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Interactions of charge carriers with lattice vibrations, or phonons, play a critical role in unconventional
electronic transport of metals and semimetals. Recent observations of phonon-mediated collective electron
flow in bulk semimetals, termed electron hydrodynamics, present new opportunities in the search for strong
electron-electron interactions in high carrier density materials. Here we present the general transport signatures
of such a second-order scattering mechanism, along with analytical limits at the Eliashberg level of theory.
We study electronic transport, using ab initio calculations, in finite-size channels of semimetallic ZrSiS and
TaAs2 with and without topological band crossings, respectively. The order of magnitude separation between
momentum-relaxing and momentum-conserving scattering length scales across a wide temperature range make
both of them promising candidates for further experimental observation of electron hydrodynamics. More
generally, our calculations suggest that the hydrodynamic transport regime does not, to first order, rely on
the topological nature of the bands. Finally, we discuss general design principles guiding future search for
hydrodynamic candidates, based on the analytical formulation and our ab initio predictions. We find that systems
with strong electron-phonon interactions, reduced electronic phase space, and suppressed phonon-phonon scat-
tering at temperatures of interest are likely to feature hydrodynamic electron transport. We predict that layered
and/or anisotropic semimetals composed of half-filled d shells and light group V/VI elements with lower crystal
symmetry are promising candidates to observe hydrodynamic phenomena in the future.

DOI: 10.1103/PhysRevMaterials.6.083802

I. INTRODUCTION

Hydrodynamic electron transport, where charge carriers
can flow collectively akin to a classical fluid, has recently
garnered significant attention as a probe of strong elec-
tron interactions in conductors, with increasing technological
relevance as electronic devices approach the micro- and
nanometer scale. For instance, in a hydrodynamic conductor
resistive processes occur predominantly at the boundaries,
which alters the spatial distribution of joule heating and
can thereby significantly impact thermal design. Further, it
has been demonstrated that, in a narrow conducting chan-
nel, collective flow can transfer charge more efficiently than
the ballistic regime, thus achieving “superballistic” transport
[1]. Microscopically, this requires that the total momentum
of electrons is conserved, with the momentum-relaxing in-
teractions of electrons with impurities, lattice vibrations, or
the device boundary being significantly slower. The hydrody-
namic transport regime has until recently been inaccessible
since at high temperatures the electron momentum is often
relaxed by lattice vibrations, while at low temperatures by ex-
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trinsic scattering due to high impurity concentrations. In these
systems charge transport is governed by diffusive processes,
where the electrons lose their momentum after traveling an
average “mean free path” distance (lmr).

To observe hydrodynamic effects, the momentum con-
serving length scale (lmc) needs to dominate, necessitating
electron-electron scattering to be frequent enough. Since the
strength of conventional Coulomb interactions depends in-
versely on the carrier density [2], hydrodynamic transport
is most likely to occur in semiconductors or low carrier-
density semimetals such as graphene. This is supported by
the first observations of hydrodynamic electron flow in two
dimensional electron gases (2DEG) (Al,Ga)As [3], and more
recently graphene [4–6]. However, potential applications and
optimization of this transport regime are hindered because
in semiconductors sufficiently high carrier concentrations are
usually achieved by impurities, which in turn dominate the
scattering at low temperatures, while in bulk metals with
high carrier densities conventional Coulomb interactions are
screened.

The growth of high quality single crystals with very low
levels of impurities has facilitated recent observations of hy-
drodynamic transport in a handful of high carrier-density
systems such as semimetals WP2 [7] and WTe2 [8], and
delafossite metals PdCoO2 and PtCoO2 [9,10], where the
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observation could not readily be explained using the Coulomb
interaction [8,11]. Instead, a combination of theory and
experiment shows an indirect electron-electron interaction,
mediated by an intermediate phonon, dominates at moderate
temperatures [8,11]. This provides an opportunity to realize
and optimize hydrodynamic effects in a broader family of ma-
terials, ideally with high carrier mobility and tunable sample
quality. Despite these theoretical advances in understanding
the macroscopic observables of hydrodynamic phenomena
[3,12,13], general design principles guiding the discovery of
bulk hydrodynamic candidates remain elusive.

In this article, we explore the phonon-mediated electron-
electron scattering mechanism in anisotropic metals and
semimetals with ab initio calculations. We investigate the pos-
sibility of hydrodynamic electron flow in semimetals ZrSiS
and TaAs2, the former of which has three-dimensional Dirac
nodal lines while the latter has no Dirac or Weyl crossings. We
find that both materials host strong phonon-mediated electron-
electron interactions and are promising candidates to exhibit
hydrodynamic behavior at relatively higher cryogenic tem-
peratures than previously reported systems. Inspired by the
recent development of temperature-dependent imaging tech-
niques that can spatially resolve the electron current profile
via nitrogen-vacancy magnetometry [8,14,15], we compute
the current density profiles for various combinations of mo-
mentum relaxing and momentum conserving length scales,
and characterize the resulting transport regimes at different
temperatures to provide guidance for experimentally relevant
hydrodynamic observables.

Further, in this article we investigate the analytical limits
of the phonon-mediated scattering lifetime, and provide em-
pirical evidence to support these limits in light of this work
and previously explored semimetals [8,16,17]. At tempera-
tures significantly lower than the system’s Debye temperature,
when anharmonic phonon-phonon interactions are signifi-
cantly slower than electron-phonon interactions, resulting in
long-lived phonon excitations which preferentially transfer
their momenta to the electronic system, the second-order
phonon-mediated electron lifetime is shorter than the first-
order electron-phonon lifetime. This effectively shifts the
focus in the search for hydrodynamic candidates to ultra-
pure materials with long momentum-relaxing mean free paths,
significantly expanding the pool for future search. Finally,
we discuss the essential features leading to hydrodynamic
electron transport in metallic candidates: (a) strong electron-
phonon coupling, typically found in low-symmetry crystals
composed of d/p orbitals [18]; (b) suppressed phonon-
phonon interactions, e.g., realized through the “acoustic
bunching” effect in systems with relatively large atomic mass
difference [19]; (c) high Fermi velocity often correlated with
highly dispersive electronic bands as well as low levels of
disorder. Additionally, we note that electron-electron Umk-
lapp scattering, which effectively relaxes the total electron
quasimomentum leading to contributions to the electrical re-
sistivity at low temperatures [20], also needs to be minimized.
From these predictions and observations we conclude that
anisotropic quantum materials composed of transition metals
and group V/VI elements host multiple materials families
suitable for exhibiting and optimizing hydrodynamic electron
flow.

II. OVERVIEW OF MATERIAL PROPERTIES IN
PHONON-MEDIATED HYDRODYNAMIC CANDIDATES

At first glance, the observation of hydrodynamic elec-
tron transport in three dimensional bulk conductors appears
serendipitous in nature, since conventional electron-electron
Coulomb interactions are expected to be short ranged
due to electron screening effects. More specifically, recent
temperature- and spatially resolved measurements on WTe2

show evidence of nonuniform flow at ∼20 K [8]. Meanwhile,
bulk transport signatures on WP2 feature strong deviations
from the Wiedemann-Franz law [7], while the temperature
dependence of phonon linewidths in WP2 cannot be readily
explained via lattice anharmonicity models and provides evi-
dence of strong phonon-electron coupling [17]. Similarly, the
width-dependent resistivity in narrow conducting channels of
PdCoO2 indicated a lmc/lmr ∼ 0.1 ratio meaning momentum-
conserving mean free paths are as short as a few microns
[10], in contrast to conventional electron-electron interactions
from the Fermi-liquid theory estimating lmc on the order of
thousands of microns [21]. In a series of recent theoretical
predictions, phonon-mediated electron-electron scattering is
shown to be important for the nondiffusive electron transport
in these systems [7,8,11,16,17]. Since momentum-relaxing
scattering needs to be minimized to observe hydrodynamic
effects, it is important for material candidates to exhibit long
momentum-relaxing lmr. In this section we examine the metals
and semimetals WP2, WTe2, and PdCoO2 that exhibit signa-
tures of hydrodynamics and the material properties that enable
this physics.

Intuitively, delocalized electrons, for example from s or-
bitals, usually lead to large dispersion in band energy, that
is, larger Fermi velocity, vF . However, they typically result
in symmetric bonding states often found in isotropic lat-
tices, making them less sensitive to lattice vibrations. To
access the second-order phonon-mediated interactions, we
seek strong electron-phonon coupling across the Fermi sur-
face (see Sec. IV); therefore, more localized electrons, for
example, hybridized d orbitals, are advantageous. By contrast,
suppression of the first-order momentum-relaxing scattering
can be achieved in a number of ways [22,23] (each individu-
ally effective though a confluence would be beneficial). (I) In
semimetals with well separated electron/hole Fermi pockets
across the Brillouin zone. Crystals with lower symmetry and
complex orbital hybridization usually have their conduction
band minimum and valance band maximum shifted from the
zone center, so their Fermi surfaces are located away from
each other. Here, at low temperatures, phonon excitations
lack the momentum to couple electrons from one pocket to
another, and only intraband scattering is allowed [Figs. 1(a)
and 1(b)]. (II) At low temperatures where the phonon phase
space is significantly reduced, momentum-relaxing scattering
is ineffective at relaxing the system’s momentum appreciably
[Fig. 1(c)], while momentum-conserving electron-electron
scattering via the “instantaneous” emission and reabsorption
of phonon modes [Fig. 1(d)] is allowed to take place for larger
q. (III) On Fermi surfaces with nontrivial geometry where the
small scattering efficiency factor leads to “quasi” conservation
of electron momentum [Fig. 1(e)]. Specifically, at very low
temperatures, small phonon momenta q always result in a
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FIG. 1. (a) Schematic energy dispersion diagram along a high symmetry direction for a semimetal, with highly dispersive s/p electronlike
(blue) and “heavy” d/ f holelike (red) bands crossing the Fermi energy. Due to the separation of the Fermi pockets, lattice excitations with a
large wave number are needed for transition between ks and kd . (b) Fermi surface diagram of the semimetal shown in (a) across the first Brillouin
zone, showing intrapocket (top left) and interpocket (bottom) scattering events. The square lattice Brillouin zone, with reciprocal lattice vector
G, is shown in solid lines. Adapted from Ref. [22]. (c) Electron-phonon momentum relaxing scattering event, where initial electronic state k
is scattered into final state k′, exchanging both energy and momentum to the phonon mode q = k′ − k. The thermally accessible states with
energy ∼kBT around the Fermi energy are indicated by the shaded area. (d) Electron-electron momentum conserving scattering event, where
two initial electronic states k1 and k2 are scattered into final states k′

1 and k′
2. The scattering process conserves both energy and momentum.

(e) A faceted Fermi surface, on which a scattering event between wave vectors from k to k′ may lead to negligible change in the electron
velocity such that the total momentum stays “quasi” conserved.

small angle between the incident, k, and scattered electron
momentum, k′ = k − q. On a Fermi surface with nontrivial
geometry, the electron velocity vF can deviate significantly
from the wave vector and thus affect the transport-relevant
scattering efficiency [11,24]. We can quantify this effect
by taking into account the scattering angle after scattering
[16,24]:

1 − cosθ = 1 − vnk · vmk+q

|vnk||vmk+q| . (1)

One such example is shown in Fig. 1(e), when the concave
portions of the Fermi surface result in a strong velocity and
mean free path distribution anisotropy [25,26], and can further
reduce the momentum relaxing scattering efficiency.

Recent first principles calculations have provided signif-
icant insights into the state-resolved momentum relaxing
lifetimes in these systems [8,11,16]. WP2 [16] and WTe2

[8] both show a similar trend in the carrier lifetime distri-

bution on their Fermi surfaces. At high temperatures, the
momentum relaxing lifetimes are distributed more evenly
on electron/hole pockets compared to extremely low tem-
peratures, where the long lived electrons are “focused” to
specific spots on the hole pockets, which have open Fermi
surface shape and thus reduced electronic phase space. For
PdCoO2, which has a faceted open Fermi surface in a hexago-
nal shape, at high temperatures, long-lived electrons span the
entire Brillouin zone along both kz and kx/y [11], while at
4 K, the long-lived electrons are located only at the corners
of the hexagonal Fermi surface at kz = 0. Taken together,
the highly dispersive hole bands give rise to large Fermi
velocity and smaller phase space for electron-phonon scatter-
ing. Yet, the strong electron-phonon coupling arising from d
orbitals leads to a strong second-order electron-electron in-
teraction mediated by a intermediate phonon. These emerging
common features motivate us to search for hydrodynamic can-
didates in layered and/or anisotropic structures with transition
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FIG. 2. (a) Crystal lattice of ZrSiS, highlighting the layered structure. (b),(c) Electron-phonon lifetimes (τeph) at (b) 298 K and (c) 4 K
projected on the Fermi surface of ZrSiS. Similarly, while both electron and hole pockets have long lived carriers, lowering temperature
quenches the scattering events on the hole pockets much more significantly.

metals and group V/VI elements, and to postulate generalized
design principles. Meanwhile, various electronic transport
signatures are indicative of the otherwise hard to experimen-
tally obtain electron-phonon coupling strength. For example,
large RRR (residual-resistivity ratio) is an important sign of
low-impurity samples and large MR (magnetoresistance) can
indicate charge compensation, unconventional Fermi surface
topology, and scattering mechanisms.

III. AB INITIO PREDICTIONS OF ELECTRON
HYDRODYNAMICS IN ANISOTROPIC METALS

Following the design principles discussed in Sec. II, we
investigate layered compounds with transition metals that
show unconventional transport signatures, more specifically
MR. This is because, while hydrodynamic electron flow has
only been experimentally reported in a few bulk systems,
anomalous MR has been heavily studied in recent literature.
Large positive (and mostly linear) MR has been found in
many semimetals including but not limited to WTe2 [27,28],
LaBi [29], NbIrTe4 [30], etc. In addition, large extremely
anisotropic MR is reported in Dirac nodal line semimetal
ZrSiS [31,32] and ZrSi(Se,Te) [33]. Further, negative MR was
found in topological semimetals [34–36], a semimetal TaAs2

without Dirac dispersion [37], and at the LaAlO3/SrTiO3

interface [38]. These observations suggest the pool of candi-
dates for hydrodynamic electron flow in bulk materials may
be much larger than previously thought. In this section we
present calculations of ZrSiS and TaAs2 as case studies to
evaluate these design principles.

ZrSiS crystallizes in the PbFCl-type tetragonal P4/nmm
structure [Fig. 2(a)], and has been shown to host a three-
dimensional Dirac line node and feature a chiral anomaly
and extremely large nonsaturating MR [31,32,43–46]. Non-
saturating MR results from charge compensation of its high
mobility carriers with a ratio of ∼0.94 electrons to holes,
similar to WTe2. Moreover, the tube-shaped Fermi surface
oriented along the crystallographic ĉ direction leads to open
electron orbits under magnetic fields, which can give rise to
strong anisotropic MR [32,46]. These signatures indicate the
possibility of hydrodynamic electron flow in this material that
we investigate next.

Figures 2(b) and 2(c) show the Fermi surface of ZrSiS,
composed of four degenerate electron and hole pockets due
to the mirror symmetry in the ab plane all in open shape, in
agreement with previous work [31,32,43,44]. The behavior
of momentum-relaxing electron-phonon lifetimes (τeph; for
details see Appendix C) at 298 K and 4 K shows substan-
tial similarity with those in other systems mentioned above,
such as WTe2 and WP2. While at 298 K longer-lived car-
riers appear evenly distributed between electron and hole
pockets, at 4 K the only long-lived carriers are located on
hole pockets at the zone boundary. Using the formalism de-
veloped in Sec. IV, the phonon-mediated electron-electron
lifetime (τee(ph)) is much shorter than the momentum relaxing
electron-phonon lifetimes across all temperatures [Fig. 3(a)].
Therefore, the crossover between the dominant scattering
mechanism is determined by the impurity scattering mean
free path (limp). High quality ZrSiS samples have been shown
to have an impurity mean free path limp > 1 μm [39,47].
Using limp = 1 μm, momentum relaxing events appear to
dominate below ∼20 K [Fig. 3(a)], allowing for the possibil-
ity of observing hydrodynamic flow at higher temperatures.
Further, the expected current density ( jx) profiles with various
combinations of lmc and lmr in a narrow conducting channel
are computed from solving the spatially resolved Boltzmann
transport equation (see Appendix D). The contour plot of the
jx curvature gives a general metric to characterize different
transport regime limits. Using the lmc and lmr values obtained
from ab initio calculations, we can bridge the microscopic
scattering mechanisms with these observables and exam-
ine how strong the hydrodynamic effect is in samples with
different dimensions [Fig. 3(b)]. Our results suggest hydro-
dynamic electron flow can be realized in narrow, submicron
devices. Alternatively, if sample quality is further improved
to limp ≈ 5 μm, the hydrodynamic window can be expanded
to lower temperatures and wider devices. Compared to that
of WTe2, lmc is relatively small in ZrSiS, due to a larger
carrier concentration (∼9 × 1019 cm−3 in ZrSiS [31] versus
∼2 × 1019 cm−3 in WTe2 [8]).

While hydrodynamic signatures in the topological
semimetals we considered so far (ZrSiS, WP2, and WTe2)
are similar, it is intriguing to address the necessity of
topologically protected states in the context of hydrodynamic
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FIG. 3. (a) Temperature dependence of first-order electron-phonon (leph) and second-order phonon mediated electron-electron (lee(ph)) mean
free paths in ZrSiS calculated from ab initio. The impurity mean free path is taken as 1 μm from Uykur et al. [39]. Assuming that, at low
temperatures, impurity scattering is the dominant electron resistivity mechanism, we estimate the impurity concentration to be 1.5 × 1015 cm−3

according to ρ3D
unitary = 4π h̄nd

ne2kF
[40–42]. (b) Normalized jx curvature phase diagram. Overlaid lines show the trajectories with the decreasing

temperature with different channel widths.

transport. The role of topology in Dirac-Weyl semimetals
that exhibit signatures of hydrodynamics has sparked intense
debates in the field. To address this open question, we turn
to TaAs2 as a case study for a semimetal without nontrivial
band crossings. TaAs2 crystallizes in the monoclinic C12/m1
structure with two chemical sites for As atoms, one forming
Ta-As planes with Ta atoms and the other bridging the
interlayer coupling [Fig. 4(a)]. As a nonmagnetic material,
TaAs2 has been shown to have giant MR from high mobility
compensated charge carriers [37,48–51]. However, the band
crossings are gapped in the presence of spin orbit coupling,
making it an interesting case to study hydrodynamic behavior
in topologically trivial semimetals. Owing to a small effective
mass m∗ ∼ 0.3m0 [48,50], the carrier mean free path is

estimated to be ∼10 μm at 2 K, significantly longer than
that of WTe2 and ZrSiS. Moreover, in a high quality TaAs2

crystal with carrier density ≈ 2.8 × 1018 cm−3, the MR is
nearly one magnitude larger than that of WTe2 [49], and
the carrier mobility is up to ≈1.2 × 105 cm2/V/s [37].
More importantly, the quadratic field dependence of its MR
obeys the semiclassical model, representative of conventional
(semi)metals.

These observations motivate us to examine in further detail
the temperature dependent mean free paths for both momen-
tum relaxing and momentum conserving events, shown in
Fig. 5(a). Similar to ZrSiS, the phonon mediated electron-
electron mean free path is shorter than the first-order
electron-phonon mean free path for all temperature ranges

FIG. 4. (a) Crystal lattice of TaAs2, highlighting the monoclinic structure. (b),(c) Electron-phonon lifetimes (τeph) at 298 K and (d),(e)
4 K projected on the Fermi surface of TaAs2. Different views are presented due to the low symmetry Brillouin zone and the complexity of
the electron and hole pockets. The features are highlighted that hole pockets at low temperatures feature much longer momentum relaxing
lifetimes.
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FIG. 5. (a) Temperature dependence of first-order electron-phonon (leph) and second-order phonon mediated electron-electron (lee(ph)) mean
free paths in TaAs2 calculated from ab initio. The impurity mean free path is estimated as 10 μm from earlier works [48,49]. (b) Normalized
jx curvature phase diagram. Overlaid lines show the trajectories with the decreasing temperature with different channel width.

studied. Combined with a long impurity mean free path, this
provides a wide temperature window, as well as a wide range
of channel widths in which to expect hydrodynamic flow
[Fig. 5(b)]. Compared to ZrSiS [Fig. 3(b)] and WTe2 [8], hy-
drodynamic flow in TaAs2 appears more pronounced, calling
for experimental verification.

Investigating the momentum relaxing lifetime distribution
on the Fermi surface of TaAs2 [Figs. 4(b)–4(e)], we find sim-
ilar features to those discussed before. TaAs2 has the valence
band maximum located at the L point, while the conduction
band minimum is shifted between � and L, leading to the
coexistence of a few pairs of electron/hole Fermi surfaces
located at the boundary of the Brillouin zone. The electron
band forms a closed Fermi surface, while the hole band forms
an open Fermi surface [48]. At high temperatures, the distri-
bution of τeph lifetimes is narrow and fairly evenly distributed
between the electron and hole pockets. At low temperatures,
however, the electron lifetimes are considerably shorter than
those of hole carriers, consistent with other semimetals dis-
cussed in this work. Despite attempts to classify TaAs2 as a
new kind of topological material with Z2 invariant (0;111)
from density functional theory calculations [37], the absence
of linear Dirac or Weyl band dispersion indicates that topolog-
ically protected band crossings are not a salient ingredient for
observing hydrodynamic electron flow. The possibility of ob-
serving hydrodynamic flow in TaAs2 is intriguing, suggesting
that strong phonon-mediated electron-electron interactions
can be found in topologically trivial metals.

IV. ELECTRON-PHONON COUPLING INTERACTIONS
AND THE ANALYTICAL LIMITS

Our ab initio calculations suggest that, in materials with
strong electron-phonon interactions, lmc < lmr across all tem-
peratures of interest. In this section, we seek to understand this
observation by comparing the second-order phonon-mediated
electron-electron interaction analytically to the first-order
electron-phonon interaction. To first order in the atomic dis-

placements, the coupled electron-phonon system is described
by the Hamiltonian [52]:

Ĥ =
∑

nk

εnkĉ†
nkĉnk +

∑
qν

h̄ωqν (â†
qν âqν + 1/2)

+ N−1/2
∑

kqmnν

gmnν (k, q)ĉ†
mk+qĉnk(âqν + â†

−qν ), (2)

where εnk is the single-particle energy for an electron with
crystal momentum k in band n, ωqν is the frequency for a
phonon with crystal momentum q and polarization ν, ĉ†

nk and
ĉnk (â†

qν and âqν) are the fermionic (bosonic) creation and
annihilation operators, respectively, gmnν (k, q) is the matrix
element coupling electrons and phonons, and N is the number
of unit cells in the phonon supercell.

Using Fermi’s golden rule to first and second order, respec-
tively, we can arrive at expressions for the inverse lifetimes of
the electronic system due to the coupling with phonons [16]:

1

τ
eph
nk

= 2π

h̄

∑
mν±

∫
dq

BZ

δ(εmk+q − εnk ∓ h̄ωqν )

×
[

nqν + 1

2
∓

(
1

2
− fmk+q

)]
|gmnν (k, q)|2, (3)

1

τ
ee(ph)
nk

= 2π

h̄

∑
mpr

∫
dq

BZ

∫
dk′


BZ
|Mnmpr (k, k′, q)|2

× [ fpk′ fmk+q + frk′+q(1 − fpk′ − fmk+q)]

× δ(εnk + εrk′+q − εpk′ − εmk+q), (4)

where f and n are the Fermi-Dirac and Bose-Einstein equi-
librium distribution functions of electrons and phonons,
respectively, and 
BZ is the volume of the first Brillouin zone.
Equation (4) can be intuitively thought of as two successive
scattering events, whereby an electronic state absorbs an in-
termediate phonon |nk〉 → |m(k + q)〉, followed by the same
intermediate phonon being emitted via electron scattering of
|r(k′ + q)〉 → |pk′〉. As such, Eqs. (3) and (4) describe the

083802-6



GENERALIZED DESIGN PRINCIPLES FOR … PHYSICAL REVIEW MATERIALS 6, 083802 (2022)

first order electron-phonon (τ e−ph
nk ) and second order phonon-

mediated electron-electron (τ ee(ph)
nk ) interactions, respectively,

with

Mnmpr (k, k′, q) =
∑

ν

gmnν (k, q)∗gprν (k′, q)

h̄ωqν + εnk − εmk+q + iη
.

Diagrammatically, the second order process can be thought
of as two |nk〉 → |m(k + q)〉 scattering events, where the
momentum exchange occurs by scattering against the same
intermediate phonon mode. We note that for processes which
go on shell (see Appendix A), the intermediate phonons
are real and not necessarily the same, thus allowing for
some momentum-relaxing interactions at high temperatures.
As such, the momentum conserving scattering rate is given
by the contribution of the remaining second order pro-
cess after the subtraction of first order momentum relaxing
processes.

Since we typically only consider interactions near the
Fermi level, we introduce Fermi-surface averaged versions of
Eqs. (3) and (4) at the Eliashberg level of theory [16,53]:

τ−1
eph = πβ

2g(εF )

∑
ν

∫
dq

BZ

Gqν

ωqν

sinh2(h̄βωqν/2)
, (5)

τ−1
ee(ph) = 2π

h̄g(εF )

∑
ν

∫
dq

BZ

G2
qνγ (h̄βω̄qν ). (6)

Here, β = 1/kBT is the dimensionless inverse temperature,
g(εF ) is the density of states at the Fermi level per unit
cell, and Gqν is the dimensionless Fermi-surface integrated
electron-phonon coupling strength:

Gqν =
∑
nm

∫
gsdk

BZ

|gmnν (k, q)|2δ(εnk − εF )δ(εmk+q − εF )

(7)

and γ (x) is the complex-valued integral, evaluated at the com-
plex phonon frequency (see Appendix A):

γ (x) ≡
∫ ∞

−∞
dy

1

4

y2

sinh2(y/2)|x − y|2 ,

ω̄qν = ωqν + iτ−1
qν /2 = ωqν + iπωqνGqν . (8)

Equations (5) and (6) can now directly be compared, by seek-
ing a suitable function approximation to γ (x). To this end,
we simplify the integrand of Eq. (8) as a power series near
h̄βωqν using a (0,2) Padé approximant, and keep terms to
first order in the electron-phonon coupling Gqν to obtain (see
Appendix B)

γ (h̄βω̄qν ) ≈ h̄βωqν

4Gqν sinh2(h̄βωqν/2)
. (9)

Substituting Eq. (9) into Eq. (6), we see that the two rates
are identically equal. As such, we conclude that any addi-
tional (positive) scattering terms arising from terms higher
than linear order in Gqν can only decrease the phonon-
mediated electron-electron lifetime, showing that τee(ph) is
strictly smaller than τe−ph.

Equation 9 is most valid for dimensionless electron-
phonon couplings Gqν � 1, which is true for nonsuper-
conducting materials systems. Further, the phonon-mediated
electron-electron interaction proceeds via the exchange of an

“intermediate” phonon, i.e., the phonon emitted (absorbed)
by a pair of electrons is assumed to be instantaneously ab-
sorbed (emitted) by a different pair of electrons. In practice,
this means that other phonon scattering mechanisms, such as
anharmonic phonon-phonon scattering, must be “quenched”
out, that is, occur at a much slower rate. This assumption is
justified at low temperatures, but breaks down at temperatures
approaching the material’s Debye temperature, and the rate
of the first-order process is approaching the second-order
process, i.e., τ−1

eph ∼ τ−1
ee(ph). At those elevated temperatures,

one can still use Eq. (B2) by augmenting Gqν with a com-
peting coupling Gpp

qν capturing anharmonic phonon-phonon
interactions. Integrating Eq. (6) numerically using this com-
peting coupling, we find that τee(ph) naturally increases and can
overtake τeph at high temperatures. In both ZrSiS and TaAs2

(as well as WP2 and WTe2), there is no energy separation
between the acoustic branches and the lowest-energy optical
modes. These lower-energy optical modes involve large dis-
placements of the heavy Zr/Ta atoms. The heavy transition
metal atoms will result in a narrow bandwidth of the acoustic
branches and thus a smaller phase space and long phonon-
phonon lifetimes, as discussed in high thermal-conductivity
system cubic boron arsenide [19].

This analytical limit allows us to revisit and further estab-
lish our design principles discussed in Sec. II. To obtain a
low enough lmc, we need a material with nonvanishing den-
sity of states at the Fermi level, and a large electron-phonon
matrix element. While the former observation encourages us
to seek for short τee(ph) in metals, the latter indicates that the
electron potential is strongly sensitive to lattice perturbations,
i.e., phonons. This is the case when the atomic orbital mixing
has low symmetry (i.e., the band extrema are located off high
symmetry points in the Brillouin zone), where the electron
wave function, or equivalently the charge distribution in real
space, is highly anisotropic. To maintain a long enough lmr,
large Fermi velocity facilitated by dispersive electronic bands
can be combined with long electron-phonon lifetime main-
tained by reduced electronic phase space at low temperatures.
Indeed, the electronic structures of both ZrSiS and TaAs2 ex-
plored in this work, as well as WTe2 and WP2 reported earlier,
display the above features. There, the Fermi surfaces arise
from a combination of d orbitals from the transition metal
and p orbitals from the metalloids. These material-specific in-
sights are poised to inform exploration hydrodynamic electron
flow in various condensed matter systems.

V. CONCLUSIONS AND OUTLOOK

This article identifies material signatures for hydrodynamic
electron flow in semimetals from first principles and predicts
two candidates with prominent hydrodynamic effects across
a wide temperature range that warrant experimental explo-
ration. We obtain the momentum-relaxing electron-phonon
mean free paths lmr and the momentum-conserving phonon
mediated electron-electron mean free paths lmc in ZrSiS and
TaAs2, and show that the indirect phonon-mediated electron-
electron interaction could dominate over a wide temperature
range, facilitating hydrodynamic behavior. Through inspec-
tion of the momentum relaxing lifetimes on their Fermi
surfaces, we find that, at low temperatures, hole pockets with
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open Fermi surface shape feature much longer lifetimes than
electron pockets. These observations suggest that topolog-
ical Dirac/Weyl bands are not indispensable in the search
for promising candidates for hydrodynamic flow, but highly
dispersive bands are beneficial in realizing long lmr. We review
these signatures in light of previously studied hydrodynamic
candidates and discuss the analytical limits of the first- and
second-order electron-phonon interactions to find that the
mechanism is more broadly applicable. At the Eliashberg
level of theory, we then propose general principles for exper-
imental discovery of hydrodynamic behavior in anisotropic
metals, such as low symmetry crystals with d/p atomic
orbital mixing, suppressed phonon-phonon scattering, and
reduced electronic phase space. Future work distinguishing
electron-electron Umklapp scattering events and computing
the electron viscosity tensor from first principles is still needed
to provide a full picture of electron hydrodynamics in quan-
tum materials.
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APPENDIX A: PHONON MEDIATED ELECTRON-ELECTRON SCATTERING

In this Appendix, we derive Eq. (6) starting from Eq. (4). Our starting point for the rate of scattering of an electron in state
|nk〉 via an intermediate phonon is given by Fermi’s golden rule by the functional derivative of the transition probability:

1

τ
ee(ph)
nk

= 2π

h̄

∑
mpr

∫
dq

BZ

∫
dk′


BZ
|Mnmpr (k, k′, q)|2δ(εnk + εrk′+q − εpk′ − εmk+q)

× ∂

∂ fnk
[ fnk frk′+q(1 − fpk′ )(1 − fmk+q) − (1 − fnk)(1 − fek′+q) fpk′ fmk+q]

= 2π

h̄

∑
mpr

∫
dq

BZ

∫
dk′


BZ
|Mnmpr (k, k′, q)|2δ(εnk + εrk′+q − εpk′ − εmk+q)[ fpk′ fmk+q + frk′+q(1 − fpk′ − fmk+q)], (A1)

where Mnmpr (k, k′, q) is the second-order matrix element defined in Eq. (5).
We define the Fermi-surface averaged scattering rate, by weighing Eq. (A1) with −∂ε fnk = − f ′(εnk):

1

τ ee(ph)
= 1

g(εF )

2π

h̄

∑
nmpr

∫
dq

BZ

∫
dk′


BZ

∫
dk

BZ

|Mnmpr (k, k′, q)|2δ(εnk + εrk′+q − εpk′ − εmk+q)

× [− f ′(εnk)][ fpk′ fmk+q + frk′+q(1 − fpk′ − fmk+q)]

= 2π

g(εF )

∑
nmpr

∫
dq

BZ

∫
dk′


BZ

∫
dk

BZ

∫
dω|Mkk′q

nmpr (ω)|2δ(h̄ω − εmk+q + εnk)

× δ(εnk + εrk′+q − εpk′ − εmk+q)[− f ′(εnk)][ fpk′ fmk+q + frk′+q(1 − fpk′ − fmk+q)], (A2)

where g(εF ) is the density of states at the Fermi energy per unit cell and we have introduced an auxiliary frequency integral in
Eq. (A2) with

Mkk′q
nmpr (ω) =

∑
ν

gmnν (k, q)∗gprν (k′, q)

h̄(ωqν − ω) + iη
. (A3)

Note that energy conservation and occupation factors ensure all contributing states in Eq. (A2) are near the Fermi level.
To proceed, we assume eigenenergies vary linearly over this energy range and pin |nk〉 exactly at the Fermi energy. To do

this, we must shift the k points of the states involved by splitting the integral over k into two dimensions parallel to the local
Fermi surface, and one along the local Fermi velocity (i.e., normal to the Fermi surface), kv . This is achieved by the following
transformations.

(1) Transform
∫

dkv → ∫
dkv

∫
dK δ(kv − K − kv0) → ∫

dk′
vδ(k′

v − kv0)
∫

dK , where k′
v = kv − K is the point pinned to the

Fermi surface and K is the distance in k space from that point.
(2) Notice that δ(k′

v − kv0) = δ(ε − εF )/|∂εkv| = δ(ε − εF )|∂kvε| = δ(ε − εF )(h̄vF ), and
∫

dK = 1
h̄vF

∫
den, where we have

used ε(K ) = εF + h̄vF K ≡ εF + en to define en as the shifted energy relative to the Fermi level.
(3) Putting these all together, we obtain the substitution

∫
dkv → ∫

dk′
vδ(ε − εF )

∫
den.

083802-8



GENERALIZED DESIGN PRINCIPLES FOR … PHYSICAL REVIEW MATERIALS 6, 083802 (2022)

Intuitively, this amounts to pinning |nk〉 to the Fermi surface using δ(ε − εF ) and adding an additional integral over energies
en which satisfy energy conservation and occupations factors.

Notice that under this transformation k is shifted from its Fermi-surface partner by v̂nken
h̄vnk

. Similarly, we can pin |pk′〉 to the

Fermi surface using δ(εpk′ − εF ) and an additional integral over ep, by shifting k′ by
v̂pk′ ep

h̄vpk′ . The transformation for state |mk + q〉
is achieved by shifting q by v̂mk+qem

h̄vmk+q
− v̂nken

h̄vnk
. However, since we no longer have a free k-space integral for state |rk′ + q〉, the

equivalent shifted k point is instead given by kr = kr0 + v̂pk′ ep

h̄vpk′ + v̂mk+qem

h̄vmk+q
− v̂nken

h̄vnk
, where kr0 is the value that corresponds to the

Fermi-surface pinned version of the remaining k’s under crystal momentum conservation.
Using these transformations, we can simplify Eq. (A2) to read

1

τ ee(ph)
= 2π

g(εF )

∑
nmpr

∫
dq

BZ

∫
dk′


BZ

∫
dk

BZ

∫
dω|Mkk′q

nmpr (ω)|2δ(εnk − εF )δ(εpk′ − εF )δ(εmk+q − εF )
∫

derδ(εF + er − εr )

×
∫

den

∫
dem

∫
depδ(h̄ω + en − em)δ(en + er − ep − em)[− f ′(εnk)][ fpk′ fmk+q + frk′+q(1 − fpk′ − fmk+q)],

(A4)

where we have defined εr as the eigenenergy of the state at band r at the shifted kr and introduced the identity expression∫
derδ(εF + er − εr ) for convenience in subsequent manipulations.
We proceed by evaluating the innermost three integrals given by the last two lines in Eq. (A4):

I3 =
∫

den

∫
dem

∫
depδ(h̄ω + en − em)δ(en + er − ep − em)(− f ′

n)[ fp fm + fr (1 − fp − fm)]

=
∫

den

∫
dem

∫
depδ(h̄ω + en − em)δ(en + er − ep − em)

βeβen (eβer + eβem eβep )

(eβen + 1)2(eβem + 1)(eβep + 1)(eβer + 1)

=
∫

dβen

β

∫
dβem

β

∫
dβep

β

δ(β h̄ω + βen − βem)

1/β

δ(βen + βer − βep − βem)

1/β

× βeβem eβep

(eβen + 1)(eβem + 1)(eβep + 1)(eβer + 1)

=
∫ ∞

−∞
dxn

∫ ∞

−∞
dxm

∫ ∞

−∞
dxp

δ(x + xn − xm)δ(xn + xr − xp − xm)exm exp

(exn + 1)(exm + 1)(exp + 1)(exr + 1)
(xi ≡ βei, x ≡ β h̄ω)

= exr

(exr−x + 1)(exr + 1)

∫ ∞

−∞
dxn

exn

(exn + 1)(exexn + 1)

= exr

(exr−x + 1)(exr + 1)

x

(ex − 1)
. (A5)

Note that I3 decays exponentially as xr → ±∞, and only has significant weight within x ∼ 0 since

∫ ∞

−∞
dxrI3 =

∫ ∞

−∞
dxr

exr

(exr−x + 1)(exr + 1)

x

(ex − 1)
=

( x

ex/2 − e−x/2

)2
= sinch−2(x/2).

(
sinch(x) ≡ sinh(x)

x

)

As such, we may approximate I3 ≈ β−1sinch−2( β h̄ω

2 )δ(er ), when kBT is smaller than the characteristic electronic scale:

1

τ ee(ph)
≈ 2π

g(εF )

∑
nmpr

∫
dq

BZ

∫
dk′


BZ

∫
dk

BZ

∫
dω

∣∣Mkk′q
nmpr (ω)

∣∣2
δ(εnk − εF )δ

(
εpk′ − εF

)
δ(εmk+q − εF )

×
∫

derδ(εF + er − εr )β−1sinch−2

(
β h̄ω

2

)
δ(er )

= 2πβ−1

g(εF )

∑
nmpr

∫
dq

BZ

∫
dk′


BZ

∫
dk

BZ

∫
dω

∣∣Mkk′q
nmpr (ω)

∣∣2
sinch−2

(
β h̄ω

2

)

× δ(εnk − εF )δ(εpk′ − εF )δ(εmk+q − εF )δ(εrk′+q − εF )
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= 2πβ−1

g(εF )

∫
dω

sinch2
(

β h̄ω

2

) ∑
nmpr

∫
dq

BZ

∫
dk′


BZ

∫
dk

BZ

∣∣∣∣∣
∑

ν

gmnν (k, q)∗gprν (k′, q)

h̄(ωqν − ω) + iη

∣∣∣∣∣
2

× δ(εnk − εF )δ
(
εpk′ − εF

)
δ(εmk+q − εF )δ

(
εrk′+q − εF

)
. (A6)

To simplify further, we introduce the phonon analog of the random phase approximation to move the summation over
polarizations outside and split the second order matrix element:

1

τ ee(ph)
= 2πβ−1

g(εF )

∫
dω

sinch2
(

β h̄ω

2

) ∑
νnmpr

∫
dq

BZ

∫
dk′


BZ

∫
dk

BZ

∣∣∣∣gmnν (k, q)∗gprν (k′, q)

h̄(ωqν − ω) + iη

∣∣∣∣
2

× δ(εnk − εF )δ
(
εpk′ − εF

)
δ(εmk+q − εF )δ

(
εrk′+q − εF

)

= 2πβ−1

g(εF )

∫
dω

sinch2
(

β h̄ω

2

) ∑
ν

∫
dq

BZ

1

|h̄(ωqν − ω) + iη|2
∑
nm

∫
dk

BZ

|gmnν (k, q)|2δ(εnk − εF )δ(εmk+q − εF )

×
∑

pr

∫
dk′


BZ
|gprν (k′, q)|2δ(εpk′ − εF )δ(εrk′+q − εF )

= 2πβ−1

g(εF )

∫
dω

sinch2
(

β h̄ω

2

) ∑
ν

∫
dq

BZ

G2
qν

|h̄(ωqν − ω) + iη|2 , (A7)

where Gqν is the Fermi-surface integrated electron-phonon coupling for each phonon mode, defined in Eq. (7).
In trying to evaluate Eq. (A7), we encounter a O(η)−1 singularity when ω = ωqν (i.e., the intermediate phonon state goes

on shell). To account for this, we use the phonon linewidth Im�qν to construct the complex phonon frequency ω̄qν = ωqν +
(i/h̄)Im�qν = ωqν + iτ−1

qν /2 = ωqν + iπωqνGqν . Substituting the above complex frequency to Eq. (A7), we arrive at Eq. (6)
used in the manuscript.

APPENDIX B: PADÉ APPROXIMANTS

In this Appendix, we expand on the functional approximation, Eq. (9), used in the manuscript starting from Eq. (8):

γ (x) =
∫ ∞

−∞
dy

1

4

y2

sinh2(y/2)|x − y|2 . (x = h̄βω̄qν )

First, expand the integrand using a (0,2) Padé approximant:

γ (h̄βω̄qν ) ≈
∫ ∞

−∞
dy(h̄βωqν )2/

{
cosh(h̄βωqν )

[
2y2 + 6(πGqνy)2 + (πGqνyh̄βωqν )2

− 2yh̄βωqν

(
2 + 8(Gqνπ )2 + (Gqνπ h̄βωqν )2

) + (h̄βωqν )2(2 + 12(Gqνπ )2 + (Gqνπ h̄βωqν )2)
]

− 2
(
6π2G2

qν + 1
)
h̄βω2

qν − 2
(
3π2G2

qν + 1
)
y2 + 4

(
1 + 4π2G2

qν

)
yh̄βωqν

− 2π2G2
qν h̄βωqν (h̄βωqν − y)(3h̄βωqν − 2y) sinh(h̄βωqν )

}
. (B1)

Applying the fundamental theorem of calculus to the antiderivative of Eq. (B1) and simplifying the expression we
obtain

γ (h̄βω̄qν ) ≈ h̄βωqν

2Gqν sinh
3
2
( h̄βωqν

2

)√
π2G2

qν

[
[(h̄βωqν )2 + 8] sinh

( h̄βωqν

2

) − 4h̄βωqν cosh
( h̄βωqν

2

)] + 4 sinh
( h̄βωqν

2

) . (B2)

Finally, we simplify the expression under the square root of Eq. (B2) by taking its power series around Gqν = 0 to linear order
to obtain Eq. (9):

γ (h̄βω̄qν ) ≈ h̄βωqν

4Gqν sinh2(h̄βωqν/2)
. (B3)
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APPENDIX C: MOMENTUM-RELAXING
ELECTRON-PHONON SCATTERING

The momentum-relaxing electron scattering rates are eval-
uated by accounting for the change in momentum between
final and initial states based on their relative scattering angle
following

[
τmr

eph(nk)
]−1 = 2π

h̄

∑
mν

∫
BZ

dq

BZ

|gmn,ν (k, q)|2

×
[(

nqν + 1

2
∓ 1

2

)
δ(εnk ∓ ωqν − εmk+q)

]

×
(

1 − vnk · vmk+q

|vnk||vmk+q|
)

, (C1)

where vnk is the group velocity. This is identical to Eq. (3)
except for an additional factor accounting for the change in
momentum between final and initial states based on their rela-
tive scattering angle. We calculate the temperature dependent
momentum relaxing τmr by taking a Fermi-surface average
weighted by |vnk|2 and the energy derivative of the Fermi
occupation for transport properties following

τmr
eph =

∫
BZ

dk
(2π )3

∑
n

∂ fnk
∂εnk

|vnk|2τmr
eph(nk)∫

BZ
dk

(2π )3

∑
n

∂ fnk
∂εnk

|vnk|2
. (C2)

APPENDIX D: BOLTZMANN TRANSPORT EQUATION

In this Appendix, we briefly outline the framework for cal-
culating the real-space Boltzmann transport equation (BTE)
solutions shown in Figs. 5 and 3, following our previous
work [8,11]. We solve the electronic Boltzmann transport
equation, at the dual-lifetime relaxation time approximation
which includes momentum-conserving scattering. At steady

state, the evolution of the distribution function f (r, k) for
nonequilibrium electrons in the neighborhood of position r
with wave vector k is given by

vk · ∇r f (r, k) + eE · ∇k f (r, k) = �[ f ], (D1)

where vk is the electron group velocity and �[ f ] is the
collision integral. We consider flow through a 2D channel
[r = (x, y)] of width W , for a spherical Fermi surface [v =
vF(cos θ, sin θ )]. Under these approximations, we can lin-
earize (D1) to give an integro-differential equation in terms
of an “effective” mean free path, leff [3,8]:

sin(θ )∂y leff (y, θ ) + leff (y, θ )

l
= 1 + l̃eff

lmc
, (D2)

where l is given by Mathhiessen’s rule l−1 = l−1
mc + l−1

mr . Mo-
mentum conservation is accounted for by the last term, which
defines the “average” mean free path l̃eff (y) and is directly
proportional to current density, jx(y):

l̃eff (y) =
∫ 2π

0

dθ

π
cos2(θ )leff (y, θ ), (D3)

jx(y) =
(

m

π h̄2

)
εFe2 Ex

mvF
l̃eff (y), (D4)

where m is the electronic effective mass, Ex is the electric field
component in the x direction, and vF is the Fermi velocity.
Equation (D2) is solved numerically by transforming it into
a Fredholm integral equation of the second kind [3,8]: for
each pair of (lmr/W , lmc/W ) values, solution of Eqs. (D2)
to (D4) returns the spatially resolved current density profile
jx(y), from which we extract the scalar-valued current density
curvature by fitting a parabola around the center of the channel
y = 0.

[1] D. A. Bandurin, A. V. Shytov, L. S. Levitov, R. K. Kumar, A. I.
Berdyugin, M. B. Shalom, I. V. Grigorieva, A. K. Geim, and
G. Falkovich, Nat. Commun. 9, 1 (2018).

[2] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H.
Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

[3] M. J. M. de Jong and L. W. Molenkamp, Phys. Rev. B 51, 13389
(1995).

[4] D. A. Bandurin, I. Torre, R. K. Kumar, M. B. Shalom, A.
Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S.
Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim,
and M. Polini, Science 351, 1055 (2016).

[5] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas,
S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A. Ohki, and
K. C. Fong, Science 351, 1058 (2016).

[6] R. K. Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y. Cao,
A. Principi, H. Guo, G. H. Auton, M. B. Shalom, L. A.
Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi, I. V.
Grigorieva, L. S. Levitov, M. Polini, and A. K. Geim, Nat. Phys.
13, 1182 (2017).

[7] J. Gooth, F. Menges, N. Kumar, V. Suβ, C. Shekhar, Y. Sun,
U. Drechsler, R. Zierold, C. Felser, and B. Gotsmann, Nat.
Commun. 9, 4093 (2018).

[8] U. Vool, A. Hamo, G. Varnavides, Y. Wang, T. X. Zhou, N.
Kumar, Y. Dovzhenko, Z. Qiu, C. A. Garcia, A. T. Pierce et al.,
Nat. Phys. 17, 1216 (2021).

[9] N. Nandi, T. Scaffidi, P. Kushwaha, S. Khim, M. E. Barber, V.
Sunko, F. Mazzola, P. D. C. King, H. Rosner, P. J. W. Moll,
M. König, J. E. Moore, S. Hartnoll, and A. P. Mackenzie,
npj Quantum Mater. 3, 66 (2018).

[10] P. J. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and A. P.
Mackenzie, Science 351, 1061 (2016).

[11] G. Varnavides, Y. Wang, P. J. Moll, P. Anikeeva, and P. Narang,
Phys. Rev. Materials 6, 045002 (2022).

[12] L. Levitov and G. Falkovich, Nat. Phys. 12, 672 (2016).
[13] A. Lucas and K. C. Fong, J. Phys.: Condens. Matter 30, 053001

(2018).
[14] M. J. H. Ku, T. X. Zhou, Q. Li, Y. J. Shin, J. K. Shi, C. Burch,

L. E. Anderson, A. T. Pierce, Y. Xie, A. Hamo, U. Vool, H.
Zhang, F. Casola, T. Taniguchi, K. Watanabe, M. M. Fogler, P.
Kim, A. Yacoby, and R. L. Walsworth, Nature (London) 583,
537 (2020).

[15] A. Jenkins, S. Baumann, H. Zhou, S. A. Meynell, D. Yang, K.
Watanabe, T. Taniguchi, A. Lucas, A. F. Young, and A. C. B.
Jayich, arXiv:2002.05065.

083802-11

https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1103/RevModPhys.84.1067
https://doi.org/10.1103/PhysRevB.51.13389
https://doi.org/10.1126/science.aad0201
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1038/nphys4240
https://doi.org/10.1038/s41467-018-06688-y
https://doi.org/10.1038/s41567-021-01341-w
https://doi.org/10.1038/s41535-018-0138-8
https://doi.org/10.1126/science.aac8385
https://doi.org/10.1103/PhysRevMaterials.6.045002
https://doi.org/10.1038/nphys3667
https://doi.org/10.1088/1361-648X/aaa274
https://doi.org/10.1038/s41586-020-2507-2
http://arxiv.org/abs/arXiv:2002.05065


YAXIAN WANG et al. PHYSICAL REVIEW MATERIALS 6, 083802 (2022)

[16] J. Coulter, R. Sundararaman, and P. Narang, Phys. Rev. B 98,
115130 (2018).

[17] G. B. Osterhoudt, Y. Wang, C. A. C. Garcia, V. M. Plisson, J.
Gooth, C. Felser, P. Narang, and K. S. Burch, Phys. Rev. X 11,
011017 (2021).

[18] W. Butler, Phys. Rev. B 15, 5267 (1977).
[19] L. Lindsay, D. A. Broido, and T. L. Reinecke, Phys. Rev. Lett.

111, 025901 (2013).
[20] A. H. MacDonald, R. Taylor, and D. J. W. Geldart, Phys. Rev.

B 23, 2718 (1981).
[21] G. F. Giuliani and J. J. Quinn, Phys. Rev. B 26, 4421 (1982).
[22] M. Kaveh and N. Wiser, Adv. Phys. 33, 257 (1984).
[23] A. H. Wilson, Proc. R. Soc. London A 167, 580 (1938).
[24] M. R. van Delft, Y. Wang, C. Putzke, J. Oswald, G. Varnavides,

C. A. Garcia, C. Guo, H. Schmid, V. Süss, H. Borrmann et al.,
Nat. Commun. 12, 4799 (2021).

[25] N. P. Ong, Phys. Rev. B 43, 193 (1991).
[26] Y. Wang and P. Narang, Phys. Rev. B 102, 125122 (2020).
[27] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M.

Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P.
Ong, and R. J. Cava, Nature (London) 514, 205 (2014).
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