Hafnia for analog memristor: Influence of stoichiometry and crystalline structure

Li-Heng Li[®], Kan-Hao Xue[®],^{*} Jun-Hui Yuan, Ge-Qi Mao, and Xiangshui Miao

School of Integrated Circuits, School of Optical and Electronic Information, Huazhong University of Science and Technology,

Wuhan 430074, China

and Hubei Yangtze Memory Laboratories, Wuhan 430205, China

(Received 14 April 2022; accepted 28 July 2022; published 25 August 2022)

The highly nonlinear switching behavior of hafnia memristor actually hinders its wide application in neuromorphic computing. The theoretical understanding of its switching mechanism has been focused on the processes of conductive filament (CF) generation and rupture, but the possible phase transition and crystallization around the region of CFs due to the variation of O content have been less studied or understood. In this paper, HfO_x structural models covering the full stoichiometries from Hf to HfO₂ are established, and the crystal structure evolution during the reduction process of hafnia is obtained through first-principles calculation. The electronic structures and O vacancy migration characteristics of these structures are analyzed. A criterion is prescribed to predict the mode of abrupt binary switching or gradual conductance modulation according to the structure evolution of the CFs. In particular, factors that influence the merging of tiny conductive channels into strong CFs are discussed intensively, including the anisotropy of O vacancy migration and the size effect. The feasibility of Mg doping to achieve robust gradual switching is discussed.

DOI: 10.1103/PhysRevMaterials.6.084603

I. INTRODUCTION

Due to their high speed, complementary metal-oxide semiconductor (CMOS)-compatible nature, and three-dimensional (3D) integration potential [1-4], binary oxide memristors have been widely used in nonvolatile data storage, logic computing, and neuromorphic computing [5–12]. In particular, hafnia (HfO₂)-based memristors attract a great deal of attention due to their downscale potential, nanosecond-level erasing time, and excellent data retention [13-16]. Moreover, the resistive switching (RS) window of hafnia memristors is typically higher than other binary oxides such as TaO_x and TiO_x [17–21], favoring their application as binary data storage. The capability of establishing a robust Schottky barrier between the conductive filaments (CFs) and HfO₂ has been revealed to account for such a large RS window [22]. However, the actual application scenario may require different RS characteristics. For the sake of neuromorphic computing, linearity and symmetry are key aspects for the analog RS of the memristor [23]. In general, its highly nonlinear RS behavior hinders the application of hafnia-based memristor in neuromorphic computing [24,25]. Element doping and combined use with other RS materials are possible solutions, but there is still no well-established theory to overcome the abrupt RS behaviors in HfO₂.

To fundamentally resolve this problem, it is necessary to gain a deeper and material-specific understanding of the RS mechanism of an HfO₂-based memristor. While the commonly accepted RS picture in HfO₂-based memristors is the formation and rupture of O-deficient CFs [26,27], exciting new discoveries have been made in the past few years. Celano *et al.* directly observed the conical structure of CFs

in an Hf/HfO₂/TiN memristor through their newly designed scalpel-SPM (scanning probe microscopy) technique, which is a kind of conductive atomic force microscopy, and they defined the CF as a local region populated with O vacancies (V₀'s) [28]. The cross-sectional area of a typical CF in their experiment was $\sim 40 \text{ nm}^2$ at the active Hf electrode size but merely $\sim 10 \,\mathrm{nm^2}$ at the more inert TiN electrode side. Therefore, V_{Ω} 's diffuse and migrate from the active electrode side toward the inert electrode side during the formation of CFs. Although the exact composition/stoichiometry of the CF was not obtained, that work has lent strong support to the V_O-induced CF conduction in hafnia memristors. Kumar et al. observed that the CF in hafnia consists of an O-poor conductive core surrounded by an O-rich region [29]. The formation and dissolution of the CFs were ascribed to the radial thermophoresis and Fickian diffusion of O atoms driven by Joule heating. The role of O migration and its induced electrochemical reactions were further probed directly by Yang et al. in HfO_2 and TaO_x memristors with a spherical aberration (Cs)-corrected transmission electron microscope (TEM) [30]. In 2018, Yin et al. [31] showed high-resolution TEM (HRTEM) evidence that the CFs in hafnia memristors consist of crystalline regions of monoclinic and orthorhombic symmetry, even though the pristine hafnia film was amorphous before electroforming. The work indicates the significance of crystalline HfO_x phases for the search of CF structure in amorphous hafnia-based memristors. For polycrystalline hafnia films, it has been shown that the CFs prefer to emerge near grain boundaries [32] where the creation of V_0 's can be easier than in the bulk [33].

Very recently, Zhang *et al.* [34] identified the crystalline structure of the CFs in hafnia memristors through comprehensive HRTEM imaging for Pt/HfO₂/Pt, TiN/HfO₂/Pt, Ta/HfO₂/Pt, Hf/HfO₂/Pt, and Ti/HfO₂/Pt cells. The CF consists of a hexagonal Hf₆O metal core surrounded by an O-rich

^{*}Corresponding author: xkh@hust.edu.cn

monoclinic HfO_x (*m*-HfO_x) or tetragonal HfO_x (*t*-HfO_x) shell. The crystalline feature of the CFs is very prominent, though the pristine hafnia thin films were always amorphous. In that work, the electroforming and SET/RESET operations were sufficiently thorough to support a 10⁶ RS window, thus the core-shell CF structure has exactly been confirmed at least for the binary RS mode of hafnia memristors. The observation of the thermodynamically stable Hf₆O phase (i.e., ~HfO_{0.17}) is also consistent with the theoretical prediction by McKenna (HfO_{0.2}) [35] through an energetic argument.

Notwithstanding these new discoveries, including concrete TEM evidence, it must be emphasized that to identify the CF of hafnia memristors under gradual switching mode (or say, working as an analog memristor) through TEM is much more difficult than under the binary switching mode. A gradual resistance modulation may not alter the symmetry of the CF, but it only involves mild ionic migration. The conductivity variation among different regions is also expected to be much slighter than the binary mode. Since the gradual RS mode is very important for neuromorphic computing applications, theoretical calculations become a viable choice. In particular, the previous discovery that the CF involves crystalline regions could greatly facilitate the theoretical investigation of the CF composition and structure in hafnia memristors under the gradual RS mode. Using first-principles calculations, the RS mechanism in hafnia has been studied intensively. Perevalov and Islamov et al. used first-principles calculations to simulate the electronic structures of various defects in HfO₂, including the V_O, interstitial O, interstitial Hf, as well as Hf substituting for O, and they showed that Vo's are the key defects for the charge transport and resistive random access memory (RRAM) operability [36], verifying the importance of V_0 in the RS process. The theoretical study of the formation and migration of V_O shows that there is an optimal path with low migration barrier [37], which is beneficial to the reduction of operating voltage and the acceleration of the signal response. However, a low migration barrier also leads to poor thermal stability of hafnia-based memristors [38]. Several works have shown the tendency of O vacancy clustering in hafnia [39,40], which explains the formation of conical structure CFs in HfO₂ and confirms a size limit of CFs in Hf or Hf-like compositions $(\sim 0.4 \,\mathrm{nm^2})$ [40].

These previous theoretical studies, however, did not cover all possible crystalline HfO_x phases between Hf and HfO₂. Most works emphasize the significance of V_O concentration for conduction, but the resulting phases with sufficient V_O concentration that act as CFs are unclear. On account of the experimental identification of crystalline CF structures, various HfO_x ($0 \le x < 2$) phases ought to be examined for possible CF composition of hafnia memristors under the gradual RS mode. Actually, a number of Hf suboxide phases have been either predicted or discovered. Some well-known hexagonal (h-) phases can be regarded as the derivatives of hcp Hf, including h-Hf₆O ($R\bar{3}$), h-Hf₃O ($R\bar{3}c$), and h-Hf₂O $(P\bar{3}1m)$ [41]. The ground state of HfO has been predicted to be tetragonal (t-) $I4_1/amd$, which is metallic and has also been extensively observed in the experiments by Zhang et al. [34]. Ground-state ZrO, however, was predicted to possess a $P\bar{6}2m$ structure [42]. Its *h*-HfO counterpart is energetically less favorable than t-HfO, and surprisingly shows a tiny band gap [43]. Predicted Hf₂O₃ phases involve a tetragonal $P\bar{4}m2$ structure [44] and an orthorhombic *Ibam* structure [45], with the former slightly lower in energy. Several other pressure-induced HfO_x suboxides have also been predicted [41]. The sequence of suboxide presence during the reduction of HfO₂ has been summarized as roughly from the tetragonal symmetry to the hexagonal symmetry [46]. A recent work shows that the transitional stoichiometry is around HfO_{0.7} [47].

In hafnia memristors, the reduction of HfO_2 is limited to a directional electric field and thermal forces, which is different from the reduction in bulk forms. We shall establish the relation among various HfO_x phases in memristor applications. Based on the comprehensive materials information, we then derive the working modes of hafnia memristors. The size-composition relation of CFs in hafnia will also be investigated.

II. MODELING AND COMPUTATIONAL DETAILS

A. General considerations

At atmospheric pressure and low temperature, monoclinic $P2_1/c$ is the most stable phase of HfO₂, which can stand up to ~ 2000 K [48], thus becoming the natural choice of our starting point for the pristine state of HfO₂-based devices. As only the CFs and their surrounding regions are significant, which account for the RS behaviors, such a crystalline starting point also makes sense for the initially amorphous HfO_2 memristors. There is concrete experimental evidence that the CF-surroundings can be crystallized through the Joule heating effect from electroforming, SET, and RESET operations [34]. Therefore, we gradually increased the oxygen vacancy concentration in m-HfO₂, covering the full stoichiometries from HfO₂ to Hf. After structural optimization, these reduced HfO_x models could give useful information regarding the relatively stable HfO_x structures for 0 < x < 2, which can possibly be metastable from thermodynamics but are more favorable against other structures at that specific stoichiometry. Moreover, ion migration barriers were systematically calculated to explore the possible transition routes between these stable or metastable phases. The kinetic information is highly relevant because our primary concern is the scenario of memristor application, where only a unidirectional (either positive or negative) electric field is applied to the capacitor. In this case, some thermodynamically favorable phases may not be reached due to high transitional barriers.

B. Modeling details

The structure of *m*-HfO₂ is illustrated in Fig. 1, which derives from the cubic fluorite structure, but the Hf coordination has been reduced from 8 to 7 in terms of the monoclinic distortion. There are two inequivalent O sites, 3-coordination O(A1-A4) and 4-coordination O(B1-B4). The O-atom layer including O(B1), O(B2), O(A3), and O(A4) is equivalent to the layer including O(A1), O(A2), O(B3), and O(B4). A specific amount of O atoms (from 1 to 8) was removed from the 12-atom primitive cell Hf₄O₈, and the remaining structure was subject to full relaxation. Of course, we cannot start from all possible *m*-HfO₂ supercells for O removal, which is an endless task. Nevertheless, previous experience shows that the

FIG. 1. The structure of m-HfO₂ (right) as derived from the cubic fluorite structure (left). The basic directions of Hf movement and the broken Hf-O bonds are marked for the monoclinic distortion.

 Hf_4O_8 primitive cell is sufficiently large to yield possible suboxide phases [44]. Moreover, we shall show that all reported or predicted HfO_x cases are included in or related to our search results, which proves the effectiveness of the method *a posteriori*. Careful symmetry analysis has eliminated a number of redundant cases, ending up with only 32 inequivalent HfO_x models, as summarized in Fig. 2.

C. Computational details

The *ab initio* calculations were carried out using density functional theory (DFT) [49,50] as implemented in the planewave based Vienna Ab initio Simulation Package (VASP 5.4.4) [51,52]. The generalized gradient approximation (GGA) was adopted for the exchange-correlation energy, in the Perdew-Burke-Ernzerhof functional form [53]. It is well known that DFT-GGA systematically underestimates the band gaps for semiconductors and insulators. Hence, we implemented an efficient self-energy correction scheme (DFT-1/2) [54–56], originally proposed by Ferreira et al. and later improved by Xue et al. (shDFT-1/2) [57], to carry out electronic structure calculation. Both the electronic structure and the V_{Ω} migration barrier were calculated based on $2 \times 2 \times 2$ (96-atom) supercells (see Note 1 in the Supplemental Material [58] for detailed calculation parameter settings). The migration barrier was calculated using a climbing image nudged elastic band (CI-NEB) method.

III. RESULTS AND DISCUSSION

A. Structural analysis of HfO_x at various stoichiometries

For structural optimization of the 32 primitive cell models, high-precision full relaxation was carried out first. To visualize the changes of crystal structures, the relaxation results were extended to $2 \times 2 \times 2$ supercell structures, as illustrated in Fig. 3. On the other hand, Fig. 4 summarizes the possible HfO_x structures under various stoichiometries, which may be classified into three regimes.

Regime 1 (1.5 < $x \le 2.0$): All HfO_x structures in this regime remain in the monoclinic symmetry (*m*-HfO_x), including Case-2 and Case-3.

Regime 2 ($1.0 \le x \le 1.5$): There are both monoclinic phases (*m*-HfO_x: Case-4, Case-5, Case-7, and Case-9) and tetragonal phases (*t*-HfO_x: Case-6 and Case-8). The binding energies of *m*-HfO_x structures are between -7.58 eV/f.u. (f.u.

stands for a formula unit) and -7.70 eV/f.u. (see Note 2 in the Supplemental Material [58]), where the lowest-energy structure is Case-4, which will subsequently be intensively analyzed as the prototype *m*-HfO_{1.5} structure. The *t*-HfO_x structure is shown in Fig. 4(b), where Hf atoms maintain an fcc-like structure (though distorted) and O atoms can occupy two types of positions (Site-1 and Site-2). When all O atoms occupy Site-1, the structure is the *P2/c*-HfO_{1.5} phase (Case-8). Provided that O atoms occupy both Site-1 and Site-2, a *P*4*m*2-HfO_{1.5} phase (Case-6) can then be recovered. The obtained HfO_{1.25} structures are similar to that of HfO_{1.5}, and they can also be divided into *m*-HfO_x (Case-12) and *t*-HfO_x (Case-10 and Case-11).

Regime 3 (x < 1.0): There are a variety of phase structures in this regime, but in all cases the Hf atoms remain in quasi-fcc structure and the O atoms occupy Site-1 or Site-2 positions. Therefore, these structures can be regarded as O-deficient structures of *t*-HfO₂ and $P\bar{4}m2$ -HfO_{1.5}.

However, no known h-HfO_x structure was obtained through this modeling method. This is due to the constriction of the Hf-subsystem topology, which fails to be converted to hexagonal symmetry. Previous studies [41,45] have demonstrated the vicinity of pure Hf in the Hf-O system, where the hcp structure is preserved and the extra content of O is distributed among the interstitial positions octahedrally coordinated by Hf atoms. It has also been confirmed experimentally that HfO_x will be converted into h-HfO_x at x = 0.7[47]. Theoretically, the O content of h-HfO_x can reach x =0.83, and the corresponding structure is h-Hf₆O₅, as shown in Fig. 4(c). Therefore, the HfO_x structure in Regime 3 (x < 1.0) is considered to be h-HfO_x. Our method thus covers the O-rich phases prior to the tetragonal-to-hexagonal transition.

Obviously, HfO₂ underwent a transition from the monoclinic phase to tetragonal phases, and eventually to hexagonal symmetry upon decreasing the O content. A critical stoichiometry is discovered to be x = 1.5, at which there are three phases, *m*-HfO_{1.5}, *P* $\overline{4}m$ 2-HfO_{1.5} (hereafter named α -HfO_{1.5} or α -Hf₂O₃), and another tetragonal phase of HfO_{1.5} derived from *P*4₂/*nmc*-HfO₂. Their crystal structures are illustrated in Fig. 3 as Case-1, Case-6, and Case-8. Another predicted *Ibam* phase of HfO_{1.5} (referred to as β -HfO_{1.5} or β -Hf₂O₃ for convenience) [45] is not included in Fig. 3, but its relation to other HfO_x phases will be clear soon. The tetragonal phase of HfO_{1.5} derived from *P*4₂/*nmc*-HfO₂ has a *P*2/*c* symmetry, and it will be referred to as γ -HfO_{1.5} in this work. Figure 5(a)

FIG. 2. The 32 inequivalent unit-cell models of the full range of Hf-O binary compounds in our search. Red balls stand for O atoms, blue balls represent V_0 , and white balls correspond to Hf atoms.

shows their Helmholtz free energy variations with respect to temperature *T*, with the vibrational entropies calculated using the harmonic-oscillator model (details given in Note 3 of the Supplemental Material [58]). Zero-point energy was added to the free energy for T = 0 K in each phase. With the lowest free energy at zero temperature, α -HfO_{1.5} is used as a reference. The results show that the phase-transition temperature between *m*-HfO_{1.5} and α -HfO_{1.5} is 2490 K, and that between α -HfO_{1.5} and γ -HfO_{1.5} is 1193 K. These high temperatures can hardly be obtained during the memristor operations. In other words, reversible phase transition between α -HfO_{1.5} and the other two phases is unlikely through Joule heating. Nevertheless, the phase transition between γ -HfO_{1.5} and *m*-HfO_{1.5} can occur at merely 62 K. This is a remarkable result, since the phase-transition temperature between *t*-HfO₂ and *m*-HfO₂ is well known to be as high as 1973 K [48]. Hence, the existence of abundant O vacancies improves the stability of *P*4₂/*nmc*-like HfO_x [34]. It also implies that a CF with *m*-HfO_{1.5} structure would spontaneously transform into the γ -HfO_{1.5} structure.

A different Hf_2O_3 phase with the *Ibam* symmetry (i.e., β -HfO_{1.5} in this work) was predicted by Rushchanskii *et al.*

FIG. 3. Structural demonstration of the 32 inequivalent models after complete relaxation.

in 2018 [45]. Figures 6(a) and 6(b) compare the atomic structures of β -HfO_{1.5} and γ -HfO_{1.5}. Their topological structures are extremely similar. Actually, β -HfO_{1.5} is obtained by introducing *b*-direction V₀ chains in cubic HfO₂ (*c*-HfO₂), while γ -HfO_{1.5} is derived through the same procedure, but starting from *t*-HfO₂. Therefore, O anions are strictly aligned along the *b*-direction in β -HfO_{1.5}, but a zigzag sequence of O anions is observed in γ -HfO_{1.5}. Our calculation roughly shows a critical temperature of 544 K for their phase transition. Hence, β -HfO_{1.5} may be obtained from γ -HfO_{1.5} at a finite temperature. Besides x = 1.5, another important stoichiometry during the reduction process of hafnia is x = 1, where the lowestenergy HfO phase is $I4_1/amd$ -HfO as predicted by Zhu *et al.* [59] [structure shown in Fig. 6(c), with the unit cell rotated by 45° along the *c*-axis to be better compared with the other HfO phase]. It will be called α -HfO for convenience, while β -HfO refers to the $P\bar{6}2m$ phase [42,43]. Moreover, HfO may also be obtained through introducing more O vacancies from γ -HfO_{1.5}, yielding the tetragonal γ -HfO phase in a $P4_2/mmc$ space group, as illustrated in Figs. 6(b) and 6(d). The free-energy comparison for these HfO phases is given

FIG. 4. The phase structure evolution of HfO_x during the reduction process.

in Fig. 5(b). Although the ground-state total energy calculation favors α -HfO, after considering the zero-point energy, β -HfO becomes the most favorable phase at zero temperature. The phase-transition temperature between α -HfO and β -HfO (γ -HfO) is 216 K (152 K). Hence, β -HfO and γ -HfO may be converted to α -HfO at room temperature.

B. Relations between HfO₂ and several Hf suboxides

The Hf suboxides with tetragonal or orthorhombic symmetries are all metastable at room temperature and atmospheric pressure, according to thermodynamic data [41]. However, they may be stabilized in a memristor device due to mechanical confinement and/or under a certain stress. In memristors, the special situation is that these phases should be derived during the reduction process of HfO₂, mainly within the electroforming step. Therefore, before exploring the possibility of a suboxide to serve as the CF, it is a prerequisite to understand its relation to *m*-HfO₂, or to fluorite *c*-HfO₂, because *m*-HfO₂ can be regarded as a distorted version of the fluorite structure.

To this end, we first note that it is the topology of the Hf subsystem that determines whether HfO_x is in a tetragonal-like structure or a hexagonal structure. The Hf-subsystem is fcc or distorted fcc for the former, but it becomes hcp for the latter. The O anions may reside near the eight fluorite sites (Site-1) or near the four rocksalt sites

(Site-2). Although m-HfO₂ is highly distorted, all its O anions still reside at Site-1, as in the fluorite structure. The monoclinic distortion reduced the Hf coordination number to 7, which better fits the ionic radius ratio between Hf^{4+} and O^{2-} [60]. As x becomes 1.5, neither the fluorite structure nor the rocksalt structure fits its stoichiometry, but their 1:1 mixture does. Hence, α -HfO_{1 5} is in fact a natural candidate, which can be viewed as removing half of the 4-coordination O anions from *m*-HfO₂, followed by transferring the 3-coordination O anions from Site-1 to Site-2, as illustrated in Figs. 7(a)-7(d). The Site-2 O anions show a further distortion along the c-axis, which renders 7-coordination for the Hf cations instead of 8. On the other hand, both β -HfO_{1.5} and γ -HfO_{1.5} only require creating V_O chains along the *b*-axis of m-HfO₂, without interchanging Site-1 and Site-2 O anions, as illustrated in Figs. 7(e)-7(g). Actually, they possess no Site-2 O anions, just like in m-HfO₂ and t-HfO₂.

When it comes to HfO, we first notice that γ -HfO is closely related to γ -HfO_{1.5} through simply introducing more V₀'s. At x = 1.0, γ -HfO becomes much more symmetric ($P4_2/mmc$) than γ -HfO_{1.5} (P2/c). On the other hand, α -HfO could also be derived from γ -HfO_{1.5}, with more V₀ chains introduced. Figures 6(c) and 6(d) show that the structures of α -HfO and γ -HfO are highly similar. The Hf and O atoms in α -HfO have been slightly distorted compared with γ -HfO, but the global Hf-sublattice is still of fcc-type and all O atoms reside at

FIG. 5. Relative Helmholtz free energies of (a) *m*-HfO_{1.5}, *P2/c*-HfO_{1.5}, and $P\bar{4}m2$ -Hf₂O₃; (b) *I*4₁/*amd*-HfO, *P*4₂/*mmc*-HfO, and $P\bar{6}2m$ -HfO. The free energy of a selected phase ($P\bar{4}m2$ -Hf₂O₃ or *I*4₁/*amd*-HfO) is set to zero at any temperature.

FIG. 6. The structure diagrams of (a) *Ibam*-HfO_{1.5} (β -HfO_{1.5}), (b) *P2/c*-HfO_{1.5} (γ -HfO_{1.5}), (c) *I*4₁/*amd*-HfO (α -HfO), and (d) *P*4₂/*mmc*-HfO (γ -HfO).

Site-1. Such tiny distortion reduces the free energy, rendering α -HfO more stable than γ -HfO at room temperature. Note that in all predicted and experimentally observed HfO phases, the O atoms occupy Site-1 rather than Site-2. As α -HfO_{1.5} requires a partial occupation of Site-2, the rule observed in HfO confirms that α -HfO_{1.5} is a bit isolated from the global path of hafnia reduction under the memristor situation, though the direct growth of HfO_x under O-poor condition may yield α -HfO_{1.5} [61,62].

If the fcc-sublattice for Hf is to be maintained, the prototype models with O occupying Site-1 and Site-2 are *c*-HfO₂ and rocksalt HfO, respectively. Their mixture generates HfO_x with 1 < x < 2. The rocksalt structure is indeed a simple potential phase for HfO, where the O atoms may only occupy Site-2. However, in addition to its high energy, the phonon spectra of rocksalt HfO show that it is kinetically unstable. The Hf-O bond length in rocksalt HfO is also longer than in α -, β -, and γ -phases of HfO, but it is more ionic than other phases. Detailed comparisons and calculation data for rocksalt HfO are presented in Note 4 of the Supplemental Material [58].

The next issue is the structure of HfO_x with x < 1. The kinetic instability of rocksalt HfO hinders the formation of cubic like HfO_x (x < 1) by introducing V₀'s from rocksalt HfO. However, introducing V₀'s in γ -HfO or α -HfO (which is almost the same) is a possible route. We therefore obtained γ -HfO_{0.75}, but its phonon instability (see Note 5 of the Supplemental Material [58]) indicates that keeping the fcc-like Hf-sublattice is no longer feasible for highly reduced Hf suboxides with x < 1. Hence, a major structural change from fcc-Hf to hcp-Hf inevitably occurs near the stoichiometry of HfO. The experimentally observed transition stoichiometry at ~HfO_{0.7} [47] is not far away. If starting from the hcp-Hf sublattice side, the possible emergence of hexagonal β -HfO through backward oxidization still cannot be ruled out. To sum

up, the relation between various Hf-O compounds during the reduction process of HfO_2 is given in Fig. 8.

C. The electrical and V_O migration properties in different HfO_x phases

There are two reasons to understand the modes and difficulty of V_0 migration in these HfO_x phases. On the one hand, it helps to determine whether a specific HfO_x suboxide phase may be obtained starting from HfO_2 (either amorphous or polycrystalline), under the memristor operation conditions. This adds to our understanding of the CF formation from a kinetic point of view, besides the thermodynamic point of view. On the other hand, technically favorable CFs should possess proper migration barriers for V_0 's, since too low barriers could deteriorate the stability of CFs as well as the device retention, but too high barriers would increase the device operation voltage.

1. Transition barriers between various HfO_x phases

To understand which suboxide phases are likely to emerge during the reduction process of hafnia, we set up a $2 \times 2 \times 2$ supercell for *m*-HfO₂ to investigate the migration barriers of O vacancies, along B4 \rightarrow B1 (for the sake of α -HfO_{1.5} formation) as well as A2 \rightarrow A3 (for the sake of γ -HfO_{1.5} formation) paths, considering both neutral V_0 and V_0^{2+} . These paths are self-continuous so as to enable drastic phase transitions. As illustrated in Fig. 9, the migration barriers for V_0 and V_0^{2+} are similar along the B4 \rightarrow B1 path, as high as \sim 5.0 eV. Yet, for the A2 \rightarrow A3 path, migration barriers for V₀²⁺ and neutral Vo are merely 2.39 and 2.98 eV, respectively. Hence, under the driving force of electric field, it is easier to obtain γ -HfO_{1.5} rather than α -HfO_{1.5} from a kinetic point of view. On the other hand, to derive α -HfO_{1.5} from γ -HfO_{1.5}, a part of the O atoms have to migrate from Site-1 to Site-2, whose transition barrier is larger than the migration from Site-1 to Site-1 (details are shown in Sec. III C 2). Accordingly, the HfO_x CF with 1.0 < x < 1.5 tends to keep the tetragonal symmetry as in γ -HfO_x.

2. RS within m-HfO_x

As mentioned in Sec. III A, when the Hf/O ratio x is greater than 1.5, the single-phase HfO_x crystal structure remains monoclinic. For such a range of stoichiometry, the structures and density of states of m-HfO_x are shown in Fig. 10, confirming their semiconductor characteristic for the entire range 1.5 <x < 2.0. Provided that *m*-HfO_x is to serve as the conductive channel, the RS will be confined to the high resistance state (HRS), but resistance modulation within a limited range (compared with the binary RS mode) is still possible. A potential benefit of this mode lies in the fact that no sharp transition to a metallic state is involved, therefore the linearity of the RS may become better. Indeed, as the O content decreases, the defect states in m-HfO_x get stronger and accumulate below the conduction-band minimum (CBM), lowering the energy gap to a value of 0.24 eV at x = 1.5. The reduced defect excitation barrier should render much more excited carriers and improve the conductivity of *m*-HfO_x. The HRS of hafniabased memristors may vary dramatically with O content. Our

FIG. 7. The procedure of atomic structure evolution between (a)–(d) m-HfO_{1.5} and $P\bar{4}m2$ -HfO_{1.5}, and (e)–(g) m-HfO_{1.5} and P2/c-HfO_{1.5}.

previous experiments demonstrate that this range is between 100 k Ω and 3 M Ω for a hafnia-memristor with 20 nm dielectric thickness and 80 μ m × 80 μ m device area [63].

Although the conductivity of m-HfO_x varies monotonously with O content, the realization of multivalue storage and continuous conductivity modulation of *m*-HfO_x is seriously hindered by the mobile characteristics of V₀. As shown in Fig. 11(a), due to the poor symmetry of m-HfO₂, there are nine inequivalent V₀ migration paths. Distinct from the analysis in Sec. III C1, we only focus here on migration between neighbor sites, with any individual hopping distance limited to within 3 Å. This is because RS within m-HfO_x does not involve high driving force, but a phase transition requires drastic structural changes, such that the paths in Sec. III C 1 are all beyond 4 Å. For the sake of conductance modulation, the results in Fig. 11(b) show that V_0 in *m*-HfO₂ has the lowest migration barrier along Path-8 (1.72 eV). Moreover, continuous migration solely through Path-8 is possible, without invoking other paths. Therefore, CFs can preferably be created along this path in the c-axis direction. The V_O migration barriers for other paths lie between 2.26 and 3.00 eV. However, when electrons detrap from a neutral V_O to generate charged V_O^{2+} under the applied electric field, the migration barrier of each path decreases significantly, and the migration barrier of Path-1 is as low as 0.34 eV. The migration barriers of Path-5, Path-6,

FIG. 8. Relation of intertransition between various Hf-O compounds during the reduction process of HfO₂.

Path-8, and Path-9 are lower than 1.00 eV. These paths altogether cover migration in all directions, thus V_0^{2+} in *m*-HfO₂ is prone to diffusion/drift, which will lead to instability of O content in CFs as well as poor stability and consistency of the HRS. Diffusion can be achieved along multiple paths with mixed directions. Therefore, it is difficult to achieve stable multivalue storage and continuous conductance modulation.

3. RS within γ -HfO_x

For 1.0 < x < 1.5, there are phases that are derivatives of γ -HfO_{1.5} and α -HfO_{1.5}, respectively. Conductive paths of γ -HfO_{1.5} composition have been observed in experiments [34], but CFs of α -HfO_{1.5} composition have never been discovered in memristors. In addition, derivatives of α -HfO_{1.5} can be regarded as derivatives of γ -HfO_{1.5} with more V₀'s (cf. Fig. 6). Therefore, these CF candidates will be globally referred to as γ -HfO_x. In the x range of interest, the structures and density of states of γ -HfO_x are shown in Fig. 12. Obviously, the density of states of γ -HfO_{1.5} is similar to that of *m*-HfO_{1.5}, and the defect states introduced by V_O are distributed below CBM. With the decrease of O content, the number of shallow defect states increases. For x < 1.25, γ -HfO_x becomes metallic. The conductivity of γ -HfO_{1.5} is similar to that of *m*-HfO_{1.5}, which indicates that the change of CF structure from *m*-HfO_{1.5} to γ -HfO_{1.5} will not lead to the sudden change in the conductance of HfO2-based memristor. In addi-

FIG. 9. The V₀ and V₀²⁺ migration barriers in *m*-HfO₂ under the paths of (a) $B4 \rightarrow B1$ and (b) $A2 \rightarrow A3$.

FIG. 10. The crystal structures and density of states of (a) m-HfO₂, (b) m-HfO_{1.75}, and (c) m-HfO_{1.5}. The Fermi levels (E_F) are marked in (b) and (c).

tion, the phase-transition temperature between γ -HfO_{1.5} and *m*-HfO_{1.5} is estimated to be merely 62 K, and reversible transition may be realized in the practical operation process. Theoretically, when O content in CFs is maintained at 1 < x < 2, hafnia-based memristor can realize continuous conductivity modulation with a large adjustable range (from an insulating state to a metallic state) by controlling the O content in CFs.

However, like *m*-HfO_x, the stability of V₀ in γ -HfO_{1.5} is also poor. As shown in Fig. 13, V₀ has only two inequivalent paths in γ -HfO_{1.5} due to its higher symmetry. The migration barriers of V₀ along Path-1 and Path-2 are 0.83 and 1.22 eV, respectively, both lower than that in *m*-HfO₂. Therefore, CFs composed of γ -HfO_x still hardly provide stable low and intermediate resistance states for hafnia-based memristors. Different from the case of *m*-HfO₂, the migration barrier of V₀²⁺ (1.17 eV for Path-1 and 1.82 eV for Path-2) is higher than that of neutral V₀. The reason is analyzed as follows, considering *m*-HfO₂ and γ -HfO_{1.5}. As shown in Fig. S2(a) of Note 5 of the Supplemental Material [58], the defect states induced by a neutral V_0 in *m*-HfO₂ are spatially localized exactly at the V_0 location. These electrons tend to block the migration of a negatively charged O anion to the vacancy site, thus causing a higher migration barrier of neutral V_0 compared with V_0^{2+} in normal cases. Nevertheless, the trapped electrons only loosely surround the vacancy site in γ -HfO_{1.5}, as illustrated in Fig. S2(b) of Note 5 of the Supplemental Material [58], close to the Hf sites. These electrons do not hinder the transport of O²⁻, thus accelerating the migration of neutral V_0 in γ -HfO_{1.5}.

4. RS involving h-HfO_x

The atomic structure and density of states of h-HfO_x under various O contents are shown in Fig. 14, all of which are strong metals and contain many interstitial positions for O. Among the highly reduced HfO_x phases with x < 1.0, h-Hf₆O

FIG. 11. (a) The schematic diagram of V_0 migration path in *m*-HfO₂; (b) the histogram of V_0 migration barriers under different paths.

FIG. 12. The crystal structures and density of states of (a) γ -HfO_{1.5}, (b) γ -HfO_{1.25}, and (c) γ -HfO.

has been proved to be a stable phase at room temperature and normal pressure [41], whose hexagonal structure is shown in Fig. 14(d). CFs with the *h*-HfO_x composition clearly indicate a low resistance state (LRS) of the memristor, and *h*-Hf₆O has been widely discovered as the CF composition in the experiment of Zhang *et al.* [34]. Similar to α -HfO_{1.5}, *h*-HfO_x requires absorbing a number of O atoms so as to be ruptured. The robust nature of *h*-HfO_x leads to violent SET/RESET processes, and hafnia memristors in this mode exhibit obvious sharp-transition binary characteristics.

Mao *et al.* carried out a comprehensive study on the migration barriers of O atoms in *h*-HfO_x under various O contents, giving barriers between 2.26 and 3.64 eV [46], significantly higher than in *m*-HfO_{1.5} and γ -HfO_{1.5}. This greatly strengthens the stability of the CF structure. On the other hand, the O content in *h*-HfO_x has little influence on its conductivity characteristics [46], rendering the LRS level robust if constructed from *h*-HfO_x. Although multivalue storage and continuous conductance modulation can be realized by controlling the size of the CFs [64], CFs remain highly conductive, and the linearly adjustable range of conductance is limited [63].

FIG. 13. (a) The schematic diagram of V_0 migration path in $P4_2/nmc$ -HfO_{1.5}; (b) the histogram of V_0 migration barriers under different paths.

D. The size effect of CFs

The above analysis implies that gradual conductance modulation is possible in hafnia memristors by restricting the CF composition to monoclinic or tetragonal phases, rather than incurring the highly reduced hexagonal phases. The modulation is ideally achieved through controlling the excitation barriers from the defective states. However, experimentally it is difficult to obtain a wide range of continuous conductance modulation in undoped hafnia [24,63,65-69]. In addition to the poor thermal stability of Vo's, the CF size effect in *m*-HfO_x or γ -HfO_x compositions is another key factor, namely, to what dimension the CFs of m-HfO_x or γ -HfO_x structure can remain stable. According to thermodynamic data [34], a sufficiently large *m*-HfO_x or γ -HfO_x CF (1.0 < x < 2.0) tends to decompose into m-HfO₂ and h-Hf₆O, but small CFs of such compositions may become stable due to the established interfaces in their chemical environment. Therefore, this section is devoted to the stability of CF models consisting of *m*-HfO_x with various sizes [shown in Figs. 15(a)-15(c)], as well as CFs composed of h-HfOx with the same Vo concentrations [shown in Figs. 15(d)-15(f)]. All CFs are embedded in a $7 \times 1 \times 7$ m-HfO₂ supercell. The construction of m-HfO_x CF models is straightforward so as to introduce a number of V_O chains in a given region of the $7 \times 1 \times 7$ *m*-HfO₂ supercell. A minimum distance is kept between vacancy chains to ensure a local stoichiometry of \sim HfO_{1.5}, without collapsing into metal Hf-like phases. It is, however, more complicated to create h-HfO_x CFs inside *m*-HfO₂ because of the symmetry incompatibility. Here we carry out a two-step process. First, both Hf and O atoms are removed, in a 1:2 atomic ratio, from a certain region of the $7 \times 1 \times 7$ *m*-HfO₂ supercell. Subsequently, a size-matched h-Hf₆O supercell is filled in this hollow region. The hexagonal structure of the CF is maintained as well as possible, and the number of V₀'s is kept the same as the corresponding *m*-HfO_x CF models ($N_{Vo} = 2N_{Hf} - N_O$).

In Fig. 15, only those models with the same V_O content could be compared, i.e., (a) with (d), (b) with (e), and (c)

FIG. 14. The crystal structures and density of states of (a) h-Hf₆O₅, (b) h-Hf₂O, (c) h-Hf₃O, (d) h-Hf₆O.

with (f). Since the hexagonal phase can be regarded as a consequence of V_O aggregation, while in *m*-HfO_x the V_O 's are still apart from each other, we define here a cohesive energy of the V_O as

where E_{h-Hf_6O} is the formation energy of *h*-Hf₆O CFs, $E_{m-HfO_{1.5}}$ is the formation energy of *m*-HfO_{1.5} CFs, and N_{Vo} is the amount of V_O per supercell. The formation energy of a CF is

FIG. 15. Structural illustrations of various CF-in-dielectric models. CFs of *m*-HfO_{1.5} composition, with global V₀ content at (a) 2.8%, (b) 11.2%, and (c) 25.3%; CFs of *h*-Hf₆O composition, with global V₀ content at (d) 2.8%, (e) 11.2%, and (f) 25.3%. Dielectric regions outside the CF are faded to some extent to emphasize the CF location.

FIG. 16. The average cohesion energy of CFs in h-Hf₆O at various V_O contents.

where E_{model} is the energy after model relaxation, μ_{O} is the chemical potential of the O element, E_{HfO_2} is the energy of ground state *m*-HfO₂, and *n* accounts for the size of the model supercell.

Therefore, E_c reflects the energy required for the CF structure to evolve from *m*-HfO_{1.5} to *h*-Hf₆O (see Fig. 16). When the V_O concentration is merely 2.8%, corresponding to ~1 nm diameter of *m*-HfO_{1.5} CFs, the E_c value is positive (0.03 eV), indicating that *m*-HfO_{1.5} CFs are more stable. When the V_O concentration rises to 11.2% (the diameter of *m*-HfO_{1.5}-CFs reaching ~2 nm), E_c decreases rapidly to a negative value -0.37 eV, predicting a spontaneous transformation of the CF into *h*-Hf₆O structure. As the V_O concentration increases further, E_c does not change significantly, but still listing *h*-Hf₆O as the favorable CF composition. Hence, a CF composed of *m*-HfO_{1.5} would become unstable as its diameter exceeds 1 nm, collapsing to *h*-Hf₆O. Such a process is drastic as it involves sharp symmetry conversion and composition changes, which is related to the binary character of the RS.

E. Connection to experimental research on hafnia-based memristors

In this section, we relate our theoretical outcomes to the existing experimental research. As it is well accepted that the chemical composition and defect concentration are highly relevant to the crystalline structure of HfO_x thin film as well as its RS characteristics, Kaiser et al. [47] recently investigated the crystal structures of HfO_x thin films throughout the entire stoichiometries, using x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and HRTEM techniques. The results reveal that HfO_x transforms from monoclinic symmetry to a low-temperature phase c-HfO_{1,7} (LTP c-HfO_{1,7}) as x decreases, which is maintained until x = 0.7. Subsequently, the structure becomes h-HfO_{0.7}. The LTP c-HfO_{1.7} phase is described as an oxygen defect-stabilized cubic phase, but it is shown that this phase has a slight distortion from the ideal cubic structure. The experimentally observed phase-transition procedure during the reduction of hafnia is consistent with our theoretical results. Moreover, the structure of LTP *c*-HfO_x fits our definition of the fcc Hf-lattice, and its topology is similar to γ -HfO_x when the distortion from a cubic structure is considered [comparing Figs. 7(g) and 8 in Ref. [47]]. Moreover, our calculated electronic structures for various HfO_x phases show that the resistance of HfO_x may vary continuously with the oxygen content, enabling the possible analog memristor. Kaiser and co-workers measured the thin-film resistivity of HfO_x with various oxygen contents [47]. It follows that HfO_x is an insulator for x > 1.7, and the resistivity decreases continuously from $\sim 10^{-4} \Omega m$ to $\sim 7.3 \times 10^{-6} \Omega m$ as *x* varies from 1.7 to 0.7. This supports the argument of this work on the possible analog working mode of hafnia-based memristor.

On the other hand, Zhang *et al.* studied the evolution of CFs in hafnia memristors [34], showing that the rupture of h-HfO_x CFs renders the binary RS of the device, and the ruptured part of the partial CF is *m*-HfO_x. This evidence supports the scenario of the binary RS in hafnia as presented in this work. In addition, Zhang and co-workers identified the CF as in a core-shell structure, where h-Hf₆O conductive channels are surrounded by *m*-HfO₂ (or sometimes *t*-HfO₂) under TEM observation. The horizontal dimension of h-Hf₆O is typically ~10 nm. Theoretically, the cohesive tendency of V₀'s indeed prefers the h-Hf₆O CF composition, as long as the SET/RESET voltages are not so constrained. This could explain the usually discovered binary RS characteristics in undoped hafnia.

When the SET and RESET operations are constrained, it is possible to achieve continuous conductance modulation in hafnia, but there are still two obstacles. On the one hand, the low and somehow isotropic migration barrier of V_O adds to the instability of the resistance levels of the HRS. On the other hand, the strong accumulation tendency of V_0 and V_0 chains [40] facilitates the formation of h-Hf₆O CFs, promoting the binary switching mode. Element doping is, however, a convenient and effective means to adjust the Vo migration kinetics in hafnia. In experimental research, dopants such as Al, Gd, Ni, and Zr are utilized to enhance the Vo migration barrier, leading to better uniformity and multilevel RS in hafnia [38,69-71]. These studies could verify the theoretical principles to some extent. Nevertheless, there are few works that consider overcoming the second obstacle, i.e., hindering the accumulation of V_0 's and the formation of the hexagonal structures. Very recently, we have reported the encouraging role of Mg doping in improving the resistance level stability in hafnia memristors [63]. Here we review the impact of Mg doping in terms of the migration barrier and V_O aggregation controls.

It is known that Mg tends to occupy interstitial locations in hafnia [72], where the favorite location is indicated by the orange atoms in Fig. 17. Our focus is the V_o's surrounding an Mg dopant. Their migration barriers in several directions, as illustrated in Fig. 17, are summarized in Fig. 18. Compared with undoped hafnia, the migration barriers of V₀ and V_0^{2+} near the Mg dopant have both increased dramatically, reaching 2.24–2.69 eV (V₀) and 1.82–2.80 eV (V_0^{2+}), respectively. This would improve the resistance level stability in hafnia, explaining the robust multilevel RS phenomena observed in Mg:HfO_x memristors [63]. On the other hand,

FIG. 17. Migration path diagrams of V_0 near Mg dopant in various directions. The green balls plus the corresponding arrows indicate the paths.

 V_{O}^{2+} surrounding Mg tends to migrate along Path-b2 (1.82 eV barrier), but all other paths present barriers no less than 2.16 eV. Consequently, Mg doping introduces some anisotropy in V_O diffusion/migration, favoring the CFs along the direction of Path-b2. In other words, the horizontal migration from or into the CFs becomes relatively more difficult. To a certain extent, such anisotropic migration tends to hinder the merging of small CFs into a strong CF, delaying the possible phase transition into *h*-Hf₆O. These two features are helpful for the memristor to work in the gradual conductance modulation mode, or analog mode. Similar theoretical analysis may also be used for other element doping in hafnia-based memristors.

FIG. 18. Migration barriers of V_0 and V_0^{2+} near an Mg dopant in different directions for Mg-doped hafnia memristor.

IV. CONCLUSION

We have explored the rule of structural evolution in HfO₂based memristors under the condition of memristor operation modes. The possibility of continuous and gradual conductance modulation is discussed for the sake of neuromorphic applications. The following conclusions can be drawn:

(i) HfO_x undergoes a transition from the monoclinic phase to tetragonal phases, and eventually to hexagonal phases during the reduction process in a memristor. The Hf subsystem remains in an fcc-like structure for 1 < x < 2, and transitions between various suboxide phases in this regime can be achieved through O vacancy migration. The conductance modulation is gradual by controlling the density and energy level of defect states. However, the Hf subsystem tends to transform into an hcp-like structure for x < 1, and the rupture and reformation of hexagonal conductive filaments render abrupt binary switching characteristics.

(ii) The previously predicted $P\bar{4}m^2$ -phase Hf₂O₃ is found to consist of an fcc-like Hf sublattice with half O anions located at the rocksalt sites but half O anions at the fluorite sites. The transition barrier from monoclinic HfO₂ to $P\bar{4}m^2$ -phase Hf₂O₃ is high under the memristor operating conditions. On the other hand, a defective Hf₂O₃ phase derived by introducing O vacancies in $P4_2/nmc$ -HfO₂ (i.e., P2/c-Hf₂O₃) and another predicted *Ibam*-Hf₂O₃ phase are more likely to emerge in HfO_x-memristors.

(iii) The recently observed $I4_1/amd$ -phase is the most stable structure for the HfO stoichiometry at room temperature, and is similar to a $P4_2/mmc$ -HfO phase. Both derive from $P4_2/nmc$ -HfO₂ through O vacancy introduction, which is possible in memristor operations. The $P\bar{6}2m$ phase HfO can be transformed from or to $I4_1/amd$ -HfO by the temperature effect, which sets up a bridge between fcc Hf-lattice and hcp Hf-lattice. Nevertheless, such a transition cannot be achieved through a mild O vacancy migration process in a memristor environment. Hence, the resistive switching between Hf/Hf₆O with hcp Hf-lattice and HfO_x (x > 1) with quasi-fcc Hf-lattice inevitably involves an abrupt transition.

(iv) The difficulty in obtaining gradual and robust conductance modulation in undoped HfO_x lies in the fact that the migration of O vacancies in monoclinic or tetragonal HfO_x structures is both fast and nearly isotropic, which facilitates the merging of O vacancies and O vacancy chains into strong filaments. Our calculation shows that strong filaments tend to become hexagonal due to a phase transition at around x = 1, leading to typical binary switching characteristics. The effect of Mg doping is to introduce a certain degree of anisotropy in O vacancy diffusion/migration, which hinders the formation of hexagonal filaments, and thus stabilizes the mode of gradual conductance modulation.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China under Grant No. 2019YFB2205100.

- S. Ginnaram, J. T. Qiu, and S. Maikap, Role of the Hf/Si interfacial layer on the high performance of MoS₂-based conductive bridge RAM for artificial synapse application, IEEE Electron Dev. Lett. 41, 709 (2020).
- [2] X. Hong, D. J. Loy, P. A. Dananjaya, F. Tan, C. Ng, and W. Lew, Oxide-based RRAM materials for neuromorphic computing, J. Mater. Sci. 53, 8720 (2018).
- [3] S. Maikap and W. Banerjee, In quest of nonfilamentary switching: a synergistic approach of dual nanostructure engineering to improve the variability and reliability of resistive randomaccess-memory devices, Adv. Electron. Mater. 6, 2000209 (2020).
- [4] B. Song, R. Cao, H. Xu, S. Liu, H. Liu, and Q. Li, A HfO₂/SiTe based dual-layer selector device with minor threshold voltage variation, Nanomaterials 9, 408 (2019).
- [5] D. Ielmini and H.-S. P. Wong, In-Memory computing with resistive switching devices, Nat. Electron. 1, 333 (2018).
- [6] S. Balatti, S. Ambrogio, and D. Ielmini, Normally-off logic based on resistive switches—Part I: Logic gates, IEEE Trans. Electron Dev. 62, 1831 (2015).
- [7] Z. Li, B. Tian, K.-H. Xue, B. Wang, M. Xu, H. Lu, H. Sun, and X. Miao, Coexistence of digital and analog resistive switching with low operation voltage in oxygen-gradient HfO_x memristors, IEEE Electron Dev. Lett. **40**, 1068 (2019).
- [8] Z. Wang, M. Yin, T. Zhang, Y. Cai, Y. Wang, Y. Yang, and R. Huang, Engineering incremental resistive switching in TaO_x based memristors for brain-inspired computing, Nanoscale 8, 14015 (2016).
- [9] M. Mao, S. Yu, and C. Chakrabarti, Design and analysis of energy-efficient and reliable 3-D ReRAM cross-point array system, IEEE Trans. VLSI Syst. 26, 1290 (2018).
- [10] A. Zaffora, D.-Y. Cho, K.-S. Lee, F. Di Quarto, R. Waser, M. Santamaria, and I. Valov, Electrochemical tantalum oxide for resistive switching memories, Adv. Mater. 29, 1703357 (2017).
- [11] S. Choi, S. H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, and J. Kim, SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations, Nat. Mater. 17, 335 (2018).
- [12] W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu, S. Deiss, P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H.-S. P. Wong, and G. Cauwenberghs, A compute-in-memory chip based on resistive random-access memory, *Nature* **608**, 504 (2022).

- [13] P.-H. Chen, K.-C. Chang, T.-C. Chang, T.-M. Tsai, C.-H. Pan, T.-J. Chu, M.-C. Chen, H.-C. Huang, I. Lo, J.-C. Zheng, and S. M. Sze, Bulk oxygen–ion storage in indium–tin–oxide electrode for improved performance of HfO₂-based resistive random access memory, IEEE Electron Dev. Lett. **37**, 280 (2016).
- [14] Y. Li, K.-S. Yin, M.-Y. Zhang, L. Cheng, K. Lu, S.-B. Long, Y. Zhou, Z. Wang, K.-H. Xue, M. Liu, and X.-S. Miao, Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO₂-based memristor, Appl. Phys. Lett. **111**, 213505 (2017).
- [15] Y. Wang, Qi Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, and M. Liu, Investigation of resistive switching in Cu-doped HfO₂ thin film for multilevel non-volatile memory applications, Nanotechnology **21**, 045202 (2010).
- [16] T.-M. Tsai, C.-H. Wu, K.-C. Chang, C.-H. Pan, P.-H. Chen, N.-K. Lin, J.-C. Lin, Y.-S. Lin, W.-C. Chen, H. Wu, N. Deng, and H. Qian, Controlling the degree of forming soft-breakdown and producing superior endurance performance by inserting bnbased layers in resistive random access memory, IEEE Electron Dev. Lett. 38, 445 (2017).
- [17] D. Acharyya, A. Hazra, and P. Bhattacharyya, A journey towards reliability improvement of TiO₂ based resistive random access memory: A review, Microelectron. Reliab. 54, 541 (2014).
- [18] A. Prakash, J. Park, J. Song, J. Woo, E.-J. Cha, and H. Hwang, Demonstration of low power 3-Bit multilevel cell characteristics in aTaO_x-Based RRAM by stack engineering, IEEE Electron Dev. Lett. **36**, 32 (2015).
- [19] L. Zhao, H.-Y. Chen, S.-C. Wu, Z. Jiang, S. Yu, T.-H. Hou, H.-S. P. Wong, and Y. Nishi, Multi-Level control of conductive nanofilament evolution in HfO₂ ReRAM by pulse-train operations, Nanoscale 6, 5698 (2014).
- [20] L. Yang, C. Kuegeler, K. Szot, A. Ruediger, and R. Waser, The influence of copper top electrodes on the resistive switching effect in TiO_2 thin films studied by conductive atomic force microscopy, Appl. Phys. Lett. **95**, 013109 (2009).
- [21] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (Mlc) storage, modeling, and applications, Nanoscale Res. Lett. 15, 90 (2020).

- [22] Z.-H. Wu, K.-H. Xue, and X.-S. Miao, Filament-to-dielectric band alignments in TiO₂ and HfO₂ resistive rams, J. Comput. Electron. 16, 1057 (2017).
- [23] K. Moon, M. Kwak, J. Park, D. Lee, and H. Hwang, Improved conductance linearity and conductance ratio of 1T2R synapse device for neuromorphic systems, IEEE Electron Dev. Lett. 38, 1023 (2017).
- [24] W. He, H. Sun, Y. Zhou, K. Lu, K. Xue, and X. Miao, Customized binary and multi-level HfO_{2-x}-based memristors tuned by oxidation conditions, Sci. Rep. 7, 10070 (2017).
- [25] T. Kim, H. Kim, J. Kim, and J.-J. Kim, Input voltage mapping optimized for resistive memory-based deep neural network hardware, IEEE Electron Dev. Lett. 38, 1228 (2017).
- [26] P. Huang, X. Y. Liu, B. Chen, H. T. Li, Y. J. Wang, Y. X. Deng, K. L. Wei, L. Zeng, B. Gao, G. Du, X. Zhang, and J. F. Kang, A physics-based compact model of metal-oxide-based RRAM DC and AC operations, IEEE Trans. Electron Dev. 60, 4090 (2013).
- [27] S. Brivio, J. Frascaroli, and S. Spiga, Role of metal-oxide interfaces in the multiple resistance switching regimes of Pt/HfO₂/TiN devices, Appl. Phys. Lett. **107**, 023504 (2015).
- [28] U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, and W. Vandervorst, Imaging the threedimensional conductive channel in filamentary-based oxide resistive switching memory, Nano Lett. 15, 7970 (2015).
- [29] S. Kumar, Z. Wang, X. Huang, N. Kumari, N. Davila, J. P. Strachan, D. Vine, A. L. D. Kilcoyne, Y. Nishi, and R. S. Williams, Conduction channel formation and dissolution due to oxygen thermophoresis/diffusion in hafnium oxide memristors, ACS Nano 10, 11205 (2016).
- [30] Y. Yang, X. Zhang, L. Qin, Q. Zeng, X. Qiu, and R. Huang, Probing nanoscale oxygen ion motion in memristive systems, Nat. Commun. 8, 15173 (2017).
- [31] J. Yin, F. Zeng, Q. Wan, F. Li, Y. Sun, Y. Hu, J. Liu, G. Li, and F. Pan, Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity, Adv. Funct. Mater. 28, 1706927 (2018).
- [32] G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias *et al.*, Metal oxide resistive memory switching mechanism based on conductive filament properties, J. Appl. Phys. **110**, 124518 (2011).
- [33] K.-H. Xue, P. Blaise, L. R. C. Fonseca, G. Molas, E. Vianello, B. Traoré, B. De Salvo, G. Ghibaudo, and Y. Nishi, Grain boundary composition and conduction in HfO₂: An ab initio study, Appl. Phys. Lett. **102**, 201908 (2013).
- [34] Y. Zhang, G.-Q. Mao, X. Zhao, Y. Li, M. Zhang, Z. Wu, W. Wu, H. Sun, Y. Guo, L. Wang, X. Zhang, Q. Liu, H. Lv, K.-H. Xue, G. Xu, X. Miao, S. Long, and M. Liu, Evolution of the conductive filament system in HfO₂-Based memristors observed by direct atomic-scale imaging, Nat. Commun. **12**, 7232 (2021).
- [35] K. P. McKenna, Optimal stoichiometry for nucleation and growth of conductive filaments in HfO_x, Model. Simul. Mater. Sci. Eng. 22, 025001 (2014).
- [36] T. V. Perevalov and D. R. Islamov, Atomic and electronic structures of the native defects responsible for the resistive effect in HfO₂: Ab initio simulations, Microelectron. Eng. **216**, 111038 (2019).
- [37] Y. Dai, Z. Pan, F. Wang, and X. Li, Oxygen vacancy effects in HfO₂-based resistive switching Memory: First principle study, AIP Adv. 6, 085209 (2016).

- [38] F. Xu, B. Gao, Y. Xi, J. Tang, H. Wu, and H. Qian, Atomicdevice hybrid modeling of relaxation effect in analog RRAM for neuromorphic computing, in 2020 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, 2020), pp. 13.2.1–13.2.4.
- [39] L. Sementa, L. Larcher, G. Barcaro, and M. Montorsi, Ab initio modelling of oxygen vacancy arrangement in highly defective HfO₂ resistive layers, Phys. Chem. Chem. Phys. **19**, 11318 (2017).
- [40] K.-H. Xue and X.-S. Miao, Oxygen vacancy chain and conductive filament formation in hafnia, J. Appl. Phys. 123, 161505 (2018).
- [41] J. Zhang, A. R. Oganov, X. Li, K.-H. Xue, Z. Wang, and H. Dong, Pressure-induced novel compounds in the Hf-O system from first-principles calculations, Phys. Rev. B 92, 184104 (2015).
- [42] B. Puchala and A. Van der Ven, Thermodynamics of the Zr-O system from first-principles calculations, Phys. Rev. B 88, 094108 (2013).
- [43] K.-H. Xue, B. Traore, P. Blaise, L. R. C. Fonseca, E. Vianello, G. Molas, B. De Salvo, G. Ghibaudo, B. Magyari-Kope, and Y. Nishi, A combined ab initio and experimental study on the nature of conductive filaments in Pt/HfO₂/Pt resistive random access memory, IEEE Trans. Electron Dev. 61, 1394 (2014).
- [44] K.-H. Xue, P. Blaise, L. R. C. Fonseca, and Y. Nishi, Prediction of Semimetallic Tetragonal Hf₂O₃ and Zr₂O₃ from First Principles, Phys. Rev. Lett. **110**, 065502 (2013).
- [45] K. Z. Rushchanskii, S. Blügel, and M. Ležaić, Routes for increasing endurance and retention in HfO₂ -based resistive switching memories, Phys. Rev. Materials 2, 115002 (2018).
- [46] G.-Q. Mao, K.-H. Xue, Y.-Q. Song, W. Wu, J.-H. Yuan, L.-H. Li, H. Sun, S. Long, and X.-S. Miao, Oxygen migration around the filament region in HfO_x memristors, AIP Adv. 9, 105007 (2019).
- [47] N. Kaiser, T. Vogel, A. Zintler, S. Petzold, A. Arzumanov, E. Piros, R. Eilhardt, L. Molina-Luna, and L. Alff, Defectstabilized substoichiometric polymorphs of hafnium oxide with semiconducting properties, ACS Appl. Mater. Inter. 14, 1290 (2022).
- [48] X. Luo, W. Zhou, S. V. Ushakov, A. Navrotsky, and A. A. Demkov, Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study, Phys. Rev. B 80, 134119 (2009).
- [49] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
- [50] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
- [51] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).
- [52] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
- [53] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- [54] L. G. Ferreira, M. Marques, and L. K. Teles, Approximation to density functional theory for the calculation of band gaps of semiconductors, Phys. Rev. B 78, 125116 (2008).

- [55] G.-Q. Mao, Z.-Y. Yan, K.-H. Xue, Z. Ai, S. Yang, H. Cui, J.-H. Yuan, T.-L. Ren, and X. Miao, DFT-1/2 and shell DFT-1/2 methods: electronic structure calculation for semiconductors at LDA complexity, J. Phys. Condens. Matter 34, 403001 (2022).
- [56] J.-H. Yuan, Q. Chen, L. R. C. Fonseca, M. Xu, K.-H. Xue, and X.-S. Miao, GGA-1/2 self-energy correction for accurate band structure calculations: The case of resistive switching oxides, J. Phys. Commun. 2, 105005 (2018).
- [57] K.-H. Xue, J.-H. Yuan, L. R. C. Fonseca, and X.-S. Miao, Improved LDA-1/2 method for band structure calculations in covalent semiconductors, Comput. Mater. Sci. 153, 493 (2018).
- [58] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevMaterials.6.084603 for more computational details and results.
- [59] L. Zhu, J. Zhou, Z. Guo, and Z. Sun, Metal-metal bonding stabilized ground state structure of early transition metal monoxide TM–MO (TM = Ti, Hf, V, Ta), J. Phys. Chem. C 120, 10009 (2016).
- [60] J.-H. Yuan, G.-Q. Mao, K.-H. Xue, N. Bai, C. Wang, Y. Cheng, H. Lyu, H. Sun, X. Wang, and X. Miao, Ferroelectricity in HfO₂ from a chemical perspective, arXiv:2201.00210.
- [61] E. Hildebrandt, J. Kurian, M. M. Müller, T. Schroeder, H.-J. Kleebe, and L. Alff, Controlled oxygen vacancy induced p-type conductivity in HfO_{2-x} thin films, Appl. Phys. Lett. 99, 112902 (2011).
- [62] R. R. Manory, T. Mori, I. Shimizu, S. Miyake, and G. Kimmel, Growth and structure control of HfO_{2-x} films with cubic and tetragonal structures obtained by ion beam assisted deposition, J. Vac. Sci. Technol. A 20, 549 (2002).
- [63] L.-H. Li, K.-H. Xue, L.-Q. Zou, J.-H. Yuan, H. Sun, and X. Miao, Multilevel switching in Mg-doped HfO_x memristor through the mutual-ion effect, Appl. Phys. Lett. **119**, 153505 (2021).

- [64] S.-M. Park, H.-G. Hwang, J.-U. Woo, W.-H. Lee, S.-J. Chae, and S. Nahm, Improvement of conductance modulation linearity in a Cu²⁺-doped KNbO₃ memristor through the increase of the number of oxygen vacancies, ACS Appl. Mater. Inter. 12, 1069 (2020).
- [65] S. Chandrasekaran, F. M. Simanjuntak, R. Saminathan, D. Panda, and T.-Y. Tseng, Improving linearity by introducing Al in HfO₂ as a memristor synapse device, Nanotechnology 30, 445205 (2019).
- [66] B. Gao, L. Liu, and J. Kang, Investigation of the synaptic device based on the resistive switching behavior in hafnium oxide, Progr. Nat. Sci.: Mater. Int. 25, 47 (2015).
- [67] S. Kim, Engineering synaptic characteristics of TaO_x/HfO₂ bilayered resistive switching device, Nanotechnology 29, 415204 (2018).
- [68] S. Kim, J. Chen, Y.-C. Chen, M.-H. Kim, H. Kim, M.-W. Kwon, S. Hwang, M. Ismail, Y. Li, X.-S. Miao *et al.*, Neuronal dynamics in HfO_x/AlO_y-based homeothermic synaptic memristors with low-power and homogeneous resistive switching, Nanoscale **11**, 237 (2019).
- [69] S. Roy, G. Niu, Q. Wang, Y. Wang, Y. Zhang, H. Wu, S. Zhai, P. Shi, S. Song, Z. Song *et al.*, Toward a reliable synaptic simulation using al-doped HfO₂ RRAM, ACS Appl. Mater. Inter. 12, 10648 (2020).
- [70] H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, Gd-doping effect on performance of HfO₂ based resistive switching memory devices using implantation approach, Appl. Phys. Lett. **98**, 042105 (2011).
- [71] T. Tan, Y. Du, A. Cao, Y. Sun, G. Zha, H. Lei, and X. Zheng, The resistive switching characteristics of Ni-doped HfO_x film and its application as a synapse, J. Alloy. Compd. **766**, 918 (2018).
- [72] D. Duncan, B. Magyari-Köpe, and Y. Nishi, Properties of Dopants in HfO_x for Improving the Performance of Nonvolatile Memory, Phys. Rev. Applied 7, 034020 (2017).