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We have developed a simulational methodology for calculating the nanoscale frequency-dependent complex
dielectric function of a wide range of materials using a combination of Langevin dynamics and Metropolis
Monte Carlo methods. The premise of such a scheme is to use the atomistic structure of materials and designate
appropriate interatomic interactions as well as internal field couplings to accommodate correlated materials.
We validate our model by recreating the dielectric functions of well-studied representative materials including
insulator SiO2 thin film that has phonon resonances in the midinfrared, and semiconductor monolayer MoS2

that exhibits strong excitonic resonances in the visible frequency range. To further showcase the capability
of the model in calculating nanoscale dielectric modulation of complex materials, we simulate the dielectric
response of SmNiO3, a correlated perovskite oxide, with respect to differing levels of hydrogenation, oxygen
vacancy formation, and external fields. This is accomplished by inserting and tracking the movement of dopants
at the nanoscale using Metropolis Monte Carlo methods that explicitly include interactions with each other as
well as external fields. Simulated nanoscale dielectric spectra agree very well with high-resolution near-field
experimental measurements based on scattering type scanning near-field microscopy. We find that this modeling
scheme carries a broad utility in describing and predicting the nanoscale dielectric behavior of a broad range of
materials exposed to changing local environments.
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I. INTRODUCTION

Simulation of the frequency dependent complex dielec-
tric function ε(ω) of materials can enable quantitative
characterization of experimental spectra and prediction of
electronic energy bands, interband transitions, excitons, and
plasmons, as well as free carrier and lattice vibrations.
Simulational methods become necessary if measured sam-
ples have nanoscale inhomogeneities and multilayers that
are often difficult to model using simple analytic theories.
In view of recent advances in the synthesis of new com-
plex and correlated quantum and nanomaterials, nanoscale
simulation of dielectric functions becomes increasingly
necessary.

Computational tools have been historically leveraged to
recreate the dielectric response of materials at various lengths
and time scales. Heisenberg-like models have employed
Monte Carlo methods [1] to find relevant electric and mag-
netic susceptibilities of materials at macroscopic length scales
[2,3]. Atomistic models such as TIP3P [4–6] and TIP4P-ε
[7–9] have been successful in recreating the dielectric function
for water and ice. Ab initio molecular dynamics simulations
as well as density functional theory calculations have been
applied to predict the dielectric function of crystalline solids
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and macromolecules in solution [10–15]. However, it remains
a challenge to garner insight into the nanoscale dielectric
response of materials under complex nonlocal effects. There-
fore, we find it vital to develop an easily implementable and
flexible simulational tool for computation of the nanoscale
dielectric function that can accommodate varying external
conditions that may affect the local nanoscale dielectric prop-
erties of quantum and nanomaterials of interest, such as local
defects, dopants, external fields, and strain.

In this work we present an intuitive, fast, and versatile
atomistic simulational method for calculating the nanoscale
dielectric function of materials with relatively simple in-
teratomic potentials. The method uses a combination of
Langevin dynamics and Metropolis Monte Carlo simula-
tions. It enables the calculation of nanoscopic modulations
in the complex dielectric functions of materials due to de-
fects, vacancy centers, electron-electron correlations, and
external stimuli such as strain or fields. We first describe
the general formulation of the method and present repre-
sentative examples of the frequency dependent dielectric
function of well-studied materials including the excitonic
van der Waals two-dimensional material MoS2 in the visible
frequency range, SiO2 and locally doped SmNiO3 (SNO) cor-
related perovskite oxide in the midinfrared frequencies. All
simulated spectra agree well with experimentally measured
dielectric functions. We compare the simulated modulation of
the nanoscale dielectric properties of SNO due to hydrogen

2475-9953/2022/6(7)/076001(7) 076001-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.6.076001&domain=pdf&date_stamp=2022-08-16
https://doi.org/10.1103/PhysRevMaterials.6.076001


HANCOCK, LANDAU, AGHAMIRI, AND ABATE PHYSICAL REVIEW MATERIALS 6, 076001 (2022)

doping and local oxygen vacancy creation with high-
resolution imaging experiments performed using a scattering-
type scanning near-field microscope (s-SNOM).

II. MODELS

The polarization P of a material due to an applied elec-
tric field E is P = ε0(ε − 1)E, where ε is the (frequency
dependent) dielectric function and ε0 is the permittivity of
free space. We may break up the polarization P into two
parts, contributions from dipole moments generated by bound
charges, and potential free charges in the material. Thus P =
1
V (

∑
i pi + ∑

j qfreer j ), where V is the volume of the total
system, pi are the dipole moments potentially generated from
distortions of individual unit cells, and the second term ac-
counts for the dipolar contribution of the free charges. The
polarization may change over time due to changes in the
positions of either the bound or free charges, and enables
modeling the time dynamics in a way that is both physically
relevant and easily interpretable.

Following the bond charge model [16] particles of positive
charge qI are arranged according to the crystal structure of the
material to be modeled. These charged particles represent the
lattice ions in the material and they remain mostly stationary,
but they may slightly deviate from their ideal lattice positions
by amounts that are determined by statistical mechanics and
the temperature of the system. We arrange particles of nega-
tive charge qe in between crystal ions to represent electronic
charge situated in bonds between parent ions. The ionic de-
grees of freedom couple to the electronic ones according to a
simple harmonic potential given by

Hr = 1

2
kr

∑
iI , je

(riI , je − r0)2βiI , je , (1)

where iI and je enumerate the ionic and electronic degrees
of freedom, respectively. kr represents the bond stiffness be-
tween the two particles, riI , je is the instantaneous distance
between them, and finally r0 is the bond’s equilibrium length.
We employ a so called “bonding index” βiI , je to enforce that
we only count harmonic contributions of bonded particles. As
such, βiI , je = 1 if particles iI , je are bonded and 0 otherwise.

Additionally we include a harmonic bond angle interac-
tion to the ionic degrees of freedom to encapsulate more
sophisticated dynamics without significantly complicating our
existing model. As such, lattice ions indexed with iI , jI , kI ,
respectively, have a potential given by

Hθ = 1

2
kθ

∑
iI , jI ,kI

[cos(θiI , jI ,kI ) − cos(θ0)]2γiI , jI ,kI , (2)

where similarly kθ is the bond-angle stiffness, θiI , jI ,kI and θ0

the respective instantaneous and equilibrium angle, and γiI , jI ,kI

is analogously a bond angle index defined by γiI , jI ,kI = 1 if
particle iI shares a bond with particles jI , kI , and 0 otherwise.

Therefore, the total Hamiltonian takes the simple form

H = Hr + Hθ . (3)

Particle i in a material interacts with a total electric field
given by Etot,i = Eext (ω, t ) + Enn,i + EC,i, where Eext (ω, t ) is
a spatially uniform external field driven at angular frequency

ω, Enn is the total field generated from screened electric dipole
moments from nearest neighbor unit cells, and EC is the
screened Coulomb field from neighboring electrons. Enn and
EC take similar forms:

EC,i =
∑

je

q2
e

4πεri j
e−αri j σ (ri j − δ) r̂, (4)

Enn,i =
∑
j∈NN

3(p j · ni j ) − p j

4πεr3
i j

e−βri j , (5)

where α, β are phenomenological screening factors, p j is the
electric dipole moment of the jth nearest neighbor unit cell,
ni j is the unit vector pointing from unit cell i to unit cell j, and
finally σ (ri j − δ) is the Heaviside-step function to enforce a
cutoff radius of length δ.

We make use of Langevin dynamics [4] to describe the
force on particle i as

Fi = −∇iH + BqiEtot − bivi +
√

2bkBT fL, (6)

where −bivi is a phenomenological damping force and fL is
a force with magnitude distributed about a standard Gaussian
and direction uniformly distributed about a sphere. This force
is meant to model the deviations in trajectories of particles in
the system due to random thermal collisions with the environ-
ment. We integrate the above defined equations of motion with
the predictor-corrector integration method using time steps in
the range of 0.1–10 fs. Typical total integration times were
1–100 ps.

Finally, we include other charged particles that take ran-
dom trajectories throughout the system to represent the possi-
ble contributions of external dopants and/or free charges. We
assume that such charges do not interact with the ionic and
electronic portions of the lattice and that they only interact
with the external electric field as well as each other through a
screened Coulomb potential of the form

H f d =
∑
i, j

qd q f

4πεri j
e−kri j , (7)

where the charges of the dopants and free charges are re-
spectively denoted by qd and q f . Additionally, i runs over all
potential dopants in the system, while j indexes all the free
charges. We evaluate the trajectories of the particles using the
Metropolis Monte Carlo method [1], where trial moves are
generated with random directions and magnitudes uniformly
distributed about the interval [0, rmax], where rmax is some
maximum hopping distance. These trial moves are then ac-
cepted or rejected according to the rule

PA→B = min

{
1, exp

(
−�ABH f d

kBT

)}
, (8)

with �ABH f d being the difference in energy between states
A and B, respectively, and finally T is the predetermined
temperature of the system.

Since ε(ω) is a complex quantity, we may write

P = s eiφE (9)

and thus we calculate the dielectric function using the relation
ε

ε0
= s[cos(φ) + i sin(φ)], (10)
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TABLE I. Summary of numeric values used in the simulations of SiO2, MoS2, and SNO. Electrons in different bonds were permitted to
have different damping coefficients as illustrated by bSm−e and bNi−e for SNO. Ionic degrees of freedom were given the same damping constants
bion/mion = 1.0×1010 (Ns/m) for simplicity since their motions do not contribute significantly to the calculation of ε(ω) in our simulation.

Material Damping constants α (1/m) β (1/m) B

SiO2 be/me bSi/mSi bO/mO 9.22 × 1016 3.84 × 1015 0.79
2.08 × 1014 1.0 × 1010 1.0 × 1010

MoS2 be/me bMo/mMo bS/mS bex1/me bex2/me 7.56 × 1010 4.21 × 1010 0.96
7.11 × 1016 1.0 × 1010 1.0 × 1010 9.03 × 1010 9.03 × 1010

SNO bSm−e/me bNi−e/me bSm/mSm bNi/mNi bO/mO 2.35 × 1011 5.81 × 1013 0.47
5.61 × 1016 4.19 × 1016 1.0 × 1010 1.0 × 1010 1.0 × 1010

where s and φ are the amplitude and phase between the po-
larization and the applied electric field. Therefore, one merely
needs to repeat the steps outlined above at different frequen-
cies ω of the external field to reconstruct ε(ω).

We systematically increase the lattice dimensions N ×
N × M until the change in the dielectric value is less than
5% when compared to systems of size (N + 1) × (N + 1) ×
(M + 1). We utilized 20 × 20 × 5 lattices for the SiO2 and
SmNiO3 (SNO) to represent experimental thin films, and
50 × 50 × 1 lattices for monolayer MoS2. All systems utilize
periodic boundary conditions in the lateral directions allowing
us again to more closely resemble the experimental situation
without needing significantly longer computation time. Total
computational run time increased approximately quadratically
with system size. All error bars provided in the proceeding
discussion have been calculated over at least 10 independent
runs with different random number strings to randomize initial
velocities, noise terms, and free-charge/dopant dynamics.

III. RESULTS

A. Calculated dielectric spectra of SiO2

As a first example to validate our methods, we use thin
film of SiO2, an insulator oxide used commonly as substrate
in experiments and with a well-known dielectric spectra in
the midinfrared frequency range. As outlined above, we first
assign both bond-length and bond-angle interactions to rel-
evant particles according to the SiO2 crystal structure. As
such, equilibrium bond lengths lSi−e and lO−e, as well as bond
angles θSi−O−Si and θO−Si−O, are geometrically predetermined
from the crystal structure. Based on the well-known Si-O
stretch mode, which is centered at 1075 cm−1, taken from
Ref. [17], we assign both ω0,Si−e = ω0,O−e = 1075 cm−1. We
then use the damping factor b, electrostatic parameters α, β,
and universal charge scaling factor B as fitting parameters
to simulate the experimental data for ε(ω). Refer to Table I
below for a summary of fitting numeric values used in the
simulations. We find that the bond-length stiffness kSi−eand
kO−e impact the overall shape of the spectrum significantly
more than the bond angle stiffness kSi−O−Si and kO−Si−O. This
is because the associated umbrella modes are much higher in
energy than the more simple Si-O stretch modes and thus do
not contribute much to this region of the spectrum.

In Fig. 1 we show comparison of our model calculation
of the real and imaginary parts of the dielectric function of
SiO2 with experiment [16]. We were able to achieve quan-
titatively similar results with experimental data, even with

a relatively simple model. A source of small discrepancies
in the imaginary dielectric spectrum can be attributed to the
fact that the simulation uses perfect crystalline SiO2 with no
defects or distortions, which is clearly not the case in the
experimental samples used. Such defects will create spec-
tral features that vary between individual samples and will
necessarily cause slight variations between the measured and
calculated spectra. However, the overall spectral shape gar-
nered with this modeling scheme is strikingly accurate to the
experimental data, showing that our atomistic simulational
methodology utilizing relatively simple interaction potentials
is able to capture the essential features of SiO2. We note that,
while fitting dielectric spectra to a combination of Lorentzian

FIG. 1. Comparison between the calculated and experimental
results for the dielectric function of SiO2. The real (a) and imag-
inary (b) parts of dielectric function for SiO2; solid lines show
experimental data and dotted points are the corresponding calculated
results with representative error bars. Where not shown, error bars
are smaller than the size of the dotted point.
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oscillators may provide agreement with experimental spectra,
such a fitting scheme is purely phenomenological and cannot
provide insight into the overall atomistic nanoscopic material
dynamics. Furthermore, force constants used in recreation
of the experimental spectra can be compared with available
phonon spectra to provide additional insight into the lattice
dynamics of the system.

B. Calculated dielectric spectra of MoS2

To demonstrate the effectiveness of our model in the
visible/near-IR frequency range, we simulate the spectra of
a classical transition metal dichalcogenide (TMDC), mono-
layer MoS2. Similar to what we described above for SiO2,
we arrange atoms according to the crystal structure of MoS2

and assign resonances apparent in the experimental spectrum
to microscopic force constants available in the simulation.
Again, equilibrium bond lengths lMo−e and lS−e, as well as
bond angles θMo−S−Mo and θS−Mo−S , are predetermined by the
crystal structure of the material. As before, we use damping
constants bi, electrostatic parameters α, β, and charge scaling
factor B as fitting parameters to approximate the known spec-
tra. Excitonic resonances play a prominent role in MoS2 [18]
and, upon prior knowledge of their existence and associated
energy, we may simply model their effect on the spectra by
including pairs of opposite charges, coupled together with a
harmonic potential with coupling constants kex1, kex2, as well
as respective damping constants bex1, bex2. In Table I below we
present a summary of numeric values used in the simulations.
We employ Metropolis Monte Carlo methods to update the
center of mass position of an individual exciton, each time
step, and then we use Langevin dynamics to update the rela-
tive positions of the associated charges. In this way we capture
both the real-time dynamics as well as the stochastic nature of
excitons.

C. Calculated dielectric spectra of SmNiO3

We now demonstrate the use of our model for simulation
nanoscale, dynamic changes in carrier density, conductivity,
and dielectric spectra of correlated materials. To that end we
simulate the dielectric functions and the related features of a
prototypical correlated perovskite SNO. Simulation provides
insight in atomistic processes as well as the prediction of
nanoscale/macroscale properties of this complicated material
when exposed to arbitrary external conditions. We investigate
the modulation of the dielectric function of SNO when ex-
posed to strong local external fields and the influence of oxy-
gen vacancies caused by such fields. We proceed, as described
above, using the atomistic crystal structure of SNO as well as
experimental dielectric data to establish relevant bond length
and bond angle force constants [19]. As previously mentioned
we then use the damping parameters bi, electrostatic param-
eters α, β, and charge scaling factor B to fit to the known
spectra. As shown in Fig. 3, we were able to recreate the imag-
inary part of the experimental spectra within error bars. Table I
below shows a list of parameters used in the simulation. To
further describe the change in spectra of SNO as a result of
the effects of interstitial charged dopants, we distribute point
charges randomly throughout the system with charges ±1e,

FIG. 2. Comparison between the calculated and experimental re-
sults for the dielectric function of MoS2. The real (a) and imaginary
(b) parts of dielectric function for MoS2; solid lines show experimen-
tal data and dotted points are the corresponding calculated results
with representative error bars. The error bars in the calculated result
are smaller than the dots. We used 50 × 50 × 1 systems with lateral
periodic boundary conditions, along with a simple model for the
excitonic resonances described in the text.

representing hydrogen ion dopants, and conduction electrons,
respectively. These particles interact via a screened Coulomb
interaction as described in Eq. (7). Furthermore, their posi-
tions are updated at each time step according to the Metropolis
criterion [Eq. (8)]. The number of conduction electrons
present in the sample is chosen to approximate the charge
carrier concentration ne ∼ Im[ε(ω)], which for our systems
was Nfree ≈ 200. Using this scheme the model predicts the
real and imaginary parts of the dielectric spectra in the mid-
infrared frequency range that quantitatively agrees with the
measurement as shown in Fig. 3 (experimental data taken
from Ref [20]). This provides us great confidence that this
modeling scheme is able to accurately reproduce the dielectric
response of more complex species of correlated materials.

As shown in Figs. 1–3, our simulation protocol predicts
satisfactorily the dielectric functions of several prototypi-
cal compounds, including SiO2, TMDCs, and, in particular,
monolayer MoS2 and correlated oxide SNO. We note that the
model itself is still a phenomenological description since a
couple of fitting parameters exist. Therefore, there is some
freedom to adjust the shape of the dielectric function curves
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FIG. 3. Comparison between the calculated and experimental
results for the dielectric function of SNO. The solid lines show
experimental data and dotted points are the corresponding calculated
results with representative error bars. We model SNO assigning bond
length and bond angle interactions as well as establishing appropriate
electrostatic interactions to accommodate electron correlation.

(contributing to the discrepancy between simulations and ex-
perimental data shown in Figs. 1, 2, and 3), which is in
contrast to what would happen with a model extracted from
first principles calculations such as density functional theory.
In addition, variation from “perfect” lattices used in the simu-
lation to crystalline imperfections in the experimental samples
will further play a role in the minute differences between
simulational results and experimental data shown in Figs. 1,
2, and 3. The strength of our empirical model is its ability to
provide fast and facile prediction of nanoscale dielectric func-
tions as opposed to time and resource demanding atomistic
calculations (e.g., density functional theory and molecular
dynamics).

SNO exhibits enormous changes in its dielectric function
over a large spectral range by either oxygen vacancy gen-
eration or hydrogen doping [21]. Using conductive atomic
force microscope (c-AFM) and Kelvin probe force micro-
scope (KPFM) we create nanoscale patterns of various levels
of conductivity on SNO and then image their optical con-
trast using s-SNOM [schematics shown in Fig. 4(a)]. The
biased tip generates surface atoms and dissociates them; it
also removes oxygen from the SNO surface creating regions
of various conductivity regions due to oxygen vacancy gen-
eration as shown in Fig. 4(b) [21]. Such local conductivity
changes generated by the charge writing process can also be
imaged using s-SNOM at spatial resolution only limited by
the sharpness of the probe tip (typically 20–50 nm) [22].
The s-SNOM amplitude images shown in Fig. 4(c) were
taken at 10 μm laser wavelength and show voltage-dependent
s-SNOM optical contrast. The image contrast in s-SNOM
represents local conductivity changes [23] of the dark written
regions and that a positive bias voltage creates lower conduc-
tivity due to the removal of oxygen from the surface of SNO
[Figs. 4(b) and 4(c)]. Increasing the tip voltage leads to de-
creasing the local near-field amplitude (local conductivity) as
shown in Fig. 4(d) (see Methods and references therein for

FIG. 4. (a) Schematic of s-SNOM and c-AFM/KPFM experi-
mental setup. (b) Surface potential images of conductive writing
patterns onto pristine SNO by applying 5V-10V potential. (c) Cor-
responding s-SNOM second-harmonic amplitude images taken at
10 μm laser wavelength. (d) Normalized second harmonic amplitude
[s2(SNO)/s2(Pt)] plots as a function of tip-biasing voltage. (e) The
proportion of vacancies created in the simulation as a function of
biasing field strength, where 0 indicates no vacancies have been
created and 1 meaning that all oxygens have been removed. E0 =
5.26×105(N/C) represents a threshold field strength about which
oxygens most actively leave the sample. (f) The calculated normal-
ized amplitude as a function of field strength.

more details on the experimental techniques). To model oxy-
gen vacancies and their effect on the nanoscale conductivity
of SNO, we assume that oxygen in SNO has a predefined
dissociation energy, EDis,O = 392(kJ/mol). We then introduce
a static biasing field of varying strength [EBias 105 (N/C)]
and should the energy of an oxygen atom exceed, EDis,O,
it switches to a “vacant state,” in that it now interacts with
the free charges via a screened Coulomb potential defined
above, where the dopant charge qd = qO, the charge assigned
to the oxygen atoms. In this way we track the number of
vacancies formed in the system as a function of applied field
strength. As the local applied field increases it is able to create
additional oxygen vacancies, which decreases the mobility of
the simulated free charges and therefore depresses the con-
ductivity. This is shown in Fig. 4(e), where the density of
oxygen vacancies, ρvac = nvac/V , nvac and V being the number
of vacancies and volume of the simulational system, respec-
tively, increases exponentially with increasing field and then
reaches a saturation level for a fixed thickness of the sample.
We then use the varying vacancy density and simulated the
nanoscale dielectric changes due to oxygen vacancies which
are directly reflected in the near-field amplitudes sn [Fig. 4(f)],
calculated using the well-known finite dipole model. Sim-
ilar to the experiment [Fig. 4(d)], the calculated near-field
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FIG. 5. (a), (b) KPFM surface potential and s-SNOM amplitude
images of hydrogen-doped SNO/Pt films, respectively. Normalized
amplitude of hydrogen doped pristine SNO (c) and on charge written
areas (d). We measure both samples at incremental times from the
onset of hydrogenation; as such we see the amplitude slowly return
near to its undoped level, indicating a diffusion of hydrogen ions
out of the system. Normalized calculated s-SNOM amplitude plot of
pristine (e) and oxygen vacant (f) simulated systems, respectively, as
a function of the number of hydrogen ions in the system. Calculated
results qualitatively reproduce experimental data, being an eventual
return to the undoped level as the number of dopants decreases.

amplitude [Fig. 4(f)] starts at a maximum normalized value of
one following a logistic trend with increasing field (voltage).
This indicates a route to tuning the conductivity/dielectric
properties of the sample via varying the strength of the applied
field.

Incorporation of hydrogen dopants is a robust way to mod-
ify the dielectric properties of SNO [24]. The pristine and
charge written areas of SNO were exposed to H2 (written
patterns were produced deliberately close to the Pt electrode
to initiate hydrogen catalysis) and imaged using s-SNOM
at 10 μm laser wavelength [Figs. 5(a) and 5(b)]. Multiple
s-SNOM images were taken as a function of time and nor-
malized second harmonic amplitude signals [s2(SNO)/s2(Pt)]
were extracted and plotted for the pristine [Fig. 5(c)] and
charge written [Fig. 5(d)] areas. Hydrogen diffuses out from
the sample with time in both the pristine and charge written
areas as the sample recovers to the undoped values 800 min
after the initial arbitrarily doped state as shown in Figs. 5(c)
and 5(d). To simulate this effect of the hydrogenation process,
we initialize SNO as described above, randomly distributing
dopants and conduction electrons throughout the sample that
interact with each other via Hf d [Eq. (7)]. The simulated
normalized amplitude for pristine and oxygen vacant systems

qualitatively agree with the experimental trend [Figs. 5(e) and
5(f)] [21]. Since the free charges do not couple to anything
other than the dopants we can interpret our results as the
dopants localizing the free charges, inhibiting them from con-
tributing to the amplitude as they would have without doping.
An increase in hydrogen dopant density (ρdop = ndop/V ) in
the simulation (which corresponds to increasing time after the
initial doping) is accompanied by a decrease in the normalized
amplitude signal and the saturation limit is the initial undoped
state of the sample. In this way the simulation provides qual-
itative dependence between dopant/oxygen vacancy density
and conductivity changes (s-SNOM contrast) as shown in
Figs. 5(e) and 5(f).

IV. CONCLUSIONS

The array of nanoscale dielectric function and conductivity
results presented in this work emphatically demonstrate the
use of the modeling scheme we present. We have not only
been able to quantitatively recreate known experimental di-
electric data, but also provided a framework that allows for
relative ease of interpretation of such spectra. Furthermore, we
are able to provide quantitative insight into nanoscale dielec-
tric modulation of SNO due to external manipulation (hydro-
gen doping and local oxygen vacancy formation). Our simula-
tional procedure provides a method by which one may garner
both intuitive and quantitative understanding of the complex
nansocale dielectric behavior of materials without having to
resort to more resource intensive computational means.

V. EXPERIMENTAL METHODS

The Cypher atomic force microscope (AFM) (Oxford In-
struments) is used to perform conductive AFM (c-AFM) as
well as the scanning Kelvin probe microscope (SKPM). The
lithography patterns were made by c-AFM; a contacted mode
AFM was performed while applying voltage through the metal
Ti/Ir coated tip (Asyelectric.01-R2 from Oxford). SKPM is
then used to measure the surface potential of the written
structures [Figs. 4(b) and 5(a)]. A scattering type scanning
near-field microscope (s-SNOM) is used to acquire topog-
raphy and near-field images of the SNO sample prepared
by PVD on LaAlO3 substrates. s-SNOM [Fig. 4(a), neaspec
co.] is based on a tapping mode AFM with a cantilevered
metal-coated tip that oscillates at a resonance frequency,
W ∼ 280 kHz, and tapping amplitude of ∼50 nm. A focused
infrared laser beam on the metalized tip interacts with the
sample, and the scattered light from this interaction is de-
modulated at higher harmonics n� of the tapping frequency
and detected via phase modulation interferometer. s-SNOM
enables mapping the dielectric function of materials at the
nanoscale in a wide spectral range from visible to terahertz
frequencies [23,25,26].
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