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In recent years, liquid metal dealloying has emerged as a promising material processing method to generate
micro- and nanoscale bicontinuous or porous structures. Most previous studies focused on the experimental
characterization of the dealloying process and on the properties of the dealloyed materials, leaving the theoretical
study incomplete to fully understand the fundamental mechanisms of the liquid metal dealloying process. In this
paper, we use theoretical models and phase-field simulations to clarify the kinetics and pattern formation during
liquid metal dealloying. Our investigation starts from a theoretical analysis of the 1D dissolution of a binary
precursor alloy, which reveals that the 1D dissolution process involves two regimes. In the first regime, due to
the low solubility of one of the elements in the melt, it accumulates at the solid-liquid interface, which reduces
the dissolution kinetics. In the second regime, the interface kinetics reaches a stationary regime where both
elements of the precursor alloy dissolve into the melt. Previous works revealed that in the early dealloying stage,
the dealloying front is destabilized by an interfacial spinodal decomposition, which triggers the formation of
interconnected ligaments. We extend this line of work by proposing a linear stability analysis able to predict the
initial length scale of the ligaments formed in the initial stage of the dealloying. Combining this analysis with
the 1D dissolution model proposed here enables us to better understand the initial conditions (composition of
the precursor alloy and the melt) leading to a planar dissolution without interface destabilization. Finally, we
report a strong influence of solid-state diffusion on dealloying. Although the solid-state diffusivity is four to five
orders of magnitude smaller than in the liquid phase, it is found to affect both dissolution kinetics and ligament
morphologies.
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I. INTRODUCTION

Dealloying is a well-known process used to manufacture
nanoporous materials. The fundamental mechanism of this
process is selective dissolution, where one element is dis-
solved from an alloy with two or more components, leaving
the rest of the component(s) to form a nanoporous struc-
ture. Due to the high porosity and interfacial area, those
nanoporous metals have been shown to display outstanding
properties and to find potential applications in various fields.
It has been used to fabricate a wide range of functional ma-
terials such as actuators [1], catalytic materials [2–4], sensors
[5], fuel cells [6,7], electrolytic capacitors [8–10], radiation-
damage resistant materials [11], composites with superior
mechanical properties [12,13], and high-capacity battery ma-
terials with improved mechanical stability [14,15].

Dealloying was first employed as an electrochemical deal-
loying technique [16–22] in which a less noble element is
selectively dissolved from an alloy by an acid bath. This
selective dissolution leads to the reorganization of the noble
component into islands, eventually leading to a nanoporous
structure. One remaining limitation of this technique is the
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requirement of a high chemical potential difference between
the components of the precursor alloy, limiting its application
to less noble metals [23,24]. To overcome this limitation,
liquid metal dealloying (LMD) was rediscovered [25,26] and
allows us to expand the range of dealloyable materials to less
noble compounds such as Ti, Ta, and Fe. Instead of using
an acid solution to leach out the less noble element, LMD
relies on a liquid metal (e.g., Cu [12], Bi [14], Mg [9,26–28],
Ge [29], etc.) to selectively dissolve miscible elements, leav-
ing immiscible elements to form a topologically connected
structure [13,23,30,31]. As a fast-developing technique, LMD
experiments have been applied to fabricate various porous ma-
terials such as Ti [26], Si [14], Nb [9], FeCr [27,32], Ta [12],
graphite [29], or even high-entropy alloys [28]. Extending the
basic idea of selective dissolution, other dealloying methods
have been developed: solid-state dealloying [33–35], which
uses a solid instead of a liquid melt to selectively dissolve
the precursor alloy, and vapor phase dealloying where one of
the components of the precursor alloy selectively evaporates
[36,37].

Along with experimental studies, theoretical approaches
have also been developed to understand the fundamental
mechanisms of dealloying. Electrochemical dealloying has
been studied theoretically with kinetic Monte Carlo (KMC)
simulations [16,17,38,39], bringing valuable insights to
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understand the fundamental mechanisms of the dealloying
process and the following coarsening mechanisms. However,
the KMC method is not suitable to study LMD because of
its inadequacy to model a liquid phase and its length and
timescale limitations. Moreover, simulations of LMD with
atomistic techniques often require the development of quan-
titative interatomic potentials parameterized to reproduce the
thermodynamic properties of the ternary system, which re-
mains a long and challenging task. Continuous approaches
such as phase-field models appear more suited to investigate
the LMD process because they can simulate the free boundary
problems associated with solid/liquid interfaces on diffusive
timescales while easily incorporating thermodynamic proper-
ties of multicomponent alloys [40,41]. In particular, this class
of phase-field model has been successfully applied to predict
the microstructure development during solidification of binary
and multicomponent alloys [42–45].

Recently, the phase-field method has also been applied to
model the pattern formation of LMD [23,30] and the subse-
quent coarsening process [46]. These phase-field studies along
with experimental results revealed the fundamental processes
of the pattern formation of LMD. First, the planar dissolution
is destabilized by interfacial spinodal decomposition, where
the solid-liquid interface becomes corrugated due to the re-
distribution of the immiscible element along the interface.
Also, the dealloying kinetics is limited by diffusion of the
miscible element away from the dealloying front, leaving the
immiscible element to reorganize and form interconnected
ligaments. Lastly, after its formation, the ligaments coarsen
by bulk and surface diffusion, leading to an increase of the
microstructure length scale.

Despite these seminal studies, a deeper understanding of
some aspects of the LMD process requires further investiga-
tion. This paper focuses on three distinct but interconnected
parts. We first focus on the 1D dissolution kinetics of the
ternary alloy system, which serves as a theoretical framework
for the initial stage of LMD. Previous studies of dealloy-
ing demonstrated a diffusion-limited kinetics xi(t ) ∼ √

Dlt ,
where xi is the position of the solid-liquid interface and Dl the
diffusion constant in the liquid [30,47]. However, this calcula-
tion only considered the diffusion of the miscible element as in
a binary system, thereby discarding the ternary nature of the
problem at hand. Here, we propose a 1D ternary dissolution
model that incorporates the diffusion of both the immiscible
and the miscible elements in the liquid and the evolution of
the equilibrium compositions at the solid-liquid interface.

Second, we use the linear stability analysis of the interfa-
cial spinodal decomposition [48,49] to investigate the early
stage of the morphological evolution in 2D simulations. Here
we extend the work of Ref. [30] to track the development of
the interfacial instability and predict its initial wavelength.
Also, connecting the 1D ternary diffusion model with the
linear stability analysis provides a criterion for the initial in-
terface destabilization and the development of interconnected
morphologies as a function of the precursor and melt composi-
tions. The predicted boundary between the planar dissolution
regime and the development of connected morphologies is
found to be in good agreement with 2D phase-field sim-
ulations. We also analyze how this boundary is modified
when chemical equilibrium is established at the solid-liquid

interface, as expected on long experimental timescales when
solid-state diffusion is taken into account.

The third section is dedicated to the role of solid-state dif-
fusivity on the dealloying process, which is usually discarded
[30,47], based on the fact that it is four to five orders of
magnitudes smaller than liquid-state diffusivity [50]. Using
1D and 2D phase-field simulations with varying solid-state
diffusivity, we show that this parameter significantly affects
the composition profiles at the dealloying front. In particular,
solid-state diffusivity allows for the development of wider
concentration profiles in the solid, thereby reducing the in-
fluence of the gradient terms of the phase-field model and
promoting the convergence of the interfacial concentrations
toward the prediction of the phase diagram. Furthermore, we
discuss the discrepancy between numerical and experimental
results on the equilibrium concentrations of the dealloying
front. We show that a more quantitative thermodynamic model
enables us to improve the comparison and that this equilib-
rium concentration evolves slowly with time, enabling us to
connect numerical and experimental results.

This paper is structured as follows. In Sec. II, we first pro-
vide the phase-field model and the corresponding parameters
used in the following simulations. We then present the 1D
dissolution model for the ternary system in Sec. III. In Sec. IV,
we present a linear stability analysis of the initial spinodal
decomposition and compare the theoretical results with 2D
phase-field simulations. We also use the criterion of spin-
odal decomposition to better understand the planar dissolution
regime obtained for some melt compositions. Moreover, in
Sec. V, we propose a discussion of the effect of the finite
solid-state diffusivity on dealloying kinetics and morpholo-
gies. Finally, conclusions are presented in the last section.

II. PHASE-FIELD MODEL FOR TERNARY ALLOY

We use a phase-field model for ternary alloys to simulate
the dealloying process. Even though the dissolution process
of a solid in a liquid is generally endothermic, its dynamics
is controlled by solute diffusion, which is orders of magni-
tude slower than thermal diffusion in both phases. Hence,
we consider the adiabatic limit and assume the temperature
constant in the system. This phase-field model relies on the
coupling between concentration fields and an order parameter
describing the order of the phase (liquid or solid). It naturally
incorporates interactions between the different species as well
as interdiffusion mechanisms. We first introduce the order
parameter φ(x) describing the crystalline order of the phase:
φ(x) = 0 (respectively, φ(x) = 1) if x is in the liquid (solid).
The solid/liquid interface is described through a smooth vari-
ation of the field φ. To describe the variation of composition
between the different points of the system, we introduce the
atomic concentration fields c1(x), c2(x) and c3(x) with the
constraint c1(x) + c2(x) + c3(x) = 1 at any position x. The
total free-energy functional describing the state of the system
is F = ∫

V f (φ, ci )dV , where the energy density f (φ, ci ) is
defined as

f (φ, ci ) = σφ

2
|∇φ|2 + fdo(φ) +

3∑
i=1

σi

2
|∇ci|2 + fch(φ, ci ).

(1)
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The first term is the gradient contribution of the phase field,
which preserves a finite interface thickness. The second term
is a double-obstacle potential characterized by two minima
located at 0 and 1:

fdo(φ) = +∞ for φ < 0,

fdo(φ) = λφ(1 − φ) for 0 � φ � 1,

fdo(φ) = +∞ for φ > 1. (2)

The parameters λ and σφ can be chosen to obtain a solid-liquid
interface of a specific width and energy. The double-obstacle
potential presents the advantage of fixing the value of φ in
the bulk phases to be exactly 1 for the solid phase and 0 for
the liquid phase. In contrast, with a double-well potential, φ

reaches 0 in the liquid and 1 in the solid only asymptotically.
If we consider the diffusivity as a function of φ (as done
below), the double obstacle potential then allows us to control
exactly the diffusivity in both solid and liquid phases. The
third term represents the gradient energy associated with spa-
tial composition variations. For simplicity reasons, we assume
σ1 = σ2 = σ3. Finally, the last term represents the chemical
contribution, i.e., the thermodynamic model of the free-energy
density, which is defined as

fch(φ, ci ) =
3∑

i=1

[
φciLi

(
T − Ti

Ti

)
+ kT

Va
ci ln(ci )

]

+
i, j�3∑
i< j

�i jcic j . (3)

The first term couples the concentration field to the phase-
field through the temperature T , the melting point of the
compounds Ti and the latent heat of pure material Li. The
coupling is assumed to be linear in temperature (which is true
close to the melting point) and in concentration (which is true
close to pure metals). The second term is the entropy term
of each element. Let us notice that the atomic volume Va is
assumed to be the same for all the elements and does not
change between the solid and liquid phases. In other words,
we neglect the dilatation or contraction due to the changes in
phase and concentration. The last term represents the mixing
enthalpy between the different species. The magnitude of the
parameters �i j controls the strength of partitioning for the
different binary systems. For simplicity reasons, Eq. (3) is
chosen to rely on a small set of parameters while enabling
to reproduce the main features of the dealloying process.
However, we note that it is straightforward to parametrize
the phase-field model with more complex free energies taken
from thermodynamics databases [51] as presented in the last
part of this paper.

With the constraint c1 + c2 + c3 = 1, we note that Eq. (1)
can be written as a function of three degrees of freedom,
which are the concentration fields c1 and c2 and the phase
field φ. The evolution equations of the order parameters can
be derived from the variations of the total free energy. In
particular, the concentration fields c1 and c2 are assumed to
follow Cahn-Hilliard equations [52],

ċi = ∇ · Mi j∇μ j, (4)

TABLE I. Parameters used in the phase-field simulations in the
following sections unless indicated otherwise.

T (K) 1775
Va (nm3) 0.01
σφ (eV/nm) 3.18
λφ (eV/nm3) 1.59
Lφ (nm3/(eVs)) 1.14 × 109

Cu Ti Ta

Li (eV/nm3) 11.5 11.8 17.6
Ti (K) 1358 1941 3290
σi (eV/nm) 9.0 9.0 9.0
Dl (nm2/s) 7 × 109 7 × 109 7 × 109

Ds (nm2/s) 0 0 0

Cu-Ti Ti-Ta Cu-Ta

�i j (eV/nm3) 0 0 90

where μ j = δF/δc j denotes the chemical potential of el-
ement c j and Mi j the elements of the mobility matrix,
symmetric because of the Onsager reciprocal relations.
These components are expressed as Mi j = M0(φ)ci(δi j −
c j ) [53,54]. This choice enables us to reproduce a Fick-
ian diffusion equation in the diluted limit. The parameter
M0(φ) depends on the order parameter to account for phase-
dependent mobilities. It is considered as a linear function of φ

chosen such that the mobility reaches Ms in the solid and Ml

in the liquid:

M0(φ) = φ(x)(Ms − Ml ) + Ml . (5)

The values of Ml and Ms are chosen according to the dif-
fusion coefficients in both phases: Ml = DlVa/kT and Ms =
DsVa/kT . The kinetics equations are completed with a simple
dissipative dynamics on the field φ [55]:

φ̇ = −Lφ

δF
δφ

. (6)

We consider the model system of a Ti-Ta precursor alloy
immersed in liquid Cu, where Ti dissolves selectively in the
Cu melt, resulting in an interconnected Ta structure [30,47]. In
the following, the indices i = 1, 2, 3 represent, respectively,
Cu, Ti, and Ta. The parameters used in our simulations are
listed in Table I. The parameters λ and σφ are chosen to obtain
an equilibrium profile of the phase field with realistic width
w = 2 nm and surface energy γ = 200 mJ/m2. We note that
the value of γ is characteristic of the excess free energy of the
solid/liquid interface for pure metals. For interfaces between
phases of different compositions as encountered in this work,
the composition gradient terms of Eq. (1) also contribute to
the total excess free energy of the interface.

We would like to highlight that the interface width is
considered here as a physical parameter. Indeed, the mor-
phologies of the dealloyed microstructures depend on the
diffusivity of the immiscible element within the interfa-
cial layer between the solid and liquid phases. Enlarging
the interface width would increase diffusive transport along
the interface and therefore alter the resulting morphologies.
Hence, the results presented in this paper are expected to
depend on the specific value of w.
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FIG. 1. Cu-Ti-Ta ternary phase diagram obtained with the ther-
modynamic parameters listed in Table I. It displays a large region
of two-phase coexistence between the solidus (blue line) and the
liquidus (orange line). Tie-lines are shown with black straight lines.

In the following, we set the temperature at T = 1775 K, for
which the equilibrium concentration of Ti in the Cu-Ti phase
diagram is close to the experimental value (Fig. 1).

For numerical purposes, the phase-field equations are
normalized with the characteristic length scale lc = w (the
liquid-solid interface width) and the characteristic timescale
tc = w2/(Mlλ), where λ defines the characteristic energy
density. We assume that the timescale associated with the
phase change at the interface is much faster than the diffu-
sive timescale [50], which translates into the dimensionless
coefficient L̃φ � 1. In practice, we take L̃φ = 10.

The phase-field equations are discretized in space and time
and numerically integrated using an explicit Euler scheme.
In this paper, the dimensionless space discretization is taken
as dx = 0.25 for 2D and 3D simulations and dx = 0.125
for 1D simulations. The dimensionless time discretization is
dt = 10−5 in 1D, dt = 1.5 × 10−4 for 2D simulations, and
dt = 7 × 10−5 for 3D simulations. The thermodynamics pa-
rameters Li, Ti, and �i j listed in Table I control the shape of
the ternary phase diagram for our model Cu-Ti-Ta system. The
conditions for equilibrium between solid and liquid phases
can be found by equating the chemical potentials of two
species (the third component necessarily satisfies c1 + c2 +
c3 = 1) and equating the grand potential [50]:

μs
1

(
cs

i

) = μl
1(cl

i ), (7)

μs
2

(
cs

i

) = μl
2(cl

i ), (8)

f s
(
cs

i

) − cs
1μ

s
1

(
cs

i

) − cs
2μ

s
2

(
cs

i

)
= f l

(
cl

i

) − cl
1μ

l
1

(
cl

i

) − cl
2μ

l
2

(
cl

i

)
, (9)

where μs,l
i (cs,l

i ) = δ f s,l (ci )
δci

|ci=cs,l
i

are the chemical potentials

with i = 1, 2; f s(cs
i ) = fch(1, cs

i ) and f l (cl
i ) = fch(0, cl

i ) are
solid and liquid free energies taken from Eq. (3). There are
four free parameters (cs,l

i , i = 1, 2) and three equilibrium

equations, such that multiple equilibrium conditions are pos-
sible. Using the thermodynamic parameters considered here,
these equilibrium conditions can be solved to express the
equilibrium composition as a function of a single degree of
freedom (e.g., the Ta composition in the solid). Figure 1 repre-
sents the resulting phase diagram obtained at the temperature
of interest T = 1775 K. The tie lines between the solidus and
the liquidus represent possible equilibrium concentrations at
the solid-liquid interface. Due to the large mixing enthalpy
between Cu and Ta, the Ta solubility in the Cu melt is very
small. However, there is no mixing enthalpy between Ta and
Ti, so the Ta solubility in the Cu-Ti melt increases with Ti
concentration.

III. THEORETICAL ANALYSIS OF 1D DISSOLUTION

We start our investigation of the LMD process with a
1D implementation of the phase-field model. In 1D, the
solid/liquid interface cannot destabilize through spinodal de-
composition and remains necessarily planar. Its dynamics is
then controlled only by the composition profiles in both liq-
uid and solid phases. The dissolution of ternary systems is
a classic and challenging topic in materials science. Indeed,
in contrast with binary systems, the interfacial equilibrium
compositions are not uniquely defined for ternary systems. A
dissolution model was proposed by Maugis et al. [56]: the
authors assumed a simple linear phase diagram and neglected
the off-diagonal terms of the mobility matrix such that the dif-
fusion is described by independent Fick equations. However,
this latter assumption does not apply to the Cu-Ti-Ta system
where the strong mixing enthalpy between Cu and Ta leads to
non-negligible cross-interaction terms in the diffusion equa-
tions. It was therefore necessary to develop a more elaborate
diffusion-limited dissolution model applicable to the Cu-Ti-
Ta system, which considers both diagonal and off-diagonal
terms of the mobility matrix. This section is dedicated to the
development of such model.

Phase-field simulations reveal that the dealloying kinetics
follows two stages. In the early stages, Ti dissolves in large
quantities into the melt because it has a much larger solu-
bility than Ta in Cu. As a consequence, Ta accumulates at
the solid-liquid interface, slowing down the dissolution of Ti.
During this stage, the dissolution rate decreases progressively,
until Ta dissolves at the same rate as Ti in the melt, resulting
in a steady-state dissolution. These two stages are discussed
separately in the following.

A. Passivation

For a ternary system, the movement of the solid/liquid
interface is controlled by the diffusion of both Ta and Ti away
from the interface. In contrast with binary systems, the inter-
face concentrations on the solid and liquid side are not unique
and can follow an infinite number of equilibrium conditions
represented by tie lines in Fig. 1.

In the first stage, Ti dissolves much faster than Ta due
to its larger solubility in the Cu melt and Ta therefore ac-
cumulates at the solid-liquid interface. This is demonstrated
by the phase-field profiles reported in Fig. 2(a) representing
the Ta (blue) and Ti (green) profiles at three simulation times
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(a)

(b)

FIG. 2. (a) Evolution of the composition profiles of Ti and Ta
during a passivation simulation of Ta10Ti90 dealloyed in the pure Cu
melt. (b) Log-log plot of the interface velocity against time for three
compositions of the precursor. The black dashed line is a guide to the
eye of slope −1.

together with the phase-field shown with a dash line. Accord-
ing to the phase diagram of the ternary system (Fig. 1), the
accumulation of Ta on the solid side of the interface leads
necessarily to the reduction of the interfacial concentration of
Ti on the liquid side. As exemplified in Fig. 2(a), this will
reduce the flux of Ti leaving the interface and slow down the
dissolution. If we assume that Ta is completely immiscible
with the Cu melt, the interface will become saturated in Ta
and the dealloying process will eventually stop.

Let us note cp = cs
3 the concentration of Ta in the interface.

As we assume that no Ta escapes in both liquid and solid
phases, the height of the Ta peak in the interface can be easily
related to the position of the interface,

cp(t ) = csxi(t )

ξ
, (10)

where ξ is a length scale related to the interface width and
xi(t ) denotes the position of the interface (xi(0) = 0) and
cs = cs

30 is the Ta composition of the precursor. Following
previous work [30], we assumed that the interface velocity
is only controlled by the interfacial Ta content and decreases
exponentially with cp,

vi(cp) = v0 exp (−cp/c∗), (11)

Interface
thickness

Dealloying 
direction

FIG. 3. Schematic representation of the 1D concentration pro-
files during LMD. The initial composition of the precursor alloy is
labeled cs

i0 and the initial composition of the melt is labeled cl
i∞; cs

i

and cl
i denote the interfacial concentrations.

where v0 is the dissolution velocity for cp = 0 and c∗ is a
characteristic concentration with c∗ � 0.045 [30]. Injecting
Eq. (10) in Eq. (11) and integrating the time, we find that the
velocity should follow a 1/t behavior,

vi(t ) = v0

1 + t/τ
, (12)

where τ = ξc∗/csv0 is a characteristic time for passivation.
Figure 2(b) presents the log-log relation of the interface

velocity against time obtained from 1D phase-field simula-
tions with different initial Ta solid concentrations. On short
timescales (from t = 0 to t � 20τ ), the interface velocity
follows a straight line of slope −1, demonstrating the ∼1/t
dynamics. For three different values of the Ta precursor com-
position, we have performed a fit of our data against Eq. (12)
to deduce v0 and τ . These fitting procedures are consistent
and we find v0 � 9.0(w/tc) and that the product ξc∗ � 0.05w

varies marginally with the initial solid concentration of Ta.
Despite the simplicity of the model, it accurately reproduces
the early stage of the dissolution kinetics.

At longer times, the velocity keeps dropping but the slope
changes (see Fig. 2(b)). This is attributed to the flux of Ta
in the liquid. Indeed, the enthalpy of mixing between Cu
and Ta is finite and allows a small amount of Ta to dissolve
slowly into the liquid. This leakage of Ta is negligible on
short timescales but affects the interface kinetics on longer
timescales.

B. Self-similarity solution of dissolution

After the initial stage described above, the interface kinet-
ics becomes a function of the dissolution of both Ta and Ti
and depends on the chemical equilibrium at the solid/liquid
interface that is not uniquely defined. The initial conditions of
the problem include the concentrations of the base alloy (cs

i0)
and the melt (cl

i∞), but the concentrations near the solid-liquid
interface (cs

i and cl
i ) remain unknown (see Fig. 3). The position

of the solid-liquid interface is denoted xint(t ), and we con-
sider xint(t = 0) = 0. With the present definition, xint < 0 and
equal in magnitude to the dealloying depth xi(t ) = |xint(t )|. As
shown in Fig. 3, the dealloying front moves toward x < 0 with
a negative velocity vint < 0. Analytical solutions for xint(t ) and
the concentration fields, which depend on both space and time,
can be obtained by exploiting the self-similar nature of the
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dissolution kinetics, namely, the concentration fields only de-
pend on the scaled variable x/xint(t ) where xint(t ) ∼ −√

Dlt ,
thereby enabling us to map the time-dependent free-boundary
problem of dissolution to a stationary problem as described in
what follows.

The phase-field model provides the evolution equations of
the concentration fields [see Eq. (4)]. To simplify the cal-
culation, we neglect the gradient terms on the composition
profiles and assume that the mobilities of all components are
the same (Ml = Mli for i = 1, 2, 3 and Ms = 0). Therefore,
the mobility matrix Mi j is

Mi j = Mlci(δi j − c j ) in the liquid, (13)

Mi j = 0 in the solid. (14)

The chemical potential are derived from Eq. (1) with μ j =
δF/δc j . The concentration fields in the bulk solid are constant
because of the zero solid state diffusivity, and the evolution
equations in the liquid phase become in 1D:

∂t c1 = ∂x[Mlc1(1 − c1)∂xμ1 − Mlc1c2∂xμ2], (15)

∂t c2 = ∂x[Mlc2(1 − c2)∂xμ2 − Mlc1c2∂xμ1], (16)

where the derivatives of the chemical potentials are expressed
as a function of composition gradients:

∂xμ1 = kBT

Va

(
∂xc1

c1
+ ∂xc1 + ∂xc2

1 − c1 − c2

)

− �13(2∂xc1 + ∂xc2),

+ ∂xφ

(
L1

(
T − T1

T1

)
− L3

(
T − T3

T3

))
, (17)

∂xμ2 = kBT

Va

(
∂xc2

c2
+ ∂xc1 + ∂xc2

1 − c1 − c2

)
− �13∂xc1

+ ∂xφ

(
L2

(
T − T2

T2

)
− L3

(
T − T3

T3

))
, (18)

as we consider that �12 = �23 = 0, and �13 is the only
nonzero mixing enthalpy.

We introduce a moving reference frame x′(t ) = x − xint(t ),
such that x′ = 0 at the solid-liquid interface. The time deriva-
tives of the concentration fields can be written as

∂ci(x, t )

∂t
= ∂ci(x′(t ), t )

∂t
+ ∂ci(x′(t ), t )

∂x′
∂x′(t )

∂t
. (19)

At the interface, we assume ci(x′(t ), t ) constant, so we have
the relation ∂t c1 = −vint

∂c1
∂x , using the fact that ∂t x′(t ) =

− dxint
dt = −vint. To obtain the mass conservation, we integrate

Eq. (4) for c1 over the solid-liquid interface, which yields∫ δ

−δ

−vint
∂c1

∂x
dx = vint

(
cs

10 − cl
1

)

= Mlc
l
1

(
1 − cl

1

)
∂xμ

l
1 − Mlc

l
1cl

2∂xμ
l
2. (20)

Taking ∂xμ
l
1 and ∂xμ

l
2 from Eqs. (17) and (18), we obtain

vint
(
cs

10 − cl
1

) = MlkBT

Va
∂xcl

1 − Ml�13cl
1

(
2 − 2cl

1 − cl
2

)
∂xcl

1

− Ml�13cl
1

(
1 − cl

1

)
∂xcl

2, (21)

FIG. 4. Comparison between the partial derivatives of the con-
centration profiles obtained from a phase-field simulation of Ta15Ti85

dealloyed in the pure Cu melt.

where ∂xcl
i denotes the concentration gradient on the liquid

side taken at the solid-liquid interface. We note that ∂xφ = 0
on the solid and liquid sides of the interface, such that the
terms of the chemical potential involving the latent heat of
fusion cancel out. During the dealloying process, the concen-
tration of the immiscible element is very small in the liquid
(cl

3 	 1), and we can consider that cl
1 + cl

2 ≈ 1. Therefore,
we can simplify the equation to obtain the boundary condition
of cl

1:

vint
(
cs

10 − cl
1

) = MlkBT

Va
∂xcl

1 − Ml�13cl
1cl

2

(
∂xcl

1 + ∂xcl
2

)
.

(22)
The boundary conditions of cl

2 and cl
3 can be derived with the

same procedures, yielding

vint
(
cs

20 − cl
2

) = MlkBT

Va
∂xcl

2 + Ml�13cl
1cl

2

(
∂xcl

1 + ∂xcl
2

)
,

(23)

vint
(
cs

30 − cl
3

) = MlkBT

Va
∂xcl

3. (24)

Equations (22)–(24) provide boundary conditions for the par-
tial differential equations (PDEs) Eq. (15) and (16). To solve
the PDEs, we first rewrite the equations by substituting the
chemical potentials with Eqs. (17) and (18):

∂t c1 = Dl∂xxc1 − Ml�13[(1 − 3c1)∂xc1(∂xc1 + ∂xc2)

+ c1(1 − c1)(∂xxc1 + ∂xxc2)], (25)

∂t c2 = Dl∂xxc2 + Ml�13[(2c2∂xc1 + c1∂xc2)(∂xc1 + ∂xc2)

+ c1c2(∂xxc1 + ∂xxc2)]. (26)

These PDEs offer a compact expression of the ternary diffu-
sion problem but are too complex to solve analytically.

To further simplify the PDEs, it is necessary to neglect
some nonlinear terms. To choose which terms can be dis-
carded, we examine the concentration profiles obtained from
phase-field simulations and compute the various gradient
terms involved in Eqs. (25) and (26) (Fig. 4 shows an ex-
ample). We realize that |∂xxci| � ∂xc j∂xck far away from the
interface. Therefore, we choose to ignore all terms involving
products of first derivatives (i.e., of the form ∂xci∂xc j). From
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the constraint c1 + c2 + c3 = 1 and the fact that c3 	 1 in the
liquid phase, we have the approximation c1 + c2 ≈ 1 and the
relation dc1 + dc2 = 0. Based on these approximations, the
evolution equations become

∂t c1 = Dl∂xxc1 + Ml�13c1(1 − c1)∂xxc3, (27)

∂t c2 = Dl∂xxc2 − Ml�13c2(1 − c2)∂xxc3, (28)

∂t c3 = Dl∂xxc3. (29)

If there is no mixing enthalpy (�13 = 0), all components
follow independent Fickian diffusion equations. If �13 �= 0,
the evolution of c1 and c2 are coupled, while the evolution of
c3 remains Fickian. In the following calculations, we will use
c2 and c3 as independent variables and assume the relation
c1 + c2 + c3 = 1 to hold.

To solve the time-dependent diffusion problem, we seek
a self-similar solution by introducing a coordinate z(x, t ) =
x/xint(t ), such that the concentration fields ci(x, t ) only de-
pend on z. The transformations from ci(x, t ) to c(z) are given
by

∂ci

∂t
= − zvint

xint

∂ci

∂z
,

∂ci

∂x
= 1

xint

∂ci

∂z
,

∂2ci

∂x2
= 1

x2
int

∂2ci

∂z2
. (30)

The boundary conditions at x = xint can be rewritten as

∂zc2

∣∣
z=1 = xintvint

Dl

[(
cs

20 − cl
2

)

+ 1

Dl
Ml�13cl

2

(
1 − cl

2

)(
cs

30 − cl
3

)]
, (31)

∂zc3|z=1 = xintvint

Dl

(
cs

30 − cl
3

)
. (32)

If we define the constants

B2 = (
cs

20 − cl
2

) + Ml�13

Dl
cl

2

(
1 − cl

2

)(
cs

30 − cl
3

)
, (33)

B3 = cs
30 − cl

3, (34)

and introduce a dimensionless Peclet number p =
xintvint/2Dl , the boundary condition can be written as
∂zc2|z=1 = 2pB2 and ∂zc3|z=1 = 2pB3. The evolution
Eqs. (28) and (29) become

2pz∂zc2 + ∂zzc2 − Ml�13c2(1 − c2)

Dl
∂zzc3 = 0, (35)

2pz∂zc3 + ∂zzc3 = 0. (36)

We focus first on Eq. (36) that only contains first- and
second-order derivatives and can be solved with the boundary
condition [Eq. (32)],

∂zc3 = 2pB3epe−pz2
, (37)

which can then be substituted into Eq. (35). To solve Eq. (35),
we consider that the coefficient

K = Ml�13

Dl
cl

2

(
1 − cl

2

)
(38)

is constant, leading to

∂zc2 = [2pB2 + 2p2KB3(1 − z2)]epe−pz2
. (39)

Finally, we integrate Eq. (37) with the boundary conditions
c3(z = 1) = cl

3 and c3(z = −∞) = cl
3∞ to obtain the concen-

tration profile of c3,

c3(z) = B3ep√π p(erf (
√

pz) + 1) + cl
3∞, (40)

and integrate Eq. (39) with boundary conditions c2(z = 1) =
cl

2 and c2(z = −∞) = cl
2∞ to obtain the concentration profile

of c2:

c2(z) =
[

B2 + KB3

(
p − 1

2

)]
ep√π p(erf (

√
pz) + 1)

+ KB3 pzepe−pz2 + cl
2∞. (41)

From the definition of the Peclet number, we can calculate the
interface position xint(t ) = −√

4pDlt . Therefore, the coordi-
nate z(x, t ) in the concentration profiles can be substituted by
z(x, t ) = −x/

√
4pDlt and the Peclet number and the concen-

tration c2 and c3 at the interface must satisfy the constraints:

cl
2 − cl

2∞ = KB3 p

+
[

B2 + KB3

(
p − 1

2

)]
ep√π p(erf (

√
p) + 1),

(42)

cl
3 − cl

3∞ = B3ep√π p(erf (
√

p) + 1). (43)

The analysis detailed above provides a theoretical predic-
tion of the concentration profiles in 1D. Equations (42) and
(43) represent two constraints of the diffusion problem but
involve three unknown (cl

2, cl
3, and p). A way to overcome

this limitation is to consider the Peclet number obtained from
the phase-field simulation starting from the same initial condi-
tions; then, the interfacial compositions cl

2, cl
3 can be obtained

from Eqs. (42) and (43), fully determining the dissolution
kinetics and the diffusion profiles.

Figures 5 and 6 compare composition profiles thus ob-
tained from the theoretical analysis with phase-field results.
Figure 5 displays results obtained for a Ta15Ti85 precursor
dealloyed in pure Cu melt; the corresponding Peclet number
obtained from the phase-field simulation is p = 3.6 × 10−4.
Because both the concentrations of Ti and Ta in the solid (cs

20
and cs

30) are larger than in the liquid (cl
2∞ and cl

3∞), Ti and Ta
diffuse away from the solid-liquid interface. This diffusion is
Fickian because it occurs from high to low concentrations re-
gions. Table II compares the interface compositions obtained
from the phase-field simulations and from the diffusion model
(see “Dissolution model 1” row).

In Fig. 6, we report an other example, which represents a
case of non-Fickian diffusion. In this simulation, a Ta50Ti50

precursor dissolves into a Cu30Ti70 melt. The Peclet number
of the dissolution kinetics obtained from the phase-field simu-
lation is p = 1.69 × 10−5. Since the concentration of Ti in the
solid is smaller than in the liquid, Ti should diffuse from the
liquid pool to the interface. However, on the liquid side of the
interface, the Ti concentration reaches a value larger than cl

2∞.
This promotes the formation of a concave Ti profile as shown
in Fig. 6(a), characterizing a non-Fickian diffusion profile.
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FIG. 5. Concentration profiles obtained from the phase field sim-
ulation (blue line) and analytical calculations (red dashed line) with
the initial conditions cs

20 = 0.849, cs
30 = 0.149, cl

2∞ = 0.001, and
cl

3∞ = 0.001. The snapshots are taken at t = 27.46 μs and the com-
position profiles follow a Fickian diffusion.

In both cases, the theoretical approach successfully predicts
the concentration profiles obtained during dissolutions in both
Fickian and non-Fickian cases, which validates the ternary
diffusion model developed above.

C. Self-similarity solution of dissolution with phase equilibrium
conditions

Instead of using phase-field simulations to identify the
Peclet number of the dissolution, another strategy consists
of combining the conditions Eqs. (42) and (43) with the
phase equilibrium conditions Eqs. (7)–(9) to obtain analytical

TABLE II. Comparison of Peclet number and interfacial com-
positions obtained for the dissolution of a Ta15Ti85 precursor alloy
in a pure Cu melt. Dissolution model 1 indicates the data obtained
from the dissolution model when the Peclet number is taken from
the phase-field simulation. Dissolution model 2 indicates the data
obtained from the dissolution model coupled with phase equilibrium
conditions (see Sec. III C).

p cl
2 cl

3

Phase-field simulation 3.6 × 10−4 0.0271 0.00533
Dissolution model 1 3.6 × 10−4 0.0298 0.00592
Dissolution model 2 4.2 × 10−5 0.0104 0.00216

Theory Simulation

0 500 1000 1500 2000
0.001

0.002

0.003

0.004

x (nm)

c T
al

Theory Simulation

0 500 1000 1500 2000

0.7005

0.7010

0.7015

x (nm)

c T
il

(a)

(b)

FIG. 6. Concentration profiles obtained from the phase field sim-
ulation (blue line) and analytical calculations (red dashed line) in
the case of a non-Fickian diffusion. The initial conditions are cs

20 =
0.499, cs

30 = 0.499, cl
2∞ = 0.701, and cl

3∞ = 0.001. The snapshots
are taken at t = 24.03 μs.

predictions without resorting to phase-field simulations. We
then have five equations with five unknown variables (Peclet
number p and interfacial concentrations cl

2, cl
3, cs

2, and cs
3),

which can be solved numerically. In other words, the dealloy-
ing kinetics and the interfacial concentrations can be uniquely
determined from the initial compositions of the base alloy and
the melt (cs

20, cs
30, cl

2∞, and cl
3∞).

As shown in Table II (see row “Dissolution model 2”),
this calculation provides a very different prediction than the
phase-field model for the dealloying kinetics of a Ta15Ti85 pre-
cursor dealloyed in pure Cu melt. To look more closely at this
difference, we compare the composition profiles across the
interface resulting from both approaches. To deduce compo-
sition profiles from the equilibrium compositions obtained by
the dissolution model, we proceed as follows: we initialize a
1D phase-field simulation with the expected compositions on
the solid and liquid sides of the interface. Then, the phase-field
model is numerically integrated with a constant diffusivity in
both phases (Ds = Dl ) to allow the system to relax quickly
toward an equilibrium configuration (given by ∂tφ = 0 and
∂t ci = 0). This method consists of using the phase-field model
as a free-energy minimizer to obtain equilibrium interfacial
profiles. The resulting profiles are shown with dotted lines in
Fig. 7 while phase-field results obtained from a dealloying
simulation are shown with dashed lines. This comparison
demonstrates that the phase-field simulation does not follow
the interface equilibrium expected from the phase diagram.
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FIG. 7. Interfacial concentration profiles from the phase-field
simulation of the Ta15Ti85 precursor dealloyed in pure Cu melt
(dashed line) and phase equilibrium conditions from theoretical pre-
diction 2 in Table II (dotted line).

In phase-field simulations, there is no diffusion in the solid,
such that the Ta peak is constrained inside the solid-liquid
interface (Fig. 7). The shape of this peak is controlled by the
interplay between the chemical free energy and the gradient
terms acting on the composition [see Eq. (1)]. Because of
these gradient terms, the height of the Ta peak does not re-
lax to the equilibrium composition expected from the phase
diagram.

In practice, the solid-state diffusivity is about four to five
orders of magnitude smaller than the liquid-state diffusivity
but remains finite. Therefore, we expect that the equilibrium
interfacial concentrations will first be close to the phase-field
simulation results, but will eventually approach the phase
equilibrium on typical experimental timescales ranging from
seconds to minutes. As will be detailed later in Sec. V, we
can estimate that, on such timescales, a finite solid diffusivity
allows the Ta peak to spread in the solid and the interfacial
composition to reach chemical equilibrium. Our theoretical
estimate developed in that section predicts that chemical
equilibrium will be achieved for dealloying depths satisfying
xi/w � 2pDl/Ds, for which the role of the solid diffusivity
becomes dominant. Our theoretical calculation combining the
dissolution model and the phase equilibrium conditions there-
fore provides a direct prediction of the concentration profiles
obtained on experimental timescales.

IV. SPINODAL DECOMPOSITION

A. Initial destabilization

The 1D analysis presented in Sec. III A shows that the
first stage of dissolution leads to the buildup of a peak of Ta
within the solid-liquid interface. Because of the composition
gradient terms of the free energy, the concentration profiles
spread over the interface width and an overlap region appears
naturally between the Ta peak and the liquid Cu. If the system
is not confined to 1D, the interface composition can spinodally
decompose within the interface to create alternating Ta-rich
and Cu-rich domains. If this spinodal decomposition occurs,
the dealloying process continues in the Ta-poor regions while

it is stopped in the Ta-rich regions because of the strong
dependence of the dealloying velocity on the Ta content [see
Eq. (11) and Fig. 2]. This concept of interfacial spinodal
decomposition establishes a framework to explain the desta-
bilization of the planar dealloying front and the initial stage of
the dealloying process [48,49].

In this section, following the classical analysis of spinodal
decomposition in multicomponent systems [48], we present
a linear stability analysis able to analytically predict the oc-
currence of the spinodal decomposition, the wavelength of
the initial destabilization, and therefore the size of the initial
microstructure. We consider a system with initially uniform
concentrations noted c̄1, c̄2, and c̄3 (with c̄3 = 1 − c̄1 − c̄2)
and investigate the stability of these homogeneous concentra-
tions upon small perturbations. The diffusion equations [see
Eq. (4)] are linearized around c̄1, c̄2, and c̄3 and are written as

ċ1 = Mic̄1(1 − c̄1)∇2μ1 − Mic̄1c̄2∇2μ2, (44)

ċ2 = Mic̄2(1 − c̄2)∇2μ2 − Mic̄1c̄2∇2μ1, (45)

where Mi is the mobility of solute within the interface and we
consider Mi = M0(φ = 1

2 ) if we assume that the diffusivities
of all the components are the same. In the following, we note
Mlm = Mic̄l (δlm − c̄m). The chemical potentials μ1 and μ2 are
also linearized around (c̄1, c̄2):

μ1(c1, c2) = ∂ fch

∂c1

∣∣∣∣
c̄1,c̄2

+ (c1 − c̄1) f11 + (c2 − c̄2) f12

− (σ1 + σ3)∇2c1 − σ3∇2c2, (46)

μ2(c1, c2) = ∂ fch

∂c2

∣∣∣∣
c̄1,c̄2

+ (c2 − c̄2) f22 + (c1 − c̄1) f12

− (σ2 + σ3)∇2c2 − σ3∇2c1, (47)

where fi j = ∂2 fch

∂ci∂c j
|c̄1,c̄2 [ fch is defined in Eq. (3)]. We then

consider a small periodic variation of c1 and c2 around their
equilibrium values:

u1(r) = c1(r) − c̄1 = u0
1eωt+ik.r,

u2(r) = c2(r) − c̄2 = u0
2eωt+ik.r, (48)

where r is a position in the (y, z) plane perpendicular to the
dealloying direction, k is a wave vector, ωk is the correspond-
ing growth rate, and u0

1 and u0
2 are the initial amplitudes of the

perturbations. Injecting Eq. (48) into Eqs. (43) and (44), we
obtain the relations

u0
1(ωk + Ak2) + Bk2u0

2 = 0, (49)

Ck2u0
1 + u0

2(ωk + Dk2) = 0. (50)

where k is the norm of the wave vector k, and

A = M11( f11(c̄1, c̄2) + k2(σ1 + σ3))

+ M12( f12(c̄1, c̄2) + k2σ3), (51)

B = M11( f12(c̄1, c̄2) + k2σ3)

+ M12( f22(c̄1, c̄2) + k2(σ2 + σ3)), (52)
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FIG. 8. Growth rate ωk versus the wave vector k for three differ-
ent compositions. The growth rate and wave vector are scaled by the
characteristic time and length, respectively.

C = M22( f12(c̄1, c̄2) + k2σ3)

+ M12( f11(c̄1, c̄2) + k2(σ1 + σ3)), (53)

D = M22( f22(c̄1, c̄2) + k2(σ2 + σ3))

+ M12( f12(c̄1, c̄2) + k2σ3). (54)

Equations (49) and (50) establish a linear system that can be
solved for the fields u1(r) and u2(r). The system admits a
nontrivial solution [i.e., different than (0,0)] only if its deter-
minant is nil, which leads to a second-degree equation on ωk:

ω2
k + (A + D)k2ωk + (AD − BC)k4 = 0. (55)

For any concentration c̄1, c̄2, this second-degree equa-
tion can be solved analytically for ωk to obtain the dispersion
relation of the instability (the smaller solution of the quadratic
equation can be discarded):

ωk = k2

2
[−(A + D) +

√
(A + D)2 − 4(AD − BC)]. (56)

Figure 8 represents the dispersion relation of Eq. (56) for
three different compositions where the amount of Ta is grad-
ually increased while the content of Cu is kept constant. Let
us notice that in the case c̄1 = 0.5, c̄2 = 0.45, and c̄3 = 0.05,
ωk < 0 for any k > 0. In other words, no perturbation can de-
velop for this concentration combination. However, for higher
Ta compositions, the system presents an unstable domain
where ωk > 0. The growth rate presents a maximum, thus
selecting the corresponding wavelength of the microstructure
(given by the fastest growing wave-vector kmax).

During the first stage of dissolution, the composition at the
interface changes progressively with time and the Ta content
increases in the interface (see, e.g., Fig. 2). Figure 9 displays
the evolution of the wave vector and growth rate with the Ta
content, while the Cu content remains fixed at 50%. Figure 9
shows that the maximum growth rate ωk quickly raises when
c̄3 exceeds a threshold. While the growth rate ωk raises, the
corresponding wave vector kmax first increases quickly from
0 and plateaus in the range 3l−1

c − 4l−1
c , where lc is the char-

FIG. 9. Maximum growth rate ωmax and the corresponding wave
vector kmax as function of the composition of Ta with a fixed average
Cu concentration c3 = 0.5.

acteristic length scale. This result is validated by extending
the composition range to any possible concentration combina-
tions of the ternary system. We display the results in the form
of a ternary plot shown in Fig. 10. The magnitude of the fastest
growing wave vector varies from 0 for low Ta and Cu contents
where no destabilization can occur to kmax ∼ 3.5l−1

c along
the binary Ta-Cu line. To find the critical point where the
instability develops, we consider the limit of vanishing wave
vector k → 0. In this limit, the condition to have a positive
growth rate at a finite k is

dω

dk

∣∣∣∣
k→0

> 0, (57)

which translates into

1
2 [−(A + D) +

√
(A + D)2 − 4(AD − BC)] > 0, (58)

where higher order terms in k are neglected. Therefore, we
can obtain the driving force for spinodal decomposition [30]

FIG. 10. Maximum wave vector kmax shown as a color map for
all possible interface concentrations in the ternary system. The red
arrow shows the trajectory in the composition space obtained at the
solid-liquid interface from the 1D phase-field simulation of Ta10Ti90

dealloyed in the pure Cu melt (Fig. 2).
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FIG. 11. The driving force for spinodal decomposition. The
black dashed line separates positive and negative regions. The red
arrow shows the trajectory of the driving force extracted from the
solid-liquid interface of the corresponding phase-field simulation of
Ta10Ti90 dealloyed in the pure Cu melt (Fig. 2). The color map
represents the magnitude of the driving force.

from this simplified criterion:

fs = (
M11M22 − M2

12

)(
f 2
12 − f11 f22

)
. (59)

This criterion also matches the stability criterion from the
analysis of the lattice model of multicomponent solid solu-
tions [49].

By combining this criteria with the results of the dealloy-
ing simulations, it is possible to predict the initial conditions
leading to the destabilization of the dealloying front during the
first stage of dissolution. In Fig. 11, we show the driving force
defined by Eq. (59) in the ternary diagram. During the disso-
lution of a precursor dealloyed in Cu melt, the composition at
the interface changes with time as discussed in Sec. III and
follows a trajectory in the compositional space. The red arrow
shown in Fig. 11 shows the change of interfacial composition
(obtained at the level-set φ = 0.5) during a 1D phase-field
simulation of the dissolution of a Ta10Ti90 precursor dealloyed
in the pure Cu melt. At the beginning of the dissolution, the
interface composition contains a small amount of Ta and the
driving force for the spinodal decomposition is negative (the
blue region on Fig. 11). Along the dissolution, the content of
Ta at the interface builds up, and the driving force becomes
positive, leading to the spinodal decomposition of the system.

The scenario described above is verified by 2D phase-field
simulations, where the spinodal decomposition can develop
along the interface. Figure 12 shows the evolution of the inter-
face morphology obtained from the dissolution of a Ta10Ti90

precursor in a pure Cu melt. We also show the corresponding
evolution of the interfacial Ta composition and its power spec-
trum in Fig. 13. We observe that, at the first stage (t = 0 ns to
t = 110 ns), the solid-liquid interface remains planar while the
interfacial Ta content increases. The driving force for spinodal
decomposition increases with Ta content and small composi-
tion fluctuations are amplified. During the second stage (t =
110 ns to t = 220 ns), the increasing composition fluctuations

0

0.75

t=220 ns

t=110 ns

t=5 ns

FIG. 12. 2D phase-field simulation showing the transition from
a planar dealloying front to a corrugated interface promoted by
spinodal decomposition. The color map represents the concentration
of Ta in the system. The domain size is 256 nm × 32 nm.

eventually leads to the interfacial spinodal decomposition and
to the formation of Ta-rich blobs along the interface.

To quantitatively analyze this initial destabilization, we
extract the fastest growing wave vector obtained from phase-
field simulations by computing the power spectrum of the
interfacial Ta composition profiles (see Fig. 13) to extract
the dominant wavelength. As shown in Fig. 13(b), the power
spectra are rather irregular but clearly present a peak around
k ∼ 1 − 2l−1

c . The position of the peak kmax is extracted and
its time evolution is shown with red dots in Fig. 14(b) and
compared to the fastest growing wave vector obtained from
the linear stability analysis [Eq. (56)]. Figure 14(a) displays
the evolution of the interfacial composition used as an input
of the linear stability analysis.

As shown with a blue line in Fig. 14(b), the linear stability
analysis predicts a sharp increase of the fastest-growing wave

FIG. 13. (a) The periodic oscillation of Ta concentration at the
solid-liquid interface (φ = 0.5) for five different stages (the concen-
tration amplitudes are rescaled) obtained from the simulation shown
on Fig. 12. (b) Power spectra of the interfacial concentration profile
obtained at different times.
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FIG. 14. (a) Time evolution of the averaged interfacial concen-
trations obtained from the phase-field simulation. (b) Comparison
of the maximum wave vector k calculated using the linear stability
analysis with the interfacial concentrations obtained from (a) and
measured from the phase-field simulation.

vector that stabilizes around k = 2.56l−1
c . The selected wave

vector obtained from the phase-field simulation is of the order
of 1.5l−1

c at the beginning of the simulation and decreases
slightly with time to reach 1.2l−1

c . The linear stability analysis
is therefore able to predict the order of magnitude of the
characteristic wavelength for the microstructure developing at
the first stage of dealloying. The discrepancy between both
results is attributed to the simplicity of the linear stability
analysis that does not incorporate any nonlinearities nor the
complexity of the composition fields captured with phase-field
modeling.

This spinodal decomposition constitutes a framework to
understand the initial stages of the dealloying process, which
is difficult to observe and study experimentally. Different from
the classical spinodal decomposition where the reference state
is a single phase of spatially uniform composition, in the
present LMD application, the reference state is bi-phasic and
hence has a spatially varying composition in the direction
normal to the solid-liquid interface. Therefore, it is not ob-
vious that the occurrence of spinodal decomposition can be
quantitatively predicted by an analysis that treats the solid-
liquid interfacial layer as a uniform phase with compositions
corresponding to a constant value of the phase field. The

phase-field simulations presented in this section demonstrate
that this approximation is reasonably quantitative, thereby
providing a theoretical framework to predict the occurrence
of spinodal decomposition and the initial length scale of the
microstructure. After spinodal decomposition, the interface
is made of Ta-rich and Ta-poor regions (see last panel of
Fig. 12). As the interface velocity decreases exponentially
when the Ta concentration of the interface increases, the deal-
loying of Ta-rich areas is interrupted, while it is facilitated in
Ta-poor areas. This dependence of the interface velocity on
the Ta content leads to the corrugation of the interface and to
the development of a dealloyed microstructure.

B. Spinodal decomposition versus planar dissolution in
phase-field simulations with vanishing solid-state diffusivity

As seen in the previous section, the dealloying process is
triggered by an interfacial spinodal decomposition that can
develop only for high Ta and Cu interfacial content for which
the driving force for spinodal decomposition becomes positive
(see Fig. 11). On the other hand, we have seen in Sec. III B
that the interfacial concentrations evolve in time and depend
strongly on the initial compositions of the TaTi alloy and the
CuTi melt. It seems therefore possible to investigate whether
or not the system will dealloy (and develop a connected
morphology) as a function of the initial compositions of the
alloy and the melt. In this section, we use 2D phase-field
simulations to investigate the dealloying process as a function
of the base alloy and melt compositions. The simulations
show that spinodal decomposition leading to dealloying only
occurs below a critical concentration of Ti in the melt that
depends weakly on base alloy composition and planar dissolu-
tion occurs above this critical concentration. We then compare
the results of 2D phase-field simulations to the theoretical
predictions obtained by the analysis of spinodal decomposi-
tion with interfacial concentrations (i.e., concentrations at a
position corresponding to φ = 1/2) extracted from 1D phase-
field simulations. Both 2D and 1D phase-field simulations are
performed with zero solid-state diffusivity.

The results of the phase-field simulations, performed for
various Ta contents in the precursor and Ti contents in the
melt, are summarized in Fig. 15. When cs

Ta0 is increased, the
dealloyed morphology evolves from disconnected islands to
filaments as discussed in an earlier publication [30]. For cs

Ta0
above a critical value, phase separation does not occur at
the interface and the dissolution remains planar. Simulation
results also reveal that the scale of the morphology (ligament
size) increases with Ti concentration in the melt up to an
upper limit beyond which spinodal decomposition does not
occur. This limit corresponds to the thick red line shown in
Fig. 15. To the left of this boundary, spinodal decomposition
drives the formation of Ta-rich and Ta-poor regions inside the
solid-liquid interfacial layer, and to the right of this boundary,
planar dissolution occurs without spinodal decomposition at
the solid-liquid interfacial layer.

To rationalize the occurrence of planar dissolution for high
values of cl

Ti0, we use the linear stability analysis of spinodal
decomposition detailed in the previous section and developed
a time-dependent analysis of compositional stability within
the interfacial layer. The driving force for interfacial spinodal
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FIG. 15. Results of 2D phase-field simulations of liquid metal
dealloying as a function of Ta concentration in the precursor alloy
(cs

Ta0 along the y axis) and Ti concentration in the liquid melt (cl
Ti∞

along the x axis). The red line shows the boundary between unstable
spinodal decomposition and stable planar dissolution. The color map
on the snapshots represents the Ta composition field varying from
0 to 1. The simulation domain size is 256 nm × 384 nm for all
simulations.

decomposition is

fs(c̄1, c̄2) = (
M11M22 − M2

12

)(
f 2
12 − f11 f22

)
, (60)

where Mi j = M0(φ = 1
2 )ci(δi j − c j ) are the components of

the mobility matrix defined in Sec. II and fi j is defined

as fi j = ∂2 fch

∂ci∂c j
|c̄1,c̄2 , and c̄1 and c̄2 are the concentration at

the solid-liquid interface (φ = 0.5). If the driving force re-
mains negative ( fs < 0), the dealloying front remains planar,
otherwise, an instability will develop through spinodal de-
composition, possibly leading to the formation of a connected
microstructure.

The results of the analysis are shown on Fig. 16 that distin-
guishes regions of the initial composition plane ( cs

Ta0, cl
Ti∞)

where spinodal decomposition occurs (filled orange circles) or
does not occur (blue crosses) during planar front dissolution.
To predict the boundary between those two regions, we first
compute the range of solid-liquid interfacial compositions that
are stable or unstable against compositional fluctuations, cor-
responding to regions above and below the spinodal boundary
(red dashed line) in the ternary composition triangle (see
Fig. 16(a) and 16(b). We then superimpose on the ternary plot
the trajectories (solid black lines) of interfacial compositions
obtained from the 1D phase-field simulations of planar-
front dissolution. Dealloying is predicted to occur when the

FIG. 16. (a) Trajectory (black line) in the composition space
obtained from a 1D simulation of a Ta15Ti85 precursor dealloyed in a
pure Cu melt. In this case, the system reaches the region for positive
driving force for spinodal decomposition. (b) Trajectory (black line)
obtained for a Ta40Ti60 precursor in a Cu50Ti50 melt that remains in
the region of negative driving force. (a) and (b) are plotted in the
same Gibbs triangles as Fig. 11. (c) Results of the evaluation of
spinodal decomposition from 1D phase-field simulations and theo-
retical calculations as function of initial Ta concentration in the base
alloy (cs

Ta0) and Ti concentration in the liquid melt (cl
Ti∞). The orange

dots represent phase-field simulations for which the trajectory in
the ternary composition space reach positive driving forces [such as
shown in (a)]. The orange diamonds represent the simulations where
the trajectories remain in the negative region [such as shown in (b)].
The red line is the same boundary as in Fig. 15 and is obtained from
2D simulations. The plus “+” (cross “×”) symbols represent the
positive (negative) driving force for spinodal decomposition obtained
by combining the 1D dissolution model and the spinodal decomposi-
tion analysis. The green dashed lines represent the boundary between
both regimes.

trajectory crosses the spinodal boundary, as illustrated in
Fig. 16(a). In contrast, planar dissolution is stable when the
trajectory does not reach the unstable domain, as displayed
in Fig. 16(b). Based on the combination of 1D phase-field
simulations and the linear stability analysis for spinodal de-
compositions, this analysis yields predictions in remarkable
agreement with the 2D phase-field simulations shown in
Fig. 15 from which the red boundary is reported in Fig. 16.
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C. Spinodal decomposition versus planar dissolution on
experimental time scales with finite solid-state diffusivity

In the previous section, we demonstrated that the initial
composition of the base alloy (cs

Ta0) and the melt (cl
Ti∞) fa-

vor either a planar dissolution regime or the development
of nanoporous structures triggered by spinodal decomposi-
tion. However, the analysis proposed above to predict the
occurrence of these regimes still requires running long 1D
phase-field simulations under the assumption of zero solid-
state diffusivity (Ds = 0). As already discussed in Sec. III C,
if the solid-state diffusivity is finite, the interfacial concentra-
tions will eventually relax to their phase equilibrium values
on a long timescale, thereby affecting when spinodal decom-
position occurs. This timescale is theoretically estimated in
the next Sec. V to correspond to a dealloying depth xi �
2pwDl/Ds. Very long 1D phase-field simulations with differ-
ent Ds/Dl ratios (see Fig. 21), which can reach such depth
for Ds/Dl as low 10−3, confirm that relaxation to interfacial
equilibrium indeed occurs. Since it is computationally too
costly to carry out 1D phase-field simulations on the timescale
required to reach equilibrium for smaller Ds/Dl in the exper-
imentally relevant range 10−5 − 10−4, which corresponds to
substitutional solid-state diffusion, we can nonetheless predict
the occurrence of spinodal decomposition by assuming that
interfacial concentrations are in phase equilibrium. For this,
we obtain numerically the interfacial compositions (cs

2, cs
3,

cl
2, and cl

3) at the dealloying front by combining the results
of the 1D dissolution model Eqs. (42) and (43) with the
phase equilibrium conditions Eqs. (7)–(9). To evaluate the
driving force for spinodal decomposition, we need to estimate
interfacial concentrations (c̄1, c̄2, c̄3) at the interface where
the spinodal decomposition occurs. A simple estimate from
averaging the interfacial concentrations obtained from the

1D dissolution model (c̄2 = cs
2+cl

2
2 and c̄3 = cs

3+cl
3

2 ) yields poor
predictions because it does not incorporate the nonlinearity
of the composition profiles at the interface. A more reliable
method consists in relaxing the composition profiles using the
phase-field model as a free-energy minimizer as in Sec. III C:
Starting from initial compositions cs

2, cs
3, cl

2, and cl
3 on both

sides of the solid/liquid interface, a short phase-field simu-
lation is run with Ds = Dl to allow for the fast relaxation of
the composition profiles to the chemical equilibrium (obtained
when ∂t ci = 0 and ∂tφ = 0). From these equilibrium profiles,
the interfacial compositions (c̄1, c̄2) are taken at φ = 0.5.

Following this method, we can evaluate the driving force
of spinodal decomposition for different combinations of ini-
tial compositions of the base alloy and melt. The results are
reported in Fig. 16(c) with blue + and × symbols denoting the
occurrence of spinodal decomposition and planar dissolution
regimes. The transition between these regimes is shown with a
dashed green line. This boundary is slightly shifted compared
to the prediction obtained from phase-field simulations [red
line in Fig. 16(c)]. We expect that, for the composition domain
on the left of the red line, spinodal decomposition occurs
during the first stage of the dissolution. For compositions that
fall between the red and green lines, spinodal decomposition
should occur later in time, when the Ta peak slowly becomes
wider and reaches chemical equilibrium. We believe that the
green dash line reveals the experimentally relevant boundary

distinguishing the planar dissolution and the spinodal decom-
position regimes in the limit of small but finite solid-state
diffusion. We note also that this boundary can be seen as
an upper bound along the cl

Ti∞ axis because a larger solid
diffusivity would reduce the height of the Ta peak at phase
equilibrium (see Fig. 21) and left shift this boundary by an
amount that depends on the ratio Ds/Dl . For the estimated
experimental solid-state diffusivity Ds/Dl ∼ 10−5, the shift is
expected to be small but finite.

The analysis work presented in this section demonstrates
the relevance of combining the ternary dissolution model
(Sec. III C) with the linear stability analysis for spinodal de-
composition (Sec. IV A) to rationalize the development of
interconnected microstructures as a function of dealloying
parameters such as the content of the precursor and the melt,
the thermodynamics parameters, and the temperature.

V. SOLID-STATE DIFFUSIVITY

In the previous Sec. IV C, we used the fact that interfa-
cial concentrations are expected to relax to equilibrium on
a sufficiently long timescale in a situation where Ds/Dl is
small but finite. In the LMD context, Ds/Dl is typically in
the range 10−5 − 10−4 for alloys with substitutional solid-
state diffusion. While one would naively expect such a small
ratio to have a negligible effect on dissolution kinetics, it
actually has a strong effect on interfacial concentrations by
enabling relaxation to local chemical equilibrium. In general,
relaxation to local equilibrium should occur when the char-
acteristic time for the interface to move a distance of one
interface thickness w, ∼w/v where v = dxi/dt is the disso-
lution velocity, is longer than the characteristic time ∼w2/Ds

for solid-state diffusion to occur on the scale w. Using the
fact that xi = √

4pDlt , we obtain that v = 2pDl/xi, and hence
the condition for local equilibrium w/v � w2/Ds becomes
xi � 2wpDl/Ds. Using, for example, a recent experiment
where a Ta15Ti85 alloy was dealloyed by a pure Cu melt
[57], the dealloying depth was approximately 270 μm in 10 s
of dealloying time. Using w = 1 nm and the experimentally
measured Peclet number p = 0.26, the estimated cross-over
dealloying depth 2wpDl/Ds to reach local equilibrium is in
the range 5 − 50 μm for Ds/Dl in the range 10−5 − 10−4, and
hence significantly shorter than the total 270 μm dealloying
depth. We would therefore expect interfacial concentrations
to relax to equilibrium during the dealloying process.

In this section, we use 1D phase-field simulations with
finite solid-state diffusivity to demonstrate that relaxation in-
deed occurs for sufficiently large dealloying depth. We also
use 2D and 3D phase-field simulations to explore the role of
solid-state diffusion on interfacial pattern formations. Those
simulations are also relevant for our understanding of solid-
state dealloying where the precursor alloy is placed in contact
with a solid metal at moderate temperature. Solid-state deal-
loying experiments show novel dealloyed structures that are
qualitatively different from the one obtained by LMD [33–35].
The main difference of solid-state dealloying compared to
LMD is that the diffusivity is comparable in both phases.
Varying the diffusivity in the solid compared to the liquid can
therefore potentially shed light on pattern formation during
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FIG. 17. Dealloying depth versus time with different solid-state
diffusivity.

solid-state dealloying where the diffusivity contrast between
both phases is small.

A. Effect of solid-state diffusion on 1D dissolution kinetics

We first investigate the effect of solid-state diffusion on
1D phase-field simulations. To achieve fast dealloying kinet-
ics, we consider a Ta2Ti98 precursor dealloyed in a pure Cu
melt with various diffusivity ratios between solid and liquid
phases. The results are shown in Fig. 17. For all diffusivi-
ties, the dealloying front follows a square root diffusion law
xi = √

4pDlt . Figure 18 displays the evolution of the Peclet
number obtained from Fig. 17 as a function of solid-state
diffusivity. As expected, the dealloying kinetics is much faster
when Ds and Dl are comparable, since Ta and Ti can diffuse
away in both solid and liquid phases, such that no Ta peak can
impede the dissolution. Interestingly, the Peclet number does
not depend monotonically on the solid-state diffusivity: When
Ds/Dl ∼ 10−4, the interface moves even slower than Ds = 0.

This effect can be explained by looking in detail at the
interfacial concentrations of Ti and Ta in the liquid and the

FIG. 18. The Peclet number as function of the diffusivity ratio
Ds/Dl . The blue data points represent the Peclet number obtained
from the short time simulations (see Fig. 17). The red data points are
obtained from the simulations that reach the phase equilibrium (see
Fig. 21). The red dashed line represents the Peclet number obtained
from the theoretical prediction for Ds = 0 (see Sec. III C).
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FIG. 19. The effect of solid-state diffusion demonstrated by the
liquid concentration of Ti at the interface (a) and the concentration
of Ta peak at the interface (b) versus time.

solid that control the flux of Ti in the liquid and the dealloy-
ing kinetics as pointed out in Sec. III. Figure 19 shows the
evolution of these interfacial compositions for different solid
diffusivities. For small values of Ds, the height of the Ta peak
(cpeak

Ta ) increases to a value larger than the one obtained with
zero solid-state diffusion. For larger values of Ds however, the
value of the Ta peak is reduced as compared to the Ds = 0
case.

This nonlinear variation is due to the competition of two
effects. First, a finite solid diffusivity allows the spreading of
the Ta peak in the solid phase, which reduces the influence of
the concentration gradient terms on the height of the Ta peak
that can reach a higher value. Consequently, the equilibrium
concentration of Ti on the liquid side is reduced, according to
the chemical equilibrium at the interface (see Fig. 1). If Ds is
further increased, it allows for a significant flux of Ta in the
solid phase, which reduces the height of the peak, leading to
larger Ti in the liquid and a faster kinetics.

Our previous phase-field study [30] has shown that the
concentration profiles obtained from phase-field simulations
vary significantly from the prediction of the phase diagram.
As explained above, this discrepancy is attributed to the con-
centration gradient terms in the total free energy. For finite
solid-state diffusivity, the width of the Ta peak increases,
which reduces the role of these gradient terms, allowing the
interfacial concentrations to reach a chemical equilibrium.
Interfacial concentration profiles obtained for Ds/Dl = 0 and
Ds/Dl = 10−3 are shown in Fig. 20. For Ds/Dl = 0, the width
of the Ta peak is comparable to the interface thickness while
for Ds/Dl = 10−3, it becomes much larger (Fig. 20 only
shows part of the peak), which significantly reduces the effect
of the concentration gradient terms. Therefore, we expect
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FIG. 20. Interfacial concentration profiles for a Ta2Ti98 precursor
dealloyed in the pure Cu melt obtained for two solid-state diffusivi-
ties: (a) Ds/Dl = 0. (b)Ds/Dl = 10−3. The dots in (b) represent the
concentration profiles obtained from the phase equilibrium condi-
tions (see text in Sec. III C).

the interfacial concentrations to approach an equilibrium pre-
dicted by the phase diagram when the solid-state diffusivity
is increased. In addition, using the phase-field method as a
free-energy minimizer (with Ds = Dl ) and following the same
steps as for Fig. 7 yields equilibrium concentration profiles
shown with dots in Fig. 20(b). As expected, allowing for a
small but finite solid-state diffusivity allows the relaxation of
the interfacial concentration profiles toward chemical equi-
librium. As discussed above, this relaxation can be achieved
on timescales where the dealloyed depth satisfies xi/w �
2pDl/Ds.

From Secs. II and III B, we know that multiple interfacial
equilibria are possible which are represented by the tie lines
of the ternary phase diagram (Fig. 1). These equilibria can
be represented by the thick black line in the cpeak

Ta − cl
Ti di-

agram of Fig. 21. The colored lines represent the evolution
of the interfacial concentrations obtained from phase-field
simulations with different solid diffusivities. In addition, the
calculations of Sec. III C can be used to predict the interfacial
concentrations obtained in the limit of vanishing solid-state
diffusivity: this prediction is obtained by combining the phase
equilibrium conditions Eqs. (6)–(8) with the constraint of the
concentration profiles Eqs. (42) and (43) and is represented as
a red star symbol in Fig. 21.

From Fig. 21, we find that the interfacial concentrations
vary significantly with time. As expected, when the solid dif-
fusivity is large, the interface concentrations converge toward
an equilibrium on the black line and reach a steady-state dis-
solution regime. This convergence is reached quickly for large

FIG. 21. Interfacial concentrations obtained from 1D phase-field
simulations with various solid-state diffusivities. The black solid
line is the equilibrium concentration extracted from the phase dia-
gram. The green, blue, and purple dots are the intersection of the
theoretical phase diagram and the interfacial concentration profile
with Ds/Dl = 10−3, Ds/Dl = 0.01, and Ds/Dl = 0.1, respectively.
The red star represents the theoretical prediction of the interfacial
concentrations with Ds/Dl = 0. The insert shows the time evolution
of the distance—computed in the cl

Ti − cpeak
Ta diagram—between the

analytical prediction from the phase diagram and the simulated inter-
facial concentrations plot versus time for Ds/Dl = 10−3.

solid-state diffusivity but requires longer time for smaller
Ds/Dl ratios, such that this steady-state equilibrium remains
out of reach of our phase-field simulation for Ds/Dl < 10−3.
For the specific case of Ds/Dl = 10−3, we show in the in-
set of Fig. 21 the time evolution of the concentration gap
between the simulated interfacial concentrations and the con-
verged value, revealing the slow convergence of the interfacial
concentrations toward the phase-diagram prediction. The vari-
ation of the interfacial concentrations, especially the value of
the Ta peak cpeak

Ta , reduces the Peclet number during this con-
vergence for lower solid-state diffusivity (see red data points
for Ds/Dl = 10−3 in Fig. 18). For smaller Ds/Dl ratios and
longer times, the Peclet number will eventually reach the limit
obtained for Ds = 0 from the theoretical prediction and shown
with a red dashed line in Fig. 18.

Interestingly, the data points (purple, blue, green, and red)
in Fig. 21 representing the concentrations reached for the
steady-state dissolution regime indicate that the final equi-
librium concentrations (and the corresponding tie line) vary
significantly with the solid-state diffusivity. This reveals the
significance of this parameter that may in turn influence the
spinodal decomposition process and the resulting morpholo-
gies.

B. Effect of solid-state diffusion on 2D and 3D dealloyed
morphologies

In Sec. V A, we showed that the solid-state diffusivity has
a significant effect on the interfacial compositions and allows
the diffusion of Ta in the solid phase. In 2D and 3D phase-field
simulations, we expect that these effects will also modify the
spinodal decomposition process and the further morphology
development, thereby changing the morphology of the deal-
loyed structure.
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0

1

FIG. 22. 2D phase-field simulations obtained for various Ta con-
tent in the precursor alloy and solid-state diffusivities. The color
map represents the Ta concentration field. The light blue circles on
the upper left corner of some snapshots indicate that these simu-
lations started with an initially perturbed interface to promote the
microstructure evolution. The domain size for all the simulations is
256 nm × 128 nm.

In this section, we use 2D phase-field simulations to show
how the solid-state diffusion affects the morphologies of the
dealloyed microstructures. As shown in Fig. 22, the finite
solid-state diffusivity has three effects on the morphologi-
cal evolution. First, large solid-state diffusivities (Ds/Dl >

0.001) inhibit the interfacial spinodal decomposition, thereby
promoting a planar dissolution regime. To force the devel-
opment of a dealloyed microstructure, the initial condition
of the simulations is taken from an intermediate configura-
tion obtained for Ds = 0. The resulting microstructures are
marked with a light blue circle in the upper left corner in
Fig. 22. Second, we note that a finite solid-state diffusiv-
ity promotes more connected dealloyed structures for all Ta
compositions. This effect is shown in the 5% Ta simulations,
where blobs appear for low solid-state diffusivity, whereas
lamellae form for Ds/Dl > 10−4. Finally, we find that the
finite solid-state diffusivity stabilizes the diffusion-coupled
growth of lamellar structures [30], thereby favoring the for-
mation of aligned structures over high-genus topologically
connected structures.

A more significant comparison is also shown in Fig. 23,
where the size of the simulation domain is much larger. For
a finite solid-state diffusivity Ds/Dl = 0.01, the dealloyed
structure first forms aligned ligaments, eventually merging
when the velocity decreases. We observed that the merged

0

0.7(a) (b)

(c) (d)

FIG. 23. Phase-field simulations of Ta15Ti85 alloys dealloyed in
the pure Cu melt with various solid-state diffusivities indicated in the
plots. The black lines indicate the sampling positions for Fig. 24. The
domain size for all 2D simulations is 1024 nm × 640 nm and for 3D
simulation is 128 nm × 96 nm × 96 nm.

lamellae break later due to the dissolution of the solid
branches in the liquid. For the solid-state diffusivity Ds/Dl =
10−4, the dealloyed structure forms aligned ligaments, and
the shorter ligaments will be dissolved later as the spacing
of ligaments is increasing. We also performed phase-field
simulations to check if these findings hold in 3D. Figure 23(d)
shows that the dealloyed structure forms parallel walls at
the dealloying front, matching the morphology obtained in
2D. Due to coarsening, the top layer of the dealloyed struc-
ture eventually becomes connected. Interestingly, this type
of elongated yet connected microstructure was observed in
experiments of solid-state dealloying where the diffusivity
in both phases are comparable [33]. Another effect of the
solid-state diffusivity observed in the simulations is that the
interfacial concentrations relax to a local chemical equilib-
rium on long timescales. To examine the influence of this
effect in 2D simulations, we perform a quantitative analysis
of the larger size 2D phase-field simulations shown in Fig. 23.
We first realized that the averaged liquid concentrations of
Ti at the dealloying front do not vary significantly, which
indicates that the dealloying kinetics remains similar when
the solid-state diffusivity varies from 0 to Ds/Dl = 0.01. We
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FIG. 24. Ternary phase diagram with the equilibrium interfacial
concentrations extracted from the phase field simulations (Solid lines
with different solid-state diffusivities) and experiment (Dashed line
with Ta15Ti85 dealloyed in the pure Cu melt).

measure the concentrations at the solid-liquid interface close
to the dealloying front, at the position indicated by a black
marker in Fig. 23. The results are reported on the ternary
phase diagram of Fig. 24 where two sets of interfacial con-
centrations obtained at the top and center of the dealloyed
region are reported. For the different solid diffusivities, the
concentrations in the liquid remain similar (between 0.3 and
0.4) but the solid concentrations vary significantly. For vanish-
ing solid-state diffusivity, the equilibrium concentrations do
not follow a possible equilibrium indicated by a tie line of the
phase diagram. When the solid-state diffusivity is increased,
the equilibrium concentration of Ta in the solid increases to
reach the local chemical equilibrium (brown line in Fig. 24).
This convergence toward a chemical equilibrium is not in-
stantaneous and follows a transient regime as shown in the
previous section. Based on the calculation at the beginning of
this section, the dealloying depth necessary to reach this local
chemical equilibrium is given by xi/w = 2pDl/Ds, which
gives xi = 3500 nm for Ds/Dl = 10−4 and xi = 35 nm for
Ds/Dl = 0.01. As a comparison, the total dealloying depth in
the phase-field simulations presented in Fig. 23 is 900 nm and
this estimate is therefore consistent with our numerical results.
This estimate also reveals that this transient off-equilibrium
concentration could have an influence on the early stage of
LMD experiments, for which Ds/Dl = 10−4 is a realistic
ratio.

C. Discussion on the discrepancy between phase-field
simulations and experiments

In the ternary phase diagram of Fig. 24, we also added
experimental measurements of concentrations obtained by
postmortem chemical analysis of a Ta15Ti85 alloy dealloyed
for 10 s in a pure Cu melt [57]. Each experimental tie line links
two points that correspond to concentration measurements
of the three elements in the Ti-rich phase (correspond-
ing to the liquid phase during dealloying) and the Ta-rich
phase (corresponding to the solid ligaments). Concentration

TABLE III. Parameters of the mixing enthalpy and simulation
temperature for the improved phase diagram [58–60].

T (K) 1513

Cu-Ti Ti-Ta Cu-Ta

�s
i j (eV/nm3) 3.512 12.44 75.62

�l
i j (eV/nm3) −8.036 1.036 65.12

1 Ls
i j (eV/nm3) 0 2.591 0

1 Ll
i j (eV/nm3) 0 7.255 0

measurements are spatially averaged in each phase over a
line parallel to the dealloying front at five different dis-
tances from the dealloying front. The horizontal and vertical
error bars indicate the standard deviation obtained from
multiple measurements of the concentration of Cu and Ti,
respectively.

The Ti concentration in the Ti rich phase decreases from
about 0.7 close to the dealloying front to 0.3 close to the
edge of the dealloyed layer. This experimental result differs
significantly from the phase diagram where the Ti concentra-
tion remains significantly smaller. The discrepancies between
experimental and numerical results may come from the sim-
plified thermodynamic model employed in our simulations.
As our phase diagram is generated from a set of simplified
parameters, it may not quantitatively model the experimental
system.

To improve this point, we can employ a richer thermo-
dynamic model by replacing the original mixing enthalpy
[
∑i, j�3

i< j �i jcic j in Eq. (3)] by

i, j�3∑
i< j

cic j
[
�s

i jφ + �l
i j (1 − φ) + (ci − c j )

× (
1Ls

i jφ + 1Ll
i j (1 − φ)

)]
. (61)

The parameters obtained from the thermodynamic assess-
ments of the real Cu-Ti and Ti-Ta system are listed in Table III
[58–60]. The mixing enthalpy of the Cu-Ta system is adapted
from the previous phase diagram to maintain the same solu-
bility at the temperature 1513K. The improved phase diagram
with mixing enthalpies obtained from [58–60] is shown in
Fig. 25. The tie lines are different from the previous phase
diagram which slightly improve the comparison with experi-
mental results. We attribute the remaining discrepancy to (i)
the significant measurement errors as shown with the error
bars and (ii) the fact that the thermodynamic model remains
incomplete. The equilibrium can be influenced by several
material parameters such as ternary interaction terms (not
considered here) that may change significantly the tie lines
of the phase-diagram.

We also note that the liquid Ti concentration is higher
for the same solid Ta concentration compared to the sim-
ple phase diagram of Fig. 1. Phase-field simulations with
this improved thermodynamic model indicate that the liquid
Ti concentration at the solid-liquid interface cl

Ti approaches
the experimental value. To show quantitatively the differ-
ence, we first obtain the Ti concentration profiles from
different time frames of simulations and then extract the Ti
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FIG. 25. Ternary phase diagram improved with mixing en-
thalpies and the equilibrium interfacial concentrations extracted from
the phase-field simulations for various solid-state diffusivities and
experiments.

concentration at the dealloying front versus the correspond-
ing dealloying depth (Fig. 26a). As shown in Fig. 26(b), the
solid-state diffusivity has a small effect on the selection of cl

Ti
but with the improved phase diagram [dashed lines on
Fig. 26(b)], cl

Ti � 0.5, which is closer to the experimental
value of 0.7.

In addition to the effect of the improved phase diagram,
Fig. 26 also reveals that the Ti concentration in the liquid at the
dealloying front increases during dealloying, while interfacial
concentrations were assumed to be constant during dealloying
in a previous study [30,47]. We conjecture that the interfacial
concentrations potentially have a relationship with the deal-
loying kinetics. The dealloying kinetics is quantified by the
velocity of the dealloying front v = 2pDl/xi, where xi is the
dealloying depth and p is Peclet number from the diffusion
law xi = √

4pDlt . In Fig. 27(a), the continuous line represents
the evolution of Ti concentration in the liquid at the dealloying
front against the dealloying velocity obtained for dealloying in
pure Cu melt. While fluctuating, cl

Ti decreases proportionally
to ln(v), which can be fitted to

cl
Ti = −k ln(v/v0), (62)

with the fitting parameters k = 0.0476 and v0 = 8.03 ×
109 nm/s [dashed line in Fig. 27(a)]. In addition, dots shown
in Fig. 27(a) report data obtained for different initial Ti content
in the melt. These data points also approximatively follow
Eq. (62), which shows that this relation also holds for different
initial bath compositions.

Combining Eq. (62) with the relation xiv = 2pDl , we can
rewrite the relation between cl

Ti and dealloying depth xi as

cl
Ti = k ln(xi/x0), (63)

where the parameters x0 = 2pDl/v0 = 0.15 nm and p =
0.0868 are for dealloying of a Ta15Ti85 alloy by the pure Cu
melt. As shown in the inset of Fig. 27(b), at the length scale of
simulations, the fit matches well with the simulation. While

FIG. 26. (a) Ti concentration profiles extracted from 2D phase-
field simulations of Ta15Ti85 alloys dealloyed in the pure Cu melt for
several time frames. The colors varying from purple to red indicate
the concentration profiles extracted from early to later time frames.
The negative coordinate indicates the penetration of liquid channels
(see Sec. III). The dashed line is the variation of the Ti concentration
in the liquid at the dealloying front cl

Ti during dealloying. (b) 2D
phase-field simulations of Ta15Ti85 alloys dealloyed in the pure Cu
melt quantifying the increasing trend of the Ti concentration in the
liquid at the dealloying front. The dashed lines are results from the
improved phase-diagram.

we extrapolate the fit to the experimental length scale, cl
Ti

varies within the range of 0.1 for the change of the dealloying
depth from 100 μm to 400 μm [Fig. 27(b)]. This extrapolation
satisfies the observation of experiments [47] which treats cl

Ti
as constant within the range of the measurement error during
dealloying. Especially, as shown in Fig. 27(b), the predicted
value of cl

Ti is in good agreement with the experimentally
observed value.

A limitation of the fit is that cl
Ti will increase beyond the

solubility limit of Ti in the liquid for very large dealloying
depth beyond the experimental range. This limitation stems
from the fact that the relation between cl

Ti and the dealloying
depth is extrapolated from phase-field simulations over a lim-
ited range of dealloying depths where cl

Ti only varies in the
range 0.3 to 0.45. Therefore, we cannot expect the fit to be
accurate for arbitrarily large depths. Despite this limitation,
our extrapolation scheme successfully predicts the observed
value of cl

Ti, allowing us to bridge at least empirically phase-
field simulations and experimental length and timescales. For
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FIG. 27. (a) Log-linear plot of the Ti concentration in the liquid
at the dealloying front cl

Ti versus the dealloying velocity. Four dots
are cl

Ti obtained from the last frame of phase-field simulations with
various CuTi melts, where the dealloying depth is around 400 nm.
The red line is reported from Fig. 26(a). The black dashed line is the
best fit to the red line. (b) Fitting result of cl

Ti versus the dealloying
depth extended to the experimental length scale with the comparison
of the experiment [57]. The insert is the comparison between the fit
and the simulation within the simulation length scale.

larger dealloying depths than those probed experimentally, we
expect that cl

Ti should slowly approach a plateau correspond-
ing to the solubility limit of Ti in the liquid.

VI. CONCLUSION

In summary, we have used a combination of theoretical
analysis and phase-field simulations to clarify several aspects
of the LMD process. This study goes beyond our previous
work on the topic [30,34] by (i) presenting a ternary diffusion
model accounting for the diffusion of both Ta and Ti in the
melt, (ii) further developing the linear stability analysis of
the interfacial spinodal decomposition [48,49] mentioned in
Ref. [30] and using it to predict the formation of connected
morphologies as a function of the dealloying parameters, and
(iii) investigating the role of solid state diffusivity on the
kinetics and morphology of the dealloyed microstructure.

We proposed a theoretical analysis for the 1D dealloying
kinetics and the time evolution of the concentration profiles
of the different elements. This analysis reveals that the deal-
loying kinetics includes two regimes. At first, the dissolution
kinetics slows down due to the build-up of the Ta peak at
the solid-liquid interface. After the Ta peak stabilizes, the
dissolution reaches a stationary regime with a small but steady

Ta leak in the melt. This dissolution kinetics follows the
same xi ∼ t1/2 diffusion kinetics as a binary dissolution as-
sumed before [47]. We have shown that the predictions of our
1D dissolution model match well the results obtained from
numerical simulations. Furthermore, combining this 1D disso-
lution model with the phase equilibrium conditions enables us
to predict the planar dissolution kinetics and interfacial con-
centrations in the limit of very small but finite solid diffusivity,
which is relevant experimentally.

In other situations than the ideal 1D case, Ta and Cu
diffuse laterally along the solid-liquid interface, promoting a
spinodal decomposition. A linear stability analysis detailed
in Sec. IV allows us to derive an analytical expression for
the growth rate and fastest-growing wave vector during the
spinodal decomposition. We show that the wavelength pre-
dicted theoretically is of the same order of magnitude as
the microstructure obtained from phase-field simulations, the
discrepancy being attributed to the effect of nonlinearities.
The analysis of the phase-field simulations indicates that the
selection of the initial spacing is determined by the interplay
between the development of the fastest growing wavelength
and the slow dissolution kinetics of Ta-rich regions. Further-
more, we apply the criterion of spinodal decomposition to
investigate the planar dissolution obtained when Ti is added
into the melt. If the driving force for spinodal decomposi-
tion remains negative, the dealloying interface remains planar
while a positive driving force leads to spinodal decomposition.
The 2D phase-field simulation results are found to be in good
agreement with the prediction of the driving force of spinodal
decomposition when the concentrations are taken from the 1D
phase-field simulations. We go further by combining the 1D
dissolution model proposed in Sec. III C with the criterion of
spinodal decomposition to theoretically predict the occurrence
of dealloying as a function of the composition of the base
alloy and the melt. This analysis provides a prediction for
the boundary between connected morphologies and planar-
dissolution regime within the limit of very small but finite
solid-state diffusivity.

While we generally assume the solid-state diffusivity neg-
ligible in these phase-field simulations, the dealloying kinetics
and morphologies are shown to be affected by this parameter,
even though the solid-state diffusivity is four to five orders
of magnitude smaller than the liquid-state diffusivity. In 1D
simulations, the solid-state diffusion enables the solid-liquid
interface to relax to the local chemical equilibrium, thereby
influencing the concentrations on the liquid side of the inter-
face and in turn the dissolution kinetics. This effect strongly
influences the dealloying for the large solid-state diffusiv-
ity (e.g., Ds/Dl ∼ 10−2). For experimentally relevant values
of the solid-state diffusivity (10−4Dl ∼ 10−5Dl ), the interfa-
cial concentrations are shown to converge toward a chemical
equilibrium. Interestingly, we showed that this chemical equi-
librium depends on the specific value of the solid-state
diffusivity. In 2D simulations, a finite solid-state diffusivity is
found to promote the formation of lamellar structures, thereby
favoring the formation of aligned microstructure over high-
genus topologically connected structures.

Despite the work presented in this paper, a discrep-
ancy persists between experiments and phase-field results, in
particular, concerning the equilibrium concentration of Ti in
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the liquid (cl
Ti) that remains high in experiments (∼0.7) com-

pared to numerical results (∼0.4). This discrepancy can be
explained by the limitation of the phase-field models. First, it
can be attributed to the lack of accuracy of the simplified ther-
modynamic model employed in this paper. In the last section,
we employ a richer thermodynamic model that demonstrates a
slight improvement of the numerical/experiment comparison.
However, this thermodynamics model may not be precise
enough. In particular, ternary interaction terms proportional
to c1c2c3 are neglected and may be important to take into ac-
count to achieve a quantitative comparison with experimental
results. In addition, other parameters, such as the values of
the coefficients σi of the composition gradient terms are not
easily determined and can influence significantly the results.
Second, cl

Ti may be higher in experiments than in phase-field
simulations due to the fact that even long simulations only
access dealloying depths on the μm scale that are one to two
orders of magnitude smaller than those typically studied ex-
perimentally. This possibility is suggested by the finding that
cl

Ti slowly increases with the dealloying depth in phase-field
simulations. By fitting this behavior against a logarithmic law,
we were able to extrapolate cl

Ti to experimentally relevant
depths and found that this prediction agrees well with the
measured value. The logarithmic behavior is, however, only
phenomenological and the agreement with experimental ob-
servation is therefore only suggestive. Further work is needed
to understand the physical mechanism of this slow logarith-
mic increase of cl

Ti to determine if it remains valid over the
entire range of dealloying depth that spans both phase-field
simulations and experiments.

This paper paves the way to several prospects toward
the predictive modeling of the LMD process. First, we have
shown that combining the 1D ternary diffusion model with
the linear stability analysis for spinodal decomposition could
be used to predict the occurrence of the initial destabilization
and therefore the development of a connected microstructure
as a function of the composition of the melt and the precursor
alloy. This line of work could be applied to other systems to
predict which combination of elements in the precursor and
the melt can be used to obtain connected microstructures. Sec-
ond, Sec. V shows that solid diffusion has to be incorporated
in phase-field modeling to capture the appropriate chemical
equilibrium at the solid-liquid interface and to yield quanti-
tative results. As discussed in Sec. V, incorporating diffusion
in both phases can also bring insight into the morphologies
evidenced in solid-state dealloying [33,34]. Finally, the im-
portant role of the Ta diffusion in the liquid phase evidenced
in Sec. III can also bring insight into the coarsening mecha-
nism of the connected microstructure. Indeed, most previous
studies assumed that coarsening occurs by surface diffusion
[9,26,27,46], while Ta diffusion in the liquid phase could
contribute significantly to the coarsening mechanism [57] and
better explain experimental observations.
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