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We present a robust technique for computationally studying surface polariton modes in hybrid materials. We
use a semiclassical model that allows us to understand the physics behind the interactions between collective
excitations of the hybrid system and develop a scattering and transfer matrix method that imposes the proper
boundary conditions to solve Maxwell’s equations and derive a general equation describing the surface polariton
in a heterostructure consisting of N constituent materials. We apply this method to a test structure composed of a
topological insulator (TI) and an antiferromagnetic material (AFM) to study the resulting surface Dirac plasmon-
phonon-magnon polariton (DPPMP). We find that interactions between the excitations of the two constituents
result in the formation of hybridized modes and the emergence of avoided-crossing points in the dispersion
relations for the DPPMP. For the specific case of a Bi2 Se3 TI material combined with a 3D AFM such as NiO,
MnF2, or FeF2, the polariton branch with low frequency below 2 THz redshifts upon increasing the thickness of
TI thin film, which leads to an upper bound on the thickness of the TI layer that will allow an observable signature
of strong coupling and the emergence of hybridized states. We also find that the strength of the coupling between
the TI and the AFM, which is parametrized by the amplitude of the avoided-crossing splitting between the two
polariton branches at the magnon resonance frequency, depends on the magnitude of the magnetic dipole and
the linewidth of the magnon in the AFM material as well as on the Fermi energy of Dirac plasmon in the TI.
Finally, we show that materials with extremely high quality, i.e., low scattering loss rate, are essential to achieve
an experimentally observable strong coupling between a TI and 3D AFM material. The overall analysis identifies
the material properties that are necessary to achieve experimentally observable strong coupling for the interaction
between THz excitations in a TI/AFM heterostructure and can thereby guide experimental efforts.
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I. INTRODUCTION

Surface Dirac plasmon polaritons (DPPs), the electro-
magnetic collective modes of electrons that are localized
evanescent waves in the direction perpendicular to the surface
and propagate on the surface of a topological insulator (TI),
can be used for a broad range of interdisciplinary applications
in sensing, imaging, detection, and photonic data storage in
the THz spectral windows [1–6]. Likewise, magnons, which
are the collective excitations of electronic spins in a magnetic
material, can be used in realizing high-frequency information
storage, quantum computing, information transport, and data
processing on the microscale and nanoscale with extremely
low energy consumption owing to the absence of charge trans-
port [7–15]. If material constituents such as TIs and magnetic
materials are combined to form a hybrid material, an incident
electromagnetic (EM) wave can excite the internal degrees of
freedom of all constituent materials, resulting in the genera-
tion of collective excitations (i.e., polaritons) with emergent
properties that provide a possible foundation for novel de-
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vices with unique optical and electrical functionalities. For
example, the plasmon-magnon interaction can result in a new
type of polariton that combines both spin and charge collective
excitations into a coherent mode with intriguing and nontrivial
properties [16,17]. The creation and properties of such hybrids
has been of interest for some time [18,19], but there is still
no comprehensive study of such interactions due to the large
gap between plasmon and magnon energies in conventional
semiconductors or metal systems. Recent advances in the syn-
thesis and fabrication of materials and heterostructures with
clean and well-controlled interfaces now make it possible to
explore the interaction between such excitations. Examples
of materials that are now accessible for such studies include
graphene and 3D TIs such as Bi2 Se3, Bi2 Te3, Sb2 Te3, all of
which host a Dirac plasmon on their surface with energy in
the THz spectral window [20–25], and 3D antiferromagnetic
(AFM) materials such as NiO, MnF2, or FeF2 [26–30] or 2D
AFM van der Waals materials like FePS3 or CrI3 [31–35] that
have magnon energies in the same THz frequency regime.

There have been several prior investigations of the coupling
between Dirac plasmons in graphene and magnons in AFMs
[17,36]. For instance, Bludov and co-authors used a simple
model that neglected all dissipation in the system to study the
interaction between a graphene layer and an AFM [17]. They
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found that the dispersion of the surface magnon-plasmon po-
lariton in this system changed drastically upon varying the
carrier density of the graphene or the sign of the group ve-
locity. Pikalov and co-workers extended the study of Bludov
by taking into account the damping of both the magnons and
plasmons [36]. The authors in these works, however, have not
focused on the strength of the interaction between Dirac plas-
mons and magnons in their system. In particular, they have not
explicitly considered the relationship between the coupling
strength and the intrinsic properties of the involved materials,
which is critical to provide guidance toward materials that
could achieve experimentally observable strong coupling in
such hybrid material systems. To the best of our knowledge,
there has not yet been any comprehensive examination of the
interaction between a TI and an AFM that considers both elec-
tric and magnetic degrees of freedom. Notably, interactions
between the Dirac plasmon mode and the lattice vibrations,
i.e., phonons, in a bulk TI significantly alter the dispersion
of the surface Dirac plasmon polariton in the TI, resulting
in the formation of a Dirac plasmon-phonon-polariton mode
that is different from the polariton modes of 2D materials like
graphene [24]. In the case of chalcogenide materials with a
rhombohedral lattice and quantum layer structure like that
of Bi2 Se3, two characteristic phonon modes are observable
when the AC electric field is perpendicular to the c axis:
the alpha phonon, also known as the Eu1 mode, and the beta
phonon, also known as the Eu2 mode [37]. The strong alpha
phonon mode oscillation contributes to a large variation in
the Bi2 Se3 permittivity in the THz regime we consider in this
work.

Here we present a comprehensive theoretical study of the
formation of surface Dirac plasmon-phonon-magnon polari-
tons in a TI/AFM bilayer structure. Using a semiclassical
approach, we investigate the surface polariton modes in a
heterostructure by employing the scattering and transfer ma-
trix method to solve Maxwell’s equations for an EM wave
propagating in the considered system and subject to specific
boundary conditions that determine the surface modes. We
then derive an analytic equation describing the surface Dirac
plasmon-phonon-magnon polariton (DPPMP) in a TI/AFM
bilayer associated with the p polarization of the incident light
mode, which allows us to explore the properties of the sur-
face DPPMP as a function of the structural parameters of the
constituent materials. The computational and analytical devel-
opments presented in this work go beyond previously reported
techniques for the description of surface polariton modes
in an optical layered structure. For example, in Ref. [17]
Bludov and co-workers developed the transfer matrix tech-
nique for the specific case of graphene and an AFM layer. In
Ref. [38], the surface plasmon mode in a multilayer structure
is discussed in terms of the transfer matrix method, but this
technique will struggle with numeric convergence when con-
sidering a large number of layers with finite thickness. In this
work we employ both transfer matrices and scattering matri-
ces to study the surface plasmon modes in a heterostructure.
Further, by combining transfer and scattering matrix methods
with proper boundary conditions for the electric and mag-
netic fields of polaritons excited on the surface of multilayer
structures we straightforwardly obtain equations describing
the mode that are general and concise rather than considering

the other aspects of the scattering problem with reflection
coefficients as in Refs. [38]. The advantage of the approach we
report here is that the imposed boundary conditions together
with the transfer matrix directly give us a simple analytical
derivation for the case of a material with few layers. Mean-
while, the scattering matrix approach provides an advanced
and accurate tool for dealing with more realistic multilayer
structures.

This paper is organized as follows: In Sec. II we de-
scribe the methods and models employed in this paper to
study the interaction between a TI and AFM. We first re-
view the basic theory starting with Maxwell’s equations and
standard boundary conditions (Sec. II A). We then give the so-
lutions to Maxwell’s equations for the bulk mode within each
constituent material (Sec. II B). Using the scattering (or equiv-
alently transfer) matrix technique, we then obtain a general
equation for the surface polariton mode in a heterostruc-
ture (Sec. II C). In Sec. III we apply the method presented
in Sec. II to a TI/AFM bilayer structure, beginning with
a general consideration of the formation of Dirac plasmon-
phonon-magnon polaritons in this system (Sec. III A). We
then discuss the dependence of these dispersion relations on
various combinations of constituent TI and AFM materials
and explore the material properties required to obtain an ex-
perimentally observable strong coupling between the TI and
AFM (Secs. III B–III D). Finally, conclusions and perspec-
tives are provided in Sec. IV.

II. THEORY

Interactions between light and matter can be investigated
within three conceptual frameworks [39,40]. (1) Classical
description, in which the collective excitations are considered
as harmonic oscillators and their coupling relates to the ex-
change energy between the two oscillators. In this scheme,
the coupling strength between the two oscillators is an input
parameter used to fit the dispersion relation ω(k) to experi-
mental data. For this reason classical models make it difficult
to understand the physical origin of the coupling strength or
its relationship to the properties of the constituent materi-
als [41]. (2) Semiclassical description, in which Maxwell’s
equations are used in combination with the optical response
functions to describe polaritons. This approach allows one
to relate the interaction between two excitations with the
structural parameters of the constituent materials through the
optical response functions. (3) Quantum mechanical repre-
sentation, in which the polaritons are hybrid modes, a linear
superposition of a matter and photon state. The interaction
between the matter and photon states is described through the
interacting part of the total Hamiltonian. In all three pictures,
the hybridized modes are created when two or more distinct
excitations interact with sufficient strength to form new modes
that cannot be represented by considering either excitation
alone. The signature of hybridized states is an avoided cross-
ing between the two modes at the point where they would be
degenerate in the absence of any interaction. Our goal in the
present work is to study the coupling between a TI and an
AFM that results in the formation of surface Dirac plasmon-
phonon-magnon polariton (DPPMP). We then characterize the
properties of the surface DPPMP as a function of the structural
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FIG. 1. (a) Schematic of a multilayer structure consisting of N
constituent layers that have the same width W along the x direction.
The z axis is chosen as the growth direction of the structure. The
thickness, permittivity, permeability in the mth layer, and optical
conductivity of the carrier sheet at the mth surface/interface are
denoted by dm, εm, μm, and σm, respectively, whereas Im indicates the
interface matrix at the mth interface. (b) Schematic of the amplitudes
of incoming and outgoing EM waves used in the scattering matrix
approach. The EM wave is incident on the left surface in the figure.

and material properties of the constituent materials to quantify
the coupling between the TI and AFM through the magnetic
degree of freedom. These data allow us to understand the
physics behind the coupling constant and predict material
combinations that might have stronger coupling. To achieve
this goal we use the semiclassical approach in which we are
going to solve Maxwell’s equations to derive the dispersion
relationship of the surface DPPMP in a TI/AFM structure.
In the following parts of this section we first present a robust
technique to obtain the solutions of Maxwell’s equation for
an EM wave propagating in a heterostructure composed of
N constituent materials using state-of-the-art scattering and
transfer matrix methods that are computationally effective and
capable of dealing with a complex heterostructure [42–46].
Combining these methods with proper boundary conditions
describing the surface polariton, an evanescent wave that de-
cays quickly along the propagation direction, we then obtain
a general equation determining the surface polariton mode in
the heterostructure. We will discuss how to solve this equa-
tion numerically in general and then apply it to a specific case
with a simple structure involving a TI thin film and an AFM
material where an analytical description can be acquired.

A. Maxwell’s equations and boundary condition

We consider a heterostructure composed of N layers with
an EM wave beam incident from the left-hand side (see
Fig. 1). We denote the z axis as the growth direction of the
structure. The dimension of the heterostructure along y direc-
tion is infinite while along the x direction it is finite with a

TI
AFM

Substrate

FIG. 2. The electric and magnetic components of the EM wave
corresponding to the TE and TM polarization.

width W , as depicted in Fig. 1. As depicted in Fig. 2, we set
the direction of propagation of the EM wave in the system to
be parallel to the x-z plane along the positive direction so that
for s polarization the electric field of the EM wave is polarized
along the y axis. For p polarization the magnetic field of the
EM wave is polarized along the y direction.

The EM wave propagating within each part of the structure
is a solution of Maxwell’s equations subject to the standard
EM boundary conditions at the interfaces between two ma-
terials. In the absence of free volume currents and charges,
Maxwell’s equations read [47,48]

∇ · D = 0, (1)

∇ × E = −∂B
∂t

, (2)

∇ · B = 0, (3)

∇ × H = ∂D
∂t

, (4)

with

D = ε0εE, (5)

B = μ0μH, (6)

where E, D, B, and H are the electric, displacement, magnetic,
and magnetizing field of the EM wave, respectively; ε0 and
μ0 are the permittivity and permeability of free space, respec-
tively; ε and μ are, respectively, the relative permittivity and
permeability of the media. The boundary conditions at the mth
interface are given by

n × (Hm+1 − Hm)|z=zm
= Jm, (7)

n × (Em+1 − Em)|z=zm
= 0, (8)

n · (Dm+1 − Dm)|z=zm
= ρm, (9)

n · (Bm+1 − Bm)|z=zm
= 0, (10)

where n is a unit vector perpendicular to the mth interface,
Jm is the in-plane current, and ρm is the carrier density of the
electron gas at the mth interface.

Taking the curl of Eqs. (2) and (4) and inserting (5) into (1)
and (6) into (3), one obtains

με

c2

∂2E
∂t2

+ ∇ · (∇ · E ) − ∇2E = 0, (11)
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∇ · (ε0εE ) = 0, (12)

με

c2

∂2H
∂t2

+ ∇ · (∇ · H ) − ∇2H = 0, (13)

∇ · (μ0μH ) = 0. (14)

These are the wave equations we solve to obtain the dispersion
relationship between the energy (frequency) of the EM wave
in the material and the wave vector. In the next section we will
give detailed solutions for these equations to derive the bulk

polariton mode in each constituent material, i.e., the TI and
AFM.

B. Bulk polariton modes

We now consider the bulk polariton modes within each
constituent material of the heterostructure displayed in Fig. 1.
Because the propagation direction of the EM wave lies in the
x-z plane, within the mth bulk material shown in Fig. 2 the
solutions to the wave equations (11)–(14) can be explicitly
written as

Em =

⎛
⎜⎝

Ex,m

Ey,m

Ez,m

⎞
⎟⎠ = ei(kx,mx−ωt )

⎡
⎢⎢⎣

eikz,mz 0 e−ikz,mz 0

0 eikz,mz 0 e−ikz,mz

− kx,m

kz,m
eikz,mz 0 kx,m

kz,m
e−ikz,mz 0

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎝

Ax,m

Ay,m

Bx,m

By,m

⎞
⎟⎟⎟⎠ (15)

and

Hm =

⎛
⎜⎝

Hx,m

Hy,m

Hz,m

⎞
⎟⎠ = ei(kx,mx−ωt )

μ0μm

⎡
⎢⎢⎣

0 − kz,m

ω
eikz,mz 0 kz,m

ω
e−ikz,mz

1
ω

( k2
x,m+k2

z,m

kz,m

)
eikz,mz 0 − 1

ω

( k2
x,m+k2

z,m

kz,m

)
e−ikz,mz

0 kz,m

ω
eikz,mz 0 kz,m

ω
e−ikz,mz

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎝

Ax,m

Ay,m

Bx,m

By,m

⎞
⎟⎟⎟⎠, (16)

where A(x,y),m and B(x,y),m are the amplitudes of the x and
y components of forward- and backward-propagating EM
waves, respectively, ω is the frequency of the EM wave, kx,m

and kz,m are the x and z components of the wave vector of the
EM wave within the mth layer, and x and z are the coordinates
along the x and z directions.

Substituting Eq. (15) into Eq. (11), and after some algebra,
one obtains

[(
k2

x,m + k2
z,m

)
I − εmμmω2

c2

]⎛
⎜⎝

X

Y

Z

⎞
⎟⎠ = 0, (17)

which possesses nontrivial solutions when

det

∣∣∣∣k2
mI − εmμmω2

c2

∣∣∣∣ = 0, (18)

where⎛
⎜⎝

X

Y

Z

⎞
⎟⎠ =

⎡
⎢⎢⎣

eikz,mz 0 e−ikz,mz 0

0 eikz,mz 0 e−ikz,mz

− kx,m

kz,m
eikz,mz 0 kx,m

kz,m
e−ikz,mz 0

⎤
⎥⎥⎦

×

⎛
⎜⎜⎜⎝

Ax,m

Ay,m

Bx,m

By,m

⎞
⎟⎟⎟⎠. (19)

Here km =
√

k2
x,m + k2

z,m is the total wave vector of the EM

wave, I is the identity matrix, and εm and μm are, re-
spectively, the dielectric function and magnetic permeability
tensors associating with the mth material in the layered struc-

ture. In general, one can numerically solve Eq. (18) using
the eigenvalue algorithm to obtain the dispersion of bulk
polariton mode ω(km) of an EM wave propagating within
the mth layer of the considered system for an arbitrary
magnetic configuration (i.e., arbitrary μm) in the magnetic
material.

In Fig. 3 we plot the dispersion relationship of bulk po-
lariton mode ω(k) corresponding to a bare TI (Bi2 Se3; red
curve) and a bare AFM (FeF2; blue line) associated with TM
polarization and compare them to the bare photon mode

FIG. 3. The dispersion of the bulk Dirac plasmon-phonon-
polariton mode in Bi2 Se3 (red curve) and bulk magnon polariton in
FeF2 (blue line); the dashed black line represents the bare photon’s
dispersion relationship ω = ck. The magnetization of the AFM ma-
terial (FeF2) is along the x axis.
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(dashed black line). For FeF2 we assume that the mag-
netization is along the x axis. We see the signature of
a magnon collective excitation in the dispersion rela-
tionship of bulk magnon-polariton mode in FeF2 by the
presence of a clear anticrossing point near the magnon
frequency 1.59 THz. The anticrossing is visible due to
the low scattering loss rate (small linewidth) of the
magnon in FeF2. We note that we do not directly see a
mode associated with the magnon itself (i.e., constant at
1.59 THz); rather we see the anticrossing in the disper-
sion relation of bulk magnon-polariton mode only when the
EM wave is nearly degenerate in energy with the magnon.
In the same way, the α and β phonons in Bi2 Se3 cause
the kinks in the dispersion relation of bulk Dirac plasmon-
phonon-polariton mode of Bi2 Se3 around 2 and 4 THz. The
wave vector, and hence the momentum, of the bulk magnon-
polariton mode in FeF2 is always larger than that of light in
this regime. Furthermore, as a consequence of weak coupling
between the EM wave and the magnon in FeF2 the dispersion
of bulk magnon polariton in the FeF2 is almost linear. In
contrast, the strong interaction with the α phonon [46] causes
the wave vector of the bulk Dirac plasmon-phonon polariton
in the Bi2 Se3 at low frequency to increase dramatically from 0
to 6 × 107 cm−1, then decrease down to 1 × 106 cm−1 before
reaching the bare photon’s dispersion, i.e., k = ω

c at very high
frequency (not show).

In a simple picture, one could expect that when a TI and
AFM (e.g., Bi2 Se3 and FeF2) are put together to make a
hybrid material, the EM wave can interact with both the elec-
tric and magnetic excitations in each constituent material via
electric and magnetic dipoles. As a result, the dispersion of
the EM wave in the hybrid structure will be totally different
from those of either of the bare materials. In the next part we
will develop a mathematical tool for investigating the surface
polariton in the generic heterostructure depicted in Fig. 1.
We then apply it to study the surface DPPMP in a TI/AFM
bilayer.

C. Surface modes

Let us now turn to the study of surface polaritons, which
is the main goal of this work. Starting with the standard

boundary conditions for the EM wave at the mth interface of
the structure shown in Fig. 1, we have

n × (Em+1 − Em)|m = 0, (20)

n × (Hm+1 − Hm)|m = Jm, (21)

where

n =

⎛
⎜⎝

0

0

1

⎞
⎟⎠, Jm = σmEm+1, σm =

(
σ xx

m σ
xy
m

σ
yx
m σ

yy
m

)
. (22)

Here σm is the optical conductivity tensor of corresponding
two-dimensional carrier gas at the mth interface. Substituting
Eqs. (15) and (16) into Eqs. (20) and (21), one obtains⎛

⎜⎜⎜⎝
Ax,m

Ay,m

Bx,m

By,m

⎞
⎟⎟⎟⎠ = Im

⎛
⎜⎜⎜⎝

Ax,m+1

Ay,m+1

Bx,m+1

By,m+1

⎞
⎟⎟⎟⎠, (23)

where Im is an interface matrix that relates the amplitudes of
the EM wave in the adjacent mth and (m + 1)th layers. If we
define

U =
(

1 0 1 0

0 1 0 1

)
, V =

(
1 0 0

0 1 0

)
, (24)

then the interface matrix Im will read

Im =
(

U

Lm

)−1(U

Rm

)
, (25)

where

Lm = V

μ0μm

⎛
⎜⎜⎝

0 − kz,m

ω
0 kz,m

ω

k2
x,m+k2

z,m

ωkz,m
0 − k2

x,m+k2
z,m

ωkz,m
0

0 kx,m

ω
0 kx,m

ω

⎞
⎟⎟⎠ (26)

and

Rm = V

μ0μm+1

⎛
⎜⎜⎜⎝

0 − kz,m+1

ω
0 kz,m+1

ω

k2
x,m+1+k2

z,m+1

ωkz,m+1
0 − k2

x,m+1+k2
z,m+1

ωkz,m+1
0

0 kx,m+1

ω
0 kx,m+1

ω

⎞
⎟⎟⎟⎠ +

(−σ
yx
m −σ

yy
m −σ

yx
m −σ

yy
m

σ xx
m σ

xy
m σ xx

m σ
xy
m

)
, (27)

and the propagation matrix between the mth and (m + 1)th interfaces is defined by

Pm,m+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

e−ikz,m+1dm+1 0 0 0

0 e−ikz,m+1dm+1 0 0

0 0 eikz,m+1dm+1 0

0 0 0 eikz,m+1dm+1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (28)
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The amplitudes of EM waves in the outer and inner region
can be related by [46](

A0

B0

)
= I0P0,1I1 . . . PN−1,N IN

(
AN+1

BN+1

)
. (29)

The transfer matrix is then defined as

T = I0P0,1I1 . . . PN−1,N IN =
[

T11 T12

T21 T22

]
, (30)

where Ti, j (i, j = 1, 2) is itself a 2 × 2 matrix and

Am =
(

Ax,m

Ay,m

)
, Bm =

(
Bx,m

By,m

)
. (31)

In the same manner, we define a scattering matrix S0,m that
connects the amplitudes of the EM wave on the left side of the
0th surface (denoted by I0 in Fig. 1) to those on the right side
of the mth interface (denoted by Im in Fig. 1) of the structure,(

Am

B0

)
= S0,m

(
A0

Bm

)
, (32)

and a transfer matrix Mm,l that connects the amplitudes of the
EM wave on the right side of the mth interface to those on the
right side of the lth interface (l > m) of the structure,(

Am

Bm

)
= Mm,l

(
Al

Bl

)
. (33)

Then the scattering matrix S0,l = S0,m ⊗ Mm,l that relates the
outgoing and incoming states on the left side of the 0th surface
to those on the right side of lth interface,(

Al

B0

)
= S0,l

(
A0

Bl

)
, (34)

will be obtained via a recursive method:

S11
0,l = [

I − (
M11

m,l

)−1
S12

0,mM21
m,l

]−1(
M11

m,l

)−1
S11

0,m, (35)

S12
0,l = [

I − (
M11

m,l

)−1
S12

0,mM21
m,l

]−1(
M11

m,l

)−1(
S12

0,mM22
m,l − M12

m,l

)
,

(36)

S21
0,l = S22

0,mM21
m,l S

11
0,l + S21

0,m, (37)

S22
0,l = S22

0,mM21
m,l S

12
0,l + S22

0,mM22
m,l , (38)

where O11
m,l , O12

m,l , O21
m,l , O22

m,l are 2 × 2 block elements of the
matrix Om,l (O ≡ S, M ) and I is the identity matrix. Over-
all, one can construct the total scattering matrix S = S0,N =
S0,1 ⊗ M1,2 ⊗ . . . ⊗ MN−1,N that links the amplitudes of EM
waves in the outer and inner region:(

AN+1

B0

)
= S

(
A0

BN+1

)
, (39)

leading to the well-known relationship between the scattering
matrix S and the transfer matrix T :

S =
[

T −1
11 −T −1

11 T12

T21T −1
11 T22 − T21T −1

11 T12

]
=

[
t r′

r t ′

]
, (40)

where t, t ′ and r, r′ are each 2 × 2 matrices indicating the
transmission and reflection coefficients of the total electro-
magnetic wave which is in general with both TE and TM

polarization. Here t and r are, respectively, the transmission
and reflection associated with an incident wave propagating
along the +z direction, whereas t ′ and r′ correspond to the
incident wave propagating along the −z direction. This for-
mulation allows for an explicit picture of the reflection and
transmission coefficients for the TE- and TM-polarized EM
waves propagating in the structure.

In order to apply these techniques to investigate the surface
polariton, we note that a key feature of the surface polariton
mode is that it is an evanescent wave that carries energy
propagating laterally, i.e., in the x direction in our coordi-
nate system, while decaying exponentially in the z direction.
Without loss of generality, we consider a Cartesian coordi-
nate system as depicted in Fig. 1(a) with the origin O at
the left surface of the structure [see Fig 1(b)]. This leads to
the condition A0 = 0 for the surface polariton excited on the
surface of the structure corresponding to the interface matrix
I0 indicated in Fig. 1. Further, on the right-hand side of the
terminated surface of the structure, i.e., the surface associated
with interface matrix IN in Fig. 1, the EM wave is strictly
an outgoing wave (i.e., nothing is incident from the right).
This yields BN+1 = 0. With these boundary conditions, the
amplitudes of the EM wave determining the surface polariton
mode of the heterostructure shown in Fig. 1, in the transfer
matrix formalism, are given by

(
0

B0

)
=

[
T11 T12

T21 T22

](
AN+1

0

)
, (41)

which possesses nontrivial solutions only if

det [T11] = 0. (42)

In terms of the scattering matrix, we rewrite Eq. (39) as

S−1

(
AN+1

B0

)
=

(
A0

BN+1

)
. (43)

Applying the condition A0 = BN+1 = 0, we obtain the condi-
tion for nontrivial solutions:

1

det |S| = 0. (44)

Equations (42) and (44) are general equations that allow
us to determine the surface polariton mode dispersion ω(kx )
for a general heterostructure with N layers. To solve those
equations (42) and (44) numerically, we vary the frequency
ω and the in-plane wave vector kx. The surface polariton
mode then corresponds to the local maximum of the function
F (ω, kx ) = 1

det |T11| or F ′(ω, kx ) = det |S|. For this reason, a
plot of F or F ′ as a function of ω and kx accurately repre-
sents the dispersion relation. Notably, Eq. (42) allows for a
simple analytical derivation of the surface polariton mode in
a structure with few layers. Meanwhile, Eq. (44) gives better
numeric convergence when there are a large number of layers.
This is due to the advantages of the scattering matrix method,
which relates the incident and outgoing fields and avoids their
mixture [42–45].
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III. RESULTS AND DISCUSSION

We now apply the methods presented in the previous sec-
tion to investigate the interactions between a TI and an AFM.
The input parameters for our calculations are the thickness
of the corresponding material constituents, the frequency-
dependent dielectric functions, the permeability tensors, and
the optical conductivities of the two-dimensional carriers on
the surface and at the interface between two materials.

In the absence of an external magnetic field, the optical
conductivity tensor of the two-dimensional carrier gas on the
surface and at the interface between two materials takes a
diagonal form:

σ =
(

σ 0

0 σ

)
, (45)

i.e., σ xx = σ yy ≡ σ and σ xy = σ yx = 0. The magnetic perme-
ability tensor of uniaxial or cubic antiferromagnetic layers
considered in this work can be written as [49]

μ =

⎡
⎢⎣

μxx 0 0

0 μyy 0

0 0 μzz

⎤
⎥⎦, (46)

where μξξ = 1 if the magnetization is along the ξ direc-

tion and μξξ = 1 + 4π
2γ 2HaM

�2
0−(ω+i/τmag )2 otherwise. ξ ≡ x, y, or

z. Here Ha is the anisotropy field, He is the exchange field,
M is the sublattice magnetization, �0 = γ

√
(2He + Ha)Ha is

the antiferromagnetic resonance frequency, γ = g e
2mc is the

gyromagnetic ratio in cgs units, g is the Landé g factor, and
τmag is the damping constant for the AFM.

The dielectric function of corresponding layers, which are
isotropic materials considered in this work, in the structure is
given by the Drude-Lorentz model [50]:

ε(ω) = ε∞ − ω2
p

ω2 + i�ω
+

N∑
n=1

ω2
p,n

ω0,n − ω2 − i�nω
, (47)

where ε∞ is the dielectric constant at high frequency (ω →
∞), the second term on the right-hand side of Eq. (47) in-
dicates the Drude bulk contributions, and the third term is
a sum of all contributions from the other Lorentz oscillators
presenting in the system.

A. Surface polariton mode in a TI/AFM structure:
General considerations

We start with a general consideration of the formation of
surface Dirac plasmon-phonon-magnon polaritons (DPPMPs)
in the TI/AFM structure shown in Fig. 4, where an AFM on
a substrate (MgO) is capped with a TI thin film. An EM wave
with both TM and TE polarization is incident on the top of the
TI thin film to excite the collective excitations, specifically
(a) the Dirac plasmons on the surface of the TI and at the
interface between the TI and AFM and (b) the magnon in the
AFM. These electric and magnetic excitations of the system
can interact with each other to create new hybrid modes (i.e.,
DPPMPs) that manifest as a change in the dispersion relation
ω(k). We analyze the emergence of these DPPMPs below.

For the sake of simplicity, we assume that the AFM is
sufficiently thick to be considered as half infinite. We then

,0

,0

,0

,0

,2

,2

,2

,2

AFM

TI

O z

TI

AFM

Substrate

⊗⊗ z

x

E
E

,

,

yyy
(a) (b)

FIG. 4. (a) The structure under consideration in the remainder of
this work. A TI is deposited on top of an AFM with arbitrary mag-
netization direction. An EM wave with, in general, both TE and TM
polarization is incident on the top surface of the TI material to excite
the electric degree of freedom in the TI thin film, which can then
couple with the magnetic degree of freedom in the AFM layer. (b) A
finite TI film with thickness dTI in contact with a half-infinite AFM.
Ai, j and Bi, j , with i ≡ x, y and j ≡ 0, 2, are the amplitudes of the
forward- and backward-propagating EM waves in the air (indicated
by j = 0) and within the AFM material (indicated by j = 2).

indicate the amplitudes of incoming and outgoing EM waves
as denoted in Fig. 4(b). The surface DPPMP dispersion rela-
tionship for this structure can be acquired under the conditions
Ax,0 = Ay,0 = Bx,2 = By,2 = 0, which yield a transfer matrix
determined by T = I0PI1 where I0 (I1) is the interface ma-
trix between the air and the TI (TI and AFM) and P is the
propagation matrix within the TI thin film. To construct the
transfer matrix T for the solutions of surface DPPMP in the
system, we first establish the interface matrices I0 and I1 by
inserting Eq. (46) into Eqs. (26) and (27). After some algebra,
one obtains

Im =

⎛
⎜⎜⎜⎝

1 + A + B 0 1 − A + B 0

0 1 + C + D 0 1 − C + D
1 − A − B 0 1 + A − B 0

0 1 − C − D 0 1 + C − D

⎞
⎟⎟⎟⎠,

(48)

where

A = μm
yykz,m

(
k2

x,m+1 + k2
z,m+1

)
μm+1

yy kz,m+1
(
k2

x,m + k2
z,m

) , (49)

B = μ0μ
m
yykz,mωσm

k2
x,m + k2

z,m

, (50)

C = μm
xxkz,m+1

μm+1
xx kz,m

, (51)

D = μ0μ
m
xxωσm

kz,m
, (52)

and m = 0, 1 with

μ0
ξξ = 1, (53)

μ1
ξξ = μTI

ξξ , (54)

μ2
ξξ = μAFM

ξξ , (55)
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the permeability of the air, TI, and AFM, respectively. Here
ξ ≡ x, y, or z, the coordinate axes; σ0 and σ1 are, respectively,
the optical conductivity of the Dirac plasmon on the surface of
the TI layer and at the interface between the TI and the AFM.
Using the explicit forms of the interface matrices I0 and I1,
together with the propagation matrix

P =

⎛
⎜⎜⎜⎜⎝

e−ikz,1dTI 0 0 0

0 e−ikz,1dTI 0 0

0 0 eikz,1dTI 0

0 0 0 eikz,1dTI

⎞
⎟⎟⎟⎟⎠, (56)

one can obtain the transfer matrix for the structure in Fig. 4:

T = I0PI1 =
(

T11 T12

T21 T22

)
. (57)

The surface DPPMP modes in the TI/AFM bilayer satisfy

det [T11] = 0. (58)

Because we do not consider an external magnetic field, the TE
and TM modes are uncoupled, leading to a diagonal form for
T11:

T11 =
(

T 11
11 0

0 T 22
11

)
. (59)

Solutions of Eq. (58) would correspond to T 11
11 = 0

and T 22
11 = 0, associated respectively with the TM and TE

polarization of the light incident on the structure. The TE-
polarization light cannot excite the Dirac plasmon on the
surface of the TI material [46], so we consider only the TM
polarization of the EM wave determined by T 11

11 = 0, which
gives

[
1 + kz,0

(
k2

x + k2
z,1

)
μTI

yykz,1
(
k2

x + k2
z,0

) + μ0ωkz,0σ0

k2
x + k2

z,0

][
1 + μTI

yykz,1
(
k2

x + k2
z,2

)
μAFM

yy kz,2
(
k2

x + k2
z,1

) + μ0μ
TI
yyωkz,1σ1

k2
x + k2

z,1

]
e−ikz,1dTI

+
[

1 − kz,0
(
k2

x + k2
z,1

)
μTI

yykz,1
(
k2

x + k2
z,0

) + μ0ωkz,0σ0

k2
x + k2

z,0

][
1 − μTI

yykz,1
(
k2

x + k2
z,2

)
μAFM

yy kz,2
(
k2

x + k2
z,1

) − μ0μ
TI
yyωkz,1σ1

k2
x + k2

z,1

]
eikz,1dTI = 0.

(60)

Equation (60) is general because it applies to various
kinds of TI/AFM bilayer combination. This equation can be
solved numerically to obtain the dispersion of the surface
polariton in a TI/AFM structure once the optical response
function and thickness of the constituent materials are known.
We note that for the p polarization, one has the magnetic
field of the EM wave along the y direction. This sug-
gests that magnetization of the AFM along the y direction
would not exert any impact on the spectrum of surface
DPPMPs because the yy component of the permeability
tensor will be 1 in this case (μAFM

yy = 1). We therefore con-
sider the case in which the magnetization of the AFM is
along the x direction, i.e., perpendicular to the magnetic
field of the EM wave, which yields an AFM permeability of
the form

μAFM
yy = μAFM = 1 + 4π

2γ 2HaM

�2
0 − (ω + i/τmag)2 . (61)

Solving Eq. (18) for the considered configuration, we obtain
the bulk modes within each region given by

kz,0 =
√

ω2

c2
− k2

x , (62)

kz,1 =
√

εTIμTIω2

c2
− k2

x , (63)

kz,2 =
√

εAFMμAFMω2

c2
− k2

x . (64)

Here kx = q ≈ W
π

where W is the width of the TI and AFM
ribbon along the x direction. There is no magnetic order in the
TI materials in this consideration, so

μTI = μTI
yy = 1. (65)

Substituting the relations (65) and (61)–(64) into Eq. (60), we
finally obtain

F−1 =
(

1 + εTIkz,0

kz,1
+ σ0kz,0

ε0ω

)(
1 + εAFMkz,1

εTIkz,2
+ σ1kz,1

ε0εTIω

)
e−ikz,1dTI

+
(

1 − εTIkz,0

kz,1
+ σ0kz,0

ε0ω

)(
1 − εAFMkz,1

εTIkz,2
− σ1kz,1

ε0εTIω

)
eikz,1dTI = 0. (66)

In the limit dTI → 0, Eq. (66) reduces to

1 + εAFMkz,0

kz,2
+ (σ0 + σ1)kz,0

ε0ω
= 0. (67)

This is an equation that describes the surface Dirac plasmon-
magnon polariton in a graphene-like/AFM system [36]. The
third term (σ0+σ1 )kz,0

ε0ω
on the left-hand side includes the contri-

bution from the two surfaces of the TI, which are degenerate
in the dTI → 0 limit.

B. Parameters and relationships for specific TI/AFM structures

To investigate the surface DPPMP in specific TI/AFM
structures, we consider three TI candidates, Bi2 Se3, Bi2 Te3,
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TABLE I. The TI parameters used in this work, taken from [22].

Materials ε∞ Sα (cm−1) ωα (cm−1) �α (cm−1) Sβ (cm−1) ωβ (cm−1) �β (cm−1)

Bi2 Se3 1 675.9 63.03 17.5 100 126.94 10
Bi2 Te3 85 716 50 10 116 95 15
Sb2 Te3 51 1498.0 67.3 10 NA NA NA

and Sb2 Te3, whose bulk dielectric function in the far-IR range
of interest is given by [46]

εTI = ε∞ + S2
α

ω2
α − ω2 − iω�α

+ S2
β

ω2
β − ω2 − iω�β

, (68)

where ωx, �x, and Sx are the frequency, the scattering rate,
and the strength of the Lorentz oscillator associated with the
α (x = α) and the β (x = β) phonons of the TI thin film. Nu-
merical values for all TI parameters are taken from Ref. [22]
and listed in Table I.

The surface states of these TIs host two-dimensional
spin-polarized (Dirac) plasmons that behave as a conducting
electron sheet whose optical conductivity is given by

σ = e2EF

4π h̄2
(
iω − τ−1

DP

) , (69)

where EF is the Fermi energy of the surface states, τDP is the
relaxation time of the Dirac plasmon, and e is the electron
charge. We note that the hybridized states at the interface
between a TI and another material (here the AFM) may have
an impact on the carrier density at the interface [46,51] and
make it different than that on the surface of a pristine TI layer.
However, for simplicity we neglect this effect and assume the
same optical conductivity expression for the surface of the TI
and the interface between the TI and the AFM. In other words,
in the following σ0 ≡ σ1 ≡ σ as given by Eq. (69).

We note that in the long-wavelength limit (kxdTI 	 1), the
analytical expression for the surface plasmon-phonon polari-
ton in the TI thin film was derived in [51]

ω2
TI+ = vF

√
2πn2De2

ε0h

kx

εtop + εbot + kxdTIεTI
(70)

and

ω2
TI− = 2ε0εTIhvF + e2

√
2πnDdTI√

4ε2
0ε

2
TIh

2v2
F + 2ε0εTIe2

√
2πnDdTI

k2
x , (71)

where the subscripts TI+ and TI− stand for the optical and
acoustic mode, respectively. Here vF is the Fermi velocity for
the Dirac plasmon in the TI; n2D is the sheet carrier concen-
tration of the entire TI thin film, including the contribution
from both surfaces; εtop, εbot, and εTI are the permittivity of
the top and bottom dielectric media and the TI, respectively;

kx is the in-plane wave vector; and dTI is the thickness of the
TI layer. In this work, we focus on the optical mode of the
surface plasmon polariton in the TI because only this mode
can be excited in a traditional optical experiment since the
acoustic mode does not have any contribution in the optical
dipole matrix element [52].

We also consider three AFM candidate materials, NiO,
MnF2, and FeF2, which all support THz frequency magnons
[30]. We note that the Néel temperature of NiO is about 523 K
while those of FeF2 and MnF2 are, respectively, 78 K and
67 K [28]. We therefore imagine that the NiO sample could
be studied experimentally at room temperature while the FeF2

and MnF2 samples would be investigated at low temperature.
We assume that the samples are below their Néel temperatures
in the calculations we conduct here. The frequency-dependent
permeability of these AFMs is given given by Eq. (46). The
magnetic parameters and magnon frequencies of each AFM
are listed in Table II. The permittivity of these AFMs are taken
to be the same, with the characteristic value εAFM = 5.5.

In order to gain physical insight into the formation of sur-
face DPPMP modes in these TI/AFM structures, in Secs. III C
and III D we consider ideal materials in which we set the scat-
tering rate of all excitations to zero. In Sec. III E we study how
the nonzero realistic linewidths of these excitations influence
the coupling between a TI and AFM and the formation of
hybridized states.

C. Formation of surface Dirac plasmon-phonon-magnon
polaritons in TI/AFM structures

We begin with the dispersion relations of surface plasmon
phonons in a Bi2 Se3 TI layer interacting with a magnon in
a FeF2 AFM. In Fig. 5 we plot the F as given by Eq. (66)
as a function of frequency ω and in-plane wave vector kx.
We apply this technique to Bi2 Se3/FeF2 bilayers with two
different thicknesses of Bi2 Se3 film: (a) dTI = 10 nm and
(b) dTI = 200 nm. In both cases we use a Fermi energy of
the Dirac plasmon EF = 1 eV. The color in Fig. 5 represents
the magnitude of the function F whose maxima reveal the
dispersion of the surface DPPMP. In Fig. 5(a), for a rather thin
Bi2 Se3 layer, we observe the formation of a surface DPPMP
through anticrossings around 1.5 THz, 2 THz, and 4 THz, i.e.,
where the TI plasmon becomes degenerate with, respectively,

TABLE II. The parameters for AFM materials used in this paper, taken from [28,30,36].

Materials Ha (Oe) He (Oe) M (G) �0 (THz) τmag (ns) Landé factor TNeel (K)

NiO 6.4 × 103 9.7 × 106 400 1.01 0.175 2.05 523
MnF2 8 × 103 5.33 × 105 592 0.26 7.58 2.0 67
FeF2 2 × 105 5.4 × 105 560 1.59 0.11 2.25 78
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FIG. 5. Surface DPPMP dispersion in Bi2 Se3/FeF2 structure
calculated using Eq. (66) with the Fermi energy of the Dirac plasmon
on its surface EF = 1 eV and the thickness of TI layer (a) dTI =
10 nm and (b) dTI = 200 nm.

the energies of the magnon in the FeF2 material, the α phonon
in the Bi2 Se3, and the β phonon in the Bi2 Se3.

As shown in Fig. 5(b), when the thickness of the Bi2 Se3

layer is increased to dTI = 200 nm we continue to see the
contributions from α and β phonons in the dispersion, but
the signature of the interaction between the Bi2 Se3 and FeF2

layer at 1.59 THz disappears. This is because the dispersion
of the upper branch of the surface plasmon-phonon polariton
in a bare TI layer described by Eq. (70) blueshifts to above
2 THz with increasing Bi2 Se3 thickness due to the negative
real part of its permittivity in this domain. In contrast, the
lower mode, below 2 THz, redshifts because the real part of
the permittivity of Bi2 Se3 is positive in this region. This red-
shift of the lower branch mode below 2 THz causes this mode
to no longer intersect with the magnon resonant frequency
at 1.59 THz. As a result, the anticrossing associated with
TI/AFM interaction cannot be observed in Fig. 5(b). A similar
effect is seen in all three types of TI materials considered in
this work; Fig. 6 shows the frequency-dependent dielectric
function of all three TIs, with the transition from positive
to negative values of the real part of εTI at around 2 THz.
This analysis indicates an upper bound for the thickness of

0 2 4 6 8
(THz)

-1000

0

1000
Bi2Se3
Bi2Te3
Sb2Te3

0 2 4 6 8
(THz)

0

1000

2000

3000 Bi2Se3
Bi2Te3
Sb2Te2

(a)

(b)

FIG. 6. Frequency-dependent dielectric function of topological
materials for corresponding Bi2 Se3 (blue), Bi2 Te3 (red), and Sb2 Te3

(green) with (a) the real part and (b) the imaginary part.

the TI layer in which one could observe the coupling between
a TI and an AFM. Specifically, in the case of Bi2 Se3/FeF2

structure, the thickness of the TI layer should not exceed
120 nm.

D. Impact of material parameters and Fermi energy
on the coupling strength

We now consider the impact of material parameters and
Fermi energy on the strength of the interaction between a
TI and an AFM. In Fig. 7 we show the dispersion of the
DPPMP around the magnon frequency for three different
TI/AFM bilayers: (a) Bi2 Se3/NiO, (b) Bi2 Se3/MnF2, and
(c) Bi2 Se3/FeF2. The thickness of Bi2 Se3 and Fermi en-
ergy of the Dirac plasmon in all of these calculations is
dTI = 10 nm and EF = 1 eV, respectively. One observes
that the coupling strength, defined by the magnitude of the
separation � between the upper and lower modes near the
magnon frequency and at a specific in-plane wave vec-
tor around the maximum anticrossing point, increases from
Bi2 Se3/NiO [Fig. 7(a): �NiO ≈ 0.015 THz] to Bi2 Se3/MnF2

[Fig. 7(b): �MnF2 ≈ 0.028 THz] and has the largest value for
Bi2 Se3/FeF2 [Fig. 7(c): �FeF2 ≈ 0.07 THz]. This is because
the anisotropy constant K = γ 2MHa (where γ is the gyro-
magnetic ratio, M is the sublattice magnetization, and Ha is
the anisotropy field) that determines the magnitude of the
magnetic dipole in the AFM is the largest for FeF2 and small-
est for NiO. We have also performed similar calculations for
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FIG. 7. Surface DPPMP dispersion in the vicinity of magnon
frequency calculated using Eq. (66) for (a) Bi2 Se3/NiO,
(b) Bi2 Se3/MnF2, and (c) Bi2 Se3/FeF2 bilayer structures. In
all cases dTI = 10 nm and EF = 1 eV.

different TI materials combined with FeF2 (data not shown) in
which we used the same Fermi energy for the Dirac plasmon
on the surfaces of all the TI films. These calculations tell us
that the coupling strength between TIs and FeF2 is almost
independent of the change in TI materials. These data suggest
that the interaction between a surface Dirac plasmon-phonon
polariton in a TI with a magnon in an AFM primarily de-
pends on the amplitude of the magnetic dipole in the AFM
material, which is mainly determined by the magnetization
and effective anisotropy field, i.e., intrinsic properties of the
AFM. This is because the larger magnitude of the magnetic
dipole of the AFM leads to a stronger interaction between the
local spin moment in the AFM and the magnetic component
of the EM wave propagating in the system. As a result of this

FIG. 8. Surface DPPMP dispersion in Bi2 Se3/FeF2 bilayer
structure calculated using Eq. (66) as a function of varying Fermi
energy of the Dirac surface plasmon. dTI = 10 nm and the in-plane
wave vector kx = 0.8 × 104 cm−1 are kept constant.

increased coupling, the EM wave excites magnon polaritons
containing a larger number of magnons. This stronger magnon
polariton, in turn, mediates a stronger interaction between
magnon states in the AFM and Dirac plasmon phonon states
in the TI, resulting in a larger contribution of magnons to the
formation of Dirac plasmon phonon magnon hybrid modes.
In other words, one would expect, based on the data presented
thus far, that a larger magnetic dipole for an AFM should lead
to a stronger interaction between the surface DPP in a TI and
the magnon in the AFM. However, as we will now show, this
is not the case for the surface DPPMP in the TI/AFM bilayer
at low Fermi energy, a regime typically at EF < 0.4 eV for the
materials investigated here.

We now investigate the influence of the Fermi level of
surface states in the TI layer on the coupling between the
TI and AFM. In Fig. 8 we plot the energy of the surface
DPPMP modes in a Bi2 Se3/FeF2 bilayer as a function of
the Fermi energy of the TI surface states from 0 to 1 eV.
We simply observe the blueshift of all polariton branches
because the higher Fermi level leads to more electrons par-
ticipating in the surface mode and that shifts the dispersion to
higher frequency per Eq. (70). A direct consequence of this
blueshift is that increasing Fermi level from zero will always
shift the Dirac plasmon-phonon polariton closer toward res-
onance with the magnon-polariton mode, thereby increasing
the coupling strength. To understand how these shifts affect
the coupling strength, in Fig. 9 we plot the dispersion rela-
tions for the DPPMP in the Bi2 Se3/MnF2 bilayer for three
different Fermi energies (a) EF = 0.1 eV, (b) E f = 0.4 eV,
and (c) E f = 1 eV. We plot in green the dispersion of the
bulk magnon polariton mode in the MnF2, which is given by
k2 = εAFMμAFMω2

c2 . For low Fermi level [EF = 0.1 eV; Fig. 9(a)]
the Dirac plasmon-phonon-polariton in the TI crosses the
MnF2 magnon resonance frequency �0 = 0.26 THz at ap-
proximately kx = 0.028 × 104 cm−1. The magnitude of the
anticrossing (�, which is a measure of the strength of the
coupling) is extremely small and barely visible in Fig. 9(a).
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FIG. 9. Surface DPPMP dispersion in Bi2 Se3/MnF2 structure
calculated from Eq. (66) with dTI = 10 nm, Fermi energy (a) EF =
0.1 eV, (b) Ef = 0.4 eV, and (c) Ef = 1 eV. The green dotted line in
all figures is the dispersion of the bulk magnon polariton mode in the
MnF2.

This occurs because the surface Dirac plasmon-phonon po-
lariton in the TI thin film at low Fermi energy is relatively
far out of resonance with the magnon-polariton mode in the
AFM represented by the steepest green line in Fig. 9(a). Being
relatively far from resonance reduces the magnon contribu-
tion to the hybridized DPPMP state, reducing the coupling
strength. In contrast, for slightly higher Fermi level [E f =
0.4 eV; Fig. 9(b)] the Dirac plasmon-phonon polariton in the
TI crosses the magnon resonance frequency at approximately
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FIG. 10. TI-AFM coupling strength in the Bi2 Se3/FeF2,
Bi2 Se3/NiO, and Bi2 Se3/MnF2 bilayer structures as a function of
the Fermi energy of the Dirac plasmon in the TI film. In all cases
dTI = 10 nm. Note that we use the technique presented in our previ-
ous work [46] to extract the strength of the coupling between the TI
and the AFM that we call �; the magnitude of � is schematically
depicted in Fig. 7. For each bilayer the magnitude of � is extracted
at the maximum anticrossing (around 1.6 THz for Bi2 Se3/FeF2, at
1 THz for Bi2 Se3/NiO, and around 0.26 THz for Bi2 Se3/MnF2).

kx = 0.014 × 104 cm−1. The magnitude of the anticrossing
(�) is significantly larger because the Dirac plasmon-phonon
polariton in the TI is very close to the resonance point with
the magnon polariton in the AFM at ω = 0.26 THz and kx =
0.013 × 104 cm−1 (i.e., the anticrossing feature in the green
line). A further blueshift in the Dirac plasmon-phonon polari-
ton in the TI caused by a further increase in the Fermi level
[E f = 1 eV; Fig. 9(c)] does not further increase the magnitude
of the anticrossing (�). To understand this saturation more
clearly, in Fig. 10 we plot � as a function of Bi2 Se3 Fermi
level for bilayers constructed with all three candidate AFM
materials. The magnitude of � for the Bi2 Se3/MnF2 struc-
tures initially increases with increasing Fermi level and then
saturates for EF > 0.4 eV as described above with reference
to Fig. 9. For similar reasons, the magnitude of � for the
Bi2 Se3/NiO structure initially increases and then saturates
for EF > 0.8 eV. In contrast, � for the Bi2 Se3/FeF2 structure
increases monotonically with increasing Fermi energy across
the range of EF we consider here. The increasing threshold for
saturation of � is directly related to the magnon frequency in
the AFM. MnF2 has the lowest magnon frequency and thus the
lowest saturation EF . FeF2 has the highest magnon frequency
and thus the highest saturation EF (above the range of EF

considered here). Taken together, this analysis suggests that
one way to tune the magnitude of the coupling between a TI
and an AFM is by gating the electrons on the surface of the TI
thin film.

E. The role of linewidth

Thus far we have been considering ideal materials in which
we neglected all loss rates by setting the linewidths to zero.
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FIG. 11. Surface DPPMP dispersion in Bi2 Se3/FeF2 structure
calculated using Eq. (66). For both calculations the Fermi energy
of the Dirac plasmon is EF = 0.7 eV, the thickness of the TI layer is
dTI = 80 nm, and the linewidths of the α and β phonons in the TI and
the magnon in the AFM are set at the realistic values listed in Tables I
and II. The linewidth of the Dirac plasmon is (a) �D = 1

τDP
= 10 THz

and (b) �D = 1
τDP

= 0.1 THz.

This has allowed us to understand much of the physics un-
derlying the emergence of hybridized states due to strong
coupling. We will now consider realistic material parameters
by including dissipative effects via nonzero linewidths. We
start by considering the influence of scattering rate (linewidth)
on the dispersion of the surface DPPMP for the Bi2 Se3/FeF2

structure. In Fig. 11 we plot the energies of the surface DPMP
modes for dTI = 80 nm, EF = 0.7 eV, and realistic values
of the loss rates in the system described by the linewidths
of the α and β phonons in the TI and the magnon in the
AFM as given in Tables I and II. The linewidth (relaxation
time) of the Dirac plasmon for the calculation in Fig. 11(a) is
�D = 1

τDP
= 10 THz (τ = 0.1 ps). For Fig. 11(b) the linewidth

(relaxation time) is �D = 1
τDP

= 0.1 THz (τ = 10 ps). When
the relaxation time of the Dirac plasmon is small [Fig. 11(a)],
the polariton branch below 2 THz is invisible and there is no
anticrossing signature in the vicinity of ω ∼ 1.6 THz. In con-
trast, for an increased relaxation time for the Dirac plasmon
[Fig. 11(b)], the polariton branch below 2 THz becomes clear
and the anticrossing signature in the vicinity of ω ∼ 1.6 THz
becomes apparent. This behavior of the polariton branch be-
low 2 THz is due to the dominance of the TI surface states

FIG. 12. Surface Dirac plasmon-phonon-magnon polariton dis-
persion in Bi2 Se3/FeF2 structure versus the variations of TI’s
linewidth (a) and AFM linewidth (b) calculated from Eq. (66) with
the Fermi energy of Dirac plasmon on its surface EF = 1 eV and the
thickness of TI layer dTI = 10 nm at a fixed in-plane wave vector
kx = 0.13 × 104 cm−1.

at the low frequency; at high frequency the α and β phonons
with smaller linewidths (see Table I) play an important role.
The linewidth of the AFM is very small in comparison to that
of TI and therefore has less impact on the whole dispersion
relation for the DPPMP. These calculations imply that the
coupling between TI and AFM can only be observed with
extremely high TI quality (small linewidth). Specifically, for
Bi2 Se3 our calculation predicts that the linewidth of the Dirac
plasmon on the surface of Bi2 Se3 should not exceed 1 THz.

Finally, we consider the effect of scattering rate on the
coupling strength. For convenience and clarity, when we con-
sider the effect of TI loss rate we will assume zero loss (zero
linewidth) for the AFM and vice versa. Computationally, we
change the scattering loss rate in the TI by adding a multi-
plicative factor ηTI to the initial values of the linewidth of the
α and β phonons (listed in Table I) and the Dirac plasmon
in the TI layer, which has initial value �0 = 0.1 THz. In
Fig. 12(a) we plot the dispersion at a fixed in-plane wave
vector of kx = 0.1 × 104 cm−1 as a function of ηTI. We find
that the scattering loss rate in the TI material has almost no
impact on the strength of the coupling between the TI and
the AFM as indicated by the persistently observable splitting
between the upper mode at around 1.64 THz and lower mode
at 1.55 THz. We note, however, that the two branches of the
polariton become progressively fainter upon increasing the
linewidth of the TI, as discussed previously. In Fig. 12(b)
we present an analogous plot as a function of ηAFM. We find
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that the upper and lower polariton modes merge into a single
polariton when ηAFM ∼ 25, i.e., for a factor of 25 increase in
the linewidth of the magnon in the AFM relative to the base
value listed in Table II. This merge into a single polariton
occurs because the linewidth in the AFM exceeds the coupling
strength (anticrossing) and provides a benchmark for the AFM
linewidth that would be required to be achieved to create an
experimentally observable coupling between the TI and the
AFM. Together with the above analysis, this result shows the
critical importance of extremely high quality samples for any
experimental study of the coupling between a TI and an AFM
such as those theoretically explored here.

IV. CONCLUSIONS

In summary, we have presented a robust method for inves-
tigating the surface polariton modes in a heterostructure by
using the scattering and transfer matrix method with proper
boundary conditions. We then apply this technique to system-
atically study the interaction between a TI and an AFM in a
TI/AFM bilayer mediated by both the electric and magnetic
degrees of freedom. For the specific case of Bi2 Se3 combined
with the 3D antiferromagnetic materials MnF2, NiO, or FeF2,
we explore the limits for reaching the strong-coupling regime
evidenced by the formation of DPPMP hybridized states and
emergence of an anticrossing. Our calculations predict an
upper bound for the thickness of the TI layer that could be
used to experimentally observe such strong coupling with
those AFMs. We quantify the dependence of the coupling
strength on the magnetic dipole and linewidth of the magnon,
which are intrinsic properties of the AFM material. We also
quantify the dependence of the coupling on the Fermi energy,
and hence the carrier concentration, of the Dirac plasmon on
the surface of the TI and at the interface between the TI and
the AFM. We find that the strength of the interaction between

a TI and an AFM can be tuned via gating the electrons on
the surface of the TI. We also find that the saturation of the
coupling strength primarily depends on the magnetic dipole of
the AFM material. Finally, we show that extremely high ma-
terial quality is essential to experimentally observing strong
coupling between the TI and the 3D AFM considered in this
work.

One of the most important results of the approach pre-
sented here is the physical insight it provides to guide and
prioritize work to characterize potential AFM materials for
reaching the strong-coupling regime in such hybrid mate-
rial structures. For example, FePS3, a 2D antiferromagnetic
van de Waals material, has a magnon frequency of about
3.7 THz [53] and an anisotropic constant (≈2.66 meV)
[35,54,55] that is three orders of magnitude larger than that
of MnF2 (≈0.0023 meV) [30]. This suggests that FePS3 is an
extremely promising material for a TI/AFM heterostructure
in which strong coupling could be observed experimentally.
Use of FePS3 may even avoid the requirement of extremely
high TI quality to observe a visible Dirac plasmon-phonon-
magnon-polariton mode below 2 THz. However, we cannot
use the approach described here to quantitatively predict the
coupling in a heterostructure containing FePS3 because we
lack complete information of the suite of material parameters
necessary to formulate an analytical expression for the FePS3

permeability tensor. This illustrates how the present work
guides material development and characterization efforts to
focus on materials with large anisotropic constants.
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