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Laplacian-level meta-generalized gradient approximation for solid and liquid metals
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We derive and motivate a Laplacian-level, orbital-free meta-generalized-gradient approximation (LL-MGGA)
for the exchange-correlation energy, targeting accurate ground-state properties of sp and sd metallic condensed
matter, in which the density functional for the exchange-correlation energy is only weakly nonlocal due to perfect
long-range screening. Our model for the orbital-free kinetic energy density restores the fourth-order gradient
expansion for exchange to the r2SCAN meta-GGA [Furness et al., J. Phys. Chem. Lett. 11, 8208 (2020)], yielding
a LL-MGGA we call OFR2. OFR2 matches the accuracy of SCAN for prediction of common lattice constants
and improves the equilibrium properties of alkali metals, transition metals, and intermetallics that were degraded
relative to the PBE GGA values by both SCAN and r2SCAN. We compare OFR2 to the r2SCAN-L LL-MGGA
[Mejia-Rodriguez and Trickey, Phys. Rev. B 102, 121109(R) (2020)] and show that OFR2 tends to outperform
r2SCAN-L for the equilibrium properties of solids, but r2SCAN-L much better describes the atomization energies
of molecules than OFR2 does. For best accuracy in molecules and nonmetallic condensed matter, we continue
to recommend SCAN and r2SCAN . Numerical performance is discussed in detail, and our paper provides an
outlook to machine learning.
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I. INTRODUCTION

Practical Kohn-Sham density functional theory (DFT)
[1] seeks an accurate and computationally efficient descrip-
tion of the ground-state energy E [n↑, n↓] and spin-densities
(n↑, n↓) of any many-electron system. This requires a density
functional approximation (DFA) for the exchange-correlation
energy Exc. First-principles DFAs are derived from purely
theoretical considerations, whereas empirical DFAs are fitted
to data (especially for bonded systems). Semi-empirical DFAs
borrow from both approaches. Empirical DFAs often cannot
extrapolate well to systems unlike those used to parametrize
them [2]. Recent machine-learned, semi-empirical DFAs [3,4]
which incorporate a greater number of exact constraints
have overcome some of the limitations inherent to em-
piricism. A semi-empirical, “human-learned” nonlocal DFA
using a small number of parameters has been shown to rival
highly-parametrized empirical DFAs’ descriptions of thermo-
chemical reactions [5], supporting this analysis. However, we
will primarily discuss first-principles DFAs.

The most widely-known first-principles DFAs at the time
of writing are the local spin density approximation (LSDA),
and the Perdew-Burke-Ernzerhof generalized gradient ap-
proximation (PBE GGA or PBE) [6]. Both DFAs satisfy
subsets of all known behaviors of the exact Exc: the Exc of
a uniform electron gas, spin-scaling of Ex [7], the behaviors
of Ex and Ec under uniform scaling of the position vector r
[8–10], among others.
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LSDA and the gradient expansion approximation (GEA)
[1,11–13] were the first two DFAs to be proposed (simultane-
ously). The LSDA gives the exact Exc of a uniform electron
gas, and is the zeroth-order approximation to the Exc of a
slowly-varying electron gas. The GEA of a given order de-
scribes the exact response of a uniform electron gas to a static,
long-wavelength perturbation [14] (a slowly-varying electron
gas). While LSDA generally provides an accurate starting
point for describing simple systems, the ungeneralized GEA
offers no systematic correction to the LSDA [15–17].

To quantify “slowly-varying,” we define a few dimen-
sionless variables (in Hartree atomic units, e2 = me = h̄ = 1,
unless otherwise specified). The appropriate length scale for
the exchange energy is the Fermi wavevector

kF(n) = [3π2n(r)]1/3. (1)

Then let

p(n, |∇n|) =
[ |∇n(r)|

2kF(r)n(r)

]2

(2)

be a squared dimensionless gradient of the density, and

q(n,∇2n) = ∇2n(r)

4[kF(r)]2n(r)
(3)

be a dimensionless Laplacian of the density on this length
scale. For a uniform density, p = q = 0. Let the positive defi-
nite kinetic energy density be

τσ = 1

2

∑
i

fiσ |∇φiσ (r)|2, (4)
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with integer occupancies fiσ = 0, 1. We also define a dimen-
sionless kinetic energy variable

α(n, |∇n|, τ ) = τ (r) − τW(n, |∇n|)
τunif(n)

, (5)

which depends upon the Weizsäcker kinetic energy density

τW(n, |∇n|) = |∇n(r)|2
8n(r)

, (6)

and the uniform electron gas, or Thomas-Fermi, noninteract-
ing kinetic energy density

τunif(n) = 3
10 k2

F(n)n(r). (7)

α = 1 for a uniform density. Thus, a density is considered
slowly varying when

p � 1 and |q| � 1 and |1 − α| � 1. (8)

Approximating α using p and q will be the primary topic
of this paper; thus we discuss a few rigorous properties of α.
α → 0 when τ approaches its lower bound τW [18]. α = 0
uniquely identifies single-orbital densities where τ = τW ex-
actly. A single-orbital (or “iso-orbital”) density has only one
occupied spatial orbital, such as a fully spin-polarized one
electron density, or a spin-unpolarized two-electron density.
Density variables such as α that uniquely recognize single-
orbital regions are often called iso-orbital indicators. For a
slowly-varying density, τ has a known gradient expansion
like the GEA [19]. These known limits are important, as they
permit τ -meta-GGAs (T-MGGAs) to be essentially exact for
typical one- and two-electron densities and slowly-varying
ones [20]. Here, “typical” refers to compact, unnoded [21]
one-electron densities. Such a balanced description between
finite and extended systems is not possible when using only p
and q, as we shall demonstrate.

A meta-GGA that depends on α of Eq. (5) can mistakenly
identify intershell regions in atoms as slowly varying [22].
The same behavior will be demonstrated for a Laplacian-level
meta-GGA (LL-MGGA). To make an indicator like α that
better distinguishes between finite and extended systems, one
must consider the first and second derivatives of τ , ∇τ and
∇2τ respectively, in addition to those of n [22]. DFAs with all
those ingredients are not currently available and are challeng-
ing to construct or use.

Most common LL-MGGAs are “de-orbitalizations” of
T-MGGAs. These orbital-free meta-GGAs replace the
analytic expression for τ with an approximate form
τ̃σ (nσ , |∇nσ |,∇2nσ ) that may be constrained to recover exact
constraints.

The most popular correlation GGA in the quantum chem-
istry community, due to Lee, Yang, and Parr (LYP) [23],
was originally cast as an empirical LL-MGGA. Miehlich
et al. [24] demonstrated that an integration by parts, such as
that used in Appendix B, could eliminate the density Lapla-
cian in favor of the density-gradient, yielding a conventional
GGA. This latter GGA form is generally called LYP, and
the Laplacian-dependent variant is not commonly used. Other
authors [25,26] have built upon LYP to derive Laplacian-
dependent exchange and correlation DFAs.

Similarly, the exchange density matrix expansion (DME)
of Negele and Vautherin [27], originally derived in the context

of nuclear Hartree-Fock theory, leads [28] to an exchange
energy density

eDME
x (n, p, q, α)

eLDA
x (n)

= 1 + 35

27
(q − p) + 7

9
(1 − α), (9)

with eLDA
x = −3kFn/(4π ) the local density approximation

(LDA) for exchange. The DME was generalized and the q
dependence removed to construct the Van Voorhis-Scuseria
(VS98) [29] and the M06-L [30] empirical meta-GGAs. More
recently, a similar q-independent generalization of the DME
was used to construct the Tao-Mo meta-GGA [31].

As will be discussed further, no single level of approxima-
tion (GGA, meta-GGA, etc.) in practical DFT can describe
all systems with the same level of accuracy. This has been
demonstrated empirically, for example, in the derivations of
the PBEsol [32] and PBEmol [33] GGAs. PBE, PBEsol, and
PBEmol all use the same Becke 1986 [34] form for the ex-
change enhancement factor

Fx(p) ≡ ex(n, p)

eLDA
x (n)

= 1 + κ − κ

1 + μp/κ
(10)

and PBE-like correlation energy per electron (see Eqs. (7) and
(8) of Ref. [6]). In all three variants, κ = 0.804 to enforce an
exact constraint [6]. The PBE GGA, which sets μ = 0.21951,
does not recover the correct second-order GEA coefficient for
exchange (10/81), but does so for correlation (β ≈ 0.066725,
as in Eq. (4) of Ref. [6]). This choice is understood to im-
prove PBE’s description of atomic and molecular properties
at the expense of those of solids [32,35]. By contrast, PBEsol
[32], which sets μ = 10/81 and β = 0.046, recovers the
second-order GEA coefficient for exchange, but not correla-
tion. PBEsol tends to describe solids well, at the expense of
atoms and molecules. PBEmol improves slightly [33] upon
PBE’s description of molecules by setting μ = 0.27583 to re-
cover the hydrogen atom exchange energy (and β = 0.08384
to satisfy the same linear response constraint as PBE), thereby
defining another GGA extreme. PBE is a “middle-path” GGA,
describing finite and extended densities with reasonable accu-
racy, but is not competitive with either extreme (PBEmol and
PBEsol, respectively) in either category.

Similar but less severe limitations also appear at the
meta-GGA level. For example, the strongly constrained and
appropriately normed (SCAN) [20] and regularized-restored
SCAN (r2SCAN) [36] T-MGGAs have achieved remarkable
successes, not only for molecules, but also for semiconducting
and insulating solids and liquids [37–43], including strongly-
correlated ones [44–47]. But these T-MGGAs tend to predict
unit-cell magnetic moments in ferromagnetic materials that
are somewhat too large compared to GGA predictions and
experiment [48–50]. SCAN also tends to predict longer lattice
constants and smaller cohesive energies in alkali metals than
PBE [51], thereby providing a less correct description of sim-
ple metals. Curiously, Ref. [52] found that SCAN predicts for-
mation of a monovacancy in Pt to be energetically favorable.

PBE also describes the formation energies 	Ef of many
intermetallic alloys, such as HfOs, ScPt, and VPt2, more accu-
rately than SCAN [53], although the PBE formation energies
are substantially too large for these solids. Kingsbury et al.
[54] demonstrated that r2SCAN makes modest improvements
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in 	Hf of these three solids, and generally improves SCAN’s
description of formation enthalpies for all solids tested. The
random phase approximation (RPA, which depends upon the
occupied and unoccupied orbitals) predicts slightly more ac-
curate formation energies for HfOs and ScPt than SCAN [55].
For the convenience of the reader, we have compiled the
results of Refs. [53] and [54] in Sec. IV F.

A GGA is more nonlocal than the LSDA, because the
existence of a derivative is conditioned upon the continuity
of a function in the immediate neighborhood of a point r.
Likewise, both variants of meta-GGAs are more nonlocal than
GGAs, as these include higher-order derivatives of the density
or Kohn-Sham orbitals. However, because the Kohn-Sham
orbitals are highly nonlocal, implicit functionals of the den-
sity, a T-MGGA is more nonlocal than an LL-MGGA. The
exchange-correlation energy functional of a semilocal (SL)
DFA (LSDA, GGA, or meta-GGA) can be written as

ESL
xc [n↑, n↓] =

∫
exc(n↑, n↓, ...; r)d3r, (11)

where the exchange-correlation energy density exc(r) depends
explicitly only on local variables: nσ (r), ∇nσ (r), ∇2nσ (r),
τσ (r), etc. A hybrid functional, which includes some fraction
of single-determinant exchange in its energy density exc,

ehybrid
xc (r) = (1 − a)eSL

x (r) + eSL
c (r)

− a

2

∑
σ

∫ |ρ1(rσ, r′σ )|2
|r − r′| dr′ (12)

is a nonlocal functional of the Kohn-Sham orbitals φiσ (r)
through the reduced one-body density matrix

ρ1(rσ, r′σ ′) = δσ,σ ′
∑

i

φ∗
iσ (r)φiσ (r′)θ (εF − εiσ ). (13)

δi j = 1 if i = j and 0 if i �= j is the Kronecker delta, and
θ (x < 0) = 0, θ (x > 0) = 1 is the step function. Single-
determinant exchange using Eq. (13) delivers the exact
exchange energy [a = 1 in Eq. (12)].

Itinerant electron magnetism appears to be best described
by more local DFAs. As shown elsewhere [48–50] and
here, LSDA, nonempirical GGAs, and LL-MGGAs tend to
better predict transition metal magnetic properties than do
T-MGGAs. Global hybrids, which use a constant parameter
a in Eq. (12), are much more nonlocal and thus even less ac-
curate than meta-GGAs for transition metal magnetism [56].
Range-separated hybrids, generalizations of global hybrids
that separate the short- and long-range components of the
Coulomb interaction, also tend to predict markedly worse
equilibrium properties (e.g., lattice constants and bulk moduli)
for structurally simple metals than they do for similarly simple
insulators [57]. To the best of our knowledge, no study of
extended systems using local hybrids, which use a function
a(r) in Eq. (12) (and may also be range separated), has been
undertaken. As meta-GGAs and global hybrids are more non-
local, it stands to reason that the exchange-correlation holes of
elemental transition metals may be surprisingly local, with the
gradient terms of GGAs and LL-MGGAs offering meaningful
corrections to LSDA.

Why does the exact density functional for the exchange-
correlation energy display a weaker nonlocality in metallic

solids than in molecules and nonmetallic solids? A clue is
provided by the exact expression [58,59]

Exc = 1

2

∫
d3r n(r)

∫
d3r′ nxc(r′, r)

|r′ − r| , (14)

where nxc(r′, r) is the density at r′ of the coupling-constant-
averaged exchange-correlation hole around an electron at r.
Starting from the exact exchange hole, correlation makes
the exchange-correlation hole more negative at r′ = r, with
a faster decay to zero as |r′ − r| → ∞. At long range, the
exchange hole density in a solid is screened (divided) by a
dielectric constant which is finite in nonmetals but infinite
in metals. In the uniform electron gas [60], for example, the
exact exchange hole density (averaged over oscillations) at
long range decays as |r′ − r|−4, while the exact exchange-
correlation hole density (averaged over oscillations) decays
much faster as |r′ − r|−8. As the exact exchange-correlation
hole becomes deeper and more localized around its electron,
the exact exchange-correlation energy functional becomes
less nonlocal in the electron density. For example [61], the
optimum fraction a of exact exchange in a global hybrid func-
tional is the inverse of a long-wavelength dielectric constant,
and vanishes for a metal. Thus, highly nonlocal information
(e.g., the fundamental energy gap, the dielectric constant, or
the descriptors of Ref. [22]) is required to determine the level
of nonlocality needed in an approximate density functional.

The search for a computationally efficient DFA that is
highly accurate for nearly all systems of interest has not yet
found an unequivocal choice. It has, however, shown that
inclusion of exact constraints is perhaps the single most pow-
erful aspect of DFA design [62]. In this paper, we derive
an orbital-free LL-MGGA and determine its accuracy for a
diverse set of common solid-state systems. Section II reviews
extant LL-MGGAs and motivates the new model derived in
Sec. III. Section IV applies this model to real solids: their
structural properties in Sec. IV B; itinerant electron mag-
netism in Sec. IV C; bandgaps of insulators in Sec. IV D;
formation of a monovancancy in Pt in Sec. IV E; intermetal-
lic formation enthalpies in Sec. IV F; and alkali metals in
Sec. IV G. Section IV H presents a test of molecular atomiza-
tion energies. A discussion of machine learning applications
to LL-MGGAs is given in Sec. V.

II. ORBITAL-FREE META-GGAS

Orbital-free variants of T-MGGAs may be the most com-
mon LL-MGGAs to date. Finding a suitable replacement for τ

in terms of the density and its spatial derivatives alone permits,
in principle, highly-accurate and computationally-efficient
calculations within standard Kohn-Sham theory. Early at-
tempts, such as that of Perdew and Constantin [63], proposed
deorbitalized meta-GGAs but provided no self-consistent
tests. Later works [64,65] in the context of subsystem DFT
successfully proposed semilocal, orbital-free approximations
of τ for use in calculating the meta-GGA embedding po-
tential. However, as noted in Ref. [65], a semilocal model
of τ in subsystem-DFT only needs to accurately capture
nonadditive interactions between independent subsystems,
which primarily involve the valence electrons. More re-
cently, Mejía-Rodríguez and Trickey [66,67] have pioneered a
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general-purpose, self-consistent “de-orbitalization” procedure
to replace the analytic τ with an approximate expression.
Their paper is the inspiration for ours.

This construction has two primary benefits: a more lo-
calized exchange-correlation hole, and potential for greater
numerical efficiency [68]. We posit that the more localized
exchange-correlation holes of metals, including “atypical met-
als”, are unexpectedly local, a suggestion made long ago [69].
Thus meta-GGAs like SCAN and r2SCAN tend to make their
holes too nonlocal, and more insulator like. Indeed, Ref. [68]
demonstrates that orbital-free versions of SCAN and r2SCAN
predict smaller magnetic moments in ferromagnets (when
evaluated at the same geometry), and that the orbital-free vari-
ants tend to predict more accurate lattice constants of simple
metals. However, the orbital-free variants worsen the cohesive
energies of simple metals, presumably because these energy
differences involve atoms as well as metallic solids.

Mejía-Rodríguez and Trickey have shown [68] that an
orbital-free version of r2SCAN, called r2SCAN-L, has a com-
putational cost similar to PBE in solids, but is less accurate
than r2SCAN for describing their equilibrium properties. We
construct a similarly-efficient LL-MGGA that accurately de-
scribes solids (particularly metals) by restoring the gradient
expansion to an orbital-free r2SCAN.

The Perdew-Constantin (PC) [63] model approximates τ

using an enhancement factor similar to that of semilocal ex-
change energies,

τ̃ (n, p, q) = τunif(n)F PC
s (p, q). (15)

We use the “s” subscript to indicate a single-electron property,
i.e., Fs is used to approximate the noninteracting kinetic en-
ergy density of a spin-unpolarized system. Such a description
is useful because the kinetic energy and exchange energy
share the same spin-scaling relationship [7]

Ts[n↑, n↓] = 1
2 (Ts[2n↑] + Ts[2n↓]). (16)

For sufficiently slowly-varying densities,

lim
p�1

|q|�1

F PC
s (p, q) → FSVL = 1 + 5

27 p + 20
9 q + 	 + O(|∇n|6),

(17)

where 	 stands for generalized fourth-order gradient expan-
sion terms. Because it employs only the variables p and q,
the Perdew-Constantin model recovers only the second-order
gradient expansion of τ and (via integration by parts) the
fourth-order gradient expansion of Ts.

For iso-orbital regions,

F PC
s (p, q) → FW = 5p/3 = τW/τunif. (18)

To approximately recover the iso-orbital limit of τ , the PC
model interpolates between these limits

F PC
s (p, q) = FW + 	PC fab(	PC) (19)

	PC = FSVL − FW. (20)

From Eq. (5), 	PC fab(	PC) approximates α. The PC in-
terpolation function is a smooth, nonanalytic two-parameter
function

fab(z) =
⎧⎨⎩

0, z � 0[ 1+g1a (z)
g2a(z)+g1a (z)

]b
, 0 < z < a

1, z � a
, (21)

g1a(z) = exp
( a

a − z

)
, (22)

g2a(z) = exp
(a

z

)
. (23)

The parameters a = 0.5389 and b = 3 were determined [63]
by fitting to the kinetic energies of neutral atoms, ions, and
jellium clusters; we will discuss the lattermost system fur-
ther in this paper. The PC model assumes that 	PC � 0
indicates an iso-orbital density, and that 	PC � a indicates
a sufficiently slowly-varying density. For a uniform density,
	PC = 1. Thus, a < 1 is needed to recover both the uniform
density limit of τ and its low-order gradient expansion for
weakly-inhomogeneous densities.

If a < 1, as in the Perdew-Constantin work [63], then

fab(	PC) → 1 − 40p/27 + 20q/9 + 	 + O(|∇n|6), (24)

because

dk fab

d (	PC)k

∣∣∣∣
	PC=1

= 0 (25)

for all k ∈ N+. However, if a > 1, as in the Mejía-Rodríguez
and Trickey reparameterization (MRT or PCopt) [66] of the
PC functional, then fab no longer has a correct Taylor series
about 	PC = 1,

fab(	PC) = fab(1) + f ′
ab(1)(	PC − 1) + O[(	PC − 1)2].

(26)

The MRT parameters are a = 1.784720 and b = 0.258304;
then the coefficients in the Taylor series of fab(	PC) are

fab(1) =
{

1 + g1a(1)

g2a(1) + g1a(1)

}b

≈ 0.906485, (27)

f ′
ab(1) = b

{
1 + g1a(1)

g2a(1) + g1a(1)

}b−1

×
{

g′
1a(1)[g2a(1) − 1] − g′

2a(1)[1 + g1a(1)]

[g1a(1) + g2a(1)]2

}
≈ 0.353363. (28)

For reference,

g′
1a(z) = a

(a − z)2
g1a(z), (29)

g′
2a(z) = − a

z2
g2a(z). (30)

Note that 	PC − 1 = O(|∇n|2), and (	PC − 1)2 = O(|∇n|4)
to lowest order. As f ′

ab(1) �= 0 in the MRT model, the gradient
expansion of the MRT τ no longer agrees with the known
expansion, including the LSDA (uniform density) term,

τMRT(n, p, q) = [0.906485 + 1.143167p

+ 0.785250q + O(|∇n|4)]τunif(n). (31)
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TABLE I. Jellium surface formation energies σxc in erg/cm2 computed for two meta-GGAs, SCAN [20] and r2SCAN [36], and their
deorbitalized counterparts SCAN-L [66,67] and r2SCAN-L [68]. Surface formation energies are calculated from LSDA reference densities
for both the planar surface and the liquid drop model applied to spherical jellium clusters. The mean absolute percentage errors (MAPEs) are
computed with respect to RPA+ values [76,77], as motivated in the text. As 1 hartree ≈27.211386 eV [78], 1erg/cm2 ≈ 0.0624151 meV/Å2.

SCAN SCAN-L r2SCAN r2SCAN-L

Surface Cluster Surface Cluster Surface Cluster Surface Cluster

rs = 2 3448 3424 3173 3072 3288 3299 3245 2863
rs = 3 789 791 709 689 753 761 740 646
rs = 4 274 277 242 235 262 266 257 223
rs = 5 120 123 104 102 115 118 113 98
MAPE 2.51 3.35 8.39 10.96 2.80 2.62 3.60 15.97

Compare this to the exact expansion [19]

τGEA(n, p, q) = [1 + 0.185185p + 2.222222q

+ O(|∇n|4)]τunif(n). (32)

The incorrect zeroth-order term in τMRT was identified in
Ref. [66], but its relevance to the gradient expansion of τ

was not. Replacing the exact τ in SCAN or r2SCAN by τMRT

yields SCAN-L [66] or r2SCAN-L [68].
It has been shown, by the r2SCAN authors and by many

others [70–74] that the uniform density limit is critical for
describing solid-state properties, molecular atomization en-
ergies, and molecular formation enthalpies. The gradient
expansion is expected to be particularly relevant to metals.
The present paper parallels the restoration of the uniform
density and gradient expansion constraints to the rSCAN T-
MGGA [75] by r2SCAN [36].

The loss of the correct uniform density and gradient ex-
pansion constraints reduces the accuracy of an orbital-free
meta-GGA when applied to jellium prototypes of solids.
Table I compares the XC surface formation energies calcu-
lated for the planar jellium surface and clusters from two τ

meta-GGAs, SCAN [20] and r2SCAN [36], with their deor-
bitalized counterparts SCAN-L [66,67] and r2SCAN-L [68].
It is clear that SCAN and r2SCAN provide reasonably ac-
curate descriptions of the jellium surface formation energies,
while their deorbitalized counterparts do not.

III. NEW MODEL OF THE KINETIC ENERGY DENSITY

We now sketch the derivation of a simplified Laplacian-
level model of τ , which is reasonably smooth and numerically
stable. Previous works attempting to construct an exchange
enhancement factor with the density Laplacian demonstrated
[79] that the exchange-correlation potential

vxc(r) = ∂exc

∂n
− ∇ ·

(
∂exc

∂∇n

)
+ ∇2

(
∂exc

∂∇2n

)
(33)

is easily destabilized when the “curvature” term, rightmost
in Eq. (33), is not well constrained. Note that exc is the
exchange-correlation energy density, the integrand of the
exchange-correlation energy functional. It is not possible to
eliminate all oscillations induced by this term into the Kohn-
Sham potential, but these can be mitigated.

The Perdew-Constantin expression for the kinetic en-
ergy density enhancement factor Fs interpolates between the

rigorous lower bound

FW = 5
3 p � Fs (34)

and a regulated fourth-order gradient expansion for τ , whose
asymptotic limit is 1 + 5p/3. The “asymptotic limit” is de-
fined by p, |q| → ∞ and typified by, e.g., a density tail. Here,
we will interpolate between the iso-orbital or von Weizsäcker
limit and the slowly-varying or second-order gradient expan-
sion limit. Other choices are more suitable for atoms [80,81],
but solid and liquid metals are the targets of our paper.

A set of “appropriate norms” (see Sec. III A) could provide
information about how best to extrapolate beyond these two
limits, in line with the construction of SCAN and r2SCAN.
However, an interpolation between these two limits suffices
for an accurate description of solids. Section V presents a less
numerically-stable model for τ that extrapolates beyond these
limits by fitting to appropriate norms.

To recover the second-order gradient expansion for the
exchange and correlation energies in r2SCAN, and the fourth-
order gradient expansion for the exchange energy in SCAN,
an approximate τ̃ must recover the second-order gradient
expansion of τ . Therefore, we aim to recover only the
second-order gradient expansion of τ , and not the fourth-order
gradient expansion of Ts. However, as shown in Appendix B,
we restore the fourth-order gradient expansion for the ex-
change energy to r2SCAN by constraining the fourth-order
terms in τ̃ .

From Eq. (5),

α(r) = Fs − 5
3 p. (35)

0 � α < ∞ is positive semidefinite, therefore we make a
model of α with the same range as the true variable

α̃RPP(x) =
⎧⎨⎩0, x < 0

x4(A + Bx + Cx2 + Dx3), 0 � x � x0

x, x > x0

, (36)

x(p, q) = 1 − 40

27
p + 20

9
q + c3 p2e−|c3|p

+ x4(p, q) exp
[
−

( p

c1

)2
−

( q

c2

)2]
, (37)

x4(p, q) = bqqq2 + bpq pq + (bpp − c3)p2, (38)

F RPP
s (p, q) = 5

3
p + α̃RPP(x(p, q)). (39)
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We call this model RPP for “r2SCAN piecewise-polynomial”.
Here, A, B, C are determined by requiring that α̃(x) is contin-
uous up to its third derivative in x at x = x0,

A = 20/x3
0, (40)

B = −45/x4
0, (41)

C = 36/x5
0, (42)

D = −10/x6
0 . (43)

0 < x0 < 1, c1, c2, and c3 are model parameters determined
by minimizing the residuum errors of a set of appropriate
norms, described below. Their optimal values are

x0 = 0.819411, (44)

c1 = 0.201352, (45)

c2 = 0.185020, (46)

c3 = 1.53804. (47)

By construction, α̃(x) is a C3 function for all x. While we
model α as α̃RPP, the actual quantity used to deorbitalize a
meta-GGA is

τRPP(n, p, q) = τunif(n)F RPP
s (p, q), (48)

with F RPP
s given by Eq. (39). When τRPP is used to deorbitalize

a T-MGGA, the resultant XC potential will be continuous.
bqq ≈ 1.801019, bpq ≈ −1.850497, and bpp ≈ 0.974002 en-
force the fourth-order gradient expansion for the exchange
energy (GEX4); exact expressions are given in Appendix B.
The Perdew-Constantin expression is a “smooth nonanalytic
function,” a C∞ function that has Taylor series with zero
radius of convergence about at least one point (z = 0, a
in the Perdew-Constantin model). The current model has a
Taylor series of nonzero convergence radius about x = 0, x0.
Figure 1 plots the enhancement factor over a range of p typical
for atoms and molecules (where the energetically important
regions have 0 � p � 9).

τRPP is intended for use in the r2SCAN meta-GGA. The
numerical stability and general accuracy of r2SCAN make it a
good candidate for this kind of work, as noted in Ref. [68]. As
r2SCAN is still a relatively new meta-GGA, we briefly review
its construction here. The interested reader is encouraged to
review Refs. [36,62] for a more detailed presentation. SCAN,
while broadly accurate, tends to need dense numerical grids
when performing self-consistent calculations [38].

The rSCAN meta-GGA of Bartók and Yates [75] attempted
to remedy this issue by replacing the iso-orbital indicator used
in SCAN, α, with a regularized indicator that tends to zero
in density tails (where α diverges [82]), and by replacing the
switching functions in SCAN, Eq. (9) of Ref. [20], with a less-
oscillatory function. These modifications, while effective in
improving the numerical performance of SCAN, broke exact
constraints underpinning the construction of SCAN [62]. The
ablation of these constraints in rSCAN resulted in marked
increases in computed atomization energy errors [71], for
example.

FIG. 1. The RPP kinetic energy density enhancement factor of
Eq. (39) compared to the Weizsäcker lower bound FW = 5p/3. For
q � −0.25, F RPP

s (p, q) ≈ FW(p).

The r2SCAN meta-GGA [36] was constructed to maintain
the numerical efficiency of rSCAN, but with accuracy compa-
rable to SCAN. This was accomplished by using an iso-orbital
indicator,

α = τ − τW

τunif + η τW
= α

[
1 + 5

3
ηp

]−1
, (49)

where η = 0.001. α decays to zero in s-like density tails.
Furthermore, the slowly-varying limit [see Eq. (8)] of rSCAN
was modified to ensure recovery of the second-order gradient
expansion constraints [62].

The fourth-order terms in x(p, q) restore the GEX4 terms
to r2SCAN. The damped x4(p, q) term is modeled after the
r4SCAN meta-GGA [62]. This meta-GGA restores the GEX4
to r2SCAN using the exact τ , at the price of some numerical
stability and general accuracy. We noticed in our testing that
the gradient expansion terms need exponential cutoffs, like
those used in r4SCAN. This is primarily due to the bqqq2 and
bpq pq terms, which introduce numerical instabilities if they
are not strongly regulated. However, the c3 p2 term provides
more meaningful corrections at large p. For this reason, the
damped c3 p2 term has a much longer tail than x4(p, q). We
refer to the new orbital-free r2SCAN, in which the exact τ is
replaced by

τRPP(n, p, q) = τunif(n)[̃αRPP(p, q) + 5p/3], (50)

as “OFR2,” for orbital-free regularized-restored SCAN. It is
only the xc energy, and not the total, that is orbital-free in
our work. Equivalently, one could replace the exact α in the
rightmost equality of Eq. (49) with α̃RPP; we make this distinc-
tion because r2SCAN depends on α instead of α. Of course,
the cluster of r2SCAN exact constraints associated with the
iso-orbital limit τ = τW can be satisfied only approximately
by OFR2.

The second-order gradient expansion for τ is unexpect-
edly accurate in approximating the true τ in solids. Figure 2
plots the exact kinetic energy density of the jellium surface,
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(a) (b)

FIG. 2. Plot of the exact τ (solid gray), second-order gradient expansion (GEA2, solid green), the RPP model (dashed blue), and Weizsäcker
(dash-dot orange) kinetic energy density for a jellium surface of bulk density parameter rs = 2, (left) and 4 (right). For a given density parameter
rs, τUEG = (27/80)[3/(2π )]1/3[rs]−5 and λF = 2(2π/3)2/3rs. The uniform positive background fills the half-space x < 0.

second-order gradient expansion for τ , the OFR2 model de-
rived here (after fitting, described below), and the Weizsäcker
kinetic energy density for a bulk density parameter rs = 2, 4.
We see that OFR2 reasonably approximates τ in the jellium
surface (even in its density tail), despite predicting oscillations
of too small magnitude and incorrect phase.

It is also worth noting that SCAN, r2SCAN, and the orbital
free variants SCAN-L, r2SCAN-L, and OFR2 are among the
first meta-GGAs to respect the conjectured tight bound on the
exchange energy of a spin-unpolarized density [83],

Ex[n] � 1.174ELDA
x [n] (51)

where n is an arbitrary density. GGAs like PBE and PBEsol
[32] respect a more conservative bound [84,85]

Ex[n] � 1.804ELDA
x [n]. (52)

A. Appropriate norms

Reference [20] described the process of selecting sys-
tems which a DFA tier can describe exactly or with high
accuracy. This idea had been used previously in, e.g., the Tao-
Perdew-Staroverov-Scuseria (TPSS) meta-GGA [86], which
was constrained to yield the exact exchange and correlation
energies of the hydrogen atom when applied to its exact
density. Such auxiliary conditions, which may be satisfied by
fitting to reference densities, are necessary in the absence of a
sufficient number of known conditions on the exact exchange-
correlation energy functional (exact constraints).

We distinguish first-principles DFAs, which build in all
possible exact constraints prior to determining free parameters
with appropriate norms, from empirical functionals. Empirical
functionals need not build in exact constraints first, however
when the fit is done only with appropriate norms (e.g., rare
gas atoms at the GGA level), they often emerge naturally
[74,87]. Semi-empirical functionals, like the Becke 1988 ex-
change GGA (B88) [88], build in some constraints prior to
determining free parameters by fitting to data sets.

At the LSDA level, the only appropriate norm available is
the uniform electron gas, for which “The LSDA” [1,89] is ex-
act (as opposed to empirical LSDAs [90]). The GGA level can
add density-gradient expansions, or the lowest-order large-Z
coefficients [74,87] and the exchange-correlation energies of
closed-shell atoms.

LL-MGGAs cannot uniquely identify one-electron and
many-electron regions as T-MGGAs can. Some appropriate
norms used to parametrize SCAN [20] (the compressed Ar
dimer; the hydrogen and helium atoms) are not appropriate
norms for an LL-MGGA, whereas others (the noble gas atoms
and jellium surface formation energies) are still applicable.

Thus we select the surface formation energies of planar
jellium surfaces [91,92], with rs values typical of metals (rs =
2, 3, 4, and 5), and spherical jellium clusters [77] (with typical
magic numbers N = 2, 8, 18, 20, 34, 40, 58, 92, and 106) as
LL-MGGA appropriate norms. From the spherical jellium
clusters, we extract surface formation energies σxc(rs) and sur-
face curvature energies γxc(rs) via the liquid drop model [93]

Exc

N
= εUEG

xc (rs) + 4πr2
s σxc(rs)N−1/3 + 2πrsγxc(rs)N−2/3.

(53)

The surface formation energies extracted from the jellium
clusters will, in general, differ from those extracted from
the planar surface, although the N → ∞ limit of a spherical
cluster is a planar surface. Density functionals that are more
sensitive to the shell structure of small-N clusters, e.g.,
SCAN, predict less accurate σxc(rs) values extracted from
the clusters than the surfaces. Moreover, to limit the effects
of shell-structure oscillations, we always fit the difference
(E approx

xc − ELSDA
xc )/N , as described in Ref. [77].

Plots of the self-consistent LDA planar jellium surface
and jellium cluster densities for bulk background density-
parameter rs = 4 bohr can be found in Figs. 3 and 4, respec-
tively. These figures also plot the iso-orbital indicator α com-
puted self-consistently with the LDA, and computed with the
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FIG. 3. Upper: Plot of the self-consistent LDA planar jellium
surface density (blue, solid), scaled by the density of the corre-
sponding bulk jellium n = 3/(4πrs

3 ). Also shown is the neutralizing
positive background (gray, dotted), which terminates at x = 0.
Lower: Plot of the self-consistent LDA α = (τ − τW)/τunif (blue,
solid) and the second-order gradient expansion (GE2) approximation
for αGE2 = 1 − 40p/27 + 20q/9 (orange, dot-dashed). Positions are
scaled by the bulk Fermi wavevector λF = 2π [4/(9π )]1/3rs, both
plots are for rs = 4.

second-order gradient expansion (GE2) approximation for α,

αGE2 = 1 − 40
27 p + 20

9 q. (54)

In these figures, p and q are computed from self-consistent
LDA quantities. When the GE2 is a reasonable approximation
to α, as for the planar surface in Fig. 3, a system can be con-
sidered slowly-varying, provided that p and |q| are both small
(which we confirmed, but did not plot for reasons of clarity).

The jellium cluster densities for finite N much more closely
resemble the densities of atoms (see Fig. 6 in Sec. IV) than
the planar jellium surface. Indeed, the GE2 approximation for
α only becomes reasonable for N > 100. For N = 2, where
the exact α = 0 (iso-orbital), the GE2 is wildly off the mark,
unphysically making α < 0 near the cluster’s surface. Thus
the jellium cluster densities are more characteristic of finite
systems than the planar jellium surface, helping to balance the
performance of OFR2.

The exchange-correlation energies of the noble gas atoms
Ne, Ar, Kr, and Xe were also used as appropriate norms. In
these rare-gas atoms, and especially in their large-Z limit, the
exact exchange-correlation hole is reasonably short ranged.
These atoms are needed to help RPP/OFR2 deal with nearly-
iso-orbital regions like those near nuclei. Furthermore, any
error of the functional in the low-density tails of these atoms
will be energetically negligible. A Python library was written
to generate self-consistent reference LSDA densities for the
jellium appropriate norms, and to generate Roothaan-Hartree-

FIG. 4. Upper: Plot of the self-consistent LDA jellium cluster
density (blue, solid), scaled by the density of the corresponding bulk
jellium n = 3/(4πrs

3 ), for a few values of N = 2 (blue), 20 (orange),
and 106 (green). Also shown is the neutralizing positive background
(gray, dotted), which terminates at r = R = rsN1/3. Lower: Plot of
the self-consistent LDA α = (τ − τW)/τunif (solid curves) and the
second-order gradient expansion (GE2) approximation for αGE2 =
1 − 40p/27 + 20q/9 (dotted curves). Both plots are for rs = 4 bohr,
as in Fig. 3. The GE2 only becomes relatively accurate as N > 100.

Fock atomic densities [94]. The library is made available as a
public code repository [95].

To determine the model parameters, the objective function

δ =
√

MAPE2
RGA + MAPE2

JS + MAPE2
JC (55)

where “RGA” stands for the exchange-correlation energy
of the rare-gas atoms Ne, Ar, Kr, and Xe; “JS” (“JC”)
stands for the jellium surface (cluster) σxc. MAPE is the
mean absolute percentage error. For the planar jellium sur-
faces, rs ∈ {2, 3, 4, 5} were used; for the jellium clusters,
rs ∈ {2, 3, 3.5, 4, 5} were used. The minimization was done
in two steps: a Nelder-Mead simplex search, followed by a
tiered grid search to (potentially) refine the parameters. The
fitting routine stopped when the change in the lowest δ over a
few iterations stagnated.

A plot of the α̃(x) function, compared with similar models
[63,66,80], is given in Fig. 5. While the PC, MRT, and RPP
models do not share a common inhomogeneity measure x,
they assume that x = 1 indicates a uniform density, x → ∞ a
density tail, and x → −∞ a core. Thus we can compare them
using an arbitrary inhomogeneity measure x. The Cancio-
Redd model

α̃CR(zCR) = 1 + zCR{1 − exp[−1/|z|a]}1/a�(−zCR)

+ zCR�(zCR), (56)

zCR = −40

27
p + 20

9
q, (57)
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FIG. 5. Plot of the RPP model α̃(x) of Eq. (36) as a function
of an arbitrary measure of inhomogeneity x, which tends to one for
a uniform density. The Perdew and Constantin (PC) [63], Cancio
and Redd (CR) [80], and Mejía-Rodríguez and Trickey (MRT) [66]
models of α̃(x) are also displayed.

�(z) =
{

1 z � 0
0 z < 0,

(58)

with a = 4, tends to its uniform density limit when its inho-
mogeneity measure zCR tends to zero, unlike the PC, MRT,
and RPP models. Thus we plot α̃CR as a function of x ≡
zCR + 1, where x → 1 indicates a uniform density. The RPP
model recovers the fourth-order gradient expansion for ex-
change when combined with r2SCAN. The RPP, PC, and CR
models all recover the second-order gradient expansion for τ

by construction, whereas the MRT model does not. This is
seen in Fig. 5 by noting that α̃(x ≈ 1) ≈ x.

Table II shows the appropriate norms errors used to deter-
mine x0, c1, c2, and c3 [Eqs. (44)–((47). We use the RPA+
[76], and the fit from Ref. [77] as needed, as reference values
for σxc. The RPA alone accounts for 100% of exact exchange
and the long-range part of correlation in a metal like the
jellium surface. The RPA+ makes a GGA-level correction to
the RPA correlation energy at short range. Thus the values
of σxc found with the RPA+ are comparable to higher-level
methods like the Singwi-Tosi-Land-Sjölander self-consistent
spectral function method [97], or careful quantum Monte
Carlo (QMC) calculations of finite jellium surfaces [98].
Reference atomic exchange energies are taken from Ref. [70],
and correlation energies from Ref. [96].

IV. PERFORMANCE FOR REAL SYSTEMS

OFR2 is constructed to accurately describe metallic densi-
ties. While this is a niche goal, T-MGGAs adequately describe
nonmetallic densities, but exhibit too much nonlocality for
simple metallic solids. This deficit can be rectified by an
LL-MGGA like OFR2.

Panels (a) and (b) of Fig. 6 plot p, q, and α in the Cr
atom for the up- and down-spin densities, respectively. Note
the similarity of p and q outside the 1s shell of the atom. In
the region 0.07 � r � 2 bohr, both p and |q| are less than
one, and there are numerous points where α = 1. The density
in this region would thus be characterized as approximately
slowly varying or metallic by a T-MGGA. We define the
spin-dependent variables as

pσ = p(2nσ ) = 2−2/3 |∇nσ |2
4(3π2)2/3n8/3

σ

, (59)

TABLE II. Performance of the new orbital-free r2SCAN (OFR2) for the appropriate norms. The reference atomic exchange-correlation
energies are taken from Refs. [70,96], respectively. Reference jellium surface exchange-correlation formation energies are taken from the
RPA+ values of Ref. [76], and when needed, the fit to RPA+ data of Ref. [77].

Atomic norm Reference (hartree) OFR2 (hartree) Percent error

Ne –12.499 –12.229 –2.16%
Ar –30.913 –30.326 –1.90%
Kr –95.740 –94.308 –1.50%
Xe –182.202 –179.837 –1.30%

MAPE 1.71%
Jellium surface rs (bohr) Reference (erg/cm2) OFR2 (erg/cm2) Percent error

2 3413 3336 –2.25%
3 781 764 –2.16%
4 268 265 –1.19%
5 113 116 2.25%

MAPE 1.96%
Jellium cluster rs (bohr) Reference (erg/cm2) OFR2 (erg/cm2) Percent error

2 3413 3363 –1.47%
3 781 769 –1.57%
3.25 582 578 –0.84%
4 268 265 –1.05%
5 113 116 2.98%

MAPE 1.58%

083803-9



AARON D. KAPLAN AND JOHN P. PERDEW PHYSICAL REVIEW MATERIALS 6, 083803 (2022)

FIG. 6. Upper: Squared dimensionless density gradient p (blue, solid), dimensionless Laplacian q (orange, dashed), and iso-orbital
indicator α (green, dot-dashed) in the Cr atom for the (a) up-spin (↑) density, and (b) down-spin (↓) density. The density, its derivatives, and
kinetic energy density are represented by Roothaan-Hartree-Fock Slater-type orbitals from Ref. [99]. Lower: The percent error, 100( αapprox

α
− 1),

made by the model of α from Ref. [66] (MRT; blue, solid) and the present model, RPP (orange, dashed), for the (c) up-spin density and
(d) down-spin density. Also shown is the second order gradient expansion, GE2 (green, dot-dashed). When p � 1, |q| � 1, and |1 − α| � 1,
the density can be considered slowly-varying, and a semilocal model of τ can be approximately accurate. In panel (a), although the 4s↑ density
dominates the 3d↑ density at large r, α↑ still diverges.

qσ = q(2nσ ) = 2−2/3 ∇2nσ

4(3π2)2/3n5/3
σ

, (60)

ασ = α(2nσ , 2τσ ) = 2−2/3 τσ − |∇nσ |2/(8nσ )

3(3π2)2/3n5/3
σ /10

, (61)

i.e., the density variables as seen by the exchange energy using
its spin-scaling relation [7].

Panels (c) and (d) of Fig. 6 plot the errors made in ap-
proximating α with the MRT model [66] and the RPP model,
Eq. (39). Because p and |q| are small, the second-order gradi-
ent expansion (GE2)

τσ = 22/3
(
1 + 20

9 qσ + 5
27 pσ

)
τunif(nσ ) (62)

is a reasonable approximation to τ in the region 0.07 � r � 2
bohr only. RPP closely follows the GE2 curve in this region.
These semilocal models of α better describe this region than
the 1s shell region, where they make α vanish too abruptly, or
the density tail, where they make α diverge too quickly. For
the Cr atom, the MRT model better approximates ασ than the
RPP model of this work, except perhaps for the majority (↑)
spin in the valence region.

A. Numerical stability

The LL-MGGA exchange-correlation potential is very sen-
sitive to the dependence of exc on the density Laplacian.
Figure 7 demonstrates this for the hydrogen atom (α↑ = 0)
Kohn-Sham potential, using the exact density n(r) = e−2r/π .
vxc presents unusual oscillations that could be misinterpreted
as shell structure. Using this density

kF(r) = (3π )1/3e−2r/3, (63)

p(r) = k−2
F , (64)

q(r) = (1 − 1/r)k−2
F . (65)

Similar to the Cr atom in Fig. 6, there is a region near r = 1
bohr that an LL-MGGA can mistakenly identify as slowly-
varying, because p � 1, and |q| ≈ 0. This induces an artificial
shell structure not seen in the semilocal part of the r2SCAN
Kohn-Sham potential [36]. A sixth-order finite difference was
used to evaluate ∇ · [∂exc/∂ (∇nσ )] and ∇2[∂exc/∂ (∇2nσ )].
The derivatives of exc with respect to n, ∇n, and ∇2n were
computed analytically.

Similarly, Fig. 8 plots the finite difference exchange and
correlation potentials in a jellium surface with rs = 2, for
OFR2 and and r2SCAN-L. As in the other calculations of
the jellium surface, reference LSDA densities were used. Both

083803-10



LAPLACIAN-LEVEL META-GENERALIZED GRADIENT … PHYSICAL REVIEW MATERIALS 6, 083803 (2022)

FIG. 7. OFR2 Kohn-Sham potential calculated using Eq. (33)
for the up-spin channel, evaluated on the exact density, n(r) =
n↑(r) = e−2r/π (v↓

xc = 0 identically for this system). A 6th order
finite difference was used to calculate the requisite divergence and
Laplacian terms. Oscillations are primarily due to inclusion of the
density-Laplacian.

models manifest unphysical oscillations in the exchange and
correlation potentials, which can be compared to the PBEsol
potentials shown in Fig. 9 (using the same density). PBEsol
is expected to yield reasonable predictions of jellium surface
properties by construction. Despite the alarming appearance
of Figs. 7 and 8, the method used by VASP to solve the gen-
eralized Kohn-Sham equations, summarized in Appendix A,
is numerically efficient and stable. It is clear, without plotting
the associated electrostatic potential, that the oscillations in
the LL-MGGA exchange-correlation potentials will be signif-
icant.

B. Lattice constants

All solid-state calculations were performed in the Vienna
ab initio Simulation Package (VASP) [100–103], version 6.1.
We used a �-centered k-point mesh of spacing 0.08 Å−1,
with a plane-wave energy cutoff of 800 eV, except for a
few cases, which we discuss below. Energies were converged
below 10−6 eV, and calculated using the Blöchl tetrahedron
method [104]. For reasons of numerical stability, ADDGRID
was set to False. Equilibrium structures were determined us-
ing the stabilized jellium equation of state (SJEOS) [105,106].
Twelve single-point energy calculations in a range of (1 ±
0.1)Vexpt., with Vexpt. the experimental (zero-point energy
corrected) equilibrium volume were performed. To fit hcp
structures (hcp Co is discussed in Sec. IV C), we optimized
the c/a packing ratio at fixed volume, and found the optimal
c/a by fitting to a reduced SJEOS. All input files can be found
in the code repository.

Some of the standard VASP pseudopotentials cannot ac-
commodate higher plane-wave energy cutoffs. For example,
“PAW_PBE Ba_sv 06Sep2000” (“PAW_PBE Pd 04Jan2005”)
can accommodate a maximum energy cutoff of about 600 eV
(750 eV). Both settings were used here instead of the 800 eV

(a)

(b)

FIG. 8. The exchange and correlation potential in an rs = 2 jel-
lium surface, evaluated on the same LSDA densities used previously.
The present OFR2 (RPP) (a) and r2SCAN-L (MRT) [66] (b) LL-
MGGA potentials are shown. The same finite difference coefficients
as in Fig. 7 were used to generate these plots. As before, the edge of
the uniform positive background lies at x = 0, and x is scaled by the
bulk Fermi wavelength, λF = 2π/kF. The potential is scaled by the
corresponding LSDA potential evaluated at the bulk density.

cutoff used for the other solids. The LL-MGGAs exhibited
a strong dependence on the number of bands used when the
cutoff was exceeded, whereas the GGAs and T-MGGAs did
not appear to be similarly affected.

Table III displays the relative error statistics in 20 cubic
lattice constants (the LC20 set) [107] made by a variety of
common, first-principles functionals: PBEsol [32] (a bench-
mark GGA for this property), r2SCAN [36], r2SCAN-L [68]
and OFR2. Tables XIII and XIV of Appendix D present errors
in the lattice constants and bulk moduli, respectively, for each
solid in the LC20 set.

OFR2 exceeds the performance of r2SCAN and r2SCAN-L
overall, for both metals and insulators in the set of lattice
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FIG. 9. Same as Fig. 8, but plotting the PBEsol exchange and
correlation potentials evaluated on the LSDA density.

constants. There are unusual cases where a LL-MGGA that
is designed to mimic its parent T-MGGA, as r2SCAN-L is,
outperforms it: see the SCAN and SCAN-L binding energy
of hexagonal BN and graphite out-of-plane lattice constant in
Table VI of Ref. [67]. As OFR2 is not designed to mimic
r2SCAN, we find its superior performance for solid-state
geometries less surprising. However, r2SCAN and PBEsol
predict more accurate bulk moduli than do either of the
orbital-free r2SCAN meta-GGAs.

The lattice constant results show the bias inherent in
each meta-GGA’s construction. r2SCAN-L does not have the
correct uniform density limit and gradient expansion con-
straint that are critical to an accurate description of metallic
condensed matter (those systems most like an electron gas
with weak variations about a uniform density). One might
argue that the 10% violation of the uniform density limit

TABLE III. Mean error (ME) and mean absolute error (MAE)
statistics for 20 common cubic lattice constants (LC20) [107], all
in Å. Subsets of metals and insulators are also shown. None of the
OFR2 calculations failed to converge in the allotted number of self-
consistency iterations (200 for each single-point calculation). Six (of
the 240 total) r2SCAN-L calculations failed to converge to 10−6 eV
in 200 self-consistency steps. Troublesome convergence is a com-
mon issue for LL-MGGAs, and has been observed previously [68].
Reference experimental equilibrium lattice constants (with zero-
point corrections included) are taken from Ref. [109].

(Å) PBEsol SCAN r2SCAN r2SCAN-L OFR2

Metals
ME –0.044 0.004 0.024 0.011 –0.020
MAE 0.044 0.021 0.033 0.044 0.021

Insulators
ME 0.024 0.004 0.017 0.016 0.005
MAE 0.025 0.008 0.017 0.016 0.014

Total
ME –0.010 0.004 0.020 0.013 –0.007
MAE 0.035 0.015 0.025 0.030 0.018

[see Eq. (31)] is small even in the jellium surface exchange-
correlation potential plot of Fig. 2(b). However, it is clear
that the loss of this limit is indeed important for accurate
solid-state geometries. The data used to fit r2SCAN-L were
biased toward finite systems (the 18 lightest neutral atoms
were used to fit the PCopt model of τ [66]). OFR2 recovers
the uniform density limit constraint of r2SCAN, the second-
order gradient expansion for correlation, and the fourth-order
gradient expansion for exchange. While the rare gas atoms
were included in the training set of OFR2, this was done
to prevent overfitting to the jellium norms, and does not
ensure that OFR2 accurately describes finite systems. This
biases the construction of OFR2 toward solid-state properties.
Therefore, the r2SCAN-L results show stronger performance
for the lattice constants of insulating solids than for those of
the metals. OFR2 is constructed in the spirit of PBEsol, and
shows a large gain in performance over its parent functional
r2SCAN.

However an obvious question remains: Why do PBEsol
and OFR2 describe the structures of insulators more ac-
curately than PBE (a GGA with a slight bias towards
molecules) and r2SCAN-L? Narrow-gap insulators (e.g., Si,
Ge, GaAs), covalently bonded insulators (e.g., C and SiC),
and “strongly-correlated” monoxides (e.g., MgO) have no
classical turning surfaces in the Kohn-Sham potentials near
equilibrium, whereas “normally-correlated” ionically-bound
solids (e.g., LiF, LiCl, NaF, NaCl) do [108]. The gradient
expansions for the exchange and correlation energies are
semiclassical in nature, and thus can only be valid inside a
classical turning surface. The lack of a turning surface permits
these gradient expansions, which are preserved in PBEsol and
OFR2 but not PBE and r2SCAN-L, to have some validity for
nonmetallic solids. There are caveats which we will discuss
further in Sec. IV G.

We derive a symmetric expression for the Laplacian con-
tributions to the stress tensor in Appendix C. The total
exchange-correlation stress tensor �

i j
xc, in a gauge appropriate

for a code with periodic boundary conditions, is given by
Eq. (C18), reprinted here

�i j
xc =

∫ [
(exc − vxcn)δi j − 1

|∇n|
∂n

∂ri

∂n

∂r j

∂exc

∂|∇n|

− 2
∂exc

∂∇2n

∂2n

∂ri∂r j

]
d3r. (66)

Here, r1 = x, r2 = y, and r3 = z, exc is the exchange-
correlation energy density such that Exc = ∫

excd3r, and vxc

is the exchange-correlation potential, Eq. (33). To use the
stress tensor to minimize structures, we used a few additional
computational parameters, keeping the others unchanged. The
magnitudes of forces were converged within 0.001 eV/Å.

By setting ISIF = 3, the ion positions, computational cell
shape, and computational cell volume were permitted to relax;
we verified that no change of symmetry occurred during the
force minimization. Generally, ISIF controls which degrees
of freedom are permitted to relax, and if all elements or just
the diagonal elements of the stress tensor are computed. The
minimization algorithm is controlled by the IBRION setting;
we used the conjugate gradient algorithm, IBRION = 2. First-
order Methfessel-Paxton smearing [110] (chosen by setting
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TABLE IV. Mean deviation (MD) and mean absolute deviation
(MAD) in the LC20 cubic lattice constants found by equation of state
(EOS) fitting to the SJEOS and by minimization of the stress tensor
(ST). From the PBEsol and r2SCAN values, these lattice constants
should agree to better than 10−2 Å on average, which is satisfied.
The deviations are aEOS

0 − aST
0 .

PBEsol r2SCAN r2SCAN-L OFR2

MD 7.191×10−4 7.499×10−4 7.132×10−3 3.598×10−3

MAD 2.013×10−3 1.729×10−3 8.073×10−3 4.656×10−3

ISIGMA = 1) with width 0.2 eV was used for the metals (and
Ge for PBEsol and r2SCAN-L), Gaussian smearing of width
0.05 eV was used for the insulators. ISIGMA selects a method
for smearing electronic states near the Fermi level. We refer
the reader to the VASP manual [111] for other options.

The mean deviations in the LC20 lattice constants found
by the equation of state fitting and by minimization of the
stress tensor in VASP are presented in Tables IV and XV.
These tables also present results for PBEsol and r2SCAN
to benchmark how closely the lattice constants found from
both methods agree. The Laplacian-dependent stress tensor
appears to agree to the same level of precision as the GGA
and T-MGGA stress tensor.

C. Transition metal magnetism

As is well known by now [48–50], some of the most
sophisticated T-MGGAs predict correct structures for transi-
tion metals, but too large magnetic moments. Previous works
studied the simplest ferromagnetic materials: body-centered
cubic (bcc) Fe, face-centered cubic (Ni), and hexagonal close-
packed (hcp) Co.

Table V compares PBEsol, r2SCAN [36], r2SCAN-L [68],
and OFR2. Consistent with Ref. [50], OFR2 strikes a balance
between the GGA and meta-GGA levels by providing more
accurate geometries than PBEsol, and more accurate magnetic
moments than r2SCAN. r2SCAN-L and OFR2 are compara-
bly accurate for these solids.

D. Bandgaps

In a standard Kohn-Sham calculation, the exact exchange-
correlation functional would lead to an underestimation of
the fundamental (charge) bandgap equal to the “exchange-
correlation derivative discontinuity” [113]. Even though
GGAs like PBE may closely approximate the exact Kohn-
Sham bandgap [108], only functionals defined within a
generalized Kohn-Sham (GKS) theory with nonzero deriva-
tive discontinuity can realistically estimate the observed
fundamental bandgap [114]. For this reason, some T-MGGAs,
which are orbital-dependent and thus defined within a GKS
theory, can provide surprisingly reliable estimates of the
bandgap [115,116]. Similarly, hybrid functionals reliably
predict accurate bandgaps [117], as single-determinant ex-
change is an explicit functional of the Kohn-Sham orbitals.

As LL-MGGAs are standard Kohn-Sham DFAs lacking
a derivative discontinuity, we expect them to underestimate
the fundamental bandgap. This was shown in Ref. [67] using

TABLE V. Comparison of structural and magnetic predictions
for itinerant electron ferromagnets. Total energies for r2SCAN and
OFR2 are converged to 10−6 eV. Total energies for r2SCAN-L are
converged to 10−4 eV (the default for VASP); this is done for reasons
of numerical stability. The experimental (expt.) equilibrium cubic
lattice constants (a) are taken from Ref. [109], and experimental
zero-temperature extrapolated lattice constants for hcp Co are taken
from Ref. [112]. The ranges of experimental magnetic moments (ms

in units of the Bohr magneton μB per atom) are taken from Ref. [48].

Solid (structure) Functional a (Å) ms (μB/atom)

Fe (bcc) PBEsol 2.783 2.094
r2SCAN 2.864 2.64

r2SCAN-L 2.827 2.20
OFR2 2.791 2.12
Expt. 2.855 1.98–2.13

Ni (fcc) PBEsol 3.465 0.620
r2SCAN 3.478 0.74

r2SCAN-L 3.500 0.67
OFR2 3.463 0.66
Expt. 3.509 0.52–0.57

a (Å) c/a ms (μB/atom)

Co (hcp) PBEsol 2.455 1.615 1.57
r2SCAN 2.471 1.623 1.74

r2SCAN-L 2.494 1.623 1.66
OFR2 2.468 1.623 1.63
Expt. 2.503 1.621 1.52–1.58

SCAN-L. Table VI tabulates the bandgaps for a subset of the
LC20 set of solids. To compute the bandgap, the equilibrium
lattice constants from Table XIII were used as input to a
single-point total energy calculation. From this, the Fermi
energy was extracted, and a new density of states (DOS) grid
was defined centered at the Fermi energy, evenly spaced in
intervals of 0.01 eV. The calculation was then repeated with
the finer DOS grid. A general-purpose functional should be
able to reliably predict lattice parameters and bandgaps, thus

TABLE VI. Comparison of bandgaps (eV), extracted from the
DOS in VASP. GKS DFAs, like r2SCAN, are expected to pre-
dict more realistic bandgaps than standard Kohn-Sham DFAs, like
PBEsol, OFR2, and r2SCAN-L. DFAs are listed in anticipated or-
der of predicted bandgap accuracy. Experimental (Expt.) values are
taken from Ref. [115]. Mean errors (MEs) and mean absolute errors
(MAEs) are also reported.

Solid PBEsol OFR2 r2SCAN-L r2SCAN Expt. (eV)

Ge 0.00 0.22 0.06 0.31 0.74
Si 0.48 0.70 0.83 0.79 1.17
GaAs 0.42 0.73 0.65 0.94 1.52
SiC 1.24 1.41 1.69 1.74 2.42
C 4.03 4.06 4.23 4.34 5.48
MgO 4.66 5.04 5.41 5.74 7.22
LiCl 6.36 6.93 7.18 7.46 9.40
LiF 9.03 9.57 10.01 10.59 13.60

ME –1.92 –1.61 –1.44 –1.20
MAE 1.92 1.61 1.44 1.20
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we prefer to evaluate the bandgap using each DFA’s relaxed
structure.

Interestingly, OFR2 and r2SCAN-L show no consistent
behavior with respect to gaps. Both LL-MGGAs severely
underestimate the fundamental gap, but often approximate
the r2SCAN bandgap well. In Ref. [67], it was argued that
the closeness of SCAN-L and SCAN bandgaps indicated that
SCAN-L accurately approximated the SCAN optimized effec-
tive potential (OEP). Recall that the OEP [118] is a general
procedure that transforms a nonlocal Kohn-Sham potential
operator (such as that of a meta-GGA) into a local, mul-
tiplicative potential. We lack a better explanation regarding
the relative closeness of the r2SCAN, r2SCAN-L, and OFR2
bandgaps. Moreover, we are unaware of OEP calculations
of the r2SCAN potential in real systems. As was reported
in Table V of Ref. [67] for LiH computed using SCAN
and SCAN-L, there are unusual cases where the orbital-free
meta-GGA predicts a slightly larger bandgap than the parent
T-MGGA: r2SCAN-L appears to find a slightly larger gap for
Si than r2SCAN .

E. Monovacancy in platinum

Reference [52] found that SCAN predicts the formation
of a monovacancy in Pt to be energetically favorable. Here,
we compute the equilibrium lattice constants and vacancy
formation energies of Pt using SCAN, r2SCAN, r2SCAN-
L, and OFR2. The initial equilibrium lattice constants for
face-centered cubic (fcc) Pt were found by fitting to the
SJEOS, using the same computational parameters as before.
A 2×2×2 supercell containing 32 atoms was constructed
using that lattice constant, and the supercell was allowed
to further relax (ISIF = 3, IBRION = 2), using first-order
Methfessel-Paxton smearing of width 0.2 eV, and forces con-
verged within 0.001 eV/Å. The total energy was determined
from the relaxed supercell structure using the tetrahedron
method (ISIGMA=–5). An identical supercell, but with an
ion nearest the center of the cell removed, was used to model
the monovacancy, and the same procedure was repeated.
An 11×11×11 k-point grid was used, as recommended in
Ref. [52].

Monovacancy formation (MVF) energies

EMVF = E (N − 1) − N − 1

N
E (N ), (67)

where E (N ) is the total energy of an N-atom supercell (N =
32 here), are presented in Table VII. We found a small pos-
itive monovacancy formation energy for SCAN, unlike the
negative value found in Ref. [52]. A negative monovacancy
formation energy implies that a solid is unstable. We find
it unlikely that SCAN predicts Pt to be unstable, as SCAN
describes its other equilibrium properties with experimental
accuracy. OFR2 predicts a slightly larger monovacancy for-
mation energy than PBE. PBEsol predicts the most accurate
Pt monovacancy formation energy, but still underestimates the
lowest experimental value.

F. Intermetallic formation energies

We follow the methodology of Ref. [53] to probe whether
r2SCAN-L and OFR2 improve the r2SCAN description of

TABLE VII. Monovacancy formation energy and equilibrium
geometry of fcc Pt. The experimental, zero-point corrected lattice
constant is taken from Ref. [109], and the experimental monova-
cancy formation energy range is taken from Ref. [52]. Note that the
SJEOS-determined lattice constant (second column) was later per-
mitted to relax in the Pt supercell. For all DFAs shown, the supercell
lattice constant after relaxation did not change to the stated preci-
sion, again verifying our implementation of the Laplacian-dependent
stress tensor.

DFA a0 (SJEOS, Å) EMVF (eV)

Expt. 3.913 1.32–1.7
PBE 3.971 0.676
PBEsol 3.919 0.886
SCAN 3.913 0.126
r2SCAN 3.943 0.593
r2SCAN-L 3.980 0.590
OFR2 3.928 0.684

intermetallic formation energies. All initial geometries were
taken from the Open Quantum Materials Database (OQMD)
[119–121]. Following Ref. [53], geometries were relaxed,
with all ionic degrees of freedom permitted to change (ISIF =
3), and with first-order Methfessel-Paxton smearing of width
0.2 eV. After relaxation, total energies were determined using
the tetrahedron method at fixed geometry. All ions were ini-
tialized with a (ferromagnetic) magnetic moment of 3.5 μB.
The plane-wave cutoff was 600 eV, and the k-grid was de-
termined as follows: for a fixed density of k points κ (Å−3),
the spacing 	k between adjacent k-points along each axis
(KSPACING tag) is

	k =
( ∏3

i=1 |bi|
|a1 · (a2 × a3)|

1

κ

)1/3

, (68)

where ai and bi are the direct and reciprocal lattice vectors,
respectively, for the initial geometry. As in Ref. [53], we used
κ = 700 k-points/Å−3 and computed 	k from Eq. (68). For
simplicity, we rounded 	k and iteratively decreased its value
(if needed) to ensure a uniformly-spaced grid with density of
at least 700 k-points/Å−3. For VPt2, we needed to manually
determine a grid with an equal number of k points along each
axis to ensure that VASP produced a k grid with the right
symmetry. Formation energies per atom 	εf were computed
from total energies per primitive unit cell E as follows: for
compound Y = ∏M

i=1(Xi )xi composed of M elements Xi with
multiplicity xi as

	εf = 1∑
i xi

[
E (Y ) −

M∑
i=1

xi

Ni
E (Xi )

]
(69)

with Ni the number of ions in the unit cell for the pure solid
Xi. We have assumed one formula unit per primitive cell for
intermetallic compound Y .

Our results and those of Refs. [53,54] are presented in
Table VIII. None of the DFAs considered here accurately
predict the formation energies of these solids, however
r2SCAN-L and OFR2 improve over SCAN and r2SCAN. Al-
though scalar relativistic effects are included in the treatment
of core electrons in the VASP pseudopotentials, relativistic
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corrections (e.g., spin-orbit coupling) for Hf, Os, and Pt may
be needed here. Moreover, these are uncommon alloys with
little representation in the literature. Other experimental ref-
erences for the formation enthalpies could benefit further
analysis. A recent QMC calculation [122] found the en-
thalpy of formation for VPt2 to be −0.764 ± 0.050 eV/atom,
in line with the SCAN values here, but much larger than
the experimental and OFR2 values. In that paper, the spin-
orbit effect was found to reduce the magnitude of the
formation energy of VPt2, by about 0.05 eV. We there-
fore find it likely that the experimental reference values are
unreliable.

While PBE and SCAN overestimate the magnitudes
of the intermetallic formation energies in comparison to
the experimental values in Table VIII, these DFAs un-
derestimate this magnitude for Cu-Au intermetallics [126].
However, the Cu-Au formation energies have magnitudes
of 0.1 eV/atom at most, and SCAN underestimates them
only by about 0.03 eV/atom. Even better agreement with
experiment has been achieved by Ref. [126] in two differ-
ent ways: (1) by using standard hybrid functionals, and (2)
by using, for each element, a PBE GGA with its gradi-
ent coefficients for exchange and correlation tuned to the
experimental lattice constant and bulk modulus for that ele-
ment. The latter approach is motivated by a physical picture
in which the correction to LSDA comes mainly from the
core-valence interaction, in agreement with the analysis of
Ref. [127].

The tests of intermetallic formation energies described here
and in Refs. [53,54] test the ability of a DFA to predict the
correct equilibrium structure, spin-densities, and total ener-
gies for a solid and its constituents (or benefit from a random
cancellation of errors). Thus it is hard to discern which aspect
of this test a DFA fails. The subject of density-driven and
functional-driven errors [128] is a useful framework for de-
composing the various errors in this kind of test. However, we
cannot apply this metric without having exact or nearly-exact
spin-densities (and geometries).

Systems with a strong sensitivity to perturbations in the
Kohn-Sham potential can exhibit density driven errors [129].
Evaluating a semilocal DFA (GGA, meta-GGA) on the
Hartree-Fock density can often eliminate density-driven er-
rors in molecules, as has recently been shown for SCAN
applied to liquid water [43]. It is unclear what an equivalent
density-correction method would be for solid-state calcula-
tions, as such a method would need to produce a density
with a realistic geometry. A modern periodic Hartree-Fock
calculation of face-centered cubic LiH [130] found an equi-
librium lattice constant a0 = 4.105 Å and bulk modulus B0 =
32.3 GPa, in significant error of the zero-point corrected ex-
perimental values a0 = 3.979 Å and B0 = 40.1 GPa [131]
(and less accurate than the PBE, PBEsol, and SCAN values
reported in Ref. [131]). We are unaware of periodic Hartree-
Fock calculations for the equilibrium properties of metallic
solids.

G. Alkaline solids

As discussed in the Introduction, Ref. [51] demon-
strated that SCAN less accurately describes the equilibrium
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TABLE IX. Error statistics in the equilibrium lattice constants a0, bulk moduli B0, and cohesive energies E0 for the alkali metals Li, Na,
K, Rb, and Cs. The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2 LL-MGGAs
are presented.

PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

a0 ME (Å) 0.051 –0.017 0.084 0.111 –0.004 0.014
a0 MAE (Å) 0.061 0.019 0.095 0.114 0.055 0.039
B0 ME (GPa) –0.105 –0.056 –0.164 –0.329 2.481 0.008
B0 MAE (GPa) 0.446 0.340 0.467 0.360 3.639 0.760
E0 ME (eV/atom) –0.072 –0.005 –0.083 –0.092 –0.100 –0.099
E0 MAE (eV/atom) 0.072 0.022 0.083 0.092 0.100 0.099

properties of the alkali metals Li, Na, K, Rb, and Cs than PBE.
It is therefore worth investigating if a LL-MGGA remedies
this behavior.

We note two interesting computational features of LL-
MGGAs. Reducing the plane-wave kinetic energy cutoff can
stabilize the calculations of isolated atoms. Therefore, the
calculations of cohesive energies reported here use a cutoff
of 600 eV for both the bulk system and isolated atoms. The
k-point density was unchanged, and the energy convergence
criteria were 10−6 eV for the bulk solid and 10−5 eV for
the isolated atom. The size of the computational cell for the
isolated atom was 14×14.1×14.2 Å3, and only the � point
was used for k-space integrations. For atomic calculations,
Gaussian smearing of the Fermi surface with width 0.1 eV was
used. Spin-symmetry was permitted to break, and the energy
was minimized directly (ALGO = A, LSUBROT set to false).
ALGO controls the method used to minimize the total en-
ergy; ALGO = A selects a preconditioned conjugate gradient
algorithm. The Hamiltonian is diagonalized in the occupied
and unoccupied subspaces using a perturbation-theory-like
method [102]; setting LSUBROT = False prevents further
optimization of the density matrix via unitary transformations
of the orbitals, as recommended for semilocal DFAs. Con-
vergence with a LL-MGGA is generally more challenging
for atomic systems, at least within VASP at these higher
computational settings. Linear density mixing (AMIX = 0.4,
AMIX_MAG = 0.1, BMIX = BMIX_MAG = 0.0001) was
found to be helpful. Beyond this, the input parameters re-
mained the same (ADDGRID set to false, etc.) as for the bulk
solids.

The PBE pseudopotentials with s semicore states included
in the valence pseudodensity (indicated with a suffix “_sv”)
appear to be less transferrable to LL-MGGAs. Convergence
for the isolated Li, Na, and Ba atoms using s semicore pseu-
dopotentials was slow due to charge sloshing. Thus, following
the suggestion of Mejía-Rodríguez and Trickey [68], in this
section, we have used pseudopotentials without any suffix
when possible. For a few elements (K, Rb, Cs, Ca, Sr, and Ba),
the s semicore pseudopotentials are the only ones available.
However, r2SCAN-L and OFR2 failed to converge within
10−5 eV only for the Ba atom, with 500 self-consistency steps
permitted. As both converged to about 1×10−4 eV, we have
not excluded Ba from the test set.

Both r2SCAN-L and OFR2 found a double-minimum in
the energy per volume curve for Rb. We chose to exclude data
for the second, deeper minimum, which occurred at a larger,
unrealistic volume.

This section analyzes the “LC23” set, the LC20 set aug-
mented with three alkali metals, K, Rb, and Cs. Moreover,
given the reduced computational parameters, this section is
more likely to reflect real-world usage of the DFAs than the
benchmark calculations reported previously. Table IX reports
error statistics in the equilibrium properties of the alkali met-
als. Tables XVI–XVIII of Appendix E present the data for
each individual solid in the set.

From Table IX, OFR2 finds more accurate lattice constants
a0 and bulk moduli B0 for the alkalis than SCAN, r2SCAN, or
r2SCAN-L. The average errors of the r2SCAN-L bulk moduli
are 5 or 10 times larger than those of the other DFAs in
Table IX. However, all meta-GGAs presented in Table IX
yield similarly inaccurate cohesive energies E0 for the alkalis.
PBEsol appears to be the best general choice for studies of
alkali-containing solids, however OFR2 should yield similar
accuracy for their structural properties.

Isolated atoms, which have negative chemical potentials
and thus turning surfaces in the Kohn-Sham potential, are
thus poorly described by the gradient expansions for exchange
and correlation. Therefore, PBEsol and OFR2, which likely
predict realistic total energies for the solids in LC23, do not
predict realistic atomic energies for those solids, and thus gen-
erally inaccurate cohesive energies, as shown in Table XVIII
of Appendix E. Conversely, PBE and r2SCAN-L benefit from
error cancellation between the total energies of the solids and
their atomic constituents, yielding generally more accurate
cohesive energies. This observation excludes the cohesive
energies of insulators, where a cancellation of errors benefits
PBEsol and OFR2, but not PBE and r2SCAN-L. Similar lim-
itations do not apply to T-MGGAs like SCAN and r2SCAN,
except for the metallic systems emphasized here.

H. Molecules

Within the quantum chemistry community, the AE6 set of
six molecular atomization energies [132] is used to rapidly
estimate the performance of a DFA on a much larger set
of atomization energies. Geometries were taken from the
MGAE109 database [133]. Table X presents the results of the
AE6 set for r2SCAN, r2SCAN-L, and OFR2.

These calculations were also performed in VASP. Each
atom or molecule was placed in an orthorhombic box of
dimensions 10 Å×10.1 Å×10.2 Å to sufficiently lower the
lattice symmetry and reduce interactions with image cells. A
plane-wave energy cutoff of 1000 eV was used. Beyond this,
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TABLE X. Comparison of PBE [6], PBEsol [32], SCAN [20], r2SCAN [36], r2SCAN-L [68], and OFR2 atomization energies for the AE6
set [132]. All values are in kcal/mol (1 eV ≈23.060548 kcal/mol). We report mean errors (MEs) and mean absolute errors (MAEs) computed
with respect to two sets of reference data: the original work of Ref. [132] (LT03), and the more recent nonrelativistic, frozen-core values from
Table IV of Ref. [134] (HK12). Given that the calculation in VASP is nonrelativistic with a frozen-core pseudopotential, these latter reference
values appear to be most appropriate. Absolute total energies have no physical meaning in a pseudopotential calculation, therefore we only
report the energy differences here.

Molecule PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

SiH4 313.64 322.92 328.54 322.07 321.43 320.35
SiO 195.93 204.09 191.06 186.81 188.03 186.46
S2 115.68 129.62 108.68 110.36 110.51 112.26
C3H4 727.09 751.97 703.40 702.50 700.24 686.80
C2H2O2 662.83 692.76 628.71 629.09 628.86 618.44
C4H8 1175.57 1221.27 1151.80 1147.71 1141.41 1126.86

ME LT03 14.57 36.55 1.48 –0.79 –2.14 –8.69
MAE LT03 17.49 36.55 3.83 3.69 5.08 12.22

ME HK12 15.21 37.19 2.12 –0.16 –1.50 –8.05
MAE HK12 18.86 37.75 3.80 3.65 3.93 11.06

all other computational parameters used for the isolated atoms
in Sec. IV G were unchanged.

From Table X, we see that r2SCAN-L broadly retains the
accuracy of r2SCAN for molecular systems. OFR2, with a
11 kcal/mol mean absolute error (MAE) for AE6, appears
to be the “missing link” DFA between the GGA level, with
MAEs on the order of 20–40 kcal/mol, and the T-MGGA
level, with MAEs less than 10 kcal/mol. Convergence with
OFR2 for finite systems is generally more challenging than
with r2SCAN-L. Independent tests of OFR2 [135] have con-
firmed our conclusions: r2SCAN-L is faithful to the r2SCAN
description of molecules, whereas OFR2 is somewhat less
accurate.

For an accurate description of solid state geometries and
magnetic properties, we recommend OFR2. To improve its
description of cohesive energies, which lie between those of
PBEsol and r2SCAN-L in accuracy, one might perform a
non-self-consistent evaluation of the r2SCAN or r2SCAN-L
total energy using the (likely more accurate) relaxed OFR2
geometry and density for a solid as input. For an accurate
description of finite systems, we recommend r2SCAN-L at the
LL-MGGA level. For greater accuracy and general-purpose
calculations of finite or extended systems, we recommend
r2SCAN .

V. OUTLOOK: MACHINE LEARNING AND KINETIC
ENERGY DENSITY

Machine learning has already made leaps and bounds in
the construction of empirical DFAs. The work of Ref. [3] sug-
gests that the most sophisticated T-MGGAs have essentially
reached a fundamental limit of accuracy for the meta-GGA
level. The work of Ref. [4] built a local hybrid-level DFA that
approximately satisfies fractional charge [113] and spin [136]
exact constraints, heretofore seldom satisfied.

Doubtless, machine learning techniques will be applied
to the three-dimensional kinetic energy density. A machine-
learned model is important for practical purposes, but
excogitating the role of the parameters within the model
is nigh impossible. This section details a simple “human-

learned” model (HLM) for the kinetic energy density, which
can be instructive for future machine-learning work. In par-
ticular, HLM shows how heavy fitting can lead to wrong
asymptotics and to numerical instability.

As in our RPP model of τ (but without consideration of the
fourth-order gradient expansion), we will presume that the ex-
act (spin-unpolarized) τ can be represented as an interpolation
between exact limits,

τ (n, p, q) = τunif(n)[FW(p) + z(p, q)θ (z(p, q))], (70)

z(p, q) = FGE2(p, q) − FW(p), (71)

FW(p) = 5
3 p, (72)

FGE2(p, q) = 1 + 20
9 q + 5

27 p. (73)

We will model the function θ (z), which determines the mixing
between Weizsäcker and gradient expansion limits. Moreover,
θ (z) should permit extrapolation for arbitrary positive z, as
suggested by Cancio and Redd [80]. Then for some of the ap-
propriate norms considered here—the neutral noble gas atoms
Ne, Ar, Kr, and Xe, and the jellium surfaces of bulk densities
rs = 2, 3, 4, 5—we take a reference density and compute

θ (z) = τ/τunif(n) − FW(p)

z(p, q)
. (74)

Since the right-hand side of Eq. (74) is not exactly a function
of z, it is useful to bin the values of θ within a narrow range
of z.

The form selected for θ enforces three constraints: the
Weizsäcker lower bound, the uniform density limit, and the
second-order gradient expansion. A machine can learn these
constraints approximately by penalizing their violation, but
cannot satisfy them by construction as a human-designed
model can. Because the “exact” θ (z) is complicated, we need
an expression which has sufficient freedom for fitting. Con-
sider the M-parameter HLM model

θM (z) = z3 1 + b1z + b2z2

1 + ∑M
i=1 cizi

�(z), (75)
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FIG. 10. M-parameter mixing function θM (z) of Eq. (75) that
determines the optimal mixing of Weizsäcker and second-order
gradient expansion kinetic energy densities. Acceptable [pole-free
and non-negative θ (z � 0)] parameter sets M = 3, 4, 6, and 11 are
displayed. Solid points are the binned θ (z) data taken from the
appropriate norms: the neutral noble gas atoms Ne, Ar, Kr, and Xe,
and the jellium surfaces of bulk densities rs = 2, 3, 4, 5.

where �(z � 0) = 1 and �(z < 0) = 0, and the ci are fit
parameters. To recover the uniform density limit requires
θM (1) = 1; to recover the second-order gradient expansion of
τ requires θ ′

M (1) = 0. Enforcing these constraints fixes the
values of the bi

b1 = 3 +
M∑

i=1

(5 − i)ci, (76)

b2 =
M∑

i=1

ci − b1. (77)

It appears that θM (z � 1) ∼ b − a log z, for constants a and b,
however this model can approximately recover that behavior.
The minimum power of z in the numerator is chosen to allow
for sufficient smoothness of the exchange-correlation poten-
tial for z ≈ 0.

We considered 2 � M � 20; for M � 5, θM can be
bounded as z → ∞. A nonlinear least-squares fit was used
to determine the ci. We discarded parameter sets for which
the denominator of θM had positive polynomial roots or for
which θM (z > 0) < 0. The possible acceptable parameters
found were for M = 3, 4, 6, &11, as shown in Fig. 10. Clearly,
M = 3 or 4 do not represent reliable extrapolations for z →
∞. θ6 appears to represent the most realistic, long-tailed ex-
trapolation for z → ∞, however θ11 more accurately captures
the apparent oscillations in θ (z).

Thus we emphasize the need for human decision in
highly-empirical DFA design. Both θ6 and θ11 deliver sim-
ilar performance for the appropriate norms, as shown in
Table XI, however θ6 is much smoother and is thus likely more
numerically stable. It is purely for reasons of numeric stability
that the HLM models have been deferred to this section.
While we do not present plots of the r2SCAN+HL6 or HL11
Kohn-Sham potential for the simple systems considered here,

TABLE XI. Orbital free r2SCAN and SCAN appropriate
norm performance using the highly-parameterized mixing function
θ (FW − FGE2) of Eq. (75), compared to the orbital-dependent variants
(bottom row). Increasing the number of parameters M generally
improves the fidelity of the approximate τ , at the cost of more
rapid oscillations. The mean absolute percentage errors of the rare
gas atom (RGA) exchange-correlation energies, jellium surface (JS)
exchange-correlation surface formation energies, and jellium cluster
exchange-correlation surface formation energies are shown.

r2SCAN SCAN

M RGA JS JC RGA JS JC

3 0.73 9.20 11.48 0.95 6.71 10.39
4 0.91 2.82 1.15 1.01 2.87 3.74
6 0.53 3.60 2.61 0.55 1.51 2.11
11 0.48 3.73 2.72 0.49 1.53 1.88

Exact τ 0.14 2.80 2.38 0.08 2.51 3.15

we have computed them and determined they are wholly un-
realistic.

VI. CONCLUSIONS

We developed a model Laplacian-level meta-GGA (LL-
MGGA) OFR2 that is an orbital-free or “deorbitalized”
variant of r2SCAN [36], in the tradition of Refs. [66–68], but
recovering the fourth-order gradient expansion for exchange
and the second-order gradient expansion for correlation. Only
α has been modified, although the rest of r2SCAN could
be re-optimized in future work. We extensively tested OFR2
against an existing deorbitalization of r2SCAN, r2SCAN-L
[68], which breaks the uniform density limit of r2SCAN.

OFR2 appears to improve upon r2SCAN for the lattice con-
stants of solids, matching or exceeding the accuracy of SCAN.
r2SCAN-L and OFR2 more accurately describe transition-
metal magnetism than r2SCAN, which predicts substantially
larger magnetic moments than found by experiment. OFR2
better describes the structural properties of alkali metals than
r2SCAN and r2SCAN-L, but not their cohesive energies. We
therefore recommend OFR2 for an orbital-free description of
solids and liquids only, and particularly sp or sd metals. For
best accuracy in molecules and nonmetallic condensed matter,
we continue to recommend SCAN and r2SCAN .

For an orbital-free description of molecules, we recom-
mend r2SCAN-L, which retains the accuracy of r2SCAN
for the AE6 set [132] of atomization energies. This con-
clusion was independently confirmed for a different set
of molecules [135]. OFR2, which targets properties of
metallic solids, bridges the gap between PBE GGA errors
(MAE ∼19 kcal/mol) and r2SCAN T-MGGA errors (MAE
∼4 kcal/mol).

Like the SCAN [20] and TPSS [86] T-MGGAs, and unlike
r2SCAN, OFR2 recovers the fourth-order gradient expansion
for the exchange energy. Thus OFR2 has a correctly LSDA-
like static linear density-response for the uniform electron gas,
which, along with its correct description of slowly-varying
densities and especially the weaker nonlocality of OFR2,
should bolster its accuracy for metals.
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Unlike chemistry, condensed matter physics must rely
on experimental reference values whose uncertainties can
be large or difficult to quantify. The smallest experimental
relative errors are probably those of lattice constants from
x-ray diffraction. Thus the high accuracy of OFR2 lattice
constants for metals is encouraging. Structural phase
transitions are more challenging to DFAs than lattice
constants are [41], but good results have been obtained
[41] for semiconductors from SCAN. OFR2 might improve
the critical pressures for transitions between metallic phases,
especially for transition metals.

Obtaining highly-converged results with an LL-MGGA
is generally more challenging than with other semilocal ap-
proximations. Some PBE pseudopotentials also appear to
be less transferrable to LL-MGGAs than τ -meta-GGAs (T-
MGGAs). Mejía-Rodríguez and Trickey [68] found that GW
potentials were less transferrable to LL-MGGAs. LL-MGGAs
might have a particular niche for exploratory purposes: If
benchmark-quality results are not desired, these can often
match or surpass the accuracy of their T-MGGA counterparts.
Thus for computationally intensive tasks, such as mapping
the phase diagram of transition metals, an LL-MGGA could
be used to rapidly obtain a good starting guess for more
sophisticated approximations.

The new OFR2 “deorbitalizes” the r2SCAN meta-GGA
while preserving and even enhancing the r2SCAN exact con-
straints on the slowly-varying limit (α ≈ 1, p � 1, |q| � 1).
Thus a comparison of OFR2 and r2SCAN results for met-
als could reflect mainly the difference between the fully (if
modestly) nonlocal argument τ (r) and the semilocal argu-
ment ∇2n(r) in the approximated exchange-correlation energy
functional. Weakening the nonlocality of r2SCAN seems to
improve (in comparison to experiment) the magnetic moments
of the transition metals, the monovacancy formation energy
of solid Pt, and the formation energies of intermetallics, pro-
ducing results that are not very different (in the cases studied
here) from those of the much less-sophisticated PBEsol [32].
However, for molecules and insulating materials, accuracy
should improve from PBEsol to OFR2 to r2SCAN.

The Python 3 and Fortran code used to fit the orbital free
r2SCAN is made freely available at the code repository [95].
Data files needed to run this code, general purpose Fortran
subroutines, and VASP subroutines are included there as well.
All data is hosted publicly (without access restrictions) at
Zenodo [137].
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APPENDIX A: IMPLEMENTING
THE LAPLACIAN IN VASP

White and Bird [138] suggested a nonstandard way to
compute the exchange-correlation potential on a grid of M
finite points R (minimum fast Fourier transform grid). This
robust method is used in many standard plane wave codes,
including VASP, and was used in our VASP calculations. We
outline the method below.

Their analysis was tailored to the specific case of periodic
boundary conditions, thus we define the reciprocal lattice vec-
tors G. Using Fourier series, we can write the density variables
as

n(r) =
∑

G

n(G)eiG·r, (A1)

n(G) = 1

M

∑
R

n(R)e−iG·R, (A2)

∇n(r) = i
∑

G

Gn(G)eiG·r = i

M

∑
G,R

Gn(R)eiG·(r−R), (A3)

∇2n(r) = −
∑

G

G2n(G)eiG·r = −1

M

∑
G,R

G2n(R)eiG·(r−R).

(A4)

Now let the discrete Exc within a cell volume � be

Ẽxc = �

M

∑
R

exc(n(R),∇n(R),∇2n(R)), (A5)

with exc = εxc n(R). One can approximate the variations in Ẽxc

using

δẼxc = �

M

∑
R

dẼxc

dn(R)
δn(R) ≡

∑
R

ṽxc(R)δn(R), (A6)

then the discrete potential ṽxc is represented as

ṽxc(R) = ∂exc

∂n(R)
+

∑
R′

{
∂exc

∂∇n(R′)
· d (∇n(R′))

dn(R)

+ ∂exc

∂∇2n(R′)
d (∇2n(R′))

dn(R)

}
. (A7)

It’s now trivial to insert the Fourier series representations of
the total derivatives on the right-hand side of the last equation.
Note that the density gradient vector is never used in PBE-like
GGAs, thus we can replace the derivatives with respect to ∇n
by

∂

∂ (∇n)
= ∇n

|∇n|
∂

∂|∇n| . (A8)

The discrete potential then becomes

ṽxc(R) = ∂exc

∂n(R)
+ 1

M

∑
G,R′

{
iG · ∇n(R′)

|∇n(R′)|
∂exc

∂|∇n(R′)|

−G2 ∂exc

∂∇2n(R′)

}
eiG·(R′−R). (A9)

Supplemental Tables S7, S8, and S9 of Ref. [68] present
lattice constants, bulk moduli, and cohesive energies for a
variety of solids, computed with r2SCAN and r2SCAN-L.
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TABLE XII. Comparison of the r2SCAN and r2SCAN-L LC23 equilibrium lattice constants a0 (Å), bulk moduli B0 (GPa), and cohesive
energies E0 (eV/atom) from this paper and Ref. [68]. Mean deviations (MDs) and mean absolute deviations (MADs) between r2SCAN (-L) in
this paper and Ref. [68] are also included.

Present paper Ref. [68]

r2SCAN r2SCAN-L r2SCAN r2SCAN-L

a0 (Å) ME 0.037 0.010 0.037 0.019
MAE 0.049 0.040 0.048 0.045
MD 0.000 −0.009

MAD 0.001 0.013
B0 (GPa) ME 0.843 −3.284 0.692 −3.731

MAE 3.522 7.074 3.512 6.510
MD 0.151 0.447

MAD 0.258 1.403
E0 (eV/atom) ME 0.032 −0.134 −0.022 −0.162

MAE 0.109 0.150 0.102 0.172
MD 0.053 0.028

MAD 0.057 0.032

As these tables include every solid in the LC23 set, we can
roughly validate our implementation of r2SCAN-L. We use
“roughly” here because not all computational parameters are
available for that paper. Table XII shows that the results of
this paper and Ref. [68] agree to about 0.001 Å (r2SCAN) and
0.01 Å (r2SCAN-L) for the lattice constants; to about 0.3 GPa
(r2SCAN) and 1.4 GPa (r2SCAN − L) for the bulk moduli;
and to about 0.06 eV/atom (r2SCAN) and 0.03 eV/atom
(r2SCAN-L) for the cohesive energies. This is reasonable
agreement.

APPENDIX B: RESTORING THE FOURTH-ORDER
GRADIENT EXPANSION FOR EXCHANGE TO r2SCAN

This section builds upon the derivation of r2SCAN pre-
sented in Ref. [62]. By construction, r2SCAN recovers the
exact second-order gradient expansion for exchange, but not
the fourth-order terms. It will be shown in a forthcoming
work that r2SCAN severely overestimates the magnitude of
the fourth-order gradient expansion coefficients. The exact
exchange enhancement factor has a fourth-order gradient ex-
pansion in p and q [11]

Fx = 1 + 10
81 p + 146

2025 q2 − 73
405 pq + O(|∇n|6). (B1)

Note that the coefficient of pq is known within some uncer-
tainty, as is the coefficient of p2. We take the best estimates
from Ref. [11].

However, an orbital-free r2SCAN can be made to recover
the right fourth-order gradient expansion for exchange. This is
accomplished by using different fourth-order terms in the gra-
dient expansion of the approximate τ (p, q) than those that ap-
pear in the gradient expansion of the exact τ [19]. To maintain
the second-order gradient expansion constraint of r2SCAN,
we retain the correct second-order gradient expansion of τ ,

τ (p, q)

τ0
= 1 + 5

27
p + 20

9
q + bqqq2 + bpq pq + bpp p2

+O(|∇n|6), (B2)

with fourth-order coefficients bqq, bpq, and bpp to be
determined below. The iso-orbital indicator used in r2SCAN
is the numerically-stable

α = τ − τW

τ0 + ητW
(B3)

where η = 0.001 [36]. It can be seen that the gradient
expansion of the approximate α(p, q) is

α(p, q) = 1 − 5(8 + 9η)

27
p + 20

9
q + bqqq2

+
(

bpq − 100η

27

)
pq +

(
bpp + 200η

81
+ 25η2

9

)
p2

+O(|∇n|6). (B4)

Note that the gradient expansion [19] of α using the exact τ

cannot be expressed in terms of a polynomial in p and q. We
turn our attention to the enhancement factor F r2SCAN

x ,

F r2SCAN
x = {

h1
x(p) + fx(α)

[
h0

x − h1
x

]}
gx(p). (B5)

In r2SCAN, gx(p) is a nonanalytic smooth function, with Taylor series 1 + O(|∇n|∞). Therefore, gx(p) does not contribute to
the gradient expansion of the enhancement factor beyond order zero. Note that h0

x = 1 + k0, where k0 = 0.174. As is done in
Ref. [62] to construct the model r4SCAN functional, we seek a Taylor expansion of Fx in p and α − 1, which approximately
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define the slowly-varying limit,

F r2SCAN
x = 1 + h′

x(0)p + h′′
x (0)

2
p2 +

[
f ′
x(1)(α − 1) + f ′′

x (1)

2
(α − 1)2

][
1 + k0 − 1 − h′

x(0)p − h′′
x (0)

2
p2

]
+ O(|∇n|6). (B6)

Here, h′
x(0) = dh1

x/d p(0), etc. Now, (α − 1) contains terms of both second- and fourth order, whereas (α − 1)2 and (α − 1)p
contain terms of fourth- and sixth order,

(α − 1)2 = 400

81
q2 − 200(8 + 9η)

243
pq + 25(8 + 9η)2

729
p2 + O(|∇n|6) (B7)

(α − 1)p = 20

9
pq − 5(8 + 9η)

27
p2 + O(|∇n|6). (B8)

The Taylor series of the enhancement factor can be simplified as

F r2SCAN
x = 1 + h′

x(0)p + k0 f ′
x(1)(α − 1) + h′′

x (0)

2
p2 − h′

x(0) f ′
x(1)(α − 1)p + k0

2
f ′′
x (1)(α − 1)2 + O(|∇n|6). (B9)

After inserting Eq. (B4) for the gradient expansion of the approximate α, Eq. (B7) for (α − 1)2, and Eq. (B8) for (α − 1)p, we
find the OFR2 enhancement factor,

F OFR2
x = 1 +

[
h′

x(0) − 5(8 + 9η)

27
k0 f ′

x(1)

]
p + 20

9
k0 f ′

x(1)q +
[

200

81
f ′′
x (1) + f ′

x(1)bqq

]
k0q2

−
[(

100η

27
− bpq

)
k0 f ′

x(1) + 20

9
h′

x(0) f ′
x(1) + 100(8 + 9η)

243
k0 f ′′

x (1)

]
pq

+
[

h′′
x (0)

2
+

(
bpp + 200η

81
+ 25η2

9

)
k0 f ′

x(1) + 5(8 + 9η)

27
h′

x(0) f ′
x(1) + 25(8 + 9η)2

1458
k0 f ′′

x (1)

]
p2 + O(|∇n|6). (B10)

As was shown in Ref. [62], the divergence theorem may be used to eliminate the term linear in q in favor of a term linear in p
plus a gauge function. Suppose an enhancement factor can separated as Fx = F̃x + n−4/3∇ · Gx. Under integration over a volume
� with bounding surface bdy �, the exchange energy is

Ex[n] =
∫

�

Fxε
LDA
x d3r = Ax

∫
�

Fxn4/3d3r = Ax

∫
�

F̃xn4/3d3r + Ax

∫
bdy �

Gx · dS. (B11)

Provided that the integral of Gx vanishes at the bounding surface, Fx and the “integrated-by-parts” F̃x will yield the same exchange
energy and potential, but different exchange energy densities. Note that Ax = −3(3π2)1/3/(4π ). As is easily seen

qn4/3 = p

3
n4/3 + ∇ ·

[ ∇n

4(3π2)2/3n1/3

]
, (B12)

therefore the overall gauge function is n−4/3∇ · [n−1/3∇n]/[4(3π2)2/3]. Then the integrated-by-parts enhancement factor is

F̃ OFR2
x = 1 +

[
h′

x(0) − 5(4 + 9η)

27
k0 f ′

x(1)

]
p +

[
200

81
f ′′
x (1) + f ′

x(1)bqq

]
k0q2

−
[(

100η

27
− bpq

)
k0 f ′

x(1) + h′
x(0) f ′

x(1)
20

9
+ 100(8 + 9η)

243
k0 f ′′

x (1)

]
pq

+
[

h′′
x (0)

2
+

(
bpp + 200η

81
+ 25η2

9

)
k0 f ′

x(1) + 5(8 + 9η)

27
h′

x(0) f ′
x(1) + 25(8 + 9η)2

1458
k0 f ′′

x (1)

]
p2 + O(|∇n|6). (B13)

Now equate the terms in Eq. (B13) with the terms of matching order in Eq. (B1) to constrain F̃ OFR2
x to have the correct

fourth-order gradient expansion,

h′
x(0) − 5(4 + 9η)

27
k0 f ′

x(1) = 10

81
, (B14)[

200

81
f ′′
x (1) + f ′

x(1)bqq

]
k0 = 146

2025
, (B15)(

100η

27
− bpq

)
k0 f ′

x(1) + 20

9
h′

x(0) f ′
x(1) + 100(8 + 9η)

243
k0 f ′′

x (1) = 73

405
, (B16)

h′′
x (0)

2
+

(
bpp + 200η

81
+ 25η2

9

)
k0 f ′

x(1) + 5(8 + 9η)

27
h′

x(0) f ′
x(1) + 25(8 + 9η)2

1458
k0 f ′′

x (1) = 0. (B17)

083803-21



AARON D. KAPLAN AND JOHN P. PERDEW PHYSICAL REVIEW MATERIALS 6, 083803 (2022)

By construction, in r2SCAN, h′
x(0) is constrained to satisfy Eq. (B14). Therefore we need only solve for the bi,

bqq =
[

146

2025k0
− 200

81
f ′′
x (1)

]
1

f ′
x(1)

≈ 1.8010191875490722, (B18)

bpq = 1

k0 f ′
x(1)

[
h′

x(0) f ′
x(1)

20

9
+ 100(8 + 9η)

243
k0 f ′′

x (1) − 73

405

]
+ 100η

27
≈ −1.850497151349339, (B19)

bpp = − 1

k0 f ′
x(1)

[
h′′

x (0)

2
+ 5(8 + 9η)

27
h′

x(0) f ′
x(1) + 25(8 + 9η)2

1458
k0 f ′′

x (1)

]
− 200η

81
− 25η2

9
≈ 0.974002499350257. (B20)

In r2SCAN [36], the interpolation function fx is a piecewise function, but is a polynomial for 0 � α � 2.5,

fx(0 � α � 2.5) =
7∑

i=0

cxiα
i, (B21)

f ′
x(1) =

7∑
i=1

icxi ≈ −0.9353000875519996, (B22)

f ′′
x (1) =

7∑
i=2

i(i − 1)cxi ≈ 0.8500359204920018, (B23)

with the coefficients cxi taken from rSCAN [75]. The h1
x function is unique to r2SCAN,

h1
x(p) = 1 + k1 − k1[1 + x(p)/k1]−1, (B24)

x(p) =
{

5(4 + 9η)

27
k0 f ′

x(1) exp
[−p2/d4

p2

] + 10

81

}
p, (B25)

therefore

h′
x(0) = 5(4 + 9η)

27
k0 f ′

x(1) + 10

81
≈ 0.0026357640358089796, (B26)

h′′
x (0) = −2h′

x(0)2

k1
≈ −0.00021376160161427815. (B27)

It should be noted that the fourth-order terms in τ (p, q) are positive semidefinite, as they can be written in the form

bqqq2 + bpq pq + bpp p2 =
(√

bqqq + bpq

2
√

bqq
p

)2

+
(

bpp − b2
pq

4bqq

)
p2,

and bpp − b2
pq/(4bqq ) > 0.

APPENDIX C: LAPLACIAN-DEPENDENT STRESS TENSOR

For practical calculations, the exchange-correlation stress tensor, �
i j
xc, defined as [139]

�i j
xc =

∫
�

n(r)r j
∂vxc

∂ri
d3r, (C1)

is greatly useful. Here, the system volume is �. We take r1 = x, r2 = y, and r3 = z. Thus the exchange-correlation stress density,

σ i j
xc = n(r)r j

∂vxc

∂ri
, (C2)

is only defined up to a certain gauge, like the exchange-correlation energy density exc. The gauge can be chosen up to the curl
of a tensor, as the divergence of this tensor must yield the force on the system due to the exchange-correlation potential [140].
An overall choice of sign corresponds to consideration of internal or external stresses [for example, VASP appears to use the
opposite sign convention as Eq. (C2)]. Moreover, the stress tensor and its density should be symmetric.

While Eq. (C1) is well defined in a finite system, the term linear in r j makes this intractable in an extended system. Following
Ref. [139], we therefore take the system volume � to be finite, and seek an expression for σ

i j
xc that is independent of the boundary

conditions. The latter expression will be well defined as the thermodynamic average in an extended system. Consider that

σ i j
xc = ∂

∂ri
(nr jvxc) − vxcnδi j − vxcr j

∂n

∂ri
, (C3)
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where δi j = 1 if i = j and 0 if i �= j is the Kronecker delta. In a finite system, the integral of the total derivative will vanish, as
it can be evaluated on a bounding surface at infinity. Thus we will collect all terms that involve total derivatives and use those as
a choice of gauge.

Suppose that an exchange-correlation functional depends upon n, |∇n|, and ∇2n, and further that exc and vxc are the exchange-
correlation energy density and potential, respectively,

Exc =
∫

exc(n, |∇n|,∇2n)d3r (C4)

vxc = ∂exc

∂n
− ∂

∂rk

[
∂exc

∂ (∂kn)

]
+ ∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
. (C5)

We use the Einstein or summation convention, wherein repeated indices imply summation,

∂

∂rk

∂exc

∂ (∂kn)
≡

3∑
k=1

∂

∂rk

∂exc

∂ (∂kn)
,

and the shorthand ∂kn ≡ ∂n/∂rk . Then

σ i j
xc = −vxcnδi j −

[
∂exc

∂n
− ∂

∂rk

[
∂exc

∂ (∂kn)

]
+ ∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)]
r j

∂n

∂ri
+ ∂

∂ri
(nr jvxc). (C6)

We can express the gradient of exc as

∂exc

∂ri
= ∂exc

∂n

∂n

∂ri
+ ∂exc

∂ (∂kn)

∂2n

∂rk∂ri
+ ∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
, (C7)

and thus replace

σ i j
xc = −vxcnδi j − r j

∂exc

∂ri
+ r j

∂exc

∂ (∂kn)

∂2n

∂rk∂ri
+ r j

∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
+ r j

∂n

∂ri

∂

∂rk

[
∂exc

∂ (∂kn)

]
− r j

∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
+ ∂

∂ri
(nr jvxc)

= (exc − vxcn)δi j + r j
∂exc

∂ (∂kn)

∂2n

∂rk∂ri
+ r j

∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
+ r j

∂n

∂ri

∂

∂rk

[
∂exc

∂ (∂kn)

]
− r j

∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
+ ∂

∂ri
(nr jvxc − r jexc). (C8)

Rearranging the term

r j
∂exc

∂ (∂kn)

∂2n

∂rk∂ri
= ∂

∂rk

[
r j

∂n

∂ri

∂exc

∂ (∂kn)

]
− δ jk

∂n

∂ri

∂exc

∂ (∂kn)
− r j

∂n

∂ri

∂

∂rk

[
∂exc

∂ (∂kn)

]
(C9)

shows that it partly cancels with another term in Eq. (C8),

σ i j
xc = (exc − vxcn)δi j − ∂n

∂ri

∂exc

∂ (∂ jn)
+ r j

∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
− r j

∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
+ ∂

∂ri
(nr jvxc − r jexc) + ∂

∂rk

[
r j

∂exc

∂ (∂kn)

∂n

∂ri

]
.

(C10)

Now, assuming that ∂n/∂rk has equal mixed partials,

∂3n

∂rk∂rk∂ri
= ∂3n

∂rk∂ri∂rk
,

we rearrange

r j
∂exc

∂∇2n

∂3n

∂rk∂rk∂ri
= ∂

∂rk

[
r j

∂exc

∂∇2n

∂2n

∂rk∂ri

]
− δ jk

∂exc

∂∇2n

∂2n

∂rk∂ri
− r j

∂2n

∂rk∂ri

∂

∂rk

(
∂exc

∂∇2n

)
= ∂

∂rk

[
r j

∂exc

∂∇2n

∂2n

∂rk∂ri

]
− ∂exc

∂∇2n

∂2n

∂ri∂r j
− ∂

∂rk

[
r j

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)]
+ δ jk

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)
+ r j

∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
= ∂

∂rk

[
r j

∂exc

∂∇2n

∂2n

∂rk∂ri
− r j

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)]
+ ∂

∂r j

[
∂n

∂ri

∂exc

∂∇2n

]
− 2

∂exc

∂∇2n

∂2n

∂ri∂r j
+ r j

∂n

∂ri

∂

∂rk

∂

∂rk

(
∂exc

∂∇2n

)
. (C11)
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Inserting this latter equality into Eq. (C10) shows further cancellation

σ i j
xc = (exc − vxcn)δi j − ∂exc

∂ (∂ jn)

∂n

∂ri
− 2

∂exc

∂∇2n

∂2n

∂ri∂r j
+ ∂

∂r j

[
∂n

∂ri

∂exc

∂∇2n

]
+ ∂

∂ri
(nr jvxc − r jexc) + ∂

∂rk

[
r j

∂n

∂ri

∂exc

∂ (∂kn)

]
+ ∂

∂rk

[
r j

∂exc

∂∇2n

∂2n

∂rk∂ri
− r j

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)]
. (C12)

Let

σ i j
xc = σ̃ i j

xc + G i j
xc, (C13)

σ̃ i j
xc = (exc − vxcn)δi j − ∂n

∂ri

∂exc

∂ (∂ jn)
− 2

∂exc

∂∇2n

∂2n

∂ri∂r j
, (C14)

G i j
xc = ∂

∂r j

[
∂n

∂ri

∂exc

∂∇2n

]
+ ∂

∂ri
(nr jvxc − r jexc) + ∂

∂rk

[
r j

∂exc

∂ (∂kn)

∂n

∂ri

]
+ ∂

∂rk

[
r j

∂exc

∂∇2n

∂2n

∂rk∂ri
− r j

∂n

∂ri

∂

∂rk

(
∂exc

∂∇2n

)]
. (C15)

The total stress due to the volume integral of σ
i j
xc and its integrated-by-parts counterpart σ̃

i j
xc will be the same provided∫

�

G i j
xcd3r = 0, (C16)

again in a finite system. Looking term by term, this requires that the factors multiplying ri in G i j
xc vanish faster than 1/r. As the

density decays exponentially as r → ∞ [141], we can safely assume that the integral of G i j
xc vanishes in a finite system.

As a final note of simplification, modern DFAs tend not to depend upon the direction of the density gradient, only its
magnitude,

∂exc

∂ (∂ jn)
= ∂exc

∂|∇n|
∂

∂ (∂ jn)
[(∂kn)(∂kn)]1/2 = 1

|∇n|
∂n

∂r j

∂exc

∂|∇n| , (C17)

and thus the stress tensor density σ̃
i j
xc appropriate for extended systems is

σ̃ i j
xc = (exc − vxcn)δi j − 1

|∇n|
∂n

∂ri

∂n

∂r j

∂exc

∂|∇n| − 2
∂exc

∂∇2n

∂2n

∂ri∂r j
, (C18)

and the stress tensor is �
i j
xc = ∫

σ̃
i j
xcd3r.
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APPENDIX D: FULL LC20 DATA

TABLE XIII. Relative errors (aapprox
0 − aref.

0 ) for the LC20 test set [107] of 20 cubic lattice constants, all in Å. Reference experimental
lattice constants (with zero-point vibration effects removed) are taken from Ref. [109]. We include mean absolute (MAE) and mean errors
(ME). The structures considered are face-centered cubic (fcc), body-centered cubic (bcc), cubic diamond structure (ds), rock-salt (rs), and
zinc-blende (zb). OFR2 exceeds the accuracy of the parent meta-GGA r2SCAN overall and for the metallic and insulating subsets of LC20.

Solid Reference
(structure) (Å) PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 3.451 −0.018 −0.022 0.024 −0.039 −0.012
Na (bcc) 4.207 −0.036 −0.012 0.007 −0.039 −0.056
Ca (fcc) 5.555 −0.095 −0.003 0.023 −0.044 −0.046
Sr (fcc) 6.042 −0.129 0.041 0.061 0.015 −0.023
Ba (bcc) 5.004 −0.110 0.046 0.073 0.069 −0.006
Al (fcc) 4.019 −0.004 −0.014 −0.032 −0.046 −0.029
Cu (fcc) 3.595 −0.026 −0.029 −0.013 0.017 −0.028
Rh (fcc) 3.793 −0.013 −0.006 0.012 0.037 −0.006
Pd (fcc) 3.876 −0.003 0.018 0.037 0.062 0.006
Ag (fcc) 4.063 −0.011 0.021 0.044 0.076 0.002
C (ds) 3.555 0.001 −0.000 0.007 0.014 0.023
SiC (zb) 4.348 0.011 0.004 0.007 0.008 0.022
Si (ds) 5.422 0.014 0.006 0.018 0.001 0.009
Ge (ds) 5.644 0.031 0.022 0.035 0.057 0.014
GaAs (zb) 5.641 0.023 0.019 0.028 0.048 0.003
LiF (rs) 3.974 0.035 −0.005 0.010 0.004 0.002
LiCl (rs) 5.072 −0.008 0.009 0.016 −0.002 −0.021
NaF (rs) 4.57 0.066 −0.015 0.011 0.016 0.020
NaCl (rs) 5.565 0.041 −0.002 0.026 0.005 −0.022
MgO (rs) 4.188 0.023 −0.002 0.008 0.004 0.003

ME (metals) −0.044 0.004 0.024 0.011 −0.020
MAE (metals) 0.044 0.021 0.033 0.044 0.021

ME (insulators) 0.024 0.004 0.017 0.016 0.005
MAE (insulators) 0.025 0.008 0.017 0.016 0.014

ME (total) −0.010 0.004 0.020 0.013 −0.007
MAE (total) 0.035 0.015 0.025 0.030 0.018
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TABLE XIV. Relative errors (Bapprox
0 − Bref.

0 ) for the LC20 test set [107] of bulk moduli for 20 cubic solids, all in GPa (1 eV/Å3 ≈
160.2176634 GPa). Reference experimental bulk moduli (with zero-point vibration effects removed) are taken from Ref. [131]. It should
be noted that the r2SCAN and r2SCAN-L values presented here and in Ref. [68] agree to within a few GPa for each solid, generally. In a
few cases, like Ge and GaAs for r2SCAN-L or NaCl for r2SCAN and r2SCAN-L, agreement is quite poor. We attribute this to the different
pseudopotentials used: Ref. [68] used “no-suffix” pseudopotentials, whereas we used the recommended pseudopotentials from VASP. In
these cases, the Ge_d (which treats d-semicore states as valence states), Ga_d, and Na_pv (which treats p-semicore states as valence states)
pseudopotentials might give very different behaviors than their no-suffix counterparts (which treat fewer electrons as valence electrons).

Solid Reference
(structure) (GPa) PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 13.1 0.619 −1.471 −4.659 −4.143 −1.461
Na (bcc) 7.9 0.021 0.683 0.254 1.546 −0.480
Ca (fcc) 15.9 2.084 2.141 1.959 3.237 3.190
Sr (fcc) 12.0 0.397 −0.739 −0.627 0.019 0.269
Ba (bcc) 10.6 −1.161 −2.062 −2.051 −1.001 −1.265
Al (fcc) 77.1 4.995 1.611 15.956 20.322 14.243
Cu (fcc) 144.3 20.498 24.233 15.450 −0.281 24.019
Rh (fcc) 277.1 19.283 15.178 4.888 −20.918 14.439
Pd (fcc) 187.2 17.506 8.133 −0.978 −19.524 11.245
Ag (fcc) 105.7 12.824 4.225 −2.764 −12.636 6.744
C (ds) 454.7 −5.144 3.611 −5.483 −21.214 −28.634
SiC (zb) 229.1 −8.101 −3.061 −2.166 −9.657 −11.991
Si (ds) 101.3 −7.744 −1.713 −4.034 −5.194 −6.490
Ge (ds) 79.4 −11.809 −8.053 −8.147 −17.672 −8.620
GaAs (zb) 76.7 −7.721 −4.294 −4.104 −30.596 −3.777
LiF (rs) 76.3 −2.860 7.068 3.965 4.592 5.766
LiCl (rs) 38.7 −3.517 1.040 −0.413 −3.648 −3.061
NaF (rs) 53.1 −4.571 7.039 2.988 2.640 3.033
NaCl (rs) 27.6 −1.714 0.763 −0.103 0.791 2.324
MgO (rs) 169.8 −9.361 2.552 0.801 0.774 −0.966

ME (metals) 7.707 5.193 2.743 −3.338 7.094
MAE (metals) 7.939 6.048 4.959 8.363 7.735

ME (insulators) −6.254 0.495 −1.669 −7.918 −5.241
MAE (insulators) 6.254 3.919 3.220 9.678 7.466

ME (total) 0.726 2.844 0.537 −5.628 0.926
MAE (total) 7.096 4.983 4.090 9.020 7.601
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TABLE XV. Comparison of the LC20 cubic lattice-constant differences found by fitting (EOS) to the SJEOS and by minimization of the
stress tensor (ST) using Eq. (C18). The deviations are aEOS

0 − aST
0 ; mean deviations (MDs) and mean absolute deviations (MADs) are also

presented, in Å.

Solid (struc) PBEsol r2SCAN r2SCAN-L OFR2

Li (bcc) 3.9698 × 10−3 9.1842 × 10−3 1.5553 × 10−2 −9.6238 × 10−3

Na (bcc) 9.8549 × 10−4 7.0530 × 10−4 4.1485 × 10−3 1.1015 × 10−2

Ca (fcc) 2.5486 × 10−3 2.9326 × 10−3 1.5698 × 10−2 1.6111 × 10−2

Sr (fcc) −1.2412 × 10−2 1.2689 × 10−3 2.5362 × 10−2 6.6702 × 10−3

Ba (bcc) 2.5548 × 10−4 1.0728 × 10−3 5.9928 × 10−2 1.4873 × 10−2

Al (fcc) 6.1313 × 10−6 −7.9749 × 10−4 2.6118 × 10−3 3.0966 × 10−3

Cu (fcc) 3.0698 × 10−4 9.6047 × 10−4 3.5296 × 10−3 1.4137 × 10−3

Rh (fcc) 2.9099 × 10−4 3.6044 × 10−5 3.8564 × 10−4 3.7767 × 10−4

Pd (fcc) −3.3150 × 10−4 −6.9784 × 10−4 −7.5960 × 10−4 −3.4265 × 10−4

Ag (fcc) 5.6017 × 10−4 1.2080 × 10−4 1.2583 × 10−4 5.0807 × 10−4

C (ds) 7.3743 × 10−4 9.5259 × 10−4 8.4424 × 10−4 2.6446 × 10−3

SiC (zb) 6.5009 × 10−4 6.9223 × 10−4 1.5169 × 10−3 2.2265 × 10−3

Si (ds) 1.5047 × 10−4 1.8607 × 10−4 −9.5398 × 10−4 3.3177 × 10−3

Ge (ds) 4.8177 × 10−4 1.7996 × 10−3 1.9719 × 10−3 3.7134 × 10−3

GaAs (zb) −1.9404 × 10−4 −3.2999 × 10−4 1.0211 × 10−2 3.0868 × 10−3

LiF (rs) 5.7602 × 10−3 2.0001 × 10−3 −2.7121 × 10−3 7.1041 × 10−4

LiCl (rs) 1.6706 × 10−3 −1.0409 × 10−3 −4.9830 × 10−3 −6.1942 × 10−4

NaF (rs) 6.0002 × 10−3 1.7042 × 10−3 3.5240 × 10−3 8.9884 × 10−3

NaCl (rs) 1.6417 × 10−3 −6.9238 × 10−3 6.5536 × 10−3 1.8502 × 10−3

MgO (rs) 1.3037 × 10−3 1.1726 × 10−3 7.7154 × 10−5 1.9402 × 10−3

MD 7.1911 × 10−4 7.4993 × 10−4 7.1316 × 10−3 3.5979 × 10−3

MAD 2.0129 × 10−3 1.7289 × 10−3 8.0725 × 10−3 4.6564 × 10−3
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APPENDIX E: FULL LC23 DATA

TABLE XVI. Relative errors in the equilibrium lattice constants a0 (in Å) for the LC23 set (LC20 augmented with K, Rb, and Cs). The PBE
[6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2 LL-MGGAs are presented. Reference
experimental lattice constants (with zero-point vibration effects removed) are taken from Ref. [109], except for Rb, which is taken from [131].
LC20 error statistics are also reported to demonstrate the level of convergence with respect to the benchmark results presented in Table XIII.

Solid Reference
(structure) (Å) PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 3.451 −0.012 −0.008 0.018 0.029 −0.021 0.010
Na (bcc) 4.207 −0.014 −0.038 −0.026 −0.007 −0.083 −0.057
K (bcc) 5.211 0.072 0.004 0.111 0.139 −0.042 −0.006
Rb (bcc) 5.58 0.088 −0.012 0.132 0.166 0.025 0.054
Cs (bcc) 6.043 0.119 −0.032 0.186 0.228 0.103 0.069
Ca (fcc) 5.555 −0.024 −0.095 −0.005 0.024 −0.049 −0.046
Sr (fcc) 6.042 −0.020 −0.129 0.042 0.062 0.007 −0.018
Ba (bcc) 5.004 0.026 −0.110 0.045 0.073 0.055 0.000
Al (fcc) 4.019 0.021 −0.004 −0.014 −0.032 −0.046 −0.029
Cu (fcc) 3.595 0.040 −0.026 −0.027 −0.013 0.014 −0.028
Rh (fcc) 3.793 0.031 −0.018 −0.014 0.011 0.031 −0.010
Pd (fcc) 3.876 0.064 −0.003 0.018 0.037 0.062 0.005
Ag (fcc) 4.063 0.084 −0.011 0.021 0.044 0.076 0.002
C (ds) 3.555 0.018 0.002 0.001 0.008 0.015 0.024
SiC (zb) 4.348 0.032 0.011 0.004 0.007 0.008 0.023
Si (ds) 5.422 0.047 0.014 0.005 0.018 0.004 0.005
Ge (ds) 5.644 0.138 0.057 0.040 0.037 0.061 0.039
GaAs (zb) 5.641 0.121 0.043 0.024 0.031 0.056 0.024
LiF (rs) 3.974 0.099 0.042 0.005 0.022 0.039 0.043
LiCl (rs) 5.072 0.081 −0.002 0.021 0.039 0.006 −0.003
NaF (rs) 4.57 0.062 −0.014 −0.091 −0.067 −0.056 −0.042
NaCl (rs) 5.565 0.090 −0.005 −0.047 −0.019 −0.047 −0.058
MgO (rs) 4.188 0.060 0.023 −0.002 0.008 0.009 0.006

ME (metals) 0.037 −0.037 0.037 0.058 0.010 −0.004
MAE (metals) 0.047 0.038 0.051 0.066 0.047 0.026

ME (alkalis) 0.051 −0.017 0.084 0.111 −0.004 0.014
MAE (alkalis) 0.061 0.019 0.095 0.114 0.055 0.039

ME (insulators) 0.075 0.017 −0.004 0.008 0.009 0.006
MAE (insulators) 0.075 0.021 0.024 0.026 0.030 0.027

ME (total) 0.053 −0.013 0.019 0.037 0.010 0.000
MAE (total) 0.059 0.031 0.039 0.049 0.040 0.026

ME (LC20) 0.047 −0.014 0.001 0.016 0.007 −0.005
MAE (LC20) 0.054 0.033 0.024 0.029 0.037 0.024
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TABLE XVII. Relative errors in the equilibrium bulk moduli B0 (in GPa) for the LC23 set (LC20 augmented with K, Rb, and Cs). The PBE
[6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN -L [68] and OFR2 LL-MGGAs are presented. Reference
experimental bulk moduli (with zero-point vibration effects removed) are taken from Ref. [131]. LC20 error statistics are also reported to
demonstrate the level of convergence with respect to the benchmark results presented in Table XIV.

Solid Reference
(structure) (GPa) PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 13.1 0.839 0.583 0.596 0.013 1.239 0.045
Na (bcc) 7.9 0.014 0.125 0.163 0.065 –2.894 –0.671
K (bcc) 3.8 –0.207 –0.077 –0.349 –0.360 11.257 1.370
Rb (bcc) 3.6 –0.821 –0.648 –0.905 –0.963 2.295 –1.210
Cs (bcc) 2.3 –0.348 –0.265 –0.324 –0.400 0.509 0.506
Ca (fcc) 15.9 1.327 2.084 2.100 1.879 3.302 3.089
Sr (fcc) 12.0 –0.689 0.399 –0.745 –0.615 –0.108 0.038
Ba (bcc) 10.6 –1.761 –1.162 –2.070 –2.055 –3.387 –1.543
Al (fcc) 77.1 0.260 4.965 1.574 15.934 13.496 11.678
Cu (fcc) 144.3 –6.910 20.643 17.327 16.028 3.719 23.695
Rh (fcc) 277.1 –18.422 21.063 17.606 4.758 –20.703 14.192
Pd (fcc) 187.2 –18.081 17.501 8.447 –0.768 –18.533 11.649
Ag (fcc) 105.7 –16.360 12.857 3.767 –2.716 –14.355 6.616
C (ds) 454.7 –19.906 –3.552 3.901 –3.551 –19.449 –24.790
SiC (zb) 229.1 –16.873 –8.254 –2.853 –2.359 –10.102 –13.234
Si (ds) 101.3 –12.494 –7.742 –1.521 –4.008 –6.276 –6.069
Ge (ds) 79.4 –20.223 –11.949 –7.579 –6.319 –11.531 –8.730
GaAs (zb) 76.7 –14.665 –6.497 –1.881 –2.929 –8.244 –3.676
LiF (rs) 76.3 –8.886 –3.567 3.680 2.138 –0.878 –7.408
LiCl (rs) 38.7 –6.865 –3.591 –2.399 –3.768 –1.930 –1.460
NaF (rs) 53.1 –5.934 –0.959 9.802 6.859 5.564 5.555
NaCl (rs) 27.6 –3.345 –0.746 2.736 1.551 2.196 3.204
MgO (rs) 169.8 –17.938 –9.140 2.450 0.967 –0.729 –0.859

ME (metals) –4.704 6.005 3.630 2.369 –1.859 5.343
MAE (metals) 5.080 6.336 4.306 3.581 7.369 5.869

ME (alkalis) –0.105 –0.056 –0.164 –0.329 2.481 0.008
MAE (alkalis) 0.446 0.340 0.467 0.360 3.639 0.760
ME (insulators) –12.713 –5.600 0.634 –1.142 –5.138 –5.747

MAE (insulators) 12.713 5.600 3.880 3.445 6.690 7.498
ME (total) –8.186 0.960 2.327 0.843 –3.284 0.521

MAE (total) 8.399 6.016 4.121 3.522 7.074 6.578
ME (LC20) –9.346 1.153 2.755 1.055 –4.480 0.566

MAE (LC20) 9.590 6.869 4.660 3.964 7.432 7.410
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TABLE XVIII. Relative errors in the equilibrium cohesive energies E0 (in eV/atom) for the LC23 set (LC20 augmented with K, Rb, and
Cs). The PBE [6] and PBEsol [32] GGAs, SCAN [20] and r2SCAN [36] T-MGGAs, and r2SCAN-L [68] and OFR2 LL-MGGAs are presented.
Reference experimental cohesive energies (with zero-point vibration effects removed) are taken from Ref. [131]. LC20 error statistics are also
reported.

Solid Reference
(structure) (eV/atom) PBE PBEsol SCAN r2SCAN r2SCAN-L OFR2

Li (bcc) 1.67 –0.065 0.005 –0.105 –0.096 –0.060 –0.102
Na (bcc) 1.12 –0.033 0.038 –0.018 –0.031 –0.056 –0.050
K (bcc) 0.94 –0.073 –0.011 –0.074 –0.089 –0.100 –0.090
Rb (bcc) 0.86 –0.088 –0.025 –0.097 –0.111 –0.131 –0.101
Cs (bcc) 0.81 –0.099 –0.032 –0.121 –0.131 –0.154 –0.149
Ca (fcc) 1.87 0.032 0.233 0.206 0.201 0.181 0.174
Sr (fcc) 1.73 –0.122 0.077 0.078 0.060 0.001 0.078
Ba (bcc) 1.91 –0.035 0.203 0.117 0.077 –0.006 0.079
Al (fcc) 3.43 0.080 0.432 0.170 0.172 –0.006 0.016
Cu (fcc) 3.51 –0.025 0.522 0.375 0.350 –0.018 0.385
Rh (fcc) 5.78 –0.021 0.933 0.072 0.052 –0.335 0.462
Pd (fcc) 3.93 –0.189 0.541 0.437 0.236 –0.244 0.363
Ag (fcc) 2.96 –0.441 0.118 –0.075 –0.082 –0.450 –0.037
C (ds) 7.55 0.264 0.763 –0.051 –0.090 –0.196 –0.186
SiC (zb) 6.48 –0.012 0.411 –0.037 0.046 –0.203 –0.218
Si (ds) 4.68 –0.100 0.246 0.029 0.190 –0.084 –0.092
Ge (ds) 3.89 –0.180 0.211 0.246 0.133 –0.314 0.042
GaAs (zb) 3.34 –0.158 0.233 0.029 –0.016 –0.284 0.013
LiF (rs) 4.46 –0.023 0.085 –0.066 –0.065 –0.171 –0.271
LiCl (rs) 3.59 –0.189 –0.056 –0.102 –0.121 –0.179 –0.246
NaF (rs) 3.97 0.027 0.128 0.041 0.044 –0.074 –0.169
NaCl (rs) 3.34 –0.181 –0.071 –0.041 –0.056 –0.136 –0.205
MgO (rs) 5.2 –0.196 0.134 0.062 0.055 –0.060 –0.182

ME (metals) –0.083 0.233 0.074 0.047 –0.106 0.079
MAE (metals) 0.100 0.244 0.150 0.130 0.134 0.160

ME (alkalis) –0.072 –0.005 –0.083 –0.092 –0.100 –0.099

MAE (alkalis) 0.072 0.022 0.083 0.092 0.100 0.099
ME (insulators) –0.075 0.208 0.011 0.012 –0.170 –0.152
MAE (insulators) 0.133 0.234 0.070 0.082 0.170 0.163

ME (total) –0.079 0.222 0.047 0.032 –0.134 –0.021
MAE (total) 0.115 0.239 0.115 0.109 0.150 0.161

ME (LC20) –0.078 0.259 0.068 0.053 –0.135 –0.007
MAE (LC20) 0.119 0.272 0.118 0.109 0.153 0.169
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