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Compatible microstructures in magnetic materials
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A mathematical relationship between magnetic material constants is proposed for which highly reversible
microstructures form during phase transformations. The microstructures formed during paramagnetic-
to-ferromagnetic phase transformation are systematically studied, and specific combinations of material
constants—namely, magnetocrystalline anisotropy κ1, κ2 and magnetostriction λ100, λ111—for which stress-free
interfaces with divergence-free magnetization can form are identified. The microstructural analysis shows that
magnetic materials with κ1 � 0, κ2 � 9|κ1|

4 , and λ111 = − λ100
3 form exactly compatible and divergence-free phase

boundaries. Furthermore, the analysis shows that, consistent with experimental observation, magnetic alloys that
undergo cubic-to-monoclinic-II transformation have multiple solutions satisfying the high-reversibility condition
and are suitable candidates for alloy development. Broadly, the results could guide the design of magnetic
materials with low fatigue and hysteresis for energy applications.
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I. INTRODUCTION

Magnetic materials that undergo diffusionless phase trans-
formations are characterized by an abrupt change in physical
properties (e.g., paramagnetic to ferromagnetic). This abrupt
change makes phase transformation magnetic materials most
exciting in science and technology, and in recent years, their
use in rewritable optical memories, magnetic refrigeration,
and induction motors of electric vehicles has seen enormous
growth [1,2]. Although magnetic materials are commonly
used, their widespread application is limited by the decay of
material properties with repeated cycling [3]. In this paper,
we systematically study the microstructures that form in mag-
nets during phase transformations and propose a mathematical
relationship between magnetic material constants that can be
used to significantly reduce (or eliminate) material decay.

A leading cause of decay of material properties during
phase transformation is attributed to the elastically stressed
phase boundary that separates the ferromagnetic and param-
agnetic phases [4,5]. During phase transformation, individual
lattices undergo abrupt structural changes that induce sig-
nificant stresses at the phase boundary. This stressed phase
boundary, which moves back and forth in the material during
phase transformation, can nucleate defects, anisotropically
expand materials, and contribute to the irreversible decay of
magnetic properties. Additionally, this phase boundary serves
as a nucleation barrier during reversible cycling and induces
thermal hysteresis [4]. Consequently, these phase transfor-
mation magnetic materials need to be replaced after a few
hundred cycles. Under ideal circumstances, many applications
using these magnetic materials need to be reversibly cycled
at high frequencies, and for over several thousand times in a
single lifespan.
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Shape-memory alloys—another class of phase transfor-
mation materials—bear similarities to magnetic materials
and undergo structural degradation with repeated cycling.
However, researchers have recently discovered crystallo-
graphic design principles according to which shape-memory
alloys with small hysteresis and high reversibility can be
atomically engineered. For example, a Ti-Ni-Cu alloy that
typically fatigues after 200 stress-strain cycles was atomically
doped to satisfy a λ2 = 1 design condition [6]. This design
condition corresponds to a special set of lattice parameters for
which a phase transformation material can form a stress-free
interface between the two phases [7]. By satisfying this
design condition the shape-memory alloy forms an exactly
compatible and stress-free phase boundary that dramatically
lowers its hysteresis [8]. In another example, a highly re-
versible shape-memory alloy was atomically doped to satisfy
the cofactor conditions [9]. These doped alloys not only form
stress-free phase boundaries, but also have an infinite number
of solutions for which the stress-free phase boundaries can
form. These infinite solutions offer extraordinary reversibility
to shape-memory alloys. These crystallographic design
principles are being used to design novel shape-memory
alloys and have been adapted to other phase transformation
materials, including semiconductors, ferroelectrics,
ferromagnets, and intercalation materials [10–16].

However, unlike shape-memory alloys, phase transforma-
tions in magnetic materials are accompanied by an abrupt
change in the magnetization state in addition to the structural
transformation of its lattices. While the design principles, such
as the λ2 = 1 and the cofactor conditions, ensure structural
compatibility at the phase boundary and minimize the elas-
tic energy, we do not know whether these phase boundaries
will have divergence-free magnetization that is necessary for
minimum demagnetization energy [4,5,17]. Although mag-
netization compatibility follows structural compatibility for
twin interfaces between magnetic variants [18], this is not a
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necessary and sufficient condition for an exactly compatible
paramagnetic/ferromagnetic interface. The demagnetization
energy, if not minimized, would restrict the microstructural
solutions for compatible interfaces and thus affect the re-
versible cycling of magnetic materials.

Another limitation in applying the crystallographic design
principles to magnetic alloys is related to the fundamen-
tal coupling between lattice deformations and the magnetic
material constants, such as magnetocrystalline-anisotropy
constants κ1, κ2 and magnetostriction constants λ100, λ111.
The values of the anisotropy constants κ1, κ2 determine the
easy axes of magnetization (i.e., the crystallographic direc-
tions of magnetization) and thus affect lattice deformations
[19]. Likewise, the magnetostriction constants λ100, λ111 de-
termine how a material expands or contracts in response to
its magnetization state and thus govern the lattice strains
during phase transformations [20]. In materials with large
magnetostriction (e.g., magnetic shape-memory alloys) these
magnetostriction constants significantly contribute to the elas-
tic energy of the system and play an important role in
microstructural evolution. We do not know whether a spe-
cific combination of magnetic material constants—analogous
to the λ2 = 1 condition—exists for magnetic materials,
for which structurally compatible and divergence-free mi-
crostructures can form during phase transformations. Such a
condition would guide the design of magnetic alloys with high
reversibility and low hysteresis [21].

The aim of the present work is to determine the combi-
nation of magnetic material constants for which compatible
and divergence-free microstructures form in magnetic ma-
terials during phase transformation. We use the coupled
strain tensor E0, which is a function of the magnetostriction
constants λ100, λ111 and magnetization m, in our microstruc-
tural analysis [22]. We apply the geometrically linear strain
tensor E0 to determine the combination of magnetic ma-
terial constants for which divergence-free twin interfaces,
λ2 = 1 paramagnetic/ferromagnetic interfaces, and cofac-
tor microstructures form during phase transformation. Our
microstructural analysis shows that magnetic alloys undergo-
ing cubic-to-monoclinic-I transformation (with κ1 � 0, κ2 �
9|κ1|

4 , and λ111 = − λ100
3 ) form exactly compatible (λ2 = 1) and

divergence-free phase boundaries. Although other magnetic
alloys, which undergo cubic-to-tetragonal or cubic-to-trigonal
transformation, can form exactly compatible phase bound-
aries, these boundaries are not divergence-free. Additionally,
our analysis shows that magnetic alloys that undergo cubic-
to-monoclinic-II transformation have multiple solutions satis-
fying the exactly compatible and divergence-free conditions
and are suitable for alloy development. Overall, our findings
contribute to the design principles necessary to form highly
reversible microstructures in magnetic alloys. In principle our

microstructural analysis is transferable to other multiferroic
materials, such as ferroelectrics; however, for the current
study we use magnetic martensites as representative materials.

II. PHASE TRANSFORMATION IN MAGNETIC
MATERIALS

Following Ball and James [26] and Song et al. [9], we
propose a free-energy functional for magnetic materials that
undergo first-order reversible phase transformations. We list
all notations of symbols used in this text and their descriptions
in the Appendix.

We assume a cubic crystal symmetry for lattices in the
paramagnetic austenite phase. The macroscale material body
has a reference configuration E ⊂ R3 at the Curie tempera-
ture θ0 = const and has an oblate ellipsoid (pancake-shaped)
geometry oriented as shown in Fig. 1(c). On reducing the
temperature to below the Curie temperature, the paramagnetic
austenite lattices change their geometry and gain a sponta-
neous magnetization (i.e., the paramagnetic phase becomes a
ferromagnetic phase). We describe this phase transformation
using a geometrically linearized setting: Below, we discuss
how this linearized framework enables us to derive a mathe-
matical relationship between the materials’ magnetostriction
constants (linear coupling coefficients) that are necessary to
form compatible microstructures. The geometrically linear
theory simplifies various microstructure calculations and is
strictly applicable to materials with small deformations.

In the geometrically linear theory, we describe an infinites-
imal change in lattice geometry using a strain tensor y = Ex,
x ∈ E . This strain tensor E is described as the symmetric part
of the displacement gradient E = 1

2 (H + HT) and is applica-
ble to materials with uniformly small displacement gradients
[27]. For these small deformations, the strain tensor is related
to the stretch tensor as U = I + E. Here, I is a 3 × 3 identity
matrix. Further comments on the strain tensor for materials
with small strain and rotations are given in the Appendix. The
nondimensionalized magnetization in an orthonormal basis
m = M/ms is parallel to the cubic axes, and ms is the satu-
ration magnetization of the magnetic material [28].

The paramagnetic-to-ferromagnetic phase transformation
leads to a change in lattice geometry and magnetization state
at the Curie temperature; we assume the existence of a free
energy φ which depends on the magnetization m, strain tensor
E, and temperature θ . We assume this free energy φ(m, E, θ )
(a) to be invariant with respect to infinitesimal changes of
frame (or infinitesimal rotations W), i.e., φ(m, H + W, θ ) =
φ(m, H, θ ) = ψ (m, E, θ )|E= 1

2 (H+HT ), and (b) to exhibit sym-
metries implied by an appropriate form of the Cauchy-
Born rule combined with the Ericksen-Pitteri neighborhood
[30,31].

The above construction of the free energy leads to an energy-well landscape of the following type:

ψ (m = 0, E = 0, θ ) � ψ (m, E, θ ), θ > θ0, (1a)

ψ (0, 0, θ ) = ψ (m1, E1, θ ) = · · · = ψ (mn, En, θ ) � ψ (m, E, θ ), θ = θ0, (1b)

ψ (m1, E1, θ ) = · · · = ψ (mn, En, θ ) � ψ (m, E, θ ), θ < θ0, (1c)
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FIG. 1. (a) Easy axes of magnetization in soft magnets as a function of their anisotropy constants κ1, κ2 [19]. Three crystallographic
directions, namely, 〈100〉, 〈111〉, and 〈110〉, are found to be easy axes of magnetization in cubic alloys. (b) Schematic illustration of easy axes
in a cubic unit cell. (c) In our calculations we assume the soft magnetic body to have a macroscale shape of an oblate ellipsoid with easy axes
in plane. (d) Cubic-to-tetragonal transformation generates three structural variants E1, E2, E3 and six magnetization variants E1±, E2±, E3±.

where E1 · · · En are the strain tensors that map an undis-
torted E = 0 paramagnetic phase to the nth variant of the
ferromagnetic phase. For temperatures above the Curie tem-
perature θ > θ0, a strain matrix near E = 0 minimizes the
free-energy function, and for temperatures below the Curie
temperature θ < θ0, strain matrices near E1 · · · En minimize
the free-energy function. In general the existence of n + 1
energy wells for ψ (m, E, θ ) leads to the formation of plate-
like microstructures during phase transformations in magnetic
materials. Each distinct well at E = 0, E1 · · · En is associated
with a variant of the ferromagnetic phase, and the potential
wells can be precisely derived from these lattice consider-
ations [20]. Further details regarding the multiwell energy
landscape are given in the Appendix. We note that a sim-
ilar multiwell energy landscape with a suitable choice of
order parameters and strain tensors can be used to describe
paramagnetic-antiferromagnetic phase transformation in Pt-
Mn alloys [32] and ferromagnetic-antiferromagnetic phase
transformation in Mn-based alloys [33,34].

In this paper, we assume the bulk energy to be of the form
in Eq. (1b) and derive microstructural solutions for compatible
interfaces in magnetic alloys at the Curie temperature. Besides
the bulk free-energy function, other energy terms such as the
gradient energy and the demagnetization energy contribute to
the total energy of the system:

� =
∫
E
{

gradient energy︷ ︸︸ ︷
∇m · A∇m +

bulk energy︷ ︸︸ ︷
ψ (m, E, θ )}dx +

demagnetization energy︷ ︸︸ ︷
μ0

2

∫
R3

|∇ζm|2dx .

(2)

The gradient energy penalizes gradients of the magnetiza-
tion and is minimized when the neighboring magnetizations
are parallel. The gradient energy constant is typically small
(of the order of A ≈ 10−11 J/m3), and we neglect its contri-
bution at larger length scales. The demagnetization energy is
related to the work required to arrange magnetic dipoles into
a specific geometric configuration. This energy term scales
quadratically with the demagnetization field Hd = −∇ζm,
which is a gradient of the magnetostatic potential and is ob-
tained by solving the magnetostatic equation, ∇ · (−∇ζm +
M) = 0. The demagnetization energy is sensitive to the pres-
ence of defects in, and the body geometry of, the magnetic
material. In our calculations we assume a perfectly smooth
single-crystalline ellipsoid that (a) is free from defects and (b)
forms magnetic microstructures that are pairwise compatible
and thus locally divergence-free. This demagnetization energy
can be minimized for a perfectly smooth ellipsoid with a
constant average magnetization.

The ellipsoid geometry of the magnetic body is essential
as a way of describing the magnetic poles on the boundary of
an infinitely long macroscale body to minimize its demagne-
tization field. The demagnetization field Hd is proportional to
the magnetization intensity of the body and depends on the
geometric shape of the body. For example, the demagneti-
zation field is close to zero when the magnetic poles on the
body are described to be far apart, such as at the two extreme
ends of a rodlike body or on the farthest boundary edges of a
disklike body. Furthermore, magnetic bodies with sharp edges
or corners induce a nonzero demagnetization field, and in
our calculations we assume a magnetic body with perfectly
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smooth geometries such as an ellipsoid. This assumption of
a general ellipsoid case of the magnetic material eliminates
the effect of geometrical complications in deriving, as we
do in Secs. III and IV, the balance of fundamental material
constants that affect the formation of compatible microstruc-
tures. Furthermore, the ellipsoid configuration allows us to
have magnetic microstructures with the strain E and magneti-
zation m near the energy wells. Further details about treating
the demagnetization field under external loads are derived in
Ref. [18]. For our purposes, we use an oblate ellipsoid with
easy magnetization axes of the material in plane and solve
for compatible (and divergence-free) microstructures in the
material bulk; see Fig. 1(c).

The bulk energy primarily accounts for two types of energy
contributions. The first contribution is the anisotropy energy
ψaniso, which is defined as the penalty paid for rotating the
magnetization away from the direction of the easy crystallo-
graphic axes. This energy is a function of the magnetization
vector m and material constants called the anisotropy con-
stants κ1, κ2. For a cubic crystal the anisotropy energy ψaniso is
expressed in ascending powers of the magnetization, and often
the higher-order terms are neglected because of their small
contributions:

ψaniso = κ1
(
m2

1m2
2 + m2

2m2
3 + m2

3m2
1

) + κ2
(
m2

1m2
2m2

3

)
. (3)

The constants κ1, κ2 measure the amount of anisotropy of
a material, and their specific values determine the direction of
easy crystallographic axes in a magnetic alloy. For example,
in Fig. 1(a) the relation between κ1 and κ2 determines the
easy axes of magnetization along three principal directions—
〈100〉, 〈110〉, and 〈111〉—for a cubic crystal. The calculation
of the easy axes is described in detail by Bozorth [19]. The
three crystallographic easy axes of magnetization for cubic
alloys are schematically illustrated in Fig. 1(b).

The second contribution (to the bulk energy) arises from
the materials’ magnetostrictive response. That is, when a body
is magnetized (for example, under an externally applied mag-
netic field or during phase transformation), its dimensions
change slightly. This relative change in a body’s dimensions
is referred to as magnetostriction and gives rise to the magne-
toelastic energy of the system. The magnetoelastic energy is
minimized for strains satisfying E = E0(m). Here, E0(m) is
the eigenstrain or the preferred strain tensor and is a function
of magnetization orientation. In this paper, we use the general
quadratic form of E0(m) for a cubic case [20]:

E0(m) = 3
2

(
λ100

(
m ⊗ m − 1

3 I
)

+ (λ111 − λ100)
∑
i �= j

mimj (ei ⊗ e j )

)

= 3
2

[
λ100

(
m2

1 − 1
3

)
λ111m1m2 λ111m1m3

λ100
(
m2

2 − 1
3

)
λ111m2m3

symm. λ100
(
m2

3 − 1
3

)
]
,

(4)

where “symm.” refers to the matrix being symmetric.
Equation (4) describes lattice transformation using mag-

netostriction constants λ100, λ111 along two principal direc-
tions. Other constructions of strain matrices for magnetic

materials with hexagonal symmetry (e.g., cobalt) would re-
quire more than two magnetostriction constants [19,35]. For
our purposes, we assume a cubic (nonmagnetic) phase as
the reference lattice and construct compatible microstructures
during phase transformation. In Eq. (4) the magnetostriction
constants λ111, λ100 and the magnetic dipole m determine
the variants in the ferromagnetic phase of the material. We
categorize these variants into two sets, namely, strain and
magnetization variants. The strain variants (Ei) describe the
structural transformations of lattices, and the magnetization
variants (Ei±) describe the orientation of the magnetic dipole
(e.g., ±m) in the transformed lattice; see Fig. 1(d). The di-
rection of the magnetic dipole is governed by the anisotropy
constants, and from Fig. 1(a) we identify the three crystal-
lographic easy axes for magnetization to be 〈100〉, 〈111〉,
and 〈110〉, respectively. We assume saturation magnetization
as input (i.e., |m| = 1 or |M| = ms as a constraint), and we
compute the ferromagnetic strain and magnetization variants
for each of the crystallographic easy axes; see the Appendix.
We use the strain and magnetization variants to solve for
compatible and divergence-free microstructures in magnetic
alloys that can form during the paramagnetic-ferromagnetic
phase transformation in Sec. III. Finally, we note that the
form of the strain tensor in Eq. (4) can describe limited
structural transformations (e.g., cubic to tetragonal, cubic to
trigonal, and cubic to monoclinic-I) but other transformations
such as cubic to orthorhombic or cubic to monoclinic-II that
are widely observed in magnetic alloys [9,11,36–41] cannot
be described using the general form of Eq. (4). We investigate
this latter case in Sec. IV using a representative material.

III. COMPATIBLE INTERFACES

In this section, we determine for which combination
of magnetostriction constants compatible interfaces with
divergence-free magnetization form in magnetic alloys [42].
Specifically, we investigate three types of compatible in-
terfaces, namely, martensite/martensite twin interfaces, an
exact austenite/martensite interface, and supercompatible in-
terfaces satisfying the cofactor conditions.

A. Martensite/martensite interfaces

Following Eq. (4), we define the three structural trans-
formations, namely, cubic to tetragonal, cubic to trigonal,
and cubic to monoclinic-I, in cubic magnetic alloys. Table I
lists the corresponding strain tensors Ei, as a function of
magnetostriction constants, for each of these structural trans-
formations. We use two variants of the strain tensor, e.g.,
the Ith strain variant EI and the Jth strain variant EJ , to
examine whether there exist vectors a �= 0 and n̂ that satisfy
the twinning equation (strain compatibility condition in the
geometrically linear theory)

EI − EJ = 1

2
(a ⊗ n̂ + n̂ ⊗ a). (5)

Equation (5) has a solution if and only if E =
EI − EJ �= 0 and the eigenvalues of E satisfy ε1 �
ε2 = 0 � ε3. From Table I, magnetic materials with the
cubic-to-tetragonal transformation form compatible ferro-
magnetic interfaces if and only if λ100 �= 0. Similarly,
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TABLE I. Strain matrices Ei and martensite twin solutions for a ferromagnetic soft magnet with tetragonal, trigonal, and monoclinic
symmetries. Twin solutions for the martensite/martensite interfaces exist for specific values of the magnetostriction constants. Here, n, number
of variants.

Solutions
Easy axes Transformation Strain tensor Ei Eigenvalues of E exist if and only if

〈100〉 Cubic to tetragonal
⎡
⎣λ100 0 0

0 − λ100
2 0

0 0 − λ100
2

⎤
⎦ {− 3λ100

2 , 0,
3λ100

2 } λ100 �= 0n(Ei ) = 3
n(Ei±) = 6

〈111〉 Cubic to trigonal
⎡
⎣ 0 λ111

2
λ111

2
λ111

2 0 λ111
2

λ111
2

λ111
2 0

⎤
⎦ {−√

2λ111, 0,
√

2λ111} λ111 �= 0n(Ei ) = 4
n(Ei±) = 8

〈110〉 Cubic to monoclinic
λ100 �= 0

⎡
⎣− λ100

2 0 0
0 λ100

4
3λ111

4
0 3λ111

4
λ100

4

⎤
⎦n(Ei ) = 6 {− 3

4

√
λ2

100 + 2λ2
111, 0, and

n(Ei±) = 12 3
4

√
λ2

100 + 2λ2
111} λ111 �= 0

magnetic alloys with the cubic-to-trigonal transformation
form compatible ferromagnetic interfaces if and only if λ111 �=
0. For the cubic-to-monoclinic transformation, compatible
interfaces form when both λ111 �= 0 and λ100 �= 0 are satis-
fied. The resulting twin solutions for each of these structural
transformations are listed as a function of magnetostriction
constants in the Appendix.

Following James and Wuttig [18], we note that for
typical type I or type II twins (or compound twins), me-
chanical compatibility at the martensite/martensite interface
implies magnetic compatibility (i.e., divergence-free magneti-
zation). Figure 2 shows representative examples of compatible
interfaces constructed using Eq. (5) with divergence-free mag-
netization.

B. Exact austenite/martensite interface

Next, we solve the twinning equation between the austen-
ite phase and a single variant of the martensite phase.
We use the transformation strains Ei for the cubic-to-
tetragonal, cubic-to-trigonal, and cubic-to-monoclinic trans-
formations and examine whether there exist vectors a �= 0 and
n̂ that satisfy the compatibility condition in geometrically
linear theory:

EI − 0 = 1
2 (a ⊗ n̂ + n̂ ⊗ a). (6)

As discussed above, Eq. (6) has a solution if and only
if E = EI − 0 �= 0 and the eigenvalues of E satisfy ε1 �
ε2 = 0 � ε3. Table II lists the eigenvalues for the matrix E
as a function of the material’s magnetostriction constants
λ100, λ111 and the necessary conditions to form an exact
austenite/martensite interface.

For the martensite variant with 〈100〉 easy axes of mag-
netization an exact austenite/martensite interface forms for
a contradicting condition of λ100 = 0 and λ100 �= 0. This
condition is impossible for a magnetic material with one
magnetostriction constant along 〈100〉 longitudinal directions,
and thus no exact austenite/martensite interface can form in
magnetic alloys transforming from a cubic paramagnet to a
tetragonal ferromagnet. Similarly, for the martensite variant
with 〈111〉 easy axes, no exact austenite/martensite interface
can form in magnetic alloys transforming from a cubic para-
magnet to a trigonal ferromagnet. In contrast with previous
transformations, the transformation from cubic paramagnetic
to monoclinic-I ferromagnetic satisfies Eq. (6) and forms an
exact austenite/martensite interface for

λ100 =0 and λ111 �= 0, or

λ100 =3λ111 and λ111 �= 0, or

λ100 = − 3λ111 and λ111 �= 0. (7)

FIG. 2. Martensite/martensite interfaces in (a) tetragonal, (b) trigonal, and (c) monoclinic variants.
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TABLE II. Necessary conditions for an exact interface between the cubic-paramagnetic phase and a single variant of the ferromagnetic
phase. A/M, austenite/martensite.

Eigenvalues of matrix Condition for
Easy axes Transformation E = EI − 0 exact A/M interface

〈100〉 Cubic to tetragonal ε1 = − λ100
2 No solution;

ε2 = − λ100
2 ε2 = 0 if and only if λ100 = 0

ε3 = λ100

〈111〉 Cubic to trigonal ε1 = − λ111
2 No solution;

ε2 = − λ111
2 ε2 = 0 if and only if λ111 = 0

ε3 = λ111

〈110〉 Cubic to monoclinic ε1 = − λ100
2 Solutions exist for

ε2 = 1
4 (λ100 − 3λ111) λ100 ∈ {0, 3λ111, −3λ111};

ε3 = 1
4 (λ100 + 3λ111) divergence-free interface

forms for λ100 = −3λ111

Figure 3 shows the combinations of magnetostriction con-
stants λ100, λ111 for which the structural strain variants satisfy
the compatibility condition in Eq. (7). Please note that Fig. 3
also shows combinations of magnetostriction constants at
large values (which are likely to be unrealistic) and may fall
outside the Ericksen-Pitteri neighborhood [30]; however, we
retain them here for illustrative purposes. Furthermore, it is
important to note that these results from the geometrically
linear case should not be used for alloy development for
materials with appreciable transformation strains.

We next examine whether the magnetization m at the exact
austenite/martensite (paramagnetic/ferromagnetic) interface
is divergence-free for the conditions listed in Eq. (7). That is,
we check whether the following condition is true:

m · n = 0. (8)

Here, m is the magnetization of the monoclinic-
I phase, and n is the normal vector of the exact
paramagnetic/ferromagnetic interface.

We compute Eq. (8) for every combination of the
monoclinic-I variant (12 variants) with the cubic lattice for

both type I and type II solutions of Eq. (6); see Fig. 3(b).
We find that not all compatible interfaces have divergence-free
magnetization, and divergence-free exact interfaces form only
at the λ100 = −3λ111 condition. Figure 3(c) shows a represen-
tative example of a divergence-free exact interface between a
monoclinic-I variant (E4) and a cubic lattice constructed using
Eqs. (7) and (8).

C. Cofactor conditions

We investigate whether any paramagnetic and ferromag-
netic variants satisfy the cofactor compatibility conditions
[17]. These cofactor conditions, introduced in Ref. [17], are
necessary and sufficient conditions for a given twin system
to satisfy the equations of the crystallographic theory of
martensite for any volume fraction f of the twins, 0 � f �
1. For physical interpretation, the cofactor conditions allow
for an increased number of lattice deformations that satisfy
Eq. (9). Consequently, phase transformation materials that
satisfy these cofactor conditions are shown to have greatly
reduced hysteresis and fatigue.

(a) (b) (c)

FIG. 3. (a) Combinations of magnetostriction constants λ100, λ111 for which a single ferromagnetic monoclinic variant forms an exactly
compatible interface with the paramagnetic cubic lattice. Divergence-free magnetization at the exact interface is achieved only for λ111 = − λ100

3 .
(b) Dot product of the monoclinic variant’s magnetization m at the exact paramagnetic/ferromagnetic interface (with normal n) for the three
combinations of strain compatibility. The labels correspond to the number of combinations of monoclinic variants with the orientation of the
twin interface (two twin solutions). (c) A geometric construction of a ferromagnetic monoclinic variant E4 with a paramagnetic cubic lattice.
The arrows show the normal of the exact interface and the magnetization direction, respectively.
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In the geometrically linear theory the crystallographic
equation for the austenite/martensite-mixture interface is

f EJ + (1 − f )EI = 1
2 (p ⊗ q̂ + q̂ ⊗ p), (9)

in which EI , EJ are the martensite strain tensors, p, q̂ ∈ R3

are the twin solutions, and f is the volume fraction of the
martensite mixture. Following Ref. [17], we next list the theo-
rem for cofactor conditions in the geometrically linear theory.

Theorem. Let EI ∈ R3×3
sym be the given strain tensor and ê ∈

R3, |ê| = 1, be the given axis of rotation. We then define an-
other strain tensor EJ = QEI QT in which Q = −I + 2ê ⊗ ê
is the rotation matrix, such that EJ �= EI . The two strain
tensors satisfy the linearized Hadamard jump condition with
the twin solutions a, n̂ defined by Eq. (5). Given the above-
described conditions, there exists p, q̂ ∈ R3 satisfying Eq. (9)
for every value of 0 � f � 1 if and only if the following three
cofactor conditions are satisfied.

Cofactor condition 1 (CC1) is ε2 = 0, i.e., the middle
eigenvalues of the strain tensor EI should be zero, with rank
of EI = 2.

Cofactor condition 2 (CC2) is (a · v2)(n̂ · v2) = 0, in
which vector v2 is the ordered middle eigenvector of EI , and
EI v2 = 0, |v2| = 1 [43].

Cofactor condition 3 (CC3) is the inequality [tr(EI +
EJ )]2 − tr[(EI + EJ )2] � 0.

The proof of this theorem and its physical interpretation
are given in Ref. [17]. For our purposes, we note that the
cofactor conditions allow for an increased number of lattice
deformations that satisfy Eq. (9) without elastic energy.

We next examine whether the structural transformations
described by the preferred strain matrix E0(m) in Eq. (4)
(a) satisfy the three cofactor conditions and (b) form locally
divergence-free microstructures. We compute the twin so-
lutions for each combination of ferromagnetic variants and
systematically check whether they satisfy each of the three
cofactor conditions, CC1–CC3. We illustrate this procedure
using a representative example of a cubic-to-monoclinic-I
transformation in the Appendix and present the general results
below.

CC1. From Sec. III B we note that the cubic-to-monoclinic-
I transformation strain alone satisfies the first cofactor
condition, i.e., ε2 = 0, for specific combinations of mag-
netostriction constants, namely, λ100 ∈ {0, 3λ111,−3λ111}.
However, from Figs. 3(a) and 3(b) we note that the magne-
tization compatibility, in addition to the strain compatibility,
is achieved only for λ100 = −3λ111. We next test whether the
structural transformation from cubic to monoclinic-I satisfies
CC2 and CC3, respectively.

CC2. A total of n = 720 twin solutions for monoclinic
martensite variants were systematically examined to sat-
isfy CC2 [i.e., (a · v2)(n̂ · v2) = 0] for each combination of
the magnetostriction constants. Figure 4(a) shows that the
second cofactor condition is satisfied only for monoclinic-I
variants with magnetostriction constant λ100 = 0. We find that
the second cofactor condition is not satisfied for other combi-
nations of magnetostriction constants λ100 = ±3λ111.

CC3. Figure 4(b) shows that the third cofactor condition
is satisfied for cubic-to-monoclinic-I transformation for all
three combinations of magnetostriction constants, namely,

λ100 ∈ {0, 3λ111,−3λ111}. Here, we systematically exam-
ine the condition [tr(EI + EJ )]2 − tr[(EI + EJ )2] � 0 for all
combinations of monoclinic-I variants for each combination
of the magnetostriction constants; see Fig. 4(b).

Overall, only the phase transformation from cubic (para-
magnet) to monoclinic-I (ferromagnet) described by E0(m)
in Eq. (4) satisfies all cofactor conditions with λ100 =
0, λ111 �= 0; see the Venn diagram in Fig. 4(c). However, from
Sec. III B and Fig. 3(b), recall that the magnetization at the
paramagnetic/ferromagnetic interface is not divergence-free
at λ100 = 0. Consequently, the resulting austenite/martensite-
mixture microstructure satisfying Eq. (9) with λ100 = 0 is not
locally divergence-free and is energetically unfavorable. Other
compatible austenite/martensite-mixture interfaces, such as
the one shown in Fig. 4(d), can form during phase transfor-
mations. For example, in Fig. 4(d), a martensite mixture con-
taining monoclinic variants E3, E4 separated by 180◦ domain
walls forms a compatible interface with a cubic-austenite
phase [44]. This microstructure contains an exact divergence-
free interface between a ferromagnetic monoclinic-I variant
E4 and the paramagnetic cubic lattice and thus does not have
any local penalty from the demagnetization energy.

More broadly, our analysis of the cofactor conditions
shows that magnetic materials that undergo cubic-to-
tetragonal, cubic-to-trigonal, and cubic-to-monoclinic-I phase
transformations are unlikely to form microstructures satisfy-
ing the cofactor conditions and are thus not suitable candidates
to engineer highly reversible microstructures. We next inves-
tigate whether other structural transformation routes leading
to lower-symmetry martensites, such as orthorhombic or
monoclinic-II, can form compatible microstructures.

IV. TRANSFORMATION FROM CUBIC
TO LOW-SYMMETRY STRUCTURES

Thus far, we have used the strain tensor E0(m) in Eq. (4),
which (a) describes structural transformations from a refer-
ence cubic phase (paramagnetic) to a lower-symmetry phase
(ferromagnetic) and (b) has two magnetostriction constants,
namely, λ100, λ111, to describe lattice deformations. This con-
struction of the strain tensor describes limited structural
transformations, e.g., cubic-tetragonal, cubic-trigonal, and
cubic-monoclinic-I, and does not describe lattice deforma-
tions such as cubic-orthorhombic and cubic-monoclinic-II
[45]. Moreover, in several Heusler alloys the cubic phase
is ferromagnetic, and the lower-symmetry phase is param-
agnetic: These magnetic and structural transformations also
cannot be described using the conventional strain matrix in
Eq. (4). These examples indicate a need to construct a general
strain (or stretch) tensor for lattice deformation in magnetic
alloys, and this is a topic of ongoing research in our group.

In this section, we study the microstructural solutions
for a representative Heusler alloy, the Ni45Co5Mn40Sn10

compound [9], using the geometrically exact theory. Our
analysis shows that the cubic-to-monoclinic-II transformation
in Ni45Co5Mn40Sn10 has more combinations of lattice pa-
rameters (compared with cubic to monoclinic-I) that satisfy
geometric compatibility to form an exact austenite/martensite
interface. These multiple solutions offer more flexibility to
dope a Heusler magnetic alloy to satisfy the λ2 = 1 condition
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(a) (b)

(c) (d)

FIG. 4. (a) The second cofactor condition, (a · v2)(n̂ · v2) = 0, is satisfied only for monoclinic variants with magnetostriction constants
λ100 = 0. The labels indicate the number of monoclinic variant combinations N for which the cofactor condition was systematically examined.
(b) The third cofactor condition, [tr(EI + EJ )]2 − tr[(EI + EJ )2] � 0, is satisfied for all three cases of magnetostriction constant, namely,
λ100 ∈ {0, 3λ111, −3λ111}. (c) A Venn diagram showing that soft magnets with magnetostriction λ100, λ111 �= 0 satisfy all three cofactor
conditions. However, we know that the magnetization is not divergence-free at λ100 = 0. (d) A geometric construction of an interface between
cubic-paramagnet and monoclinic variants E3, E4. Note that the interface between the two monoclinic variants is a 180◦ wall and not a twin
interface.

and/or other cofactor conditions to form highly reversible
microstructures.

A. Compatible interfaces

Martensite/martensite interface. In Ni45Co5Mn40Sn10 the
cubic phase is ferromagnetic, and the monoclinic-II phase
(with 12 variants U1 · · · U12) is paramagnetic. This transfor-
mation differs from previously described transformations in
Sec. III, in which the lower-symmetry lattice was associ-
ated with the ferromagnetic phase and the twin interfaces
had to satisfy both strain and magnetization compatibility
conditions. This condition is relaxed in Ni45Co5Mn40Sn10, in
which the twin interfaces formed between different variants
of the monoclinic-II phases would need to be only structurally
compatible:

UI − UJ = a ⊗ n̂. (10)

The vectors a, n̂ define twin plane orientation, and
UI , UJ are the stretch tensors in the geometrically nonlin-
ear case. Note that each variant of the monoclinic-II phase
(paramagnet) is structurally compatible with the other 11
variants via two compatible solutions. This contrasts with
the martensite/martensite twins in the monoclinic-I type of
ferromagnets (see Sec. III A): In this case, each variant of
the monoclinic-I phase (ferromagnetic) is compatible with the
other ten variants (the 11th variant has the same deformation
tensor as the reference and thus cannot form a twin interface).
Thus the cubic-to-monoclinic-II type of transformation gener-
ates at least two additional twin solutions when compared with
the cubic-to-monoclinic-I type of transformation discussed in
Sec. III.

Austenite/martensite interface. Next, we solve the twin-
ning equation between the cubic-ferromagnetic phase (austen-
ite) and a single variant of the monoclinic-II–paramagnetic
phase (martensite). We first derive the generic condition for
the cubic-to-monoclinic-II transformation using the defor-
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TABLE III. Stretch tensors U and number of variants for mag-
netic alloys phase transforming to orthorhombic-I and monoclinic-II
symmetries, starting with a cubic reference phase. These lower-
symmetry structures have anisotropic stretches along crystallograph-
ically equivalent directions (e.g., α �= β �= γ for 〈100〉 directions)
which cannot be described by a single magnetostriction constant
λ100.

Transformation Stretch tensor U Variants

Cubic to orthorhombic-I

⎡
⎣α 0 0

0 β 0
0 0 γ

⎤
⎦ n(Ui ) = 6

n(Ui±) = 12

Cubic to monoclinic-II

⎡
⎣α δ 0

δ β 0
0 0 γ

⎤
⎦ n(Ui ) = 12

n(Ui±) = 24

mation tensor in Table III and then test the compatibility
condition for the Ni45Co5Mn40Sn10 alloy.

The compatibility condition in the geometrically exact the-
ory is given by

QUI − I = a ⊗ n̂, (11)

in which vectors a, n̂ → R3. Equation (11) has a solu-
tion if and only if the eigenvalues of U2

I (or UI ) are
such that λ1 � λ2 = 1 � λ3. The eigenvalues for cubic-
to-monoclinic-II transformation are γ 2, 1

2 (α2 + β2 + 2δ2 ±
(α + β )

√
α2 − 2αβ + β2 + 4δ2). Thus a magnetic alloy un-

dergoing cubic-to-monoclinic-II transformation can form an
exact austenite/martensite interface if the lattice stretches sat-
isfy one of the conditions (for λ2 = 1)

γ 2 = 1, or (12a)

1
2 (α2 + β2 + 2δ2 − (α + β )

√
α2 − 2αβ + β2 + 4δ2) = 1, or

(12b)
1
2 (α2 + β2 + 2δ2 + (α + β )

√
α2 − 2αβ + β2 + 4δ2) = 1

(12c)

and the remaining two eigenvalues satisfy λ1 � 1 and λ3 � 1,
respectively. That is, from Eq. (12a) either a lattice stretch of

γ = 1, or the balance of lattice stretches described by α, β, δ

in Eqs. (12b) and (12c) should be close to 1 to form an
exact interface between the cubic and monoclinic-II phases.
Figure 5 shows a combination of lattice stretches for which
the λ2 = 1 condition is satisfied.

We next make a couple of observations regarding Fig. 5:
First, the three-dimensional (3D) surface plot shows multiple
combinations of lattice stretches for which an exact inter-
face can form. These multiple lattice stretches increase the
combination of lattice geometries that satisfy the λ2 = 1 con-
dition, and this condition is thus a relatively easy constraint
to satisfy in experiments. This contrasts with the cubic-to-
monoclinic-I transformation in Sec. III, for which the λ2 =
1 condition is satisfied only for a specific combination of
magnetostriction constants λ100 → 0,±3λ111. This observa-
tion is also consistent with the fact that most experiments
on phase-transforming soft magnetic alloys with λ2 = 1
condition are materials that undergo cubic-to-monoclinic-II
transformation; see Fig. 5(b). A second observation is that
the majority of experimental investigations in which magnetic
alloys are systematically doped to satisfy the λ2 = 1 condition
are confined to a small range of lattice stretches; see Fig. 5.
While these stretches lie in the Ericksen-Pitteri neighborhood,
Fig. 5(a) shows that other possible combinations of lattice
deformations α, β, δ in this neighborhood could form an exact
austenite/martensite interface. Broadly, Fig. 5 would serve as
a quantitative guide to systematically tune alloy compositions.

For the case of the Ni45Co5Mn40Sn10 alloy, its stretch ten-
sor satisfies Eq. (11) and thus forms a λ2 = 1 interface. In this
alloy the lattice stretches α, β, δ satisfy Eq. (12b) and thus
form a compatible austenite-martensite interface. Figures 6(a)
and 6(b) show an austenite/martensite interface for the cubic-
monoclinic-II transformation in Ni45Co5Mn40Sn10 alloys that
approximately satisfies the λ2 = 1 condition.

Cofactor conditions. Besides the λ2 = 1 cofactor condi-
tion, the Ni45Co5Mn40Sn10 alloy also satisfies the remaining
two cofactor conditions necessary to form highly reversible
microstructures; see the Appendix. These cofactor conditions
are derived from the crystallographic theory of martensites
[26], and materials such as the Ni45Co5Mn40Sn10 alloy that
satisfy these cofactor conditions form austenite/martensite
interfaces for all values of f in the range 0 � f � 1. For

FIG. 5. (a) A 3D surface showing combinations of lattice stretches α, β, δ for the cubic-to-monoclinic-II transformation for which the
λ2 = 1 condition is satisfied. (b) Zoom of the section of the 3D plot indicated by the dashed box in (a), showing a small region of experimentally
doped Heusler alloys undergoing cubic-to-monoclinic-II transformation which satisfies the λ2 = 1 condition [9,11,36–41].
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FIG. 6. Cofactor microstructures for Ni45Co5Mn40Sn10 at three representative volume fractions, (a) f = 0, (b) f = 1, and (c) f = 3/7.
The microstructures in (a) and (b) contain an approximately (λ2 = 1.004) compatible interface between cubic and monoclinic-II lattices (with
U1, U2 variants). Inset sketches show the magnetization in cubic unit cells (ferromagnetic phase), and the sketches of monoclinic variants
U1, U2 are shown in blue and green, respectively. The distortion of the monoclinic unit cells is exaggerated for illustration purposes.

example, the Ni45Co5Mn40Sn10 alloy has a solution to the
equation of the crystallographic theory of martensite in the
geometrically exact case for all values of the volume fraction
0 � f � 1 (see the Appendix for further details regarding the
cofactor conditions):

R[ f (U + a ⊗ n̂) + (1 − f )U] − I = p ⊗ q̂. (13)

Although the cofactor microstructures correspond to
energy-minimizing microstructures (i.e., have vanishingly
small elastic strains at the phase boundary), they are not all
divergence-free at the paramagnetic/ferromagnetic interface.
We next minimize the demagnetization energy contribu-
tions in Eq. (2) to identify structurally compatible and
divergence-free paramagnetic/ferromagnetic microstructures.
Specific steps followed in calculating the divergence-free mi-
crostructures are given in the Appendix, and the results are
summarized in Fig. 7.

Figure 7 is a heat map of m · K1 as a function of the
magnetization directions 〈111〉 and volume fractions f of
the monoclinic-II variant mixture. The magnetization m in
Ni45Co5Mn40Sn10 is aligned along its easy crystallographic
axes 〈111〉 in the cubic phase, and K1 is the direction

of the twin plane between the cubic/monoclinic-II inter-
face. Figure 7 shows that the product m · K1 → 0 only
for specific volume fractions, e.g., 0 � f � 0.5 for type
I twins when magnetized along [1̄11, 11̄1̄] crystallographic
directions. For these volume fractions, divergence-free mag-
netization is obtained at the paramagnetic/ferromagnetic
interface; see Figs. 6(a)–6(c). Similarly, divergence-free mag-
netization at the interface is observed for 0 � f � 0.5 for type
II twins when magnetized along [1̄11̄], [11̄1] crystallographic
directions. For the other combinations of volume fractions
and twin plane orientations, the product m · K1 �= 0 is not
divergence-free, and these microstructures are less likely to
form during phase transformations.

Overall, our microstructural analysis of magnetic mate-
rials transforming from cubic to lower-symmetry marten-
sites (e.g., monoclinic-II) highlights the following features:
First, the cubic-to-monoclinic-II structural transformation
pathways offer multiple combinations of lattice parameter
stretches (when compared with the finite number of solu-
tions for the cubic-to-monoclinic-I transformation) for which
an exact austenite/martensite λ2 = 1 interface can form;
see Fig. 5. These multiple solutions permit greater flex-

FIG. 7. A heat map of the product m · K1 for type I and type II twin solutions to Eq. (13) for Ni45Co5Mn40Sn10. The magnetization
in Ni45Co5Mn40Sn10 is aligned along easy crystallographic axis 〈111〉, and K1 is the direction of the twin plane between the austenite and
martensite-mixture phases with volume fraction f . Divergence-free magnetization at the interface m · K1 → 0 is observed for 0 < f < 0.5 at
[1̄11], [11̄1̄] and [11̄1], [1̄11̄] magnetizations in type I and type II twins, respectively.
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ibility in terms of the magnetic microstructures that can
form during phase transformations and thus contribute to
improved reversibility of magnetic alloys. Second, phase
transformations in which the lower-symmetry phase (e.g.,
monoclinic-II phase) is paramagnetic offer additional twin
solutions, when compared with phase transformations in
which the lower-symmetry phase is ferromagnetic. This is
because magnetic materials in the former case would only
need to satisfy the structural compatibility between non-
magnetic martensite variants. However, twin interfaces in
the latter case need to be both structurally compatible and
magnetically divergence-free to form energetically favorable
microstructures. More broadly, our analysis suggests that
magnetic materials undergoing cubic-to-monoclinic-II trans-
formations are more suitable as candidate materials [46]
that can be systematically doped to satisfy specific lattice
geometries to form highly reversible magnetocaloric materi-
als.

V. DISCUSSION

Our microstructural analysis identifies structural transfor-
mation pathways and combinations of material constants—
e.g., anisotropy κ1, magnetostriction λ100, λ111—for which
magnetocaloric alloys can form highly reversible microstruc-
tures during phase transformation. We show that alloys
undergoing cubic-to-monoclinic-I transformation with κ1 �
0, κ2 � 9|κ1|

4 , and λ111 = − λ100
3 can form exactly compat-

ible and divergence-free phase boundaries. Additionally,
we show that magnetic alloys with cubic-to-monoclinic-II
transformation have multiple solutions satisfying the com-
patibility and divergence-free conditions and are suitable
candidates for alloy development. In the remainder of this
section, we discuss some limiting conditions of our mi-
crostructural analysis and then highlight our key findings.

Two features of this work limit the conclusions we can
draw as to the microstructural solutions and the mathematical
relationship between material constants for magnetic marten-
sites. First, we derive the microstructural solutions assuming
infinitesimal transformation strains in a geometrically linear
framework. These solutions are not applicable to materials
with appreciable strains and/or for deformations with ac-
cumulative lattice rotations. The geometrically linear strain
tensor E0(m) relates displacement gradients to the funda-
mental material constants (e.g., magnetostriction λ100, λ111

and magnetization m) and thus provides an important link in
deriving compatible microstructures as a function of magnetic
material constants. At present, we do not know the equivalent
deformation tensor (as a function of material constants) in
the geometrically nonlinear theory, and this is a potential
direction for future research. Second, in our microstructural
analysis we assume a single-crystal magnetic body to be
free from defects and to have a suitable ellipsoidal geometry.
This construction satisfies a locally divergence-free condition,
and the microstructures evolve to minimize the elastic and
magnetocrystalline-anisotropy energies of the system. How-
ever, in the presence of defects, microstructures would need to
minimize the local demagnetization energy, in addition to the
elastic and anisotropy energies, and the resulting microstruc-
tural patterns may not always lead to compatible interfaces.

With these reservations in mind we next discuss the impact
of our analysis in terms of the magnetic alloy development
program.

A key feature of our work is that we demonstrate that mag-
netic martensites undergoing cubic-to-monoclinic-I structural
transformation [as described by E0(m)] can form structurally
compatible and divergence-free λ2 = 1 interfaces. These
magnetic alloys satisfying a specific combination of mate-
rial constants, namely, κ1 � 0, 9|κ1|

4 � κ2 � ∞, λ111 = − λ100
3 ,

can form a perfectly compatible paramagnetic/ferromagnetic
interface. An analogous interface in shape-memory alloys
(another phase transformation material), formed between
the austenite and martensite phases, is shown to dra-
matically lower thermal hysteresis. While other magnetic
alloys (e.g., undergoing cubic-to-tetragonal or cubic-to-
trigonal structural transformations) form compatible and
divergence-free twin interfaces with martensite variants,
they cannot form a divergence-free exactly compatible
paramagnetic/ferromagnetic interface. Consequently, in these
magnetic alloys, stressed phase boundaries could be expected
to form. Our analysis of magnetic constants identifies candi-
date magnetocaloric alloys with specific magnetostriction and
anisotropy constants that can be further doped to form highly
reversible microstructures.

Another significant feature of our work is that we show
that magnetic alloys with transformation pathways, such as
cubic to orthorhombic or cubic to monoclinic-II, and/or
magnetic alloys with a ferromagnetic-cubic phase have mul-
tiple solutions for divergence-free and exactly compatible
interfaces (i.e., λ2 = 1). For example, the transformation
from ferromagnetic cubic to paramagnetic monoclinic-II in
Ni45Co5Mn40Sn10 alloys can form exactly compatible and
divergence-free phase boundaries for multiple combinations
of lattice parameter stretches satisfying Eqs. (12a)–(12c). This
contrasts with a rather rigid constraint of λ111 = − λ100

3 for
magnetic alloys with cubic-to-monoclinic-I transformation,
for which finite (or fewer) combinations of lattice parameters
exist. The increased number of lattice deformations satisfying
Eqs. (12a)–(12c) is thus a relatively easier constraint to sat-
isfy in alloy development experiments and is consistent with
reported experimental observations. Furthermore, the cubic-
to-orthorhombic and cubic-to-monoclinic-II transformations
suggest that more than two magnetostriction constants are
necessary to describe lattice deformations in E0(m) and lead
to open questions as to the general form of a coupled strain
tensor.

Overall, our analytical results serve as a quantitative
guide for developing magnetic alloys with high reversibil-
ity. The derived conditions for structural compatibility and
divergence-free magnetization at the phase boundaries would
be most relevant to magnetic alloys with small transformation
strains.

VI. CONCLUSION

In conclusion, the present findings provide fundamen-
tal insights into how magnetic material constants, such
as magnetocrystalline-anisotropy and magnetostriction con-
stants, affect the phase transformation microstructures. We
propose a mathematical relationship between material con-
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TABLE IV. Notations and description of symbols used in this paper.

Notation Description

κ1, κ2 Magnetocrystalline-anisotropy constants associated with the turning of the magnetization of a domain
away from the easy axes of magnetization

λ100, λ111 Magnetostriction constants in the [100] and [111] directions of a cubic crystal
representing the relative change in length of the material

θ0 Curie temperature or phase transformation temperature
ms Saturation magnetization in the ferromagnetic phase
A Gradient energy (or exchange energy) coefficient
μ0 Vacuum permeability constant
ζm Magnetostatic potential
E An ellipsoid magnetic body occupying a region E
R3 Three-dimensional space
x Position of a point in the reference configuration
y Position of a point in the deformed configuration
u Displacement
H Displacement gradient
E Infinitesimal strain matrix
E Infinitesimal rotation matrix
E0 Spontaneous (or preferred) strain matrix
F Deformation gradient
U Stretch matrix (positive-definite and symmetric)
Q or R Rotation matrix
I Identity matrix
m Nondimensionalized magnetization, m = M

ms

Hd Demagnetization field
(a, n̂) or (p, q̂) Vectors describing the twin solutions
K1 Twin plane
ε1, ε2, ε3 Eigenvalues of the strain matrix
v1, v2, v3 Eigenvectors of the strain matrix
λ1, λ2, λ3 Eigenvalues of the stretch matrix
f Volume fraction of the martensite mixture 0 � f � 1
α, β, γ , δ Scalar constants describing the stretch ratios between the reference and deformed lattices

stants, κ1 � 0, κ2 � 9|κ1|
4 , and λ111 = − λ100

3 , for which exactly
compatible and divergence-free phase boundaries can form in
magnetic materials. Furthermore, we identify that magnetic
materials undergoing cubic-to-monoclinic-II transformation
have multiple solutions satisfying the high-reversibility con-
dition and are suitable candidates for alloy development.
Broadly, our findings are in a form that is amenable to alloy
development, as in related searches for novel phase transfor-
mation magnetic materials with low thermal hysteresis and
high reversibility.
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APPENDIX

In Table IV, a description of the symbols used in this paper
is given; definitions of terminologies used in this paper can be
found in Table V.

1. Linearized kinematics

Following Ref. [27,31], let us consider a body E ∈ R3

undergoing a deformation y : E → R3. We can define the
displacement of a point on this body at x with reference to
its initial position as

u(x) = y(x) − x. (A1)

The displacement gradient H = ∇u(x) and the deformation
gradient F = ∇y(x) are related as

H(x) = F(x) − I. (A2)

Here, I is a 3 × 3 identity matrix. Let us next compute the
strain of an infinitesimal line element oriented in the direction
of the ê vector. Using Eq. (A2), we have

strain = (
√

ê · (FTF)ê) − 1 = (
√

ê · ((H + I)T(H + I))ê) − 1.

(A3)

Following the geometrically linear theory, for infinitesi-
mally small strains, Eq. (A3) is approximated as

strain ≈ (
√

ê · (I + H + HT)ê) − 1 ≈
√

ê ·
(1

2
(H + HT)

)
ê.

(A4)
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TABLE V. Definitions of terminologies used in this paper.

Terminology Definition

Diffusionless phase transformation This is a solid-to-solid phase transformation in which the lattice structure of the material changes
abruptly. There is a significant distortion of unit cells; however, there is no diffusion of atoms during
this transformation (i.e., the relative position of atoms does not change). Structural materials, such
as the shape-memory alloys, undergo these diffusionless phase transformations on heating or
cooling of the material.

Austenite This is the high-temperature phase of the material, often characterized by a high-symmetry lattice
(e.g., cubic symmetry), is called the austenite phase. This terminology was originally used to
describe the high-temperature phase of iron (and steel) and is now commonly used to describe the
high-temperature phase of phase transformation materials. In this paper, we refer to the
paramagnetic (i.e., high-temperature) phase as the austenite phase.

Martensite This is the low-temperature phase of the material, often characterized by a low-symmetry lattice
(e.g., tetragonal or monoclinic), is called the martensite phase. In this paper, we refer to the
ferromagnetic (i.e., low-temperature) phase as the martensite phase.

Twin interface This is a boundary formed between two separate crystals (or lattice variants) that are mirror images
of each other. These interfaces are energy-minimizing deformations and are commonly observed in
phase transformation materials.

Austenite/martensite interface During phase transformation, both the austenite and martensite phases coexist in the material. The
interface formed between these phases is characterized by the presence of a finely twinned
martensite mixture with a uniform austenite phase. This microstructure is referred to as the
austenite/martensite interface and is widely observed in phase transformation materials [31].

λ2 = 1 condition This is a quantitative design principle according to which a phase transformation material forms a
stress-free interface (or an exactly compatible interface) between the austenite and martensite
phases. Here, λ2 is the middle eigenvalue of the stretch matrix. The λ2 = 1 represents no relative
stretch between neighboring lattices’ edges during phase transformation.

Cofactor conditions These are conditions of compatibility for which a phase transformation material forms a highly
reversible microstructure [17].

Magnetocrystalline anisotropy This material constant is associated with turning the magnetization of a domain out of the direction
of easy axes.

Magnetostriction This refers to the change in dimensions of a magnetic material under an applied magnetic field. The
magnetostriction constants λ100 and λ111 represent strains along crystallographic directions 〈100〉
and 〈111〉, respectively.

Cauchy-Born rule This is a basic hypothesis (or a rule) used in the mathematical formulation of solid mechanics which
relates the movement of atoms in a crystal to the overall deformation of the bulk solid.

The strain tensor for materials with small deformations
satisfying Eq. (A4) is described as the symmetric part of the
displacement gradient. Deformations of several ferromagnetic
materials with small magnetostriction constants can be de-
scribed using Eq. (A4).

2. Energy density

The paramagnetic phase is stable at high temperatures,
and the ferromagnetic phase is stable at low temperatures.
Consequently, the free-energy function in Eqs. (1c) and (2)
has a multiwell energy landscape shown schematically in
Fig. 8. At high temperatures, the paramagnetic phase with
magnetization m = 0 and strain E = 0 minimizes the free-
energy function, i.e., ψ (m = 0, E = 0) � ψ (m, E). At low
temperatures, the ferromagnetic phase with magnetization
mi and strain Ei minimizes the free-energy function, i.e.,
ψ (mi = 0, Ei = 0) � ψ (m, E) corresponding to the ith fer-
romagnetic variant. At the phase transformation temperature
θ = θ0, the magnetization and strain are equally minimized
by both the paramagnetic and ferromagnetic phases, and thus
ψ (m = 0, E = 0) = ψ (m1, E1) = ψ (m2, E2).

Let us consider a nondimensional form of the micromag-
netic energy by dividing it by μ0m2

s , in which μ0 and ms

correspond to the permeability constant and saturation mag-
netization of the material. The nondimensional form of the

FIG. 8. Schematic illustration of a multiwell energy potential ψ

for a magnetic material undergoing paramagnetic-to-ferromagnetic
phase transformation. Here, m is the nondimensionalized magneti-
zation, E is the strain tensor, and θ is the temperature.
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TABLE VI. Strain variants for an alloy undergoing transformation from cubic (paramagnetic) to tetragonal (ferromagnetic). The easy axes
of magnetization are along the 〈100〉 crystallographic directions.

Easy axes Magnetization Transformation strain

〈100〉 m = e1 E1 =
⎡
⎣λ100 0 0

0 − λ100
2 0

0 0 − λ100
2

⎤
⎦

m = e2 E2 =
⎡
⎣− λ100

2 0 0
0 λ100 0
0 0 − λ100

2

⎤
⎦

m = e3 E3 =
⎡
⎣− λ100

2 0 0
0 − λ100

2 0
0 0 λ100

⎤
⎦

micromagnetic energy is

�N =
∫
E ′

{
A

μ0m2
s

∇m · ∇m + 1

μ0m2
s

ψ (m, E, θ )

}
dx

+ 1

2m2
s

∫
R3

∣∣∇ζm
∣∣2

dx. (A5)

Assuming typical values of the material constants for fer-
romagnetic material, e.g., a gradient energy coefficient of A ∼
10−13 J/m3, an anisotropy constant of κ1 ∼ 103–105 N/m2, a
saturation magnetization of ms ∼ 106 A/m, and a permeabil-
ity constant of μ0 ∼ 1.3 × 10−6 N/A2, we have the typical
nondimensional values of the coefficients to Eq. (2):

A

μ0m2
s

∼ 10−17,
κ1

μ0m2
s

∼ 10−3,
1

m2
s

∇ζ 2
m ∼ 1. (A6)

These ranges of values for the micromagnetic coefficients
suggest that the bulk energy and the demagnetization energy
are dominant and that the order of magnitude of the gradient
energy does not significantly affect large-scale micromagnetic
calculations. Consequently, we neglect the contribution of the
gradient energy coefficients in the microstructural analysis.

The paramagnetic-to-ferromagnetic phase transformation
is often a crystal-symmetry-lowering transformation. In
Tables VI–VIII we list different the strain variants for
the cubic-to-tetragonal, cubic-to-trigonal, and cubic-to-
monoclinic-I structural transformation pathways.

3. Twin interfaces

Table IX lists the solutions to the kinematic compatibility
condition for the three types of structural transformation path-
ways considered in Sec. III.

4. Cofactor conditions for geometrically linear theory

Below we illustrate the step-by-step procedure to compute
the cofactor conditions (geometrically linear theory) using a
representative cubic-to-monoclinic-I transformation pathway.

Let E1, E3 be two monoclinic variants that are given by

E1 =
[− λ100

2 0 0
0 λ100

4
3λ111

4
0 3λ111

4
λ100

4

]
,

E3 =
[− λ100

2 0 0
0 λ100

4 − 3λ111
4

0 − 3λ111
4

λ100
4

]
.

The two strain tensors are related by a rotation Q about the
axis

ê =
(0

1
0

)
, (A7)

TABLE VII. Strain variants for an alloy undergoing transformation from cubic (paramagnetic) to trigonal (ferromagnetic). The easy axes
of magnetization are along the 〈111〉 crystallographic directions.

Easy axes Magnetization Transformation strain

〈111〉 m = ± 1√
3
(e1 + e2 + e3) E1 =

⎡
⎣ 0 λ111

2
λ111

2
λ111

2 0 λ111
2

λ111
2

λ111
2 0

⎤
⎦

m = ± 1√
3
(−e1 + e2 + e3) E2 =

⎡
⎣ 0 − λ111

2 − λ111
2

− λ111
2 0 λ111

2
− λ111

2
λ111

2 0

⎤
⎦

m = ± 1√
3
(e1 − e2 + e3) E3 =

⎡
⎣ 0 − λ111

2
λ111

2
− λ111

2 0 − λ111
2

λ111
2 − λ111

2 0

⎤
⎦

m = ± 1√
3
(e1 + e2 − e3) E4 =

⎡
⎣ 0 λ111

2 − λ111
2

λ111
2 0 − λ111

2
− λ111

2 − λ111
2 0

⎤
⎦
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TABLE VIII. Strain variants for an alloy undergoing transformation from cubic (paramagnetic) to monoclinic-I (ferromagnetic). The easy
axes of magnetization are along the 〈110〉 crystallographic directions.

Easy axes Magnetization Transformation strain

〈110〉 m = ± 1√
2
(e2 + e3) E1 =

⎡
⎣− λ100

2 0 0
0 λ100

4
3λ111

4
0 3λ111

4
λ100

4

⎤
⎦

m = ± 1√
2
(e2 − e3) E2 =

⎡
⎣− λ100

2 0 0
0 λ100

4 − 3λ111
4

0 − 3λ111
4

λ100
4

⎤
⎦

m = ± 1√
2
(e1 + e3) E3 =

⎡
⎣ λ100

4 0 3λ111
4

0 − λ100
2 0

3λ111
4 0 λ100

4

⎤
⎦

m = ± 1√
2
(e1 − e3) E4 =

⎡
⎣ λ100

4 0 − 3λ111
4

0 − λ100
2 0

− 3λ111
4 0 λ100

4

⎤
⎦

m = ± 1√
2
(e1 + e2) E5 =

⎡
⎣ λ100

4
3λ111

4 0
3λ111

4
λ100

4 0
0 0 − λ100

2

⎤
⎦

m = ± 1√
2
(e1 − e2) E6 =

⎡
⎣ λ100

4 − 3λ111
4 0

− 3λ111
4

λ100
4 0

0 0 − λ100
2

⎤
⎦

and the rotation matrix is given by

Q = −I + 2ê ⊗ ê =
[−1 0 0

0 1 0
0 0 −1

]
. (A8)

Using Eqs. (A7) and (A8), we can verify that E3 =
QE1QT . The two strain tensors fit compatibly to form a twin
interface with solutions given in Table IX. To illustrate our
calculation, we consider a candidate twin solution:

a = 4((ê · Eê) − Eê) = −3λ111ê3, n = ê = ê2. (A9)

Next we examine whether the monoclinic variants E1, E3

satisfy cofactor conditions to form a phase boundary with zero
elastic energy. We set EI = E1 and EJ = E3 and check CC1–
CC3 systematically.

(1) The eigenvalues of EI = E1 are {−λ100
2 , 1

4 (λ100 −
3λ111), 1

4 (λ100 + 3λ111)}. CC1 is satisfied if and only if λ100 =
0, or λ100 = 3λ111, or λ100 = −3λ111. Using these combina-
tions of the magnetostriction constant, we next check for CC2
and CC3.

(2) We next check CC2 for each combination of the
magnetostriction values: (i) If λ100 = 0, we have ε2 = 0,

TABLE IX. Strain matrices Ei and martensite twin solutions for a ferromagnetic soft magnet with tetragonal, trigonal, and monoclinic
symmetries. Twin solutions for the martensite/martensite interfaces exist for specific values of the magnetostriction constants.

Solutions
Easy axes Transformation Strain tensor exist if and only if Martensite/martensite twins

〈100〉 Cubic to tetragonal λ100 �= 0 Compound
n(Ei ) = 3

⎡
⎣λ100 0 0

0 − λ100
2 0

0 0 − λ100
2

⎤
⎦ a = 3√

2
λ100(−ê1+ê2)

n(Ei±) = 6 n̂ = 1√
2
(ê1+ê2)

a = 3√
2
λ100(ê1+ê2)

n̂ = 1√
2
(−ê1+ê2)

〈111〉 Cubic to trigonal λ111 �= 0 Compound

n(Ei ) = 4

⎡
⎣ 0 λ111

2
λ111

2
λ111

2 0 λ111
2

λ111
2

λ111
2 0

⎤
⎦ a = 2

√
2λ111(ê1)

n(Ei±) = 8 n̂ = −1√
2
(ê2+ê3)

a = 2λ111(ê2+ê3)
n̂ = (ê1)

〈110〉 Cubic to monoclinic λ100 �= 0 Compound

n(Ei ) = 6

⎡
⎣− λ100

2 0 0
0 λ100

4
3λ111

4
0 3λ111

4
λ100

4

⎤
⎦ and a = −3λ111ê3

n(Ei±) = 12 λ111 �= 0 n̂ = ê2

a = 3λ111ê2

n̂ = −ê3
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and the corresponding middle eigenvector is given by v2 =
(1 0 0)T. This eigenvector satisfies EI v2 = 0, |v2| = 1,

and (a · v2)(n · v2) = (−3λ111ê3 · v2)(ê2 · v2) = 0. Thus with
λ100 = 0, E1, E3 satisfy CC2. (ii) If λ100 = ±3λ111 and λ111 �=
0, we have the middle eigenvalue ε2 = 0 and the corre-
sponding eigenvector given by v2 = 1√

2
(0 −1 1)T. This

eigenvector satisfies EI v2 = 0 and |v2| = 1; however, it does
not satisfy the condition (a · v2)(n · v2) = 3√

2
λ111 �= 0. Thus

with λ100 = ±3λ111, E1, E3 do not satisfy CC2.
(3) We check CC3 for each combination of the magne-

tostriction values: (i) The inequality tr(EI + EJ )2 + tr[(EI +
EJ )2] = −3λ2

100
2 � 0 if and only if λ100 = 0. Thus with λ100 =

0, E1, E3 satisfy CC3. (ii) The inequality tr(EI + EJ )2 +
tr[(EI + EJ )2] = −3λ2

100
2 = −27λ2

111
2 � 0. Thus with λ100 =

±3λ111, E1, E3 satisfies CC3.
We repeat this procedure (steps 1–3), starting with differ-

ent combinations of monoclinic variants and systematically
examine whether they satisfy the cofactor conditions.

5. Cofactor conditions for the geometrically exact theory

Following Ref. [3], we list the cofactor conditions (geo-
metrically exact theory) that are necessary and sufficient for
Eq. (13) to have a solution for all values of the volume fraction
0 � f � 1.

Theorem. Let U ∈ R3×3
+sym be the given stretch tensor and

Û = (−I + 2ê ⊗ ê)U(−I + 2ê ⊗ ê) for some |ê| = 1, so that
there exist R̂ ∈ SO(3) and a, n̂ ∈ R3 such that R̂Û = U +
a ⊗ n̂. Assuming that a �= 0, n̂ �= 0, Eq. (13) has solutions
R ∈ SO(3), p, q̂ for each f ∈ [0, 1], if and only if the follow-
ing cofactor conditions are satisfied:

λ2 = 0, i.e., the middle eigenvalue of U;

a · Ucof(U2 − I)n̂ = 0;

tr(U)2 − detU2 − |a|2|n̂|2
4

− 2 � 0.

The proof of this theorem and its physical interpreta-
tion are given in Ref. [17]. For our purposes, we note
that the cofactor conditions allow for an increased number
of lattice deformations that satisfy Eq. (13) without elastic
energy.

Materials satisfying the cofactor conditions not only form
austenite/martensite microstructures with vanishingly small
elastic energy, but also do so for numerous values of the
volume fraction f in the range 0 � f � 1. For example, the
magnetic alloy Ni45Co5Mn40Sn10 satisfies the cofactor condi-
tions with the following U [9]:⎡

⎣1.0054 0.0082 0
0.0082 1.0590 0

0 0 0.9425

⎤
⎦. (A10)

Using variants U1, U2 (and their twin solutions a, n̂) of
Ni45Co5Mn40Sn10, we solve for the three cofactor conditions
in the geometrically exact theory:

λ2 = 1.00417 ≈ 1, (A11)

a · U cof(U2 − I)n̂ = 2 × 10−9 ≈ 0, (A12)

TABLE X. Stretch tensors for an alloy undergoing cubic-to-
monoclinic-II transformation.

Stretch tensor

U1 =
⎡
⎣α δ 0

δ β 0
0 0 γ

⎤
⎦ U2 =

⎡
⎣ α −δ 0

−δ β 0
0 0 γ

⎤
⎦

U3 =
⎡
⎣β δ 0

δ α 0
0 0 γ

⎤
⎦ U4 =

⎡
⎣ β −δ 0

−δ α 0
0 0 γ

⎤
⎦

U5 =
⎡
⎣α 0 δ

0 γ 0
δ 0 β

⎤
⎦ U6 =

⎡
⎣ α 0 −δ

0 γ 0
−δ 0 β

⎤
⎦

U7 =
⎡
⎣β 0 δ

0 γ 0
δ 0 α

⎤
⎦ U8 =

⎡
⎣ β 0 −δ

0 γ 0
−δ 0 α

⎤
⎦

U9 =
⎡
⎣γ 0 0

0 β δ

0 δ α

⎤
⎦ U10 =

⎡
⎣γ 0 0

0 β −δ

0 −δ α

⎤
⎦

U11 =
⎡
⎣γ 0 0

0 α δ

0 δ β

⎤
⎦ U12 =

⎡
⎣γ 0 0

0 α −δ

0 −δ β

⎤
⎦

trU2 − detU2 − |a|2|n̂|2
4

− 2 = 0.0133 � 0. (A13)

Consequently, Ni45Co5Mn40Sn10 not only satisfies the ge-
ometrically exact compatibility condition in Eqs. (12a)–(12c),
but has infinite solutions to Eqs. (12a)–(12c) for all values
of the volume fraction f in the range 0 � f � 1. However,
not all solutions to Eqs. (12a)–(12c) will generate divergence-
free magnetization at the phase boundary. Minimizing this
demagnetization energy, in addition to the elastic energy,
in Eq. (2) is necessary to identify suitable microstructures
in the Ni45Co5Mn40Sn10 magnetic alloy. We next exam-
ine whether the cofactor solutions for materials such as
Ni45Co5Mn40Sn10 satisfy the divergence-free magnetization
at the paramagnetic/ferromagnetic interface.

Let the magnetization in the ferromagnetic phase be m
that is oriented along its easy crystallographic axes. In
Ni45Co5Mn40Sn10 the magnetization m in the ferromagnetic
(cubic crystal symmetry) phase is along its easy crystal-
lographic axes 〈111〉 = {[111], [11̄1], [111̄], . . . , [1̄1̄1̄]}. The
stretch tensor U describes the cubic-to-monoclinic-II transfor-
mation in Ni45Co5Mn40Sn10; see Table X for the general form
of this stretch tensor U.

Paramagnetic/ferromagnetic microstructures that have
divergence-free magnetization at their interfaces form during
phase transformations for

m · K1 = 0. (A14)

Here, K1 is the direction of the habit plane separating the
paramagnetic and ferromagnetic phases and is obtained by
solving the crystallographic theory in Eqs. (12a)–(12c):

K1 = U−1
J n̂

|U−1
J n̂| . (A15)
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Here, UJ and n̂ are the stretch tensor for the austenite variant
and the vector describing the habit plane, respectively. For
Ni45Co5Mn40Sn10, we determine the orientation of the habit
plane K1 by computing Eq. (A15) for volume fractions in the
range 0 � f � 1. We then compute the condition in Eq. (A14)
for each direction of the magnetization (i.e., 〈111〉).

Figure 7 illustrates the condition m · K1 and shows that
although Ni45Co5Mn40Sn10 satisfies the mechanical compat-
ibility conditions, it satisfies the divergence-free conditions
for specific values of the volume fraction. We illustrate these
divergence-free microstructures in Fig. 6 using f = 0, f = 1,
and f = 3/7 as representative examples.
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