K is produced.
This procedure makes U an effective parameter, indicating the
relative strength of superconductivity in different materials.
See Table II for the values used throughout this work.

III. PREDICTED PAIRING STATES IN DOPED 2H-WS2

A. Electronic structure and superconducting instabilities

Figure 3(a) shows the Wannier interpolated electronic band
structure for monolayer 2H-WS2. In contrast to the bulk band
dispersions, inversion symmetry is broken in the monolayer,
producing two inequivalent valleys at the corners of the hon-
eycomb Brillouin zone, labeled by momenta K and K ′. These
extrema points in the valence and conduction bands form a
direct band gap. Due to the absence of W 5dz2/S 2pz inter-
layer hybridization [96], the doubly degenerate bands at �

lie 200 meV below the Fermi energy. Due to nonzero spin-
orbit coupling, especially in the 5d tungston transition metal,
a finite spin splitting of ∼400 meV in both conduction and
valence valleys is induced. Furthermore, the valleys at K and
K ′ are degenerate and of opposite spin due to time-reversal
symmetry.

Since superconductivity sensitively depends both on the
pairing glue and number of available carriers, we study a range
of finite hole (electron) dopings. As the chemical potential
is decreased, hole pockets form at K and K ′ in the valence
band producing a 2D Fermi surface [Fig. 3(b) insets]. Due to
the anisotropy of the band structure surrounding K (K ′) the
resulting Fermi surface is not circular, but rather a smooth
Reuleaux triangle. Passing from 2% to 3% hole doping the
Fermi energy cuts additionally through the degenerate bands
at �, precipitating a Fermi-surface topology change. The new
pocket centered at � is composed of two concentric circular
Fermi sheets, the radii of which increase at slightly different
rates with doping. As a consequence of the small spin-orbit
induced spin splitting in the conduction band, two concentric
electron pockets are formed at K (K ′) for all dopings exam-
ined. For 5% electron doping, several very small additional
pockets appear along the radial � − K (K ′) line in the hexag-
onal Brillouin zone.

Figure 3(b) presents the leading 20 superconducting in-
stabilities (blue to red shaded regions) obtained by solving
the generalized eigenvalue problem in Eq. (34) for various
hole (electron) dopings at 10 K. The associated Fermi sur-
faces are given as insets. Starting on the hole-doped side, we
find x = −0.01 and −0.02 concentration of hole carriers to
exhibit a very weak pairing strength of ∼10−2. The leading
instability is nondegenerate, with the other subleading � just
2.0 × 10−3 below. Passing through the Fermi-surface topo-
logical transition the leading pairing strength increases by
60 times to 1.039, signaling an instability of the ground state
to superconductivity. Here, the leading instability is nearly
degenerate, with a marginal splitting of 0.01. As the hole
doping is increased, the leading, and subleading, instabilities
decrease roughly linearly.

Turning to the electron-doped instabilities, by inspection
we find the leading instability to be nondegenerate and sepa-
rated by an order of magnitude from the subleading pairing
strengths for all dopings considered. An instability to a
superconducting ground state is predicted for 1% electron
doping, followed by a nonmonotonic decrease in the pair-
ing strength with increased doping. Finally, for x = 0.05 the
pairing strength significantly weakens to 0.2, which is con-
comitant with the addition of the pockets along the � − K (K ′)
path.
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FIG. 3. (a) Electronic band dispersion of WS2 (blue solid lines) with the energy cuts at 1%, 2%, 3%, 4%, and 5% hole (electron) doping
overlaid by dashed red, green, blue, black, violet dashed lines, respectively. (b) Superconducting instabilities �α as a function of hole (electron)
doping with corresponding Fermi surfaces for each unique Fermi-surface topology overlaid. The color of the Fermi-surface pockets follow
those of the energy cuts in (a).

B. Charge and spin fluctuations

The nonmonotonic evolution of the superconducting pair-
ing instabilities with doping follows concomitantly the
changes in Fermi-surface topology, as is suggested by the
insets in Fig. 3(b). Since the effective potential �̄ is con-
structed from generalized RPA-type response functions, there
is indeed an intimate connection between fermiology and the
strength of the pairing potential. Specifically, information of
the Fermi surface is encoded as peaks in the polarizability,
where these resonances appear at special momenta q∗ that
facilitate Fermi-surface nesting. Moreover, the inclusion of
interactions within this RPA-type response further enhances
existing features in χ0 as the generalized Stoner denominator
1 − D(F ) approaches zero. Therefore, by analyzing the dom-
inant fluctuations in the system, we can gain some physical
insight into the doping dependence of the pairing instabilities.

To extract the various fluctuation modes and their asso-
ciated spin-orbital character, we recognize that the Stoner
instabilities can be made transparent by diagonalizing the
complicated kernel present in Eqs. (24c) and (24b). That is,
for F = χ0vex in R,

F = U (q, ω)�(q, ω)U −1(q, ω), (42)

where � is a diagonal matrix, and U is unitary, then

RMN (q, ω)

= UMα (q, ω)[1 − �α (q, ω)]−1U −1
αK (q, ω)χKN

0 (q, ω),
(43)

where α enumerates the fluctuation eigenmodes. Now, as
�α (q, ω = 0) approaches 1 the ground state becomes unsta-
ble to an ordered phase. Additionally, the momenta producing
the maximum �α for a given α sheet is the propagating vector
q∗ of the emerging Stoner instability. The character of this
instability may then be obtained by analyzing the associated

eigenvectors U . The fluctuation eigenmodes for F and D were
found to be the same. Therefore, without loss of generality, we
only discuss those from F in the following discussion.

Figure 4 (left panel) shows the first 15 fluctuation
eigenmodes �α (q∗) as a function of doping. To facilitate
discussion, the doping range has been subdivided into three
characteristic regions based on the Fermi-surface topology,
labeled in Fig. 4 as I, II, and III. The full momentum depen-
dence of the leading Stoner instability �α (q, 0) and associated
character in each region is presented columnwise in the right-
hand panel.

For dilute hole doping, q∗ facilitates both intrapocket and
interpocket nesting, producing plateaus of similar weight
around � and K (K ′), except for a slightly larger peak at
q∗ = 0 due to perfect nesting between the degenerate bands.
The heat maps in the bottom two panels of column II in Fig. 4
(right panel) display the relative contribution each spin and
orbital plays in the given mode. For II, this mode is pre-
dominantly composed of charge and longitudinal spin sectors,
displaying strong coupling between tungsten 5dx2−y2 (5dxy)
and sulfur 3p orbitals. Crossing through the Fermi-surface
topological transition, between 2% to 3% hole carriers, there
is a sharp rise in the leading Stoner instability, reaching a
maximum of nearly 0.2 for x = −0.04. Due to the perfect
(q = 0) nesting between the additional doubly degenerate
Fermi pocket at �, q∗ ≈ 0 scattering dominates the instability
spectrum. Interestingly, the leading instability is comprised
of nearly pure longitudinal spin fluctuations driven by W-
5dxy and S-3py orbitals. As hole doping is increased beyond
4%, the Stoner instabilities decrease. This effect stems from
the strong spin-orbit-coupling induced band splitting near �,
which breaks the band degeneracy, and thus suppresses q∗ =
0 nesting.

Region III covers the full electron-doping range consid-
ered. Here, the two concentric Fermi surfaces at K (K ′) exhibit
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FIG. 4. (Left panel) Stoner instabilities �α (q∗, 0) as a function of hole (electron) doping. (Right panel, top) Corresponding full momentum
dependence of the leading Stoner instability �α (q, 0) for each characteristic doping region, and (right panel, bottom) heat maps of the
associated fluctuation character.

a similar fluctuation map as region II, except enhanced in-
stabilities near � due to the additional pocket. Despite the
value of U being 1.5× smaller on the electron-doped side, the
Stoner instabilities are similar in strength to those in region
II. Lastly, these fluctuations are mainly constructed from the
W-5dxy states in the longitudinal spin sector, with a faint
admixture of sulfur 3px orbitals.

By comparing the fluctuation eigenmodes and super-
conducting instabilities, we can identify the key mechanism
driving doping dependence. The significant increase in pairing

strength between 2% to 3% hole doping can be explained by
enhanced nesting between the double-degenerate bands at �.
Moreover, the nonmonotonic evolution of the electron-doped
superconducting instabilities follows the change in the
fluctuation strengths. However, we should stress the mapping
between �α (q∗) and �α is not one to one. If we consider
x < −0.03, �α decreases, while �α (q∗) still increases
with doping. Moreover, all electron-doped superconducting
instabilities are very strong, even with a smaller U . This
issue directly emphasizes the subtle point that the effective

FIG. 5. (Left panel) Heat map of the various superconducting eigengap matrix elements given by the max of |�α
τ I (K)| over momenta K

for the leading pairing mode in WS2 with 3% hole doping at 10 K. The orbitals contributing to the dominant pairing channels are indicated.
(Right panel) The variation of the superconducting eigengap amplitude and phase over the Fermi surface for the two dominant γ 0, γ z and
subdominant γ x (γ y ) channels present in the left panel (red cells). The momentum dependence of the gap function is the same for each orbital
combination.
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FIG. 6. (Left panel) Heat map of the various superconducting eigengap matrix elements given by the max of |�α
τ I (K)| over momenta K

for the leading pairing mode in WS2 with 1% electron doping at 10 K. The matrix elements for γ x and γ y have been omitted for brevity
since the various values were at least an order of magnitude smaller than those in the present panels. The orbitals contributing to the dominant
pairing channels are indicated. (Right panel) The variation of the superconducting eigengap amplitude and phase over the Fermi surface for the
dominant Aintra and Ainter

sym symmetric and Ainter
asym antisymmetric components in the γ 0 and γ z spin channels present in the left panel (red cells).

potential is the difference between W (K − P) and
vexR(K + P)vex, making the existence of large fluctuations a
necessary rather than sufficient condition for strong pairing.

C. Gap symmetries

The gap symmetry plays one of the most important roles in
determining whether a superconductor is topologically triv-
ial or not. Similar to the parity analysis of single-electron
states in topological band theory [97], the variation and sign
change of the superconducting gap along the Fermi surface is

FIG. 7. The phase of the superconducting eigengap along the
Fermi surface for 5% electron-doped WS2 in the A

dxy/pz
asym γ 0 sector.

The full gap symmetry (s1 − s2) fz is composed of two pocket cen-
tered s-wave form factors (s1 and s2) with opposing phases and an
alternating phase between K and K ′ pockets as seen from the zone
center following an f -wave periodicity.

a key decisive ingredient in classifying the topological nature
of the superconducting ground state. Despite evidence for
odd-parity pairing states being reported in Sr2RuO4 [22,98]
and UPt3 [99,100], no clear-cut bridge between odd-pairing
symmetries and real topological superconductors has been
established.

To identify possible intrinsic topological superconductivity
in 2D TMDCs, we analyze and classify the various sym-
metries and pairing channels of the eigengap functions of
the predicted superconducting ground states. For brevity, we
will present a detailed analysis of the leading 3% hole-doped
and 1% electron-doped pairing modes in 2H-WS2, giving the
associated eigengap symmetries for the remaining instabilities
in Table III.

Figure 5 (left panel) shows a heat map of the maximum
of the superconducting eigengap function |�α

τ I (K)| over mo-
menta K for the various spin and orbital matrix elements.
Despite the lack of inversion symmetry, strong spin-orbit cou-
pling, and significant orbital mixing in the valance band, most
components of |�α

τ I | are vanishingly small, except for three
dominant components. These components arise in the spin-
singlet (γ 0) and spin-triplet (γ z ) sectors, with orbital pairing
matrix elements exhibiting Aintra and Ainter

sym pairing composed
of W-5dxy and S-3py/W-5dxy orbitals, respectively. Further
subdominant modes are identified in the γ x (γ y) spin-triplet
component with the same orbital pairing character.

Figure 5 (right panel) displays the amplitude and phase of
�α

τ I (K) in the Brillouin zone, for the dominant and subdomi-
nant pairing pathways. For γ 0, the superconducting eigengap
amplitude displays a finite nodal fourfold symmetry and a
phase that alternates between π and −π as one traverses
the �-centered hole packet Fermi surface. This structure in
momentum space is indicative of a d-wave superconducting
gap. Additionally, since the nodal lines are slightly tilted off
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FIG. 8. Comparison of the (a) electronic band dispersion and (b) leading eight superconducting instabilities �α for WS2, MoTe2, and MoS2

at 10 K. Chiral superconducting modes are indicated by star symbols.

the horizontal (vertical) axis, we can also conclude this d-
wave state is a linear combination of both dx2−y2 and dxy form
factors coupled by a real constant governing the tilt angle.
Similarly, �α

τ z(K) displays a slightly of off-axis twofold-
symmetric eigengap amplitude and alternating phase along the
�-centered Fermi surface implying a p-wave superconducting
state.

Interestingly, the subdominant eigengap function in the
γ x (γ y) spin-triplet sector fully gaps out the �-centered Fermi
surface similar to an s-wave state. However, unlike a constant
phase expected for a uniform pairing gap, its phase winds
around the Fermi surface crossing zero once. This implies a
chiral superconducting order of the form px ± ipy. Combining
all the eigengap function terms, the predicted gap-function
symmetry can be written as

�α = [dγ 0 + (p ± ip)(γ x + γ y) + pγ z]
(
Adxy + A

dxy/py
sym

)
.

(44)

We note our numerical scheme intrinsically predicts �α
τ I (K)

to be fully antisymmetric, thus, satisfying the Pauli exclusion
principle [Eq. (35)] without needing to force any constraints.
Finally, the presence of this pairing symmetry in the leading
superconducting instability suggests a possible topological
superconducting ground state in 3% hole-doped 2H-WS2.

Figure 6 shows the same as Fig. 5 except for 2H-WS2

under 1% electron doping. Interestingly, only γ 0 and γ z

display non-negligible matrix elements. In particular, a sin-
gle dominant Aintra W-5dxy pairing channel is exhibited,
with additional subdominant Ainter

sym (Ainter
asym) S-3px/W-5dxy (S-

3pz/W-5dxy) pairing. Since the electron packet Fermi surfaces
are centered at K and K ′, and not at �, we classify the momen-
tum dependence of �α

τ I (K) in two parts: (i) by the variation
of the gap relative to the center of each K (K ′) Fermi pocket,
and (ii) relative to the zone center to capture the relative
phase between pockets. To clearly communicate the various
gap symmetries, we adopt the notation (t1 ± t ′

2)t ′′
z , where t, t ′,

and t ′′ specify the type of superconducting gap, e.g., s, p, d ,

f , g, and so on, the subscripts denote whether it is the inner
(outer) Fermi surface or zone centered (z), and ± indicates
the relative phase between Fermi sheets. For example, Fig. 7
shows the eigengap function for an antisymmetric interor-
bital pairing in the spin-singlet sector displaying a constant
gap amplitude and phase across both inner and outer Fermi
sheets encircling K (K ′), denoted by s1 and s2, respectively.
Additionally, a phase difference of π is found between Fermi
surfaces. Relative to the zone center, the phase alternates
by a factor of π as one traverses around the Brillouin zone
edge. Hence, we can classify this eigengap as (s1 − s2) fz, an
inhomogeneous s-wave superconductor. Similarly, for Fig. 6
the Aintra/inter

sym γ 0, Aintra/inter
sym γ z, Ainter

asymγ 0, and Ainter
asymγ z compo-

nents have symmetries (s1 − s2)sz, (s1 + s2) fz, (s1 − s2) fz,
(s1 + s2)sz, respectively. The above analysis then predicts the
gap symmetry for the 1% electron doped WS2 to be

�α = [(s1 − s2)szγ
0 + (s1 + s2) fzγ

z]
(
Adxy + A

dxy/px
sym

)
+ [(s1 − s2) fzγ

0 + (s1 + s2)szγ
z]Adxy/pz

asym . (45)

We would like to point our that our agnostic approach to
analyzing the superconducting gap symmetry is well suited
and scales well for real material systems with multiple bands
and possible mixed parity.

IV. COMPARISON OF PREDICTED PAIRING STATES IN
DOPED WS2, WS2, MoTe2, and 2H-MoS2

Since the effective same spin-pairing interactions can be
enhanced by spin-flip processes in the polarizability, the in-
trinsic spin-orbital coupling of a material strength is a key
quantity. Therefore, to design materials with topological su-
perconductivity it is important to have fine control over the
spin-orbit-coupling strength. Fortunately, owning to the tun-
ability of the TMDC class of materials, we are able to adjust
the intrinsic spin-orbit-coupling strength of the pristine com-
pound by substituting the transition metal (chalcogenides)
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TABLE III. Predicted gap-function symmetries for the leading
four pairing instabilities in 2H-WS2 under electron and hole doping
at 10 K.

x α �α

1–3 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )−0.01

4 s( fzγ
0 + szγ

z )A
dx2−y2 /dz2
asym

+s(szγ
0 + fzγ

z )(Adx2−y2 + Adz2 )

1–2 d ( fzγ
0 + szγ

z )A
dx2−y2 /dz2
asym

+d (szγ
0 + fzγ

z )(Adx2−y2 + Adz2 )−0.02

3–5 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

1–2
[dγ 0 + (p ± ip)(γ x + γ y )

+pγ z](Adxy + A
dxy/py
sym )−0.03

3–4
[(d + id )γ 0 + (p ± ip)(γ x + γ y )
+(p + ip)γ z](Adxy + A

dxy/py
sym )

1–2
[dγ 0 + pγ z](Adxy + A

dxy/py
sym )

+pγ xA
dxy/pz
sym + pγ yA

dxy/px
sym−0.04

3–6
(p + ip)γ zA

dxy/pz
sym

+(γ x + γ y )(p + ip)(A
dxy/py
sym + Adxy )

1–2
[(g1 + d2)szγ

0 + pszγ
z](A

dxy/py
sym + Adxy )

+pszγ
xA

dxy/pz
sym + pszγ

yA
dxy/px
sym−0.05

3–4
(p + ip)γ zA

dxy/pz
sym

+(γ x + γ y )(p + ip)(A
dxy/py
sym + Adxy )

1
((s1 − s2)szγ

0 + (s1 + s2) fzγ
z )(Adxy + A

dxy/px
sym )

+((s1 − s2) fzγ
0 + (s1 + s2)szγ

z )A
dxy/pz
asym0.01

2–3 (i1 + i2)szγ
0Adxy + (i1 + i2) fzγ

zAdxy

1 (s1 − s2)szγ
0Adxy + (s1 + s2) fzγ

zAdxy

0.02 2 (i1 − i2)szγ
0Adxy + (i1 + i2) fzγ

zAdxy

3–4 (d1 + d2)szγ
0Adxy + (d1 − d2) fzγ

zAdxy

1 (s1 − s2)szγ
0Adxy + (s1 + s2) fzγ

zAdxy

0.03 2–3 (d1 + d2)szγ
0Adxy + (d1 − d2) fzγ

zAdxy

4 (s1 − i2)szγ
0Adxy + (s1 + i2) fzγ

zAdxy

1 (s1 − s2)szγ
0Adxy + (s1 + s2) fzγ

zAdxy

0.04 2–3 (d1 + d2)szγ
0Adxy + (d1 − d2) fzγ

zAdxy

4 (g1 + d2)szγ
0Adxy + (g1 − d2) fzγ

zAdxy

1 (s1 − s2)szγ
0Adxy + (s1 + s2) fzγ

zAdxy

0.05 2–3 (d1sz + p2 fz )γ 0Adxy + (d1 fz + p2sz )γ zAdxy

4–5 (d1 + d2)szγ
0Adxy + (d1 − d2) fzγ

zAdxy

away for different atomic species in the same column of the
periodic table.

Figure 8(a) directly compares the Wannier interpolated
electronic band structure of monolayer WS2, MoTe2, and
MoS2 in the 2H phase. When tungsten is substituted for
molybdenum, the large spin splitting of 433 meV reduces by a
factor of 3 to 148 meV due to the reduced spin-orbit-coupling
strength. Concomitantly, the valence bands at � raises in
energy stopping within 3.7 meV of the Fermi energy. Interest-
ingly, the conduction band minima at K and K ′ are minimally
affected, evincing only a slight flattening of the bands. When
sulfur is replaced with the sightly heavier tellurium, there is a

marginal increase of 69 meV in the spin splitting at K (K ′).
Moreover, the valence bands at � drops in energy burying
itself to 433 meV binding energy. Surprisingly, the band gap
has shrunk by almost a factor of 2, exhibiting a small spin
splitting of 34 meV in the conduction band minima.

Figure 8(b) presents the leading eight superconducting in-
stabilities in WS2, MoTe2, and MoS2 (blue, green, red shaded
regions, respectively) obtained by solving the generalized
eigenvalue problem in Eq. (34) for various hole (electron)
dopings at 10 K. Chiral superconducting modes are indicated
by star symbols. First, we note that there is no significant rise
in the pairing strength of MoTe2 within the hole-doping range
studied, leaving all pairing strengths at or below 0.024. This is
due to the doubly degenerate valence bands at � being buried
in energy, requiring a substantial hole doping to activate these
bands.

When tungsten is replaced with molybdenum, there is a
marked change in the pairing strength eigenvalue spectrum.
Specifically, the pairing response on the hole-doped side ap-
pears to be stronger since the effective Hubbard U needed
to make the system unstable to Cooper pairing has reduced
from 0.55 to 0.35 eV. Furthermore, there is now substantial
competition between pairing modes. In WS2 the leading six
modes span values 0.78–1.0, whereas in MoS2 the first six
instabilities are within 0.08 of the critical pairing strength.
Although the leading instability is not chiral at x = −0.01, the
competing pairing modes are strong chiral states, suggesting
that slight environmental perturbations may tip the scales,
producing a strong topological superconducting ground state.
Furthermore, we attribute the lack of leading chiral modes in
MoS2 to the reduced spin-orbital-coupling strength as com-
pared to WS2, thereby illustrating the material-specific nature
of the possible superconducting states.

For electron-doped TMDCs considered we find significant
similarities. The evolution of pairing strength with electron
doping in WS2 and MoTe2 is quite comparable. Both systems
display a leading instability at x = 0.01 and then monotoni-
cally decay, precipitating another peak at 4% electron doping.
On the other hand, MoS2 exhibits characteristically different
features. In this case, the leading instability is nearly flat be-
tween 0.01 < x < 0.02, with the peak at 2% electron doping.
A second pairing instability is 0.92 below, seemingly due to
the weakened spin-orbit coupling, yielding nearly degenerate
conduction bands. Curiously, all pairing symmetries are simi-
lar between the three materials (see Tables III–VI).

V. DISCUSSION

To date, there have been a number of experiments per-
formed within the TMDC class of materials looking for and
examining the superconducting phase [30,101–110]. In par-
ticular, MoS2 [102,108,109] has been the most studied, with a
few reports on WS2 [102–107] and MoTe2 [102]. All studies
have focused on the electron-doped pairing, due to experi-
mental limitations. For MoS2, superconductivity is found to
appear around xc = 0.04–0.05 electrons, reaching a maximum
Tc of ∼10.5 K at x ∼ 0.1 [108]. In contrast, a few additional
studies on MoS2 and WS2 have found Tc to be relatively inde-
pendent of doping, exhibiting a xc as low as ∼1% [103,107].
These results are in qualitative agreement with our calculated
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TABLE IV. The same as Table III, except for 2H-MoS2.

x α �α

1–2 pγ 0(Adxy + A
dxy/py
sym )−0.01

3–4 (p + ip)(γ x + γ y )(Adxy + A
dxy/py
sym )

1–2 pγ 0(Adxy + A
dxy/py
sym )−0.02

3–4 (p + ip)(γ x + γ y )(Adxy + A
dxy/py
sym )

1–2 pγ 0(Adxy + A
dxy/py
sym )−0.03

3–4 (p + ip)(γ x + γ y )(Adxy + A
dxy/py
sym )

1–2 pγ 0(Adxy + A
dxy/py
sym )−0.04

3–4 (p + ip)(γ x + γ y )(Adxy + A
dxy/py
sym )

1–2 pγ 0(Adxy + A
dxy/py
sym )−0.05

3–4 (p + ip)(γ x + γ y )(Adxy + A
dxy/py
sym )

1
(s1 − s2)szγ

0[sz(A
dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(s1 + s2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

0.01 2–3
(s1 + s2)γ x[ fz(A

dxy/px
sym + Adxy ) + szA

dxy/px
asym ]

+(s1 + s2)γ y[ fz(A
dxy/px
sym + Adxy ) + szA

dxy/pz
asym ]

4 (d1 + d2)γ 0[sz(A
dxy/px
sym + Adxy ) + fzA

dxy/pz
asym ]

1
(s1 + s2)szγ

0Adxy

+(s1 + s2)γ z[ fz(Adxy + A
dxy/px
sym ) + szA

dxy/pz
asym ]

0.02 2–3 (s1 + s2)(γ x + γ y )[ fz(Adxy + A
dxy/px
sym ) + szA

dxy/pz
asym ]

4
( f1 + f2) fzγ

0Adxy + ( f1 fz + s2sz )γ zA
dxy/pz
asym

+( f1sz + s2 fz )γ z(Adxy + A
dxy/px
sym )

1
(s1 + s2)szγ

0Adxy

+(s1 + s2)γ z[ fz(Adxy + A
dxy/px
sym ) + szA

dxy/pz
asym ]

0.03 2–3 (s1 + s2)(γ x + γ y )[ fz(Adxy + A
dxy/px
sym ) + szA

dxy/pz
asym ]

4
( f1 + f2) fzγ

0Adxy + ( f1 + f2) fzγ
zA

dxy/pz
asym

+( f1 + f2)szγ
z(Adxy + A

dxy/px
sym )

1
(s1 − s2)szγ

0Adxy

+(s1 + s2)γ z[ fz(Adxy + A
dxy/px
sym ) + szA

dxy/pz
asym ]

0.04 2–3 (s1 + s2)(γ x + γ y )[ fz(Adxy + A
dxy/px
sym ) + szA

dxy/pz
asym ]

4
(d1 + d2)szγ

0Adxy + (d1 + d2)szγ
zA

dxy/pz
asym

+(d1 + d2) fzγ
z(Adxy + A

dxy/px
sym )

1
(s1 − s2)szγ

0Adxy

+(s1 + s2)γ z[ fz(Adxy + A
dxy/px
sym ) + szA

dxy/pz
asym ]

0.05 2–3 (s1 + s2)(γ x + γ y )[ fz(Adxy + A
dxy/px
sym ) + szA

dxy/pz
asym ]

4
(d1 + d2)szγ

0Adxy + (d1 + d2)szγ
zA

dxy/pz
asym

+(d1 + d2) fzγ
z(Adxy + A

dxy/px
sym )

pairing instabilities, where we find a plateau in critical pair-
ing strengths between x = 0.01 and 0.02 for MoS2 (MoTe2)
and a sharp instability at x = 0.01 for WS2. Reference [102]
also suggests MoS2 to produce the strongest superconducting
state, followed by WS2, MoSe2, and MoTe2. In contrast to
experimental observations, we find a strong MoTe2 instability,
suggesting a possible competition between superconductivity
and charge density wave state [111]. Recent scanning tun-
neling microscopy (STM) studies give some further insight
to the symmetry of the gap functions. Specifically, measured
local density of states displays a sharp V-like line shape,
indicative of the nodal superconducting gap, in line with

TABLE V. The same as Table III, except for hole-doped 2H-MoTe2.

x α �α

1 d ( fzγ
0 + szγ

z )A
dx2−y2 /dz2
asym

+d (szγ
0 + fzγ

z )(Adx2−y2 + Adz2 )

−0.01 2 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

3–4 g( fzγ
0 + szγ

z )A
dx2−y2 /dz2
asym

+g(szγ
0 + fzγ

z )(Adx2−y2 + Adz2 )

1 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

−0.02 2 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

3–4 g( fzγ
0 + szγ

z )A
dx2−y2 /dz2
asym

+g(szγ
0 + fzγ

z )(Adx2−y2 + Adz2 )

1 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

−0.03 2 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

3–4 g( fzγ
0 + szγ

z )A
dx2−y2 /dz2
asym

+g(szγ
0 + fzγ

z )(Adx2−y2 + Adz2 )

1 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

−0.04 2 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

3–4 g( fzγ
0 + szγ

z )A
dx2−y2 /dz2
asym

+g(szγ
0 + fzγ

z )(Adx2−y2 + Adz2 )

1 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

−0.05 2 f (szγ
0 + fzγ

z )A
dx2−y2 /dz2
asym

+ f ( fzγ
0 + szγ

z )(Adx2−y2 + Adz2 )

3–4 g( fzγ
0 + szγ

z )A
dx2−y2 /dz2
asym

+g(szγ
0 + fzγ

z )(Adx2−y2 + Adz2 )

other suggestions of a mixed-parity state. Moreover, high-
resolution real-space charge density maps show the presence
of a pair-density wave, implying the Cooper pair has a finite
center-of-mass momentum Q, thereby giving more credence
to a unconventional origin of the pairing glue [101,105].
Although we do not address Cooper pairing with a finite
momentum in this work, our Q = 0 results do indicate the
prevalence of mixed-parity states, with both nodal and fully
gapped eigengap functions.6 The nonmonotonic decay in pair-
ing strength for large electron doping illustrates the limits of a
purely electronic (spin and charge fluctuation) driven pairing

6We note that for simplicity we have just considered the Q = 0 case
in this work, but our formalism can be straightforwardly extended to
treat the pair density wave phase, which will be addressed in a future
work.
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TABLE VI. The same as Table III, except for electron-doped 2H-
MoTe2.

x α �α

1
(s1 − s2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(s1 + s2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

0.01 2–3
(d1 + g2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(d1 + g2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

4
(s1 + i2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(s1 + i2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

1
(s1 − s2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(s1 + s2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

0.02 2–3
(d1 + d2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(d1 − d2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

4–5
(g1 − g2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(g1 + g2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

1
(s1 − s2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(s1 + s2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

0.03 2–3
(d1 + d2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/px
asym ]

+(d1 − d2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/pz
asym ]

4
( f1 − f2)γ 0[ fz(A

dxy/px
sym + Adxy ) + szγ

0A
dxy/px
asym ]

+( f1 + f2)γ z[sz(A
dxy/px
sym + Adxy ) + fzγ

zA
dxy/pz
asym ]

1
(s1 − s2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/dz2
asym ]

+(s1 + s2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/dz2
asym ]

0.04 2–3
(d1 + d2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/dz2
asym ]

+(d1 − d2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/dz2
asym ]

4
( f1 − f2)γ 0[ fz(A

dxy/px
sym + Adxy ) + szγ

0A
dxy/dz2
asym ]

+( f1 + f2)γ z[sz(A
dxy/px
sym + Adxy ) + fzγ

zA
dxy/dz2
asym ]

1
(s1 − s2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/dz2
asym ]

+(s1 + s2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/dz2
asym ]

0.05 2–3
(d1 + d2)γ 0[sz(A

dxy/px
sym + Adxy ) + fzγ

0A
dxy/dz2
asym ]

+(d1 − d2)γ z[ fz(A
dxy/px
sym + Adxy ) + szγ

zA
dxy/dz2
asym ]

4
( f1 − f2)γ 0[ fz(A

dxy/px
sym + Adxy ) + szγ

0A
dxy/dz2
asym ]

+( f1 + f2)γ z[sz(A
dxy/px
sym + Adxy ) + fzγ

zA
dxy/dz2
asym ]

potential and suggests a cooperative feedback between elec-
tron and other bosonic modes, such as phonons, to generate
this unconventional pairing state similar to that suggested in
the cuprate high-temperature superconductors [112].

Despite the lack of experiments for hole-doped supercon-
ductivity in the TMDCs, we would like to point out some key
features of our predictions in comparison to other theories. For
dilute doping, our predicted gap functions are of mixed parity
displaying both nodal and gap full solutions. Here, the orbital
character appears to be important, exhibiting a mixed interor-
bital and intraorbital pairing among dx2−y2 and dz2 states, with
higher-order corrections between d − p orbitals. These results
are in contrast to those by Hsu et al. [75], where they find
chiral pairing states for both zero and finite center-of-mass
momentum. Due to the single-band nature of their model
which intrinsically neglects the intertwining of strong d − p

hybridization and spin-orbit coupling, an accurate assessment
of the gap symmetry is difficult to make [93]. Moreover,
the assumption of perfectly nesting circular Fermi surfaces
does not capture the anisotropy evident in the real materials,
which will have knock-on effects on the anisotropy of the gap
function along the Fermi surface.

Finally, we wish to discuss if topological superconductiv-
ity is expected in these TMDC compounds. To classify the
various gap symmetries we have obtained as topologically
trivial or nontrivial, we will concentrate on the odd-parity
configurations. Generically, if no Fermi surface encloses a
time-reversible invariant momenta point k = �i (where �i =
−�i + G, and G is a reciprocal lattice vector) or each Fermi
surface reduces to an s-wave pairing state, an odd-parity state
leads to topological superconductivity [19]. For the electron-
doped states, since the Fermi pockets are centered on K (K ′),
and not � or M, the nature of these states rests on their gap
symmetry. States displaying (si ± so)sz or (si ± so) fz symme-
tries do not exhibit any nodes in the superconducting phase,
rather a pocket-dependent phase, implying they may be re-
duced to an s-wave pairing, implying these configurations to
be topologically trivial. On the other hand, gap symmetries
following (di ± do)sz, (di ± do) fz, (si ± io)sz, and (gi ± do) fz,
and so on, clearly produce nodes in the superconducting state,
thus are classified as being topologically nontrivial. Moreover,
many of these states are found to be nondegenerate, indicating
the superconducting state should strongly break time-reversal
symmetry. The same analysis holds for the lightly hole-doped
results since they display the same Fermi-surface topology.
Lastly, all �-centered hole pockets will produce nontrivial
topological superconductivity. These states are predicted to
be strongly time-reversal breaking, exhibiting large pairing
strength eigenvalue value splitting of 0.01 for WS2, with
weaker, but finite, values of 0.003 in MoS2.

VI. CONCLUDING REMARKS

We have developed a methodology to tackle correlation-
driven electron-electron pairing in material-specific detail.
Using this effective potential on three prototypical TMDC
materials, we find a rich variety of pairing configurations
exhibiting mixed parity. We find nontrivial topological super-
conductivity to be most prevalent and robust in hole-doped
WS2, with chiral modes spanning a wide range of hole carrier
density. This initial study stands as a springboard for further
detailed analysis of the pairing symmetry in TMDs and other
2D systems.
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APPENDIX A: SPIN- AND ORBITAL-DEPENDENT
HEDIN’S EQUATIONS

Similar to Refs. [50,113,114], the complete set of self-
consistent orbital- and spin-dependent Hedin’s equations re-
lating the electronic self-energy � to the Green’s function
G and the screened interaction W , using the vertex � and
polarization function P may be written as

�αn,νt (1, 5) = iσ J
αγ Gγ k,μs(1, 4)�L ab

μs,νt (4, 5; 6)W LJ
ak;bn(6, 1),

(A1a)

W LJ
ak;bn(6, 1) = vak;bn

LJ (6, 1)

+ vad;bc
LM (6, 7)χMN

0 c f ;dg(7, 8)W NJ
f k;gn(8, 1),

(A1b)

χMN
0 c f ;dg(7, 8) = −iGδc,μs(7, 9)

×�
N f g
μs,νt (9, 10; 8)Gνt,ξd (10, 7+)σ M

ξδ , (A1c)

�L ab
αn,ηy(1, 4; 6) = δ(1, 6)δ(1, 4)σ L

αηδanδby

+ δ�αn,ηy(1, 4)

δGμs,νt (9, 10)
Gνt,εg(9, 11)

×�L ab
εg,δ f (11, 12; 6)Gδ f ,μs(12, 10). (A1d)

To close the set of equations, Dyson’s equation

Gαn,βm(1, 2)

= G0 αn,βm(1, 2) + G0 αn,ηs(1, 3)�ηs,δl (3, 4)Gδl,βm(4, 2)
(A2)

links the fully interacting system to the bare noninteracting
propagator

G−1
0 αn,ηy(1, 4) (A3)

=
(

i
d

dz1
δαηδyn − h0

αn,ηy(1) − �N
ny(1)σ N

αη

)
δ(1, 4), (A4)

where �J is the total field

�J
nk (1) = π J

nk (1) + V J
H k;n(1), (A5)

VH is the Hartree potential

V J
H k;n(1) = ρI

il (3)vlk;in
IJ (3, 1), (A6)

and ρ is the charge and spin density

ρI
il (3) = −iGδl,ξ i(3, 3+)σ I

ξδ. (A7)

Lastly, we note that the GW approximation used in Eq. (21) is
obtained by inserting bare vertex

�L ab
αn,ηy(1, 4; 6) = δ(1, 6)δ(1, 4)σ L

αηδanδby (A8)

into Eq. (A1a).

APPENDIX B: PARTICLE-HOLE PROPAGATOR IN THE
δ → 0 LIMIT FOR ω = 0

The bare polarization function contains a term of the form

χ
i j
0 (k, q, ω) = n j

F (k) − ni
F (k + q)

ω + �
j
k − �i

k+q + iδ
. (B1)

Taking the δ → 0 limit we can use the Sokhotski-Plemelj
theorem for a Dirac delta function and obtain explicit forms
for both the real and imaginary parts of χ0:

χ
i j
0 (k, q, ω) = P n j

F (k) − ni
F (k + q)

ω + �
j
k − �i

k+q

− iπ
(
n j

F (k) − ni
F (k + q))δ

(
ω +�

j
k −�i

k+q

)
.

(B2)

For ω = 0, the imaginary part is identically zero, leaving the
real part as

χ
i j
0 (k, q, ω) = n j

F (k) − ni
F (k + q)

�
j
k − �i

k+q

. (B3)

Now, as the quasiparticle energies approach the Fermi level
either as q → 0 or for specific nesting vectors q∗, this expres-
sion becomes numerically unstable. To remedy this, we first
rewrite χ0 in terms of

ξ
i j
k,q = �

j
k − �i

k+q, (B4)

η
i j
k,q = �

j
k + �i

k+q, (B5)

yielding

− sinh
(
ξ

i j
k,qβ/2

)
cosh

(
η

i j
k,qβ/2

) + cosh
(
ξ

i j
k,qβ/2

) 1

ξ
i j
k,q

. (B6)

Clearly as ξ
i j
k,q → 0, sinh (ξ i j

k,qβ/2) ≈ ξ
i j
k,qβ/2, canceling the

singularity. Therefore, in a small neighborhood about the
Fermi level we explicitly expand χ

i j
0 (k, q, ω = 0) as

− β

2

(
1 + (ξ i j

k,qβ/2)1

2! + (ξ i j
k,qβ/2)2

3! + · · ·
)

cosh
(
η

i j
k,qβ/2

) + cosh
(
ξ

i j
k,qβ/2

) (B7)

producing a stable numerical calculation. Now, the only error
introduced in the numerical evaluation of the bare suscepti-
bility is the discretization of the momenta k and q on a finite
grid.

APPENDIX C: NUMERICALLY STABLE
PAIRING SUSCEPTIBILITY

The pairing susceptibility as written in Eq. (33) is not nu-
merically stable as the band energies approach the Fermi level
due to the effective singularity in the denominator. However,
if we let

ξ
xy
P = �x

P + �
y
−P, (C1a)

η
xy
P = �x

P − �
y
−P, (C1b)

we are able to recast Eq. (33) as

λP
xy = tanh

[(
ξ

xy
P + η

xy
P

)
β/4

] + tanh
[(

ξ
xy
P − η

xy
P

)
β/4

]
ξ

xy
P

.

(C2)
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Now, as the quasiparticle energies approach the Fermi level

tanh
[(

ξ
xy
P + η

xy
P

)
β/4

] + tanh
[(

ξ
xy
P − η

xy
P

)
β/4

]
,

≈ β/4(1 − tanh
[
η

xy
P β/4

]2
)ξ xy

P + · · · (C3)

thus canceling the pole in the denominator. Therefore, in a
small neighborhood about the Fermi level we approximate λP

xy
as

λP
xy ≈ β/4

(
1 − tanh

[
η

xy
P β/4

]2)
(C4)

to allow for smooth numerical evaluation of the pairing sus-
ceptibility. This enables us to incorporate the temperature

dependence of the superconducting gap without needing to
formally introduce an arbitrary energy cutoff.

APPENDIX D: SUPERCONDUCTING GAP SYMMETRIES
FOR WS2, MoTe2, AND MoS2

Tables III–VI give the gap symmetries for the first
four pairing instabilities of 2H-WS2, 2H-MoS2, and 2H-
MoTe2, respectively, for various hole and electron dopings
at 10 K.
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