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Accurately describing the lattice dynamics and microscopic mechanism of thermal transport in materials
with low-lying flat phonon modes remains an outstanding challenge due to the intrinsic strong anharmonicity.
In this paper, we investigate the lattice dynamics and thermal transport in skutterudite YbFe4Sb12 using a
state-of-the-art first-principles-based anharmonic phonon renormalization technique and a unified theory of
lattice thermal transport. In contrast to the previous phenomenological models that introduce additional resonant
scattering terms or hopping channels, we show that the unusual total lattice thermal conductivity in YbFe4Sb12

can be accurately predicted by considering anharmonic phonon renormalization and coherence contributions
from the off-diagonal terms of heat flux operators. Both the cubic and quartic anharmonicities are essential for
precisely predicting the significant shift in phonon energies. Specifically, the anharmonicity-induced phonon
stiffening of the low-lying flat modes significantly enhances the thermal conductivity of particlelike phonons,
e.g., by up to a factor of 1.6 at 300 K, by suppressing the cubic coupling strength and altering the scattering
phase space, resulting in much-improved agreement with experiments. By further including the coherence
contributions, the predicted total thermal conductivity increases by ∼22% throughout the entire temperature
range, reproducing well the experimental values in both magnitude and temperature dependence. In this paper,
we highlight the strong impact of higher-order anharmonicity on lattice dynamics and thermal transport in the
filled skutterudite YbFe4Sb12. The insights gained in this paper will be helpful for manipulating the thermal
properties of skutterudites and potentially other complex materials with strong anharmonicity, which can improve
their performance in applications such as thermoelectrics, ferroelectrics, and photovoltaics.
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I. INTRODUCTION

The phonon-glass electron-crystal (PGEC) paradigm pro-
posed by Slack [1], i.e., low thermal conductivity as in a glass
in combination with good electronic properties as in a crystal
[2], plays a crucial role in the selection of thermoelectric
materials. Skutterudites are a class of thermoelectric materials
showing PGEC characteristics and have long been considered
promising candidates for intermediate-temperature heat-to-
electricity conversion. They have a unique cagelike structure
that can be filled with guest atoms, offering a great oppor-
tunity to optimize electronic and thermal properties. Filling
the cages can largely reduce lattice thermal conductivity kL,
which is typically the major reason for enhanced thermoelec-
tric efficiency [3–8]. Among the skutterudites, the fully filled

*ruiqiang.guo@iat.cn
†mebhuang@ust.hk

skutterudite YbFe4Sb12 has drawn vast attention due to its in-
teresting magnetic and electrical properties [9–12] and ultra-
low kL [12,13]. Many efforts [14–16] have been devoted to
understanding the suppressed thermal transport in YbFe4Sb12

in the past decade. However, the theory accurately describing
thermal transport in YbFe4Sb12 is still up for debate.

The Peierls-Boltzmann transport equation (PBTE) [17,18]
within a well-defined phonon picture, despite its success in
precisely predicting the kL of many crystals [19,20], was re-
cently found to seriously underestimate the kL in YbFe4Sb12

by 69.5% [13,14]. This finding questions the validity of
the phonon picture. Mukhopadhyay et al. [15] argued that
this underestimation arises from the ill-defined phonons and
proposed a hopping channel to account for the kL mainly
contributed by those ill-defined phonons in YbFe4Sb12 and
Tl3VSe4. However, the hopping channel is modeled by the
harmonic approximation (HA) and simplified approximate
method, i.e., models of Einstein [21] or Cahill et al. [22].
In another work, using the temperature-dependent effective
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potential (TDEP) method [23], Wang et al. [16] further
considered the effect of temperature on interatomic interac-
tions for the prediction but overestimated κL in YbFe4Sb12 by
50%. They attributed the discrepancy between the prediction
and experiment to resonant phonon scattering, although this
resonant scattering mechanism has been questioned by several
experimental and theoretical studies in skutterudites [4,24]
and clathrates [25].

The previously introduced resonant scattering terms or
heat transfer channels are phenomenological, although they
can make the predicted kL agree well with the experimen-
tal values [15,16]. Whether these phenomenological models
capture the real physical picture remains elusive considering
the limitations of previous calculation approaches. Specifi-
cally, all those calculations ignored the influence of either
anharmonicity-induced phonon renormalization or coherent
thermal transport channel, which has been demonstrated to
be very important for predicting kL of highly anharmonic
or/and complex compounds. For instance, Simoncelli et al.
[26] successfully explained thermal transport in CsPbBr3 us-
ing a derived unified theory of thermal transport that couples
phonon and coherence contributions. Tadano and Tsuneyuki
[27] reproduced the experimental lattice thermal conductivity
in Ba8Ga16Ge30 by considering temperature-induced phonon
hardening of the low-lying optical modes resulting from the
quartic anharmonicity. Xia et al. [28] unraveled the micro-
scopic mechanism of thermal transport in cubic Cu12Sb4S13
tetrahedrites by considering the temperature effect, phonon,
as well as coherence contributions.

In this paper, we investigate the anharmonic lattice dy-
namics and multichannel thermal transport in skutterudite
YbFe4Sb12 using first-principles calculations based on the
density functional theory (DFT). We implemented the an-
harmonic phonon renormalization considering the cubic and
quartic anharmonicities using a perturbative manner and self-
consistent phonon (SCP) theory, respectively, and explored
the microscopic origin of the phonon stiffening. Using the
harmonic/renormalized anharmonic frequencies and eigen-
vectors, we calculated kL using the PBTE and a unified theory
of thermal transport combining the diagonal and off-diagonal
terms of the heat-flux operators (OD) in YbFe4Sb12. Our
calculations illustrate that the continuous phonon stiffening of
the Yb-dominated low-lying flat modes associated with the
lattice anharmonicity suppresses the cubic coupling strength
and alters the scattering phase space (SPS), thereby resulting
in a significant enhancement in phonon thermal transport.
By further evoking the coherent thermal transport channel,
we can reproduce well the experimentally measured kL in
YbFe4Sb12 both in magnitude and temperature dependence.
The unified theory of thermal transport incorporating pop-
ulation (phonon channel) and coherence (coherent channel)
contributions with phonon renormalization technique will fa-
cilitate a deeper understanding of skutterudites and potentially
other complex materials.

II. COMPUTATIONAL MODELING

All the DFT calculations in this paper were performed with
the projector-augmented wave (PAW) method [29], as imple-
mented in the Vienna Ab initio Simulation Package [30–33].
The PAW Perdew-Burke-Ernzerhof (PBE) [34] pseudopo-

tentials were used for the exchange-correlation functional
because they can predict well the lattice parameters and
phonon properties of YbFe4Sb12 according to our test. The
PBE functional has also been used by previous work [14]. A
cubic unit cell of the fully filled skutterudite YbFe4Sb12 with
the space group Im3̄ was employed for structural optimization
[see Fig. 1(a)]. The optimized lattice constant a = 9.17 Å is
in good agreement with the experimental value a = 9.16 Å
[13]. Considering that thermal expansion of the skutterudite
YbFe4Sb12 is small [35], we did not consider the effect of
thermal expansion on thermal properties in the current calcu-
lation. A 2 × 2 × 2 supercell containing 272 atoms was used
for static phonon calculations, mapping out potential energy
surfaces (PESs), and ab initio molecular dynamics simulation.

The original harmonic interatomic force constants (IFCs)
were extracted by the finite-displacement approach [36].
The higher-order anharmonic IFCs, i.e., cubic and quartic
IFCs, were estimated using the compressive sensing lat-
tice dynamics method [37] based on the limited precise
displacement-force datasets. All terms of harmonic IFCs were
included, while the cutoff radii for cubic and quartic IFCs
were set to 6.35 and 5.29 Å, respectively.

To renormalize phonon energies at finite temperatures, the
SCP [38–44] theory was used to calculate the frequency shifts
from quartic anharmonicity (loop diagram). The resultant
temperature-dependent anharmonic frequencies �q j (T ) and
polarization vectors εq j (T ) can be estimated by diagonalizing
the following matrix Vq given as

Vq j j′ = ω2
q jδ j j′ + 1

2

∑
q′′

�(q j; − q j′;q′′; − q′′)〈Q∗
q′′Qq′′ 〉,

(1)

〈Q∗
q′′Qq′′ 〉 =

(
h̄

2�q′′

)
[1 + 2n(�q′′ )], (2)

where ωq j refers to the harmonic phonon frequency asso-
ciated with the wave vector q and phonon branch j. Here,
〈Q∗

q′′Qq′′ 〉 represents the mean-square displacement (MSD)
of the normal coordinate Q. Also, the q in the expression
denotes the shorthand notation for a composite index of the
wave vector and phonon branch (q,j) and satisfying q = (q, j)
and −q = (−q, j). Furthermore, �(q j; −q j′; q′′; −q′′;) is the
reciprocal representation of 4th-order IFCs in real space and
n(ω) = 1/[e(h̄ω/kBT )−1] is the Bose-Einstein distribution (kB,
� are the Boltzmann and reduced Planck constants, respec-
tively).

Based on the first-order SCP calculations, the anharmonic
phonon renormalization from the second-order contributions
due to the bubble diagram can be evaluated in a perturbative
manner through [28,45]

�B
q = −1

h̄
Re

B∑
q

(�q), (3)

B∑
q

(�q) = 1

2h̄

∑
q1,q2,s=±1

|V3(−q;q1;q2)|2

×
(

n1 + n2+1

s�c + �q1 + �q2

− n1 − n2

s�c + �q1 − �q2

)
.

(4)
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FIG. 1. (a) Crystal structure of skutterudite YbFe4Sb12 conventional cell, which features a sublattice formed by FeSb6 octahedral units
with Yb atoms. Yb, Sb, and Fe atoms are colored in pink, blue, and yellow, respectively. (b) Calculated phonon dispersion curves along
some high-symmetry paths in the Brillouin zone. Top panel: Within the harmonic approximation (HA) method, and all bands are colored
according to the atomic participation ratio of atom Yb. Middle panel: Within the self-consistent phonon + bubble (SCPB) method at
T = 300 K, and all bands are colored according to the atomic participation ratio of atom Fe. The dashed lines depict the phonon dispersions
calculated using the HA method. Bottom panel: The same as the middle panel but at T = 600 K and the atomic participation ratio of
atom Sb. (c) Calculated frequency shifts ascribing from tadpole, bubble, and loop diagrams for the fourth mode at the 	 point and the
third mode at the H point in the Brillouin zone, respectively. (d) Atom-projected and total phonon density of states with (300 and 600 K)
and without (0 K) considering anharmonic phonon renormalization, in comparison with those obtained from experiments at corresponding
temperatures [66,67].

Here, �B
q is the frequency shift due to the bubble diagram,

�q is the renormalized phonon frequency due to the loop
diagram,

∑B
q (�q) is the phonon frequency-dependent bubble

self-energy, �c = �q + i0+ with 0+ being a positive infinites-
imal, and V3 is the three-phonon interaction. Note that we
denote SCP + bubble diagram (SCPB) as a shorthand notation

for the above treatment of anharmonic phonon renormaliza-
tion in this paper.

Based on the obtained harmonic and anharmonic IFCs, the
lattice thermal conductivity kL was calculated by a unified
theory of thermal transport incorporating population and co-
herence contributions [26]. The resulting formula for kL takes
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the form of

κ
P/C
L = 1

NV

∑
q j j′

cq jωq j′ + cq j′ωq j

ωq j + ωq j′
υq j j′

⊗ υq j′ j
	q j + 	q j′

(ωq j − ωq j′ )2 + (	q j + 	q j′ )2 , (5)

where the superscripts P and C represent the phonon and
coherence contributions, respectively, cq j is the mode-specific
heat associated with wave vector q and phonon branch j, V
is the primitive-cell volume, ωq j is the phonon frequency, 	q j

is the phonon linewidth, and υq is the phonon group velocity.
The diagonal term ( j = j′) gives the population contribution
(Peierls’ contribution), whereas the off-diagonal term ( j �= j′)
gives rise to the coherence contribution. The total lattice ther-
mal conductivity is then given as κL = κP

L + κC
L . Note that we

found that the difference of the κP
L calculated by the single-

mode relaxation time approximation (RTA) and an iterative
solution of the PBTE is negligible. All the main phonon
calculations and the IFC extraction were performed using the
ALAMODE package [20,38]. See the Supplemental Material
(SM) [46] for the full computational details and methodology
(see also Refs. [47–65] therein).

III. RESULTS AND DISCUSSION

A. Lattice dynamics and anharmonicity

We start by comparing the calculated phonon dispersion
curves of YbFe4Sb12 using the HA method and the
SCPB method at 0, 300, and 600 K [see Fig. 1(b)]. We
implemented the anharmonic phonon renormalization at
finite temperatures using the SCPB method which considers
both the cubic (bubble self-energy included) and quartic
(loop self-energy included) anharmonicities. The calculated
phonon dispersions based on the HA are in good agreement
with previous work [14]. Upon including anharmonic phonon
renormalization, an overall significant phonon stiffening
occurs for the low-lying flat modes with frequencies ∼1
THz. By projecting the atomic participation ratio onto the
phonon branches, we find that the low-lying flat modes
are mainly dominated by the vibrations of Yb atoms. This
feature is also reflected by the atom-decomposed partial
density of states (PDOS) in Fig. 1(d) and is consistent
with the experimental observations [35]. The calculated
Yb-dominated PDOS peak shifts by ∼0.06 THz from 10
to 300 K, agreeing favorably with the experimental result
(∼0.1 THz) [35] (see Figs. S1(a) and S1(b) in the SM
[46]). Different from the continuous phonon stiffening of the
Yb-dominated modes, the Sb-dominated intermediate-
frequency modes undergo various shifts, including the
relatively weak stiffening for the majority modes, phonon
softening at the H symmetry point for the minority modes, and
the negligible phonon softening for the highest Sb-dominated
modes [see Fig. 1(b)].

We next evaluated how the frequency shifts depend on
the tadpole, bubble, and loop diagrams [45]. Figure 1(c)
shows the frequency shifts in the low-lying flat modes are
mainly induced by the bubble and loop diagrams, while the
tadpole diagram-induced frequency shift is minor and negli-
gible. The subsequent analysis will show that the frequency

shifts resulting from both the bubble and loop self-energy
are necessary for reproducing the experimental results of
YbFe4Sb12. Meanwhile, we note that the frequency shifts
resulting from the bubble diagram are quite significant in
some compounds [28,44] but can be neglected in other
materials [27].

Figure 1(d) shows the calculated phonon density of states
(DOS) in comparison with the experimental results at finite
temperatures [66,67]. Compared with the harmonic DOS, the
calculated anharmonic DOSs at 300 and 600 K agree well
with experiments [66,67]. Specifically, within the HA frame-
work, the vibrational Yb-dominated peak ∼1 THz deviates
notably from the experimental observation at finite tem-
peratures. Including the anharmonic phonon renormalization
significantly improves the agreement between the experimen-
tally observed [66,67] and theoretically predicted results at
300 and 600 K for this peak.

Because the frequency shifts induced by the bubble di-
agram are significant [see Fig. 1(c)], neglecting the cubic
anharmonicity in anharmonic phonon renormalization is ex-
pected to produce remarkable deviations in phonon energies.
To comprehensively evaluate this deviation, we calculated the
anharmonic phonon dispersions considering only the quar-
tic anharmonicity with/without polarization mixing (PM), as
shown in Figs. 2(a) and 2(b), respectively. Indeed, consider-
ing only the quartic anharmonicity overpredicts the phonon
energies in YbFe4Sb12 at finite temperatures, leading to the in-
finite approach and cross of the avoided-crossing filler modes
(Yb-dominated modes) along the 	-H symmetry path in the
Brillouin zone at elevated temperatures, e.g., 600 and 700 K
(see Figs. 2(a) and S2 in the SM [46]). If the PM factor was
further excluded, even larger overprediction occurs for the
phonon energies [see Fig. 2(b)]. This results in a reduction
in the scattering rates and thus significant overestimation in
lattice thermal conductivity, especially at high temperatures,
as illustrated in the subsequent analysis.

When only the quartic anharmonicity is considered, the
Sb-dominated intermediate-frequency phonon modes undergo
evident stiffening for the majority modes [see Figs. 2(a) and
2(b)]. In contrast, cubic anharmonicity tends to soften the
phonons [27,28,44]. This competition eventually results in
weak phonon softening for the highest Sb-dominated modes,
agreeing well with the experimental observation [67] [see
Fig. 1(b)]. Similarly, because of the competition effect in-
duced by the cubic and quartic anharmonicities, the highest
Fe-dominated mode exhibits a negligible hardening with
increasing temperature, improving the agreement with the
experimental observation [67] [see Fig. 1(b)]. Conversely, the
Fe-dominated modes possess a significant phonon stiffening
by considering only the quartic anharmonicity [see Fig. 2(a)].
Therefore, the cubic anharmonicity cannot be neglected in
accurately predicting phonon energies in YbFe4Sb12 [44].

We next analyze the localized nature of phonon modes by
projecting the participation ratio onto the phonon dispersion
curves in the Brillouin zone. As seen in Fig. 3(a), the low-
lying flat modes with frequencies ∼1 THz can be identified as
localized modes of Yb atoms in the cages [see Figs. 1(a) and
1(b)]. Importantly, the strong anharmonic effect and tempera-
ture dependence always exhibit in the low-frequency localized
modes [27]. Therefore, to reveal the microscopic origin of the
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FIG. 2. (a) Calculated phonon dispersion curves along high-symmetry paths in the Brillouin zone. Left panel: Within the harmonic
approximation (HA) method, and all bands are colored according to the atomic participation ratio of atom Yb. Middle panel: Within the
self-consistent phonon (SCP) theory considering only the quartic anharmonicity at T = 300 K, and all bands are colored according to the
atomic participation ratio of atom Fe. The dashed lines depict the phonon dispersions calculated using the HA method. Right panel: The same
as the middle panel but at T = 600 K and the atomic participation ratio of atom Sb. The green circle denotes the infinite approach or cross of
the avoided-cross filler modes. PM denotes the polarization mixing (PM). (b) The same as (a) but without considering the PM.

shifts in phonons, we calculated the PESs in real space, which
reflects the frequency shifts in reciprocal space [68]. Here,
we displace the supercell atoms by uκ = M−1/2

κ eq,κη [27],
where M and η denote the atomic mass and the amplitude
of the normal mode coordinate, respectively, and eq,κ refers
to the eigenvector corresponding to the wave vector q and
atom κ . As shown in Fig. 3(b), the PESs of the Yb-dominated
low-lying flat mode has a deep and flat-bottom U shape, which
cannot be well captured by the HA. By further including
the higher-order anharmonic terms, i.e., quartic and sextic
terms, the PESs from the DFT calculation can be well repro-
duced, revealing the strong higher-order anharmonic effect in
YbFe4Sb12. Note that we did not consider the sextic terms
in this paper due to their negligible contribution to the PESs
[see Fig. 3(b)]. Because of the dominant and positive coupling
coefficients of the quartic terms, phonon stiffening arises for
the zone center low-lying flat mode [27,68].

Anharmonic phonon renormalization can also largely af-
fect the prediction of atomic MSDs, especially at high
temperatures. Figure 3(c) shows that the SCPB calculations
reduce the discrepancy in MSD between the theoretical pre-
diction and experimental values [69], especially for the Yb
atoms at elevated temperatures. This can be attributed to the
suppression of the phonon population from the hardened Yb
vibrations. Furthermore, the Yb atoms possess the largest
MSD value among all the elements according to both the pre-
diction and experiment [69], indicating the rattling behavior
of Yb atoms.

B. Lattice thermal conductivity

With the original/renormalized harmonic and anharmonic
IFCs at hand, we calculated lattice thermal conductivity κL

based on the PBTE method [17,18] and a unified theory of
thermal transport [26] with/without considering temperature
effect in YbFe4Sb12, as shown in Fig. 4(a). The phonon
thermal conductivity κP

L predicted with the HA method [HA
+ Boltzmann transport equation (BTE) method], as expected,
is seriously underestimated throughout the entire temperature
range (300–700 K), like that reported by Li and Mingo [14].
This underestimation could be due to the invalidity of the par-
ticlelike phonon picture and/or the neglection of anharmonic
phonon renormalization at finite temperatures. We first cal-
culated the coherence contributions within the HA, resulting
from the OD based on a unified theory of thermal transport
[26]. The inclusion of the coherent terms, i.e., the HA + BTE
+ OD method, increases κL by 38% at 300 K but still fails
to reproduce the experimental results [13], implying that the
accurate treatment of finite-temperature phonons is necessary.

We then used the SCPB + BTE method to account for
the finite-temperature effect induced by the cubic and quartic
anharmonicities. The computed κP

L using the SCPB + BTE
method is significantly enhanced by 61% at 300 K [see the red
dash line in Fig. 4(a)], although it is still a bit underestimated
compared with the experimental values [13]. The anharmonic
phonon renormalization increases the phonon mean free path
(MFP), but the MFP of some phonons is still lower than or
close to the minimum interatomic distance in YbFe4Sb12 (see
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FIG. 3. (a) Calculated participation ratio projected onto the
phonon bands along high-symmetry paths in the Brillouin zone
at T = 0 K. (b) Calculated potential energy surfaces (PESs) of
the fourth mode (low-lying flat mode) at the Brillouin zone
center 	 point. The black dot depicts the density functional
theory (DFT) data, the red dash line is fitted to the second
order, and the solid green and blue lines show the PES decom-
posed to the fourth and sixth orders, respectively. Note that the
third- and fifth-order terms are zero due to the even function
property of PESs. (c) Calculated temperature-dependent atomic
mean-square displacements (U ) within the harmonic approxi-
mation (HA; dash lines) and self-consistent phonon + bubble
(SCPB; solid lines) approaches compared with those obtained from
experiments [69].

FIG. 4. (a) Calculated temperature-dependent lattice thermal
conductivity κL utilizing different levels of theory including the har-
monic approximation (HA)/self-consistent phonon + bubble (SCPB)
+ Boltzmann transport equation (BTE) and HA/SCPB + BTE + off-
diagonal term of heat flux operator (OD) methods in comparison with
those obtained from the temperature-dependent effective potential
(TDEP) [16], the two-channel method [15], and experiment [13]. In
addition, calculated temperature-dependent coherence contributions
of κC

P (OD) using the harmonic and anharmonic phonon frequencies
and eigenvectors are also given in the figure (depicted by the lowest
two lines). (b) Calculated temperature-dependent lattice thermal con-
ductivity κL using the SCP + BTE method with/without coherence
contribution in comparison with that estimated based on the SCPB +
BTE + OD method.

Fig. S3 in the SM and the corresponding discussion [46]).
By further including the contributions of these phonons to
the total thermal conductivity from the OD (coherence con-
tributions), the SCPB + BTE + OD reproduces well the
experimental data in the entire temperature range. It is note-
worthy that the phonon thermal conductivity κP

L comprises,
percentage wise, ∼82% of the total κL at 300 K. Moreover,
the temperature dependence of lattice thermal conductivity
changes from κP

L ∼ T −1 to κP
L ∼ T −0.49 by considering only
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the anharmonic phonon renormalization and to κL ∼ T −0.38

by further including the coherence contribution, which is
consistent with the experimental result κL ∼ T −0.40. Unlike
the prediction in κL by the TDEP [16] or the two-channel
method [15], the SCPB + BTE + OD method can better
explain the experimental observation in YbFe4Sb12 without
phenomenologically introducing a resonant phonon scatter-
ing term or a hopping channel. The above analysis reveals
that both the anharmonic phonon renormalization and coher-
ent thermal transport channel are essential in explaining the
experimental results and the dominant particlelike nature of
phonons in YbFe4Sb12.

We have illustrated the significant impact of cubic an-
harmonicity on phonon energies. To unravel the correlation
between the cubic anharmonicity-induced phonon shifts and
the resulting change in κL, we calculated κL using anharmonic
phonons with/without considering frequency shifts from the
bubble diagram. In Fig. 4(b), the off-diagonal part κC

L is in-
sensitive to the phonon shift from the cubic anharmonicity;
therefore, the bubble diagram-induced phonon shift only has
a significant effect on phonon propagation. This is because the
frequency shifts due to the cubic anharmonicity in YbFe4Sb12

are no longer negligible, and they can significantly change
the phonon scattering rates and the relatively large group
velocities of phonon propagation. The computed κL by the
SCP + BTE + OD method are ∼20% higher than those by
the SCPB + BTE + OD method. These results highlight the
importance of frequency shifts from bubble diagram in the
accurate prediction of κL in YbFe4Sb12.

Recently, the four-phonon scattering process was found
to play a crucial role in significantly reducing the phonon
scattering rates and thermal conductivity κL for many mate-
rials [70,71]; however, it has a minor effect on the thermal
transport in YbFe4Sb12 (see Fig. S4 in the SM and the cor-
responding discussion for more details [46]). Also, further
considering the four-phonon process increases the compu-
tational cost by orders of magnitude, we therefore neglect
the four-phonon scattering rates in calculating the thermal
conductivity, which does not affect our major conclusion in
this paper.

C. Particlelike thermal transport channel

To reveal the microscopic origin of the enhancement in κP
L

due to anharmonic phonon renormalization, we compare the
frequency-dependent spectral and cumulative κP

L calculated
using the harmonic and anharmonic phonon frequencies and
eigenvectors. As seen in Fig. 5(a), the lattice heat conduction
in YbFe4Sb12 is mainly carried by the acoustic and optical
phonons with frequencies < 4.5 THz. All the cumulative κP

L
reaches a plateau corresponding to the dip in the spectral
κP

L (ω) ∼ 1 THz, which originates from the low-lying avoided
flat modes possessing extremely high scattering rates and low
group velocity [see Figs. 5(b) and 5(c)]. Interestingly, the op-
tical modes dominated κP

L , e.g., the optical modes contribute
58% to κP

L at 300 K (see Fig. S5 in the SM [46]). This
phenomenon was also observed in other severely anharmonic
materials [25,38].

The increase in κP
L calculated by the SCPB + BTE method

relative to the HA + BTE method mainly arises from the

acoustic and low-energy optical phonons with frequencies
<2.4 THz. Quantitatively, κP

L was enhanced by up to a
factor of 1.6 and 2.2 at 300 and 600 K, respectively, when
the phonons are anharmonically hardened [see Fig. 5(a)].
Particularly, κP

L contributed from the first low-energy peak
(<1.2 THz) shows around a twofold and threefold increase
at 300 and 600 K, respectively. A similar enhancement also
occurs in the second Sb-dominated intermediate-frequency
peak (1.2–2.4 THz). We will later show that the enhancement
in the two abovementioned peaks depends on the behavior
of the Yb-dominated modes. In addition, the renormalized
phonon κP

L without considering frequency shifts from the
bubble diagram was also mainly enhanced by the low- and
intermediate-frequency phonons <2.4 THz at 600 K [see
the bottom panel in Fig. 5(a)]. This observation indicates
the strong effect of lattice anharmonicity on low- and
intermediate-frequency phonons.

Next, we elucidate the intrinsic effect of the key ingredients
in the PBTE equation, i.e., the modal group velocities, mode-
specific heat, and scattering rates, on the phonon thermal
transport. As shown in Fig. 5(b), the scattering rates from the
HA method are strongly suppressed by the anharmonically
renormalized phonons, resulting in a remarkable increase in
phonon lifetimes and corresponding enhancement in κP

L (ω) in
the frequency region <4.5 THz [see Fig. 5(a)]. Compared with
the change in scattering rates, the phonon group velocities
[see Fig. 5(c)] and mode-specific heat (see Fig. S6 and the
discussion in the SM [46]) are less affected by anharmonic
phonon renormalization. Also, all the scattering rates from the
SCPB method are well below the limit of Cahill et al. [22]
assuming that the maximum scattering rate of a phonon mode
is twice its frequency, demonstrating the dominant particlelike
nature of phonons in YbFe4Sb12.

Furthermore, we calculated the renormalized phonon scat-
tering rates considering only the frequency shifts from the
quartic anharmonicity. The scattering rates in Fig. 5(b) con-
sidering only the quartic anharmonicity (SCP + BTE) are
generally lower than that considering both the cubic and
quartic anharmonicities (SCPB + BTE). However, the SCP
+ BTE method results in substantially higher κP

L (ω) in the
frequency regime <2.4 THz mainly due to the relatively
large group velocity of low-frequency phonons. This result
highlights the importance of accurate treatment of the low-
frequency modes at finite temperatures.

We also calculated the cumulative κP
L as a function of the

MFP at 300 and 600 K using the SCPB + BTE method,
respectively, as presented in Fig. 5(d). The thermal conduc-
tivity is almost saturated when the MFP is >400 nm at
both temperatures. The MFPs corresponding to 50% thermal
conductivity accumulation from the SCPB calculations are
7 and 6 nm at 300 and 600 K, respectively, indicating the
dominance of short-MFP phonons in skutterudite YbFe4Sb12.
The short MFPs rationalize the weak size effects of thermal
conductivity for YbFe4Sb12 and suggest small characteris-
tic size is required to suppress its thermal conductivity by
nanostructuring.

To understand the microscopic origin of the reduction
in scattering rates caused by anharmonic phonon renor-
malization, we examine the two key ingredients entering
the phonon linewidth equation (see Eq. (S7) in the SM
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FIG. 5. (a) Calculated spectral and cumulative thermal conductivity with/without considering anharmonic phonon renormalization at T =
300 and 600 K. In addition, the calculated renormalized phonon results with/without considering frequency shifts from bubble self-energy
were given at T = 600 K. (b) Comparison of scattering rates calculated by the harmonic approximation (HA) and anharmonic [self-consistent
phonon (SCP), SCP + bubble (SCPB)] phonon frequencies and eigenvectors at finite temperatures (300 and 600 K). The solid black line
assumes the scattering rate to be twice the phonon frequency to estimate minimum κL [22], the phonon quasiparticle picture becomes valid
when the data points are well below this line. (c) Calculated anharmonic renormalization phonon group velocity at finite temperatures (T = 300
and 600 K) in comparison with the harmonic phonon group velocity. (d) Calculated cumulative thermal conductivity as a function of mean
free paths based on the SCPB method at T = 300 and 600 K, respectively.

[46]), namely, the three-phonon cubic coupling strength
|V (3)|2 and the SPS. We find that |V (3)|2 and the SPS play
different roles in reducing the scattering rates in the differ-
ent frequency regions. In Fig. 6(a), the anharmonic effect
leads to a negligible change in the SPS for phonons <1.2
THz; therefore, the cubic coupling strength is responsi-
ble for the suppression in the scattering rates. Figure 6(b)
compares |V (3)|2 of the Yb-dominated mode calculated us-
ing harmonic and anharmonic frequencies, suggesting that
the significant weakening in |V (3)|2 plays a dominant role
in decreasing the scattering rates. Furthermore, we note
that the dramatic reduction in |V (3)|2 is mainly associated
with phonons in frequency regions ∼1 and 2 THz [see
Fig. 6(b)], revealing the nontrivial role of the low-lying mode
stiffening in suppressing the scattering rates. Similarly, the
anharmonic phonon renormalization inducing the reduction
in mode Grüneisen parameters mainly occurs in the vicinity
of frequency regions ∼1 and 2 THz (see Figs. S7(a)–S7(d) in
the SM [46]).

In contrast, the significant shift and reduction in the
SPS mainly accounts for the reduction in scattering rates of
phonons in the 1.2–2.4 THz frequency interval, as shown in

Fig. 6(a). The peak of the phonon emission process W −
q results

from the low-lying flat modes due to the restriction of the
simultaneous energy and momentum conversation, like that
illustrated in the literature [14]. Therefore, the correspond-
ing SPS shift can ultimately be traced back to anharmonic
phonon stiffening of the Yb-dominated low-lying flat modes,
as demonstrated by the similar pace of the SPS shift and the
phonon stiffening [see Figs. 1(b) and 6(a)]. Moreover, very
little change occurs for |V (3)|2 of phonons with frequency ∼2
THz at the 	 symmetry point as the temperature increases [see
in Fig. 6(c)], indicating that the change in the SPS is the major
origin of the reduction in scattering rates for phonons within
1.2–2.4 THz. For the phonons within 2.8–4.5 THz, as seen in
Fig. 6(a), the evident shift in the SPS plays a dominant role in
suppressing the scattering rates due to the negligible change in
mode Grüneisen parameter associated with |V (3)|2 (see Figs.
S7(a)–S7(d) in the SM [46]).

D. Wavelike thermal transport channel

We next evaluate the coherence contribution to thermal
transport by calculating the off-diagonal terms of the heat
flux operators. As shown in Fig. 4(a), further including the
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FIG. 6. (a) Calculated energy- and momentum-conserving scat-
tering phase space with/without considering anharmonic phonon
renormalization at T = 300 and 600 K, respectively. (b) Calculated
cubic coupling strength for acoustic phonon mode at the Brillouin
zone N-symmetry point [q = (0.0, 0.0, 0.5)], with/without consider-
ing anharmonic phonon renormalization at T = 300 and 600 K as a
function of ωq′ . (c) The same as (b) but for the seventh phonon mode
at the Brillouin zone 	 symmetry point.

coherent transport channel [26] results in better agreement
between the calculated κL and experiments [13]. In contrast
to the decreasing trend in the particlelike phonon contribution
κP

L , the coherence contribution κC
L increases with increasing

temperature. Specifically, κC
L calculated using the anharmonic

phonon frequencies and eigenvectors accounts for 18% of the
total κL at 300 K and increases to 25% at 600 K, respectively,
22% on average in the entire temperature range [see Figs.4(a)
and 7(a)]. This indicates the off-diagonal contribution is no
longer negligible due to the strong phonon broadening in
YbFe4Sb12 [see Fig. 5(b)], although the particlelike phonon
channel still dominates the heat transport. However, using the
harmonic frequencies and eigenvectors, the coherence contri-
bution κC

L contributes up to ∼50% of the total κL at 700 K
[see Fig. 4(a)], although the absolute value of the coherence
contribution κC

L is insensitive to the anharmonic phonon renor-
malization [see Figs. 4(a) and 4(c)]. As mentioned earlier,
such a high relative contribution is due to the invalidity of the
phonon gas model [17,18] within the HA framework, which
highlights the importance of the accurate treatment of the
anharmonic effect in YbFe4Sb12.

To gain a deeper insight into the coherence contribution
κC

L in YbFe4Sb12, we proceed to analyze the spectral κC
L (ω)

and cumulative κC
L considering only the anharmonic phonon

stiffening in detail. Contrary to the particlelike phonon trans-
port that κP

L is mainly contributed by phonons <2.4 THz
[see Fig. 4(a)], phonons in the 2–5 THz interval dominate
the coherent thermal transport, as shown in Fig. 7(a). This
is due to the strong broadening of phonon states in the
intermediate-frequency region in YbFe4Sb12, which is benefi-
cial to promote the wavelike tunneling and loss of coherence
between vibrational eigenstates from different branches [26].
In Fig. 7(a), phonons with frequencies <3.4 THz are excited
up to 300 K, and the higher-energy phonons begin to be
excited at elevated temperatures.

We further calculated the modal κC
L (ω1, ω2) at 300 and

600 K to show the off-diagonal coupling of vibrational eigen-
states. As shown in Figs. 7(b) and 7(c), the quasidegenerate
eigenstates (ω1

∼= ω2) contribute most to κC
L because a smaller

energy difference between eigenstates produces a larger off-
diagonal contribution [26,68]. As the temperature increases,
the coherence coupling between eigenstates with larger fre-
quency differences becomes stronger (e.g., 4 and 7 THz),
resulting in enhanced κC

L [see Fig. 7(c)]. The enhancement
of the off-diagonal couplings is due to the excitation of
high-energy phonons and the larger broadening of phonon
eigenstates at high temperatures.

To this end, using a unified theory of thermal transport
incorporating population and coherence contributions, i.e., the
SCP + BTE + OD model, we can explain well the under-
lying microscopic mechanism of thermal transport in highly
anharmonic YbFe4Sb12. However, the theoretically predicted
results may be improved by further considering the follow-
ing factors: (i) using a hybrid functional in DFT calculation,
(ii) further thermal expansion with increasing temperature,
(iii) further considering the four-phonon interaction process in
the phonon scattering rates, and (iv) further including anhar-
monic contributions of heat flux operators. Note that further
including the abovementioned factors into the calculation
is extremely computational and time consuming and pro-
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FIG. 7. (a) Calculated spectral and cumulative coherent thermal
conductivity using anharmonic phonon frequencies and eigenvectors
at T = 300 and 600 K, respectively. The contribution of mode j
in the coherence couplings between two interbranch modes (q, j)
and (q, j ′) is determined as cq j/(cq j + cq j′ ), where cq j is the mode
specific heat. (b) The modal κC

L (ω1, ω2) for the contribution to the
thermal conductivity of interbranch coherence terms calculated us-
ing anharmonic phonon frequencies and eigenvectors at T = 300 K.
The points on the diagonal, i.e., ω1 = ω2 correspond to degenerate
eigenstates. (c) The same as (b) but T = 600 K.

hibitive for complex and highly anharmonic compounds based
on the current computer configuration and computational
techniques. Fortunately, the phonon-phonon scattering selec-

tion rules based on the symmetries of the lattice can be applied
to significantly reduce the computational cost and time for
four-phonon scattering rates in future study [72].

IV. CONCLUSIONS

In summary, we have systematically investigated the effect
of the anharmonicity on phonon vibrational properties and
thermal transport by the first-principles-based framework of
anharmonic lattice dynamics and a unified theory of thermal
transport coupling the population and coherence contribu-
tions in YbFe4Sb12. We find that both the cubic and quartic
anharmonicities are required for accurately describing the an-
harmonic lattice dynamics. Particularly, the bubble diagram
ascribing from the cubic anharmonicity that has been com-
monly ignored results in significant phonon softening, while
the tadpole diagram causes negligible frequency shift. The
competition between the phonon stiffening from the loop
diagram and the phonon softening from the bubble diagram
improves the accuracy in modeling anharmonic lattice dy-
namics. Particularly, the Yb-dominated low-lying flat modes
experience a significant stiffening with increasing temperature
due to the strongly anharmonic PESs, consistent with the
experimental observation.

Our results show the anharmonic phonon renormalization
plays a decisive role in enhancing thermal transport, leading
to the dominant particlelike nature of phonons in YbFe4Sb12.
The anharmonically renormalized phonons not only increase
the magnitude of κP

L but also change the temperature depen-
dence. Essentially, the enhancement in κP

L is mainly due to the
significant hardening of the Yb-dominated low-lying modes,
which suppresses the cubic coupling strength and alters the
SPS. Importantly, we show that the phonon softening due
to the cubic anharmonicity enhances the phonon scattering
rates, resulting in a 20% reduction in κP

L relative to the case
considering only the quartic anharmonicity.

Furthermore, we find that the coherence contribution κC
L

in YbFe4Sb12 is nonnegligible, contributing ∼22% of the
total thermal conductivity throughout the entire temperature
range (300–700 K). Here, κC

L is insensitive to the anhar-
monic phonon renormalization and gradually increases with
increasing temperature. Also, κC

L is mainly contributed by
the coherence coupling between two quasidegenerate phonon
states within the 2–5 THz frequency interval.

By considering the anharmonic phonon renormalization
and coherence contribution, we can reproduce well the
experimentally measured κL in YbFe4Sb12, implying the phe-
nomenological resonant terms or hopping channels may be
insignificant. Our results highlight the importance of lattice
anharmonicity-induced renormalized phonons in modeling
thermal transport in YbFe4Sb12. For the materials with strong
phonon broadening, the coherent thermal transport channel
is also necessary for an accurate description of κL. These
results offer insights into the microscopic mechanism of
thermal transport in filled skutterudites with low-lying flat
modes and may help to understand the lattice dynamics and
thermal transport in the highly anharmonic complex com-
pounds, e.g., complex thermoelectric materials with ultra-low
thermal conductivity, ferroelectric materials, and complex
perovskites.
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