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Nonequilibrium plastic roughening of metallic glasses yields self-affine topographies
with strain-rate and temperature-dependent scaling exponents
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We study nonequilibrium roughening during compressive plastic flow of initially flat Cu50Zr50 metallic glass
using large-scale molecular dynamics simulations. Roughness emerges at atomically flat interfaces beyond the
yield point of the glass. A self-affine rough topography is imprinted at yield and is reinforced during subsequent
deformation. The imprinted topographies have Hurst exponents that decrease with increasing strain rate and
temperature. After yield, the root-mean-square roughness amplitude grows as the square root of the applied
strain with a prefactor that also drops with increasing strain rate and temperature. Our calculations reveal the
emergence of spatial power-law correlations from homogeneous samples during plastic flow with exponents
that depend on the rate of deformation and the temperature. The results have implications for interpreting and
engineering roughness profiles.
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I. INTRODUCTION

Roughness controls many interfacial phenomena. The most
prominent examples are arguably the influence of roughness
on friction [1,2], adhesion [3–8], and electric [9] and ther-
mal [10] transport. It is therefore useful to characterize surface
roughness, and to understand the mechanisms that produce
it, including growth, erosion, and fracture. Here, we focus on
plastic deformation as a roughening mechanism: When a solid
deforms irreversibly because of external forces, a signature of
the deformation process is imprinted on the surface. For exam-
ple, crystal dislocations in metals [11–15] or shear bands and
fractures in rocks [16] leave slip traces behind that roughen
surfaces.

Unlike crystalline materials, the fundamental deformation
event in glasses is not a slip trace but a localized shear trans-
formation or STZ (shear transformation zone) [17–20]. At low
temperature (or slow deformation), these can coalesce to form
deformation avalanches that potentially span the size of the
whole system [21,22]. Despite the importance of glasses for
engineering applications and the wide interest in deformation
of glasses in physics, little is known about the nonequilibrium
processes forming their surface morphology.
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Glasses formed by quenching have surfaces that are well
described by capillary waves [23–25]. However, many nat-
ural and industrially processed surfaces, including those of
noncrystalline materials, are found to be self-affine fractals
with power-law scaling of heights [26–31]. The root-mean-
square (rms) amplitude of surface height fluctuations hrms(L)
measured in a square region with sides of length L, then scales
as hrms(L) ∝ LH where H is the Hurst exponent.

Recent simulation studies have shown that deformation is
one possible origin of self-affinity. For example, Milanese
et al. [32] have observed self-affine roughening in 2D discrete-
element simulations of sliding contacts that formed abrasive
third bodies. We recently used molecular dynamics calcu-
lations to show that self-affine roughness emerges naturally
during compression of atomically flat surfaces made from
pure metals, crystalline alloys, and metallic glasses [15]. Sim-
ilar results have been obtained by Vacher and de Wijn for the
surface of polymers [33].

We here present evidence that—unlike in crystalline ma-
terials [15]—the roughness characteristics of a glass depend
strongly on temperature and deformation rate. We show
that two regimes of temperature and strain rate must be
distinguished. In quasistatic deformation, and at the low-
est temperatures and rates, the topography is dominated by
system-spanning shear bands. Self-affine scaling of surface
heights is nevertheless plausible through a mechanism similar
to slip of crystal dislocations, but with a shear band as the
fundamental slip event. Higher temperatures and strain rates
lead to the formation of smoother and more diffuse topogra-
phies that exhibit self-affine scaling at small scales. Their rms
roughness hrms grows roughly as hrms ∝ ε1/2 at large strain.
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FIG. 1. (a) Cu50Zr50 cube with a side length of 100 nm and a
free surface in the z direction. We simulated biaxial compression
along the x and y directions. (b) Topography of the surface after 30 %
compression with a rate of 108 s−1 at 10 K. A shear band has formed.
No such distinct feature is visible at (c) 100 K and (d) 500 K. The
topography becomes smoother with increasing temperature. (e) Line
scans along the y direction extracted from the topographies shown in
[(b)–(d)]. The starting point is approximately the midpoint along the
x direction. The dashed line in (b) shows the approximate position
of the scans. The curves for T = 100 K and T = 500 K have been
shifted up by 5 nm and 10 nm, respectively, for better visibility.

Our simulations show that the topography is imprinted shortly
after yield and is reinforced during subsequent deformation.

II. METHODS

To study the emergence of surface roughness, we sim-
ulated 100 × 100 × 100 nm3 cubes of amorphous Cu50Zr50

using molecular dynamics. The initial configuration shown
in Fig. 1(a), contained 5.8 × 107 atoms, interacting with the
embedded atom method potential [34] of Cheng and Ma [35].
The initial structure was melt-quenched at a rate of 1011 Ks−1,
followed by equilibration for 100 ps at the target temperature
and zero pressure. The systems were fully periodic during
quench and equilibration, after which we opened the bound-
aries along the z direction, creating two free surfaces. The

samples were equilibrated for 100 ps after creating the free
surfaces and before compression.

We compressed these samples by dynamically reducing the
lengths of the simulation cell in the x and y directions. The rate
of compression was equal in both directions. We report results
in terms of the applied engineering strain ε(t ) = 1 − L(t )/L0,
where L(t ) is the linear length of the cell (at time t), and
L0 the initial initial length. Since a jump in the strain rate
generates undesirable shock waves, we gradually increased
ε̇(t ) from zero to a constant value during the first 100 ps of
the simulation. We carried out simulations at final strain rates
of 107 s−1 and 108 s−1.

During deformation, we controlled the temperature us-
ing a dissipative particle dynamics (DPD) [36] thermostat
with a cutoff radius of 6.5 Å—equal to the cutoff ra-
dius of the potential—and a damping parameter γ = 5 ×
10−3 eVps/ Å2 , which leads to a characteristic damping time
of approximately 1 ps. Unlike Langevin or Nosé-Hoover ther-
mostats, the Gallilean-invariant DPD thermostat does not
overdamp long-wavelength modes, which is important for
large-scale simulations such as those reported here.

Plastic deformation roughened the initially flat sample sur-
faces, which we quantified from a pixel representation hxy(ε)
of the topography with lateral pixel size Lpix ≈ 0.3 nm. hxy

is the height of the topmost atom (bottommost for bottom
surface) associated with the pixel with center coordinates x
and y. A pixel size of 0.3 nm is small enough to resolve short-
wavelength components of the topography and large enough
to avoid artifacts when assigning heights; see Appendix. We
performed all statistical analysis on hxy, e.g., the root-mean-
square roughness hrms = 〈h2

xy〉 where 〈·〉 is the average over
all pixels. We assume that the mean of each height map is
zero, 〈hxy〉 = 0.

III. RESULTS

Figures 1(b)–1(d) show hxy after 30% compression in our
dynamic tests. At the lowest rate and temperature (107 s−1 and
10 K, Fig. 1(b), the most prominent feature is a lentil-shaped
dip formed by shear bands. We find a similar topography
in a quasistatic simulation (not shown), where we imposed
compressive strain on the cell in increments of �ε = 10−4 by
affinely remapping all coordinates, followed by subsequent
relaxation down to a force of 10−3 eVÅ−1 using the FIRE

algorithm [37]. In the other simulations at higher temperature
or higher rate, deformation was less localized and the resulting
surface topography is more diffuse; see Figs. 1(c) and 1(d).
The roughness amplitude generally decreases with increas-
ing temperature and rate. At T = 500 K and ε̇ = 108 s−1, the
height range is only 2 nm. Figure 1(e) shows line scans along
the y direction, extracted approximately at the midpoint of
the edge along the x direction. The dashed line in Fig. 1(b)
indicates the position of the scans.

Figure 2(a) shows the mean lateral stress (σxx + σyy)/2
as a function of strain ε. In most cases, the purely linearly
elastic regime does not end abruptly. After the peak, the stress
decreases smoothly, as expected [38–40], and stabilizes at the
steady-state flow stress. Increasing temperature and decreas-
ing rate lowers the peak and flow stresses. The only exceptions
are the two simulations with shear banding: the quasistatic test

075603-2



NONEQUILIBRIUM PLASTIC ROUGHENING OF METALLIC … PHYSICAL REVIEW MATERIALS 6, 075603 (2022)

FIG. 2. (a) Lateral normal stress vs compressive strain ε in simulations with different strain rates ε̇ and temperatures T . (b) Root-
mean-square roughness hrms, which increases after yield. A shear band forms in the quasistatic simulation, and in low-rate, low-temperature
simulations (here ε̇ = 107 s−1 at 10 K). The thin-red line is a model of hrms for a topography dominated by a shear band (see text). (c) Cross
correlation R (see text) between subsequent topographies at intervals of �ε ≈ 0.0025. (d) Hurst exponent extracted from fits to the PSD (see
text).

and the dynamic simulation with ε̇ = 107 s−1 at 10 K. In the
former case, a sharp stress drop is visible. In the latter case,
the stress decreases again close to ε = 0.3.

In all cases, hrms [see Fig. 2(b)] is initially less than 0.1 nm,
as should be expected for an atomically flat surface, but
increases after peak stress. The rate of roughening depends
on ε̇ and T . The steepest increase in hrms is seen in the
quasistatic simulation and the simulation with ε̇ = 107 s−1 at
10 K. Increasing ε̇ and T leads to a more gradual transition,
and lower hrms at the same strain. At the highest tempera-
tures, there is little difference between the curves for 300 K
and 500 K. At large strain, hrms ∝ εα with α ≈ 0.5, except
in the simulation with ε̇ = 107 s−1 at 10 K that forms a shear
band.

While hrms increases continuously, there is little qualitative
difference between the topography formed during yield, and
the topography at later stages of deformation. To quantify
this observation, we calculated the cross correlation R(ε) =
〈hxy(ε − �ε)hxy(ε)/[hrms(ε − �ε)hrms(ε)]〉1/2 between sub-
sequent simulation snapshots with �ε = 0.0025 for the
simulations with ε̇ = 108 s−1 [Fig. 2(c)]. Before yield, the
cross correlation is small (≈ 0.2), indicating that there are
not many common features between subsequent snapshots.
This is not surprising, since hrms is so low that the structural
disorder of the glassy state dominates the topography. After
the peak stress, the cross correlation increases significantly,
with the strongest and most rapid increase seen in the sim-
ulation at the lowest temperature of T = 10 K. In this case,
the cross correlation jumps to a value close to one, indicating
that the topography is reinforced—peaks grow higher and val-
leys become deeper—with little qualitative change. Increasing
temperature reduces the correlation, but beyond ε ≈ 0.04, it
stays above 0.5.

In order to examine lateral correlations in the topogra-
phy, we compute the power spectral density (PSD), C2D

qxqy
=

L−2|h̃qxqy |2 (or rather its radial average Ciso
q ), where h̃qxqy is

the discrete Fourier transform of hxy. (See Ref. [41] for the
conventions used here.) If the topography is self-affine with
Hurst exponent H , then the PSD scales as Ciso

q ∝ q−2−2H .

Figure 3(a) shows how Ciso
q evolves with strain ε. The PSD

is constant at small strain, where the residual roughness is
given by uncorrelated quenched disorder of the glassy state.
At yield, Ciso

q begins to grow, as can be seen in the curve
for ε = 0.04, which is just past the peak stress in this simu-
lation. Topographic structure emerges first at small q or long
wavelengths. At a large strain of ε = 0.3, Ciso

q has a linear
region in the double-logarithmic plot, which is the signature
of self-affine (scale-free) roughness.

Figure 3(b) shows Ciso
q from the simulations at 100 K,

300 K at ε = 0.3. In the double-logarithmic plot, all curves
have a linear region at intermediate q. As a guide to the eye,

FIG. 3. (a) Radially averaged power spectral density (PSD) Ciso
q

of the surface heights, at three different strains in the simulation with
T = 10 K and ε̇ = 107 s−1. As a consequence of plastic deforma-
tion, Ciso

q increases with strain ε, first at long wavelengths (small
wavevectors q). Despite a shear band that forms in this simulation,
Ciso

q is approximately linear in the double logarithmic plot at large ε.
(b) Ciso

q at ε = 0.3 in simulations at and above 100 K. Gray lines: Fit
to a white noise plus power-law model Ciso

q = Cwn + Cfq−2−2H in the
region q > 0.18 n−1m; the cutoff is indicated by a vertical-dashed
line. The ordinates in (b) have been shifted for better visibility.
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FIG. 4. Ratio of the isotropic and the one-dimensional power
spectral densities Ciso

q and C1D
q , respectively, normalized by pixel size

Lpix, for three different pixel sizes. At large wavevectors, all curves
approach unity, indicating that they are controlled by white noise in
this limit. Data is computed at ε = 0.3 from the simulation with rate
ε̇ = 107 s−1 at temperature T = 100 K.

the gray lines in Figs. 3(a) and 3(b) show ideal fractal scaling
with a Hurst exponent H = 0.5. We extract an estimate for the
Hurst exponent from these calculations by fitting the simple
model Ciso

q = Cwn + Cfq−2−2H to the PSD data, excluding data
in the long wavelength region q < 0.18 nm−1. The constant
Cwn is a white noise contribution and Cf is the amplitude of
the fractal regime.

The individual fits are shown as dashed-gray lines in
Figs. 3(a) and 3(b). The combination of white noise and a
self-affine regime describes the data well, even at at ε = 0.04
in Fig. 3(a) where roughening has just begun. The fits now
allow us to plot the evolution of H with strain ε [Fig. 2(d)].
There is an initial region of negative H where the surfaces are
flat and do not show self-affine scaling, followed by a jump to
a finite value as the surfaces yield. H depends on temperature
and strain rate, with lower temperatures and lower strain rates
leading to larger values of H .

We now show in more detail that the tail of the PSD
at large wavevectors in Fig. 3 is indeed white noise, us-
ing a method described in Ref. [41]. The isotropic PSD
Ciso

q is the radial average of the full two-dimensional power
spectral density map C2D

qxqy
. White noise with a standard de-

viation σwn generates a contribution Ciso
wn = L2

pixσ
2
wn, where

Lpix is the linear dimension of the (square) pixel. We can
also interpret hxy as a series of line scans and calculate their
average one-dimensional PSD, C1D

q . Here, white noise makes
a contribution Ciso

wn = Lpixσ
2
wn. Thus, the ratio of Ciso

q and C1D
q

will contain a term Ciso
q /C1D

q = Lpix. If the PSD is indeed
controlled by white noise, then Ciso

q /(LpixC1D
q ) → 1 at large

wavelengths.
We computed this ratio for the configuration with ε = 0.3

from the simulation with rate ε̇ = 107 s−1 at temperature T =
100 K. Figure 4 shows the ratio for three different pixel sizes.
All curves approach a value of unity at large wavevectors,

which is the signature of white noise. This means while self-
affinity emerges at large wavelength, the quenched disorder of
the glass determines the structure at small wavelengths.

IV. DISCUSSION

At low temperature (T = 10 K) and strain rate (ε̇ =
107 s−1), the system is near the athermal quasistatic (or over-
damped) regime of deformation [42], with the quasistatic
simulation as the limiting case. In line with many previ-
ous investigations [43,44], we observe system-spanning shear
bands. Considering the high strain rates that are typical for
molecular calculations, it is perhaps surprising that we can
approach the quasistatic limit with our dynamic simulations.
In what follows, we invoke a model by Hentschel et al. [22]
to show that system-spanning shear bands, the characteristic
feature in both simulations, can be expected almost up to a
rate of ε̇ = 107 s−1, at least at zero temperature.

Hentschel et al. argued that there is a critical cutoff scale ξ

for the size of a deformation avalanche that depends on shear
rate. (Related observations on such a cutoff have been made in
other papers [21,45].) For a system with free boundaries, this
corresponds to the size up to which percolation of system-
spanning shear bands occurs. For L > ξ , many uncorrelated
plastic events will occur simultaneously, suppressing the for-
mation of a shear band. ξ depends on the deformation rate and
arises due to a competition between the elastic relaxation time
and the characteristic time between plastic events. It is given
by

ξ

〈λ〉 =
[(

ε̄

σy〈λ〉d

)(
c

〈λ〉ε̇
)]1/(1−βd )

, (1)

where 〈λ〉 is the mean interatomic distance, σy the flow stress,
ε̄ the mean potential energy drop per atom during a plastic
event, c the speed of sound, d the dimension, and β the
exponent of the power-law relation between average stress
drop and number of atoms.

We have estimated ξ for our case. By fitting Hooke’s
law to stress-strain curves from deformation tests carried out
with smaller (L ≈ 10 nm) cubes that were prepared with the
same quench rate, we obtain C44 = 23.8 GPa at T = 100 K.
At the same temperature, the larger configuration used in
the simulations reported in the main text has an initial side
length of L = 98.6 nm and a density of 7228.9 kg/ m3 . This
gives a speed of sound in the transversal direction of c =√

C44/ρ = 1815.6 ms−1. From the peak of the radial distri-
bution function, we estimate 〈λ〉 = 0.28 nm for Cu-Zr bonds.
Our estimate of σy is based on the average lateral normal
stress σ = (σxx + σyy)/2 in the region 0.2 � ε � 0.3; see
Fig. 2(a). We take for σy the corresponding shear stress on
planes inclined 45 ◦ to the z direction. For a stress tensor with
nonzero components σxx, σyy, and σxy, σy = (σxx + σyy)/4. At
ε̇ = 108 s−1 and T = 100 K, we obtain σy = 0.82 GPa.

The mean potential energy drop per atom ε̄ is the parameter
that is most difficult to estimate. We cannot directly com-
pute this average from our data, because we cannot resolve
all events with the given strain increment or rate. However,
we recorded the potential energy per atom, and this allows
an approximation. On average, an atom will move from a
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high-energy to a low-energy position, thus we assume ε̄ ∝ σ̄U,
where σ̄U is the average of the standard deviations σU,Cu and
σU,Zr of the potential energy of Cu and Zr atoms, respec-
tively, σ̄U = [(σ 2

U,Cu + σ 2
U,Zr )/2]1/2. We obtain ε̄ = √

2σU as
the standard deviation of the difference of two random vari-
ables with standard deviation σU. From the configuration at
ε = 0.3 in the simulation with ε̇ = 108 s−1 and T = 100 K,
we obtain ε̄ = 0.17 eV. Our simulations are three dimen-
sional, hence d = 3. Finally, we use β = α − 1, where α is
the exponent of the power law relating the average poten-
tial energy drop to the number of atoms [22]. From Fig. 2
in Ref. [46] we obtain α ≈ 0.53, giving β = −0.47 or the
scaling relationship ξ ∝ ε̇−0.41. We note that this exponent
appears to be consistent with the characteristic correlation
length between plastic flow events for binary Lennard-Jones
glasses reported in Ref. [47], ξ ∝ ε̇−0.4 in 2D and ξ ∝ ε̇−0.3

in 3D.
Using this data, we find L = ξ at ε̇ = 7.2 × 106 s−1, not

far from the minimum strain rate 107 s−1 considered in this
paper. Thus, our observation of system-spanning shear bands
at the lowest rate is consistent with theory. Both our data
and the model indicate that a dynamic simulation can ap-
proximate the quasistatic regime, even at the comparatively
high strain rates used in molecular dynamics simulations. We
note that Hentschel et al. [22] propose another cutoff length
scale, where temperature fluctuations suppress avalanches.
However, using our data for this estimate predicts that all our
simulations should be free of shear bands, which is clearly not
the case.

We turn to the effect of shear bands on the topography,
which is formed by the steps left of the surface. The cor-
responding hrms curve in Fig. 2(b) can thus be understood
using a simple model of the growth of a single surface step
described by the function h(x) = a(x − L(ε)/2), where a is
the slope of the step. The mean height is zero, hence the
hrms = L−1

∫ L
0 h2(x)dx = aL/

√
12. The length decreases with

strain as L(ε) = (1 − ε)L0. We assume that the slope is a
linear function of strain, i.e., a(ε) = A(ε − εb) + B, where A
and B are constants, and εy is the strain at which the band is
formed. In reality, the band forms over a range of strain. How-
ever, this range is narrow, as can be seen in Fig. 2(b), where
εb ≈ 4.8 × 10−2 is a good approximation. At εb, hrms jumps
to a base value hrms(εb) ≡ hb ≈ 4 nm, which determines B.
By substituting L(εb) and a(εb) into the formula for hrms, we
obtain B = hb

√
12/[(1 − εb)L0], hence

hrms(ε) = L0√
12

(
A(ε − εb) + hb

√
12

(1 − εb)L0

)
(1 − ε). (2)

With A = 1, we obtain the red curve in Fig. 2(b), which is
close to the data for ε̇ = 107 s−1 and T = 10 K.

It is remarkable that the topography appears to be
self-affine at large strain [Fig. 3(a)], even though the overall
topography is dominated by a single system-spanning shear
band. We note that an idealized sawtooth profile (that is not
self-affine) also exhibits power-law scaling Ciso

q ∝ q−3 of the
power spectral density—however, with a smaller apparent
Hurst exponent of H = 0.5, while our fit of the data in
Fig. 3(a) yields H = 0.8. (Note that a random distribution of
multiple such steps leads to a self-affine topography, albeit

FIG. 5. Root-mean-square roughness hrms, divided by ε̇−ηT −κ ,
with η = 0.1 and κ = 0.7. This normalization collapses the hrms

curves at high strain.

at scales larger than our simulations—see also the discussion
on dislocations, that leave behind atomic-scale steps, in
Ref. [15].) Since power-law scaling of Ciso

q is also plausible
in the other simulations with higher rates and temperatures,
where no system-spanning shear bands are formed, these
shear bands likely do not control the exponent of Ciso

q in
Fig. 3(a).

Decreasing either rate or temperature increases both hrms

and H . In this respect, the glass is different from metal
crystals, where hrms and H due to roughening by plastic de-
formation are independent of rate and temperature [15]. We
note in particular that the dependence of the scaling exponent
H on rate and temperature is unusual, as scaling exponents
in power-law correlated data of phase transitions or criti-
cal phenomena are widely regarded as universal [48]. These
observations touch upon an ongoing discussion whether the
yielding transition (in glassy materials) can be strictly re-
garded as a phase transition [49–53], that becomes “rounded”
at finite temperature [54,55]. In our calculations, this rounding
is manifested in the transition from a sharp drop in stress at
low temperature over a range of strains in Fig. 2(a). Con-
versely, the Hurst exponent does not appear to “round”; it
jumps to a finite value at the yielding transition even at
high temperature [Fig. 2(d)]. This indicates a sharp transition,
albeit towards a temperature-dependent (and hence nonuni-
versal) exponent of the spatial correlations.

Finally, we attempt an empirical scaling collapse of our
data for the characteristic length in our system, the height
amplitude hrms. We attempt to collapse the hrms(ε) curves
from those simulations where no system-spanning shear band
is nucleated assuming the empirical relation hrms ∝ ε̇−ηT −κ .
Before dividing by ε̇−ηT −κ , we subtracted the small baseline
roughness hrms,0 of the undeformed state that reflects the white
noise contribution to surface roughness, which we do not ex-
pect to scale. We computed hrms,0 as the mean value of hrms(ε)
for ε < 0.01. Figure 5 shows the curves after normalization
with η = 0.1 and κ = 0.7. This choice collapses the data
beyond the yield point (ε � 0.1).

We note that the exponent η is obviously different
from the exponent governing the length scale ζ . This in-
dicates that the mechanism that determines the nucleation
of a system-spanning shear band is different from the
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deformation mechanism underlying the roughening. We be-
lieve that roughening is determined by the rate-dependence of
single shear transformation events, which is weaker than the
rate dependence of their percolation.

V. SUMMARY AND CONCLUSIONS

In summary, the evolution of the surface roughness of a
deformed Cu50Zr50 metallic glass reflects the dependence of
plastic flow on rate ε̇ and temperature T . At low values of
these parameters, the topography is dominated by system-
spanning shear bands. At higher temperatures and rates, a
more diffuse topography emerges, with some traces of univer-
sality: At large strain, the root-mean-square roughness tends
to grow roughly as hrms ∝ εα , with α ≈ 0.5. Moreover, hrms ∝
ε̇−ηT −κ at large strain with η ≈ 0.1 and κ ≈ 0.7. Regardless
of rate and temperature, the power spectral density of all
surfaces can be described as the superposition of a self-affine
part and constant noise from quenched, glassy disorder.

Our results remain valid for small-scale roughness of sys-
tems with evolving shear bands. We note that similar to
dislocations [12,15], a network of shear bands forms a net-
work of steps on a surface, which also carries the signature
of self-affine scaling with an exponent that depends on the
lateral correlation of these steps. This indicates that during
the formation of real-world surfaces, a number of mechanisms
may be active at different scales that all lead to self-affine
geometries.
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APPENDIX: EFFECT OF PIXEL SIZE

To check the effect of pixel size, we recalculated hrms and
Ciso

q with different pixel sizes Lpix for the configuration at
ε = 0.3 from the simulation with ε̇ = 107 s−1 and T = 100 K.
Figure 6(a) shows hrms as a function of Lpix. The dotted line
indicates our default value Lpix = 0.3 nm. Below this value,

FIG. 6. (a) RMS roughness hrms as a function of pixel size Lpix.
The dotted line indicates the value 0.3 nm used in the calculations
reported in the main text. For smaller values of Lpix hrms increases
rapidly because the algorithm for assigning heights to pixels fails.
(b) Power spectral density Ciso

q for different values of Lpix � 0.3 nm.
The different curves collapse, however the long-wavevector cutoff
decreases. The dash-dotted line shows the maximum wavevector at
Lpix = 3 nm.

hrms increases rapidly with decreasing Lpix. Here, our algo-
rithm for assigning heights to pixels fails. Pixels are so small
that some do not cover any surface atoms, only atoms in
the bulk, resulting in artificially inflated height differences.
Below 0.12 nm, some pixels do not cover any atoms at all.
For Lpix � 3 nm, hrms decreases with increasing Lpix. Between
Lpix = 0.3 nm and Lpix = 3 nm, hrms decreases by 25%.

Figure 6(b) shows Ciso
q for different values of Lpix �

0.3 nm. The curves collapse, but the cutoff at large wavevec-
tors decreases with increasing Lpix. The dash-dotted line
indicates the largest wavevector for Lpix = 3 nm. We conclude
that Lpix = 0.3 nm is large enough to avoid artifacts of our
pixelization algorithm, and small enough to observe linear
scaling of Ciso

q in the log-log plot.
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[43] K. Albe, Y. Ritter, and D. Şopu, Enhancing the plasticity of
metallic glasses: Shear band formation, nanocomposites and
nanoglasses investigated by molecular dynamics simulations,
Mech. Mater. 67, 94 (2013).

[44] M. Singh, M. Ozawa, and L. Berthier, Brittle yielding of amor-
phous solids at finite shear rates, Phys. Rev. Materials 4, 025603
(2020).

[45] C. Liu, E. E. Ferrero, F. Puosi, J.-L. Barrat, and K. Martens,
Driving Rate Dependence of Avalanche Statistics and Shapes at
the Yielding Transition, Phys. Rev. Lett. 116, 065501 (2016).

075603-7

https://doi.org/10.1163/156856196X00832
https://doi.org/10.1063/1.1398300
https://doi.org/10.1103/PhysRevLett.89.245502
https://doi.org/10.1073/pnas.1320846111
https://doi.org/10.1073/pnas.1913126116
https://doi.org/10.1038/nmat3460
https://doi.org/10.1063/1.1661628
https://doi.org/10.1103/PhysRevLett.93.195507
https://doi.org/10.1016/j.actamat.2016.04.002
https://doi.org/10.1016/j.actamat.2018.06.002
https://doi.org/10.1126/sciadv.aax0847
https://doi.org/10.1016/0001-6160(77)90232-2
https://doi.org/10.1016/0001-6160(79)90055-5
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1016/j.actamat.2016.01.049
https://doi.org/10.1103/PhysRevLett.103.065501
https://doi.org/10.1103/PhysRevLett.104.025501
https://doi.org/10.1088/0953-8984/7/23/006
https://doi.org/10.1140/epjb/e2006-00420-6
https://doi.org/10.1103/PhysRevLett.126.066101
https://doi.org/10.1038/271431a0
https://doi.org/10.1111/j.1151-2916.1989.tb05954.x
https://doi.org/10.1103/PhysRevLett.97.135504
https://doi.org/10.1029/2011JB009041
https://doi.org/10.1021/acsami.8b09899
https://doi.org/10.1038/s41467-019-09127-8
https://doi.org/10.3390/ma14237327
http://arxiv.org/abs/arXiv:2204.09563
https://doi.org/10.1016/j.pmatsci.2010.12.002
https://doi.org/10.1103/PhysRevE.68.046702
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevE.68.011507
https://doi.org/10.1016/j.actamat.2006.05.011
https://doi.org/10.1016/j.actamat.2006.05.024
https://doi.org/10.1088/2051-672X/aa51f8
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1016/j.mechmat.2013.06.004
https://doi.org/10.1103/PhysRevMaterials.4.025603
https://doi.org/10.1103/PhysRevLett.116.065501


NÖHRING, HINKLE, AND PASTEWKA PHYSICAL REVIEW MATERIALS 6, 075603 (2022)

[46] N. P. Bailey, J. Schiøtz, A. Lemaître, and K. W. Jacobsen,
Avalanche Size Scaling in Sheared Three-Dimensional Amor-
phous Solid, Phys. Rev. Lett. 98, 095501 (2007).

[47] J. T. Clemmer, K. M. Salerno, and M. O. Robbins, Criticality in
sheared, disordered solids. I. Rate effects in stress and diffusion,
Phys. Rev. E 103, 042605 (2021).

[48] H. E. Stanley, Scaling, universality, and renormalization: Three
pillars of modern critical phenomena, Rev. Mod. Phys. 71, S358
(1999).

[49] P. K. Jaiswal, I. Procaccia, C. Rainone, and M. Singh, Mechani-
cal Yield in Amorphous Solids: A First-Order Phase Transition,
Phys. Rev. Lett. 116, 085501 (2016).

[50] G. Parisi, I. Procaccia, C. Rainone, and M. Singh, Shear
bands as manifestation of a criticality in yielding amor-
phous solids, Proc. Natl. Acad. Sci. USA 114, 5577
(2017).

[51] M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tarjus,
Random critical point separates brittle and ductile yielding tran-
sitions in amorphous materials, Proc. Natl. Acad. Sci. USA.
115, 6656 (2018).

[52] R. Jana and L. Pastewka, Correlations of non-affine displace-
ments in metallic glasses through the yield transition, J. Phys.
Mater. 2, 045006 (2019).

[53] M. Ozawa, L. Berthier, G. Biroli, and G. Tarjus, Role of fluc-
tuations in the yielding transition of two-dimensional glasses,
Phys. Rev. Research 2, 023203 (2020).

[54] E. E. Ferrero, A. B. Kolton, and E. A. Jagla, Yielding of
amorphous solids at finite temperatures, Phys. Rev. Materials
5, 115602 (2021).

[55] M. Popović, T. W. J. de Geus, W. Ji, and M. Wyart, Thermally
activated flow in models of amorphous solids, Phys. Rev. E 104,
025010 (2021).

[56] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys. 117, 1 (1995).

[57] A. Stukowski, Visualization and analysis of atomistic simula-
tion data with OVITO—The open visualization tool, Modell.
Simul. Mater. Sci. Eng. 18, 015012 (2010).

[58] C. B. Sullivan and A. Kaszynski, PyVista: 3D plotting and mesh
analysis through a streamlined interface for the visualization
toolkit (VTK), J. Open Source Softw. 4, 1450 (2019).

[59] M. C. Röttger, A. Sanner, L. A. Thimons, T. Junge, A. Gujrati,
J. M. Monti, W. G. Nöhring, T. D. B. Jacobs, and L. Pastewka,
contact.engineering—Create, analyze and publish digital sur-
face twins from topography measurements across many
scales, arXiv:2203.13606 [Surf. Topogr. Metrol. Prop. (to be
published)].

075603-8

https://doi.org/10.1103/PhysRevLett.98.095501
https://doi.org/10.1103/PhysRevE.103.042605
https://doi.org/10.1103/RevModPhys.71.S358
https://doi.org/10.1103/PhysRevLett.116.085501
https://doi.org/10.1073/pnas.1700075114
https://doi.org/10.1073/pnas.1806156115
https://doi.org/10.1088/2515-7639/ab36ed
https://doi.org/10.1103/PhysRevResearch.2.023203
https://doi.org/10.1103/PhysRevMaterials.5.115602
https://doi.org/10.1103/PhysRevE.104.025010
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.21105/joss.01450
http://arxiv.org/abs/arXiv:2203.13606

