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Mechanism of local lattice distortion effects on vacancy migration barriers in fcc alloys
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Accurate prediction of vacancy migration energy barriers, �Ea, in multicomponent alloys is extremely
challenging yet critical for the development of diffusional transformation kinetics needed to model alloy behavior
in many technological applications. In this paper, results from �Ea and the energy driving force �E of many
(>1000) vacancy migration events calculated using density functional theory and the nudged elastic band method
show large changes (∼1 eV) of �Ea in different local chemical environments of the model face-centered cubic
(fcc) Al-Mg-Zn alloys. Due to local lattice distortion effects induced by solute atoms (such as Mg) with different
sizes than the matrix element (Al), the changes of �Ea for one type of migrating atom originate primarily
from fluctuations of �ea ≡ �Ea − 1

2 �E (instead of 1
2 �E according to the widely used kinetic Ising model). To

understand these fluctuations, a quartic function of the reaction coordinate is shown to accurately describe the
energy landscape of the minimum energy path (MEP) for each vacancy migration event studied in this paper.
Analyses of the quartic function show that �ea can be approximated with �ea ≈ αk f D2, where α ∼ 0.022 a
constant value for all types of migrating atoms in the Al lattice. Here D is the distance of a migrating atom
between two adjacent equilibrium positions and k f is the average vibration spring constant of this atom at these
two equilibrium positions. k f and D quantitatively describe the lattice distortion effects on the curvatures and
locations of the MEP at its initial and final states in different local chemical environments. We also used the
local lattice occupations as inputs to train surrogate models to predict the coefficients of the quartic function,
which accurately and efficiently output both �Ea and �E as the necessary inputs for the mesoscale studies of
diffusional transformation in Al-Mg-Zn alloys.
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I. INTRODUCTION

Diffusion kinetics in metallic alloys and associated mate-
rial mechanisms (e.g., aging), which control properties such as
strength and ductility, are critically dependent upon vacancy-
mediated migration of matrix atoms and substitutional solutes
[1,2]. A migrating species in an alloy encounters complex
and varying local chemical environments, especially in mul-
ticomponent alloys, which in turn change the energy barrier
�Ea of a vacancy migration event between two adjacent lat-
tice sites [3–7]. Accurate descriptions of such local chemical
effects on �Ea are necessary to construct the kinetic master
equations in mesoscale methods, such as kinetic Monte Carlo
(kMC) [8–11], phase-field crystal (PFC) [12,13], and diffusive
molecular dynamics (DMD) simulations [14], to study diffu-
sion and precipitation. However, potentially large variations
of local chemical environments present significant challenges
which have yet to be overcome.

A typical strategy to predict �Ea in different local chem-
ical environments is the kinetic Ising model detailed by two
vacancy migration events with the same migrating atom in
Figs. 1(a) and 1(b) [10] (paths 1 and 2). Path 1 occurs in
a dilute local environment with zero energetic driving force
�E , and its �Ea is easily obtainable using first-principles
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calculations [15,16]. Path 2 represents a general vacancy
migration case with nonzero �E . Figure 1(b) describes the
energy landscape of the minimum energy path (MEP) for each
of these two events based on two assumptions. First, the MEP
curves are approximated as linear functions of the reaction
coordinate with almost the same slope (θ1 = θ2) away from
both the initial and final states; second, the only changes from
path 1 to 2 are that the MEP curves near the final state shift
rigidly along the energy coordinate (Y axis) by �E of path 2.
Therefore, it is easy to demonstrate that �Ea of path 2 is equal
to one-half of its �E plus �Ea of path 1. In practice, �E of
path 2 can be predicted by the bond counting model [17] or
cluster expansion (CE) methods [18,19], which use the local
lattice occupations as inputs with parameters fitted based on
first-principles calculations. This strategy to predict �Ea as a
linear function of �E for a general vacancy migration event
was used to model many metallic alloys [9–11,17,20,21].

The above two assumptions on MEPs can be incorrect.
Figure 1(c) illustrates the detailed MEP plot of path 2 without
the two assumptions: the distance between the initial and
final states along the reaction coordinate, defined as DMEP

in Fig. 1(c), can vary due to the lattice distortion induced by
changes of local chemical compositions; in addition, the MEP
curves near the initial states can have different shapes (such as
local curvatures) compared with those at the final states. These
variations change the position of the transition state along
the reaction coordinate and its energy. Thus, a robust model
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FIG. 1. Models of energy barrier �Ea and driving force �E
of vacancy migrations in Al alloys. (a) Two vacancy (open circle)
migration events between adjacent lattice sites in Al alloys. Col-
ored solid circles indicate the chemical elements on occupied sites.
(b) Simplified energy landscape plots of the minimum energy paths
(MEPs) for two events in (a) based on the two assumptions described
in the text. (c) An energy landscape plot of the MEP for path 2 in
(b) without the two assumptions.

of �Ea should provide accurate descriptions of MEPs and
the corresponding transition states [8,22–24]. One strategy is
to investigate �ea defined as the transition-state energy (Et)
relative to the average of the initial-state (Ei) and final-state
(Ef) energies:

�ea ≡ Et − 1
2 (Ei + Ef ) = �Ea − 1

2�E ; (1)

�ea is a variable and a function of local lattice occupa-
tions. This function of �ea can be fitted using a local cluster
expansion method [19,25,26]. �Ea is then obtained by the
summation of �ea and 1

2�E . Note that the kinetic Ising
model is recovered if �ea is a fixed value as �Ea in path
1 of Fig. 1(a). This method requires sufficient samples of
transition states to construct the training data set for fitting
�ea. The quantitative understanding of the mechanisms that
determine �ea and �Ea can benefit the selections of the rep-
resentative vacancy migration cases for fitting and verifying
the functions of �ea and �Ea in different local chemical
environments, which are critical for investigations of dif-
fusion kinetics in multiple precipitation stages of advanced
alloys.

To clarify the mechanisms that determine �Ea and �ea,
we applied high-throughput, first-principles calculations to
study vacancy migrations in model Al-Mg-Zn systems. As the
7XXX series of aerospace grade Al alloys, they achieve high
strengths (∼700 MPa) after appropriate heat treatments [27],
but applications outside of aerospace are limited since solute
clustering during natural aging limits formability [28–31].
This issue exists in several types of Al alloys, and it can

be mitigated if vacancy-mediated diffusion can be under-
stood and manipulated [2,32–34] since this controls solute
clustering.

We performed density functional theory (DFT) calcula-
tions for many (>1000) model Al-Mg-Zn alloys. MEPs and
�Ea of vacancy migrations were computed via DFT plus
the climbing image nudged elastic band (CI-NEB) method
[35,36]. Details of the DFT + CI-NEB methods are de-
scribed in Sec. II A. Our results in Sec. III A show that large
fluctuations (∼1 eV) of �Ea under different local chemical
environments originate primarily from changes in �ea rather
than the commonly assumed variations of �E , which are
typically small (mostly ± ∼ 0.2 eV). A quartic function of the
reaction coordinate [x in Fig. 1(c)] is proposed in Sec. III B to
accurately describe and analyze the MEPs of all investigated
vacancy migration events. Analyses in Sec. III C reveal that
�ea is linearly correlated to k f D2: D is the Cartesian distance
of a migrating atom between two adjacent equilibrium po-
sitions illustrated by the double-headed arrows in Fig. 1(a),
and k f is the average vibration spring constant of this atom at
these two equilibrium positions. D and k f are parameters that
quantify the local lattice distortion effects on, respectively, the
locations and shapes of the MEP at local energy minimum
states. Specifically, D is correlated with DMEP in Fig. 1(c) and
k f is related to the second derivatives of the MEP curves at the
local energy minimum states in Fig. 1(c). Both D and k f can
be calculated relatively easily without accurate descriptions
of MEPs obtained from the DFT + CI-NEB method. Details
of the calculation methods for D and k f are described in
Sec. II B.

In Sec. III D, based on our DFT + CI-NEB calculations,
surrogate models using local lattice occupations as inputs are
proposed to predict the coefficients of the quartic function
of the vacancy migration MEP in Al-Mg-Zn alloys. This
leads to our approach to accurately and efficiently predict
the MEPs and the corresponding �Ea and �E as functions
of local chemical compositions. With this method to esti-
mate �Ea and �E , more accurate mesoscale studies, such
as kMC, can be conducted. Finally, discussion of the major
developments in the paper and conclusions are provided in
Sec. IV.

II. METHODS

A. Transition-state calculations

To compute migration energy barriers and the minimum
energy paths (MEPs) of vacancy migrations, we performed
high-throughput density functional theory (DFT) calculations
for model Al-Mg binary alloys, Al-Zn binary alloys, and
Al-Mg-Zn ternary alloys. The energies of the atomic config-
urations at the initial and the final states (Ei and Ef) were
first calculated with the Vienna Ab initio Simulation Package
(VASP) [37,38], with the all-electron projector-augmented
wave potentials (PAW) method based upon the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional [39,40]. All
calculations used 4 × 4 × 4 supercells, constructed from the
fcc Al unit cell, with 255 atoms and 1 vacancy. All supercells
used to calculate the vacancy migration barriers can be divided
into three categories. The configurations in the first category,
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FIG. 2. Schematic diagrams of the model Al alloy supercells
used to calculate vacancy migration barriers. Blue, orange, and green
spheres represent Al, Zn, and Mg atoms, respectively. Yellow spheres
represent vacancy sites. (a) A typical 4 × 4 × 4 fcc supercell with
random distributions of solute (Mg and Zn) atoms. (b) A typical
4 × 4 × 4 fcc supercell with a 2 × 2 × 2 ordered cluster structure
embedded within Al matrix. (c) A typical 4 × 4 × 4 fcc supercell
with a single solute atom (Zn) embedded on a neighboring site
around the vacancy and the migrating atom (Mg).

as shown in Fig. 2(a), are randomly generated solid solution
structures with different local concentrations of solute atoms
(Mg and Zn) around the vacancy site and the migrating atom
(Al, Mg, or Zn). These structures simulate vacancy diffusion
in the solid-solution state. For the configurations in the second
category, as shown in Fig. 2(b), either 2 × 2 × 2 or 2 × 2 × 4
ordered cluster structures are embedded in the 4 × 4 × 4 pure
Al matrix. The data from these configurations are designed to
describe the vacancy moving inside the precipitates or along
the boundary between the ordered precipitates and the solid-
solution Al matrix. These ordered structures were chosen
from proposed Guinier-Preston (GP) zone precipitates [41]
and ordered (L10, L12, L1∗

0, W2, CH, and Z1) intermetallic
structures on an fcc lattice [42]. The third category, as shown
in Fig. 2(c), consists of supercells with a single solute atom
(Mg or Zn) embedded in the lattice of neighboring sites (in-
cluding 1st, 2nd, and 3rd nearest neighbors) of the vacancy
and the migrating atom in the 4 × 4 × 4 pure Al matrix. These
configurations address the effect of a single solute atom on the
vacancy migration barrier.

For all DFT calculations, the total energies for supercells
of the initial and final states were converged to 10−6 eV/cell
for the ionic relaxation loop and 10−7 eV for the electronic
self-consistency loop using a plane-wave cutoff energy of
450.0 eV and Methfessel-Paxton smearing of 0.4 eV. A
2 × 2 × 2 k-point grid was applied for all supercells. Each
grid was generated using the Monkhorst-Pack scheme [43].
See Supplemental Material [44] for the results of k-point
convergence tests. The supercell sizes in all vacancy migra-
tion investigations were always fixed as four times that of
the fcc lattice constant of the model 7XXX series Al alloy.
Hence, a supercell of 4 × 4 × 4 conventional fcc cells with
256 atoms (based upon the fcc unit cell) was used to cal-
culate the lattice constant. The supercell consisted of 244
Al atoms, 7 Mg atoms, and 5 Zn atoms, which were within
the range of compositions of 7075 Al alloys. Lattice occu-
pations inside this supercell were optimized by the special
quasirandom structures (SQS) method using the Alloy The-
oretic Automated Toolkit (ATAT) [45]. The lattice constant
of this SQS-optimized supercell was 4.046 Å after DFT re-

laxation of nuclear coordinates and the cell volume. This
value is close to the lattice constant of a pure Al crystal at
0 K (4.041 Å from DFT calculations with the same setups
described in this section). See Supplemental Material [44] for
the effects of lattice constant variations on vacancy migration
barriers.

For each vacancy migration event, the energy of the tran-
sition state (Et) and the energy barrier (�Ea ≡ Et − Ei) were
gathered by utilizing the climbing image nudged elastic band
(CI-NEB) method after evaluating the energy difference (�E )
by using Ef minus Ei. This was accomplished with VASP and
the Transition States Tools (VTST) package [35,36]. Five im-
ages between the relaxed initial and final images were set. The
artificial spring constant was set to 5 eV/Å2. The electronic
self-consistency-loop breaking criterion was set to 10−4 eV
and the force convergence criterion for all models was set to
be less than 0.05 eV/Å. The force-based quick-min optimizer
provided by VTST was used for the CI-NEB calculations [46].
See Supplemental Material [44] for the verifications of the
transition state via phonon calculations [47,48]. Finally, 2500
�E and �Ea pairs were obtained from 1250 CI-NEB calcu-
lations by considering both forward and backward vacancy
migrations.

B. Calculations of migration distances and vibration
spring constants

As mentioned in Sec. I and discussed in Sec. III C, the
migration distances D and vibration spring constants k f of
the migrating atoms are critical to describe the local lattice
distortion effects on the vacancy migration MEPs and their
�Ea. In this subsection, the detailed methods to calculate them
and the related parameters are presented. First, the relative
distance between the initial and final states along the MEP,
DMEP, as indicated in Fig. 1(c), can be obtained from the
outputs of the CI-NEB calculations. Here we set N as the
number of intermediate images inserted between the initial
and final states, and I j represents the configuration of the jth
intermediate image in the CI-NEB calculations. Specifically,
I0 = Ii and IN+1 = If denote the initial and final configura-
tions, respectively. DRHD(Ia, Ib) is a function that returns the
magnitude of the relative high-dimensional distance between
Ia and Ib [35,36]:

DRHD(Ia, Ib) =
√√√√Natom∑

k=1

[(xb,k − xa,k )T(xb,k − xa,k )]. (2)

Here, x j,k is a three-dimensional vector representing the
Cartesian positions of the kth atom in the jth image, and Natom

is the total number of atoms in each configuration. Since only
5 intermediate images were chosen between the relaxed initial
and final images for all CI-NEB calculations in this study,
DMEP reduces to

DMEP =
N=5∑
j=0

DRHD(I j, I j+1). (3)

Alternatively, the migration distance D of a migrating atom
between two adjacent equilibrium positions (its Cartesian
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positions in initial and final states) can be directly calculated
as

D =
√

(xf − xi )T(xf − xi ). (4)

Here xi and xf denote the Cartesian position of the migrating
atom in the equilibrium initial and final states, respectively.
Because most atoms are almost stationary during the vacancy
migration process, there are strong correlations between DMEP

and D, so the value of D is utilized to quantify the lattice
distortion effects on the MEP and the corresponding �ea/�Ea

for each vacancy migration case in Sec. III C. See Supplemen-
tal Material [44] for additional discussions of the correlations
between DMEP and D.

The vibration spring constants k f of migrating atoms are
calculated based on the Hessian matrix H , which is the matrix
of the second derivatives of the energy with respect to the
atomic positions, obtained using the finite difference method
implemented in VASP. H should be a 3Natom dimensional
matrix if all Natom atoms can be displaced in the supercell.
In principle, k f at the initial and final states can be acquired
by finding the eigenvalues of H , of which the corresponding
eigenvectors describe the motions of atoms along the MEP
of the vacancy migration. Using the harmonic approximation,
the energy landscape, V , of the MEP at the initial and final
states can be expressed as V = 1

2 k f x2. Here x is the displace-
ment along the MEP.

However, it is expensive to calculate H for all the inves-
tigated cases in this study if all 255 atoms in a supercell are
displaced. Since most atoms are nearly stationary during the
vacancy migration process, we can approximate the value of
k f by fixing the positions of atoms far away from the vacancy
during the calculation of H . In this study, only the migrating
atom is displaced during the calculation of H for the initial
and final states, but all other atoms are fixed. The calculated
vibration spring constant values under this fixed-atom condi-
tion were obtained for both the initial and final states, and the
average value was used in Sec. III C to estimate the lattice
distortion effect on the MEP and the corresponding �ea and
�Ea for each vacancy migration case. More accurate k f can
be obtained if more atoms in the supercells are displaced
during the calculation of H . See Supplemental Material [44]
for detailed discussions of k f calculation.

III. RESULTS

A. DFT calculations of �Ea and �E

Correlations of �Ea (Y axis) and �E (X axis) from our
computational results are plotted in Figs. 3(a) to 3(c) for
different types of migrating atoms. In the Al-Zn binary system
[Fig. 3(a)], �Ea and �E data are scattered; however, the
data still follow (approximately) linear relationships for both
the migrating Al and Zn atoms, respectively. Simple linear
regressions suggest that the slope of each fitted straight line
is close to 1

2 , so �ea is approximately a constant according
to Eq. (1) and the kinetic Ising model is still approximately
valid for vacancy migrations in the Al-Zn binary system.
However, as seen in Figs. 3(b) and 3(c), the �Ea and �E data
become significantly scattered, and a linear relationship does
not apply when Mg is added as a solute element for all types

FIG. 3. Correlations between �Ea and �E for vacancy migra-
tion events in Al alloys. (a)–(c) Correlations between �Ea and �E
for vacancy migration events from DFT + CI-NEB calculations. Mi-
grating atoms are Al (blue dots), Zn (orange dots), and Mg (green
dots) in binary Al-Zn (a), Al-Mg (b), and ternary Al-Mg-Zn (c) sys-
tems, respectively. The scattering distributions in (b) and (c) indicate
the variations of �Ea do not only depend on the variations of �E
as suggested in Fig. 1(b). (d)–(f) Kernel density estimations [49]
of DMEP, the distance between the initial and final states defined in
Fig. 1(c), are plotted for migrating Al (blue), Zn (orange), and Mg
(green) atoms in Al-Zn (d), Al-Mg (e), and Al-Mg-Zn (f) systems,
respectively. Large variations of DMEP in (e) and (f) suggest strong
lattice distortion effects in different local chemical environments.
The color coding applies to subsequent figures.

of migrating atoms (Al, Zn, and Mg) in both binary Al-Mg
and ternary Ag-Mg-Zn systems. In these cases, �E values are
still distributed in a range similar to those in the Al-Zn system
in Fig. 3(a), mostly from ∼ − 0.2 eV to ∼0.2 eV. However, Ea

values are scattered in much wider ranges from almost 0 eV
up to ∼1 eV. This indicates that the fluctuations of �Ea in
different local chemical environments are mostly dependent
upon changes in �ea rather than the small variations of �E
according to Eq. (1). These deviations demonstrate that even
simple vacancy migrations in alloys with close-packed lattices
are complex; hence, the assumptions behind Fig. 1(b) are in-
correct and the kinetic Ising model is not broadly applicable.

One problem in Fig. 1(b) is the neglect of changes in
MEP along the reaction coordinate axis. Here, we define the
distance between the initial and final states along the reaction
coordinate as DMEP as indicated in Fig. 1(c). The reaction
coordinate x and DMEP for all investigated cases result from
DFT + CI-NEB calculations [35,36]. Figures 3(d), 3(e) and
3(f) show the kernel density estimations [49], which indicate
smoothed probability distributions of DMEP for different types
of migrating atoms (Al, Mg, and Zn) in all migration events.
In the Al-Zn binary system [Fig. 3(d)], DMEP values are
centered-distributed with negligible standard deviation σDMEP

for both migrating Al atoms (σDMEP = 0.035 Å) and migrating
Zn atoms (σDMEP = 0.018 Å). These distributions indicate that
occupations of Zn atoms near vacancy sites induce small lat-
tice distortions. However, in both Al-Mg systems [Fig. 3(e)]
and Al-Mg-Zn systems [Fig. 3(f)], σDMEP is much larger for
all migrating Al, Mg, and Zn atoms (σDMEP = ∼0.2 Å in all
cases). These distributions indicate occupations of Mg atoms
near vacancy sites induce relatively large lattice distortions.
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These lattice distortions are understandable because of the
atomic size differences and large fluctuations of local Mg/Zn
concentrations for all investigated supercells. The size of Mg
atoms is much larger than those of Zn and Al atoms (the
radii of Mg, Zn, and Al atoms are 1.50, 1.35, and 1.25 Å
[50], respectively), so the lattice distortion effects due to Mg
atoms in the Al matrix are much stronger than those due
to Zn atoms. The large fluctuations of local Mg/Zn concen-
trations originate from the multiple types of supercells used
in our calculations as shown in Fig. 2, which correspond to
different precipitation stages in Al alloys. A key question is
how to construct accurate MEP models illustrated in Fig. 1(c)
to accommodate the lattice distortion effects if we want to
understand the physical mechanisms behind �ea and �Ea

variations.

B. Quartic functions of the MEP

An accurate and quantitative model to describe the MEP in
Fig. 1(c) has to satisfy several physical conditions, including
zero first derivatives at initial (xi), transition (xt), and final
(xf) states. Thus, we propose that the energy landscape of a
general vacancy migration MEP, as a function of the reaction
coordinate x with a single local energy maximum, is described
by a simple quartic function, EMEP(x):

EMEP(x) = ax4 + bx3 + cx2. (5)

Here, the coefficients (a, b, and c) are assumed to depend on
the local lattice occupations near a vacancy/adjacent migrat-
ing atom pair. Values of xi, xt, and xf are determined by the
zero-first-derivative requirements mentioned above. The first
derivative of Eq. (5) is E ′

MEP(x) = 4ax3 + 3bx2 + 2cx, with

roots x0 = 0, x1 = −3b−√
9b2−32ac
8a , and x2 = −3b+√

9b2−32ac
8a .

When a > 0 and c < 0, Eq. (5) has two local minima and
one local maximum, which corresponds to the shape of the
energy landscape along the MEP in Fig. 1(c). As plotted
in Fig. 4(a), we can shift the energy landscape to make the
transition state at the origin point by denoting the position of
the transition state at xt = 0 and denoting its energy on the
MEP EMEP(xt = 0) = 0. Then we make the positions of the
initial state and final state at two local minima as xi = x1 and
xf = x2. If Eq. (5) is accurate enough to describe the MEP
for each migration event and its coefficients (a, b, and c)
can be predicted, �Ea, �E , and DMEP of the corresponding
migration event can be predicted as suggested in Fig. 4(a)
[then its �ea is obtained from Eq. (1)].

Thus, by assuming Eq. (5) is accurate enough to describe
all the MEPs from our DFT + CI-NEB calculations, we ap-
plied a least-squares fitting method with a weight matrix to
fit the coefficients a, b, and c for each migration event. Since
CI-NEB methods use a series of images along the reaction
path to calculate MEPs, we can not only collect the energetics
of the initial, final, and transition states, but also energetics
of other intermediate images, which are at certain coordi-
nates along MEPs. The following conditions are included in
the quartic equation fitting: the energies of initial and final
states predicted by the quartic function equal those from DFT
calculations, EMEP(xi ) = Ei and EMEP(xf ) = Ef; the energies
of the other intermediate images equal to those from the
DFT + CI-NEB calculations, EMEP(x j ) = Ej ; the first deriva-

FIG. 4. The quartic function in Eq. (5) is used to fit vacancy mi-
gration MEPs from DFT + CI-NEB calculations. (a) Schematic plot
of EMEP(x) of Eq. (5) showing �E , DMEP, and �Ea. (b) A specific
example where Eq. (5) is used to fit an MEP curve from a DFT +
CI-NEB calculation. (c)–(e) Comparisons of �E (c), DMEP (d), and
�Ea (e) from DFT + CI-NEB calculations and those predicted from
the fitted Eq. (5) for all Al (blue), Zn (orange), and Mg (green)
migrating atoms in all investigated supercells. The root-mean-square
error (RMSE) is denoted at the upper left, and the number at the
bottom-right corner shows the coefficient of determination R2 (close
to 100% means high accuracy). Small RMSE and large R2 values
in (c)–(e) demonstrate that Eq. (5) is accurate to describe vacancy
migration MEPs. The same RMSE and R2 symbols are used in Fig. 6
and Fig. 8.

tives at initial and final states equal zero, E ′
MEP(xi ) = 0 and

E ′
MEP(xf ) = 0. Thus, the following equation can be obtained:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x4
i x3

i x2
i

...
...

...

x4
j x3

j x2
j

...
...

...

x4
f x3

f x2
f

4x3
i 3x2

i 2xi

4x3
f 3x2

f 2xf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝

a
b
c

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ei
...

Ej
...

Ef

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Here x j is the location of the jth intermediate image along
the reaction coordinate and Ej is its energy relative to the
transition state [since xt = 0 and EMEP(xt ) = 0 according
to Eq. (5)]. All values of x j and Ej are directly from
DFT + CI-NEB calculations. We denote the left matrix as
X , the quartic coefficients vector as β, and the vector to
the right of the equals sign as y for Eq. (6), which can be
rewritten as Xβ = y. To find the best description of each
MEP, the weighted linear regression is applied, which is a
generalization of ordinary least squares:

(XTW X )β̂ = XTW y. (7)

Here, W is a diagonal matrix, with each of its elements
representing a weighting coefficient used for each
data point. The estimated quartic coefficients vector is
β̂ = (X TW X )−1X TW y. To emphasize the accuracy of the
computed energy terms �E and �Ea, we increase the weight
elements of the first condition mentioned above to large finite
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FIG. 5. Kernel density estimations of fitted coefficients (a, b, and
c) of Eq. (5) for all Al (blue), Zn (orange), and Mg (green) migrating
atoms in all investigated supercells. (a)–(c) Probability densities of
a, b, and c in Al-Zn systems. (d)–(f) Probability densities of a, b,
and c in Al-Mg systems. (g)–(i) Probability densities of a, b, and c in
Al-Mg-Zn systems. The narrow probability density variations of b in
all investigated supercells are consistent with the small variations of
�E in Figs. 3(a)–3(c).

numbers and retain other weight elements equal to 1. Each
MEP curve of all DFT + CI-NEB calculations was fitted by
Eq. (7).

Figure 4(b) shows an MEP curve from the DFT + CI-NEB
calculation is accurately described by both the standard spline
fitting and our quartic fitting curve based on Eq. (5). Overall,
Figs. 4(c), 4(d) and 4(e) depict close matches between �E ,
DMEP, and �Ea from direct DFT + CI-NEB calculations (Y
axis) and those from the quartic function EMEP(x) with fitted
coefficients (X axis), respectively. Low values of the root-
mean-square error (RMSE) (close to 0) and high values of the
coefficient of determination R2 (close to 100%) confirm that
Eq. (5) is accurate and robust enough to describe the MEP of
vacancy migrations in Al-Mg-Zn alloys while incorporating
the requisite physics associated with the vacancy migration
MEPs.

Figure 5 shows the kernel density estimations of the fitted
coefficients of Eq. (5) for all vacancy migration cases in dif-
ferent alloy systems [Figs. 5(a)–5(c) in Al-Zn binary systems,
Figs. 5(d)–5(f) in Al-Mg binary systems, and Figs. 5(g)–5(i)
in Al-Mg-Zn ternary systems]. The results show the distri-
butions of a and c vary significantly for different types of
migrating atoms in three alloy systems. The wide ranges in
a and c indicate the shapes of the MEPs in Fig. 1(c) and
Fig. 4(a) can change significantly because both a and c deter-
mine the coordinates and curvatures of MEPs at local energy

FIG. 6. Methods to estimate �E (a), DMEP (b), and �ea (c) of
vacancy migration MEPs. (a)–(c) Comparisons between DFT +
CI-NEB calculated �E (a), DMEP (b), and �ea (c) and those es-
timated based on Eq. (5) and Eq. (8). (d) Correlations between
DFT + CI-NEB calculated �ea and k f D2 to verify Eq. (9).

minimum states (as discussed in Sec. III C, the ratio of a to
c is also important to determine the MEPs and the values
of �E/DMEP/�ea, so these distributions of a and c cannot
be used to explain the differences between Al-Zn alloys and
Al-Mg/Al-Mg-Zn alloys in Fig. 3). Alternatively, the distribu-
tions of b for all types of migrating atoms in all alloy systems
are always in narrow ranges close to zero, which is consistent
with the small variations of �E in Fig. 1(d) (�E = 0 if
b = 0). This special feature of b provides us a relatively easy
and accurate way to predict �ea based on lattice distortion
effects as detailed in the following discussion.

C. Estimations of �ea based on lattice distortion effects

As indicated by Fig. 5, we can assume b ≈ 0 giving

EMEP(x) ≈ ax4 + cx2. (8)

This is the same free energy formalism of second-order phase

transitions in Landau theory [51]. Thus, xi ≈ −
√

−c
2a , xt = 0,

and xf ≈
√

−c
2a , respectively. Accordingly, DMEP = xf − xi ≈√

−2c
a and �ea ≈ −ax4

i − cx2
i ≈ c2

4a . We can also estimate

�E ≈ 2bx3
f ≈

√
2

2 ( −c
a )

3
2 b based on Eq. (5). These approxi-

mate relations are confirmed in Figs. 6(a)–6(c) by the linear
correlations between the DFT + CI-NEB results (�E , DMEP,
and �ea on the Y axis) and their estimations based on Eq. (5)
and Eq. (8) (the X axis), respectively.

In addition, the second derivative of the MEP at the
local-minimum states E ′′

MEP(xi ) ≈ E ′′
MEP(xf ) ≈ −4c according

to Eq. (8). Thus, we can get an approximate relation as �ea ≈
E ′′

MEP(xi )D2
MEP

32 . Accurate E ′′
MEP and DMEP are obtained from

the MEP curves produced by the DFT + CI-NEB calcula-
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TABLE I. Results of vacancy migrations in a dilute Al matrix (at most one solute atom in a supercell) are listed as the migration barrier
�Ea = �ea, the average vibration spring constant k f of the migrating atom at the initial and final states calculated under this fixed-atom
condition described in Sec. II B, the high-dimensional distance along the minimum energy path between the initial and final states DMEP

defined in Eq. (3), the Cartesian distance of the migrating atom between initial and final states D defined in Eq. (4), the values of k f D2, and the
coefficient α ≡ �ea

k f D2 of selected migrating atoms. As a reference, the value of α in Eq. (9) fitted from the whole database of vacancy migrations

is 0.0220 as shown in Fig. 6(d).

Migrating atom �Ea = �ea (eV) k f (eV/Å2) DMEP (Å) D (Å) k f D2 (eV) α ≡ �ea
k f D2

Al 0.58 3.60 3.00 2.75 27.28 0.0213
Mg 0.47 3.39 2.78 2.58 22.62 0.0207
Zn 0.34 2.02 2.80 2.69 14.66 0.0233

tions. However, because the migrating atom moves a distance
(>∼2 Å in the Al lattice) much larger than the other atoms
for a general migration event, the motion of the migrating
atom is the most important factor for the reaction coordinate
x. Therefore, we assume E ′′

MEP is proportional to the average
vibration spring constant k f of the migrating atom at the initial
and final states, and we also assume DMEP is proportional
to the distance D of the same atom at these two states as
illustrated in Fig. 1(a). These assumptions give

�ea ≈ αk f D2, (9)

where α is a unitless constant. Because the migrating atom
moves a distance much larger than all other atoms, the varia-
tions of k f and D can be used to approximate the local lattice
distortion effects on the shape and locations of local-minimum
states along a MEP. These two parameters are obtained from
DFT calculations of H and the coordinate of the migrating
atom in fully relaxed structures as described in Sec. II B.
The validity of Eq. (9) is confirmed by comparing �ea from
DFT + CI-NEB calculations (Y axis) and αk f D2 (X axis) for
all migrating atoms in all investigated supercells in Fig. 6(d).
This shows that Eq. (9) with the same α value [≈0.022 fitted
by Fig. 6(d)] works for all Al, Mg, and Zn migrating atoms
in these Al alloys. Equation (9) therefore provides an efficient
way to estimate �ea and �Ea using standard DFT calculations
without the CI-NEB method.

To further verify the generality and accuracy of Eq. (9), we
compute k f and D of specific examples of vacancy migration
with different types of migrating atoms in a dilute Al alloy in
Table I. In these cases, except for the migrating atom, there
is no solute atom in the supercell so that the initial and final
states are equivalent since the MEP is symmetric on two sides
of the transition state. Thus, the migration energetic driving
force �E = 0 and �ea ≡ �Ea − 1

2�E = �Ea according to
Eq. (1). We also present these results of �Ea = �ea from
DFT + CI-NEB calculations in Table I. These results show
that, for all types of migrating atoms (Al, Mg, and Zn) in a
dilute Al matrix, the ratio of �ea to k f D2 is almost a constant
value close to the α value (0.022) fitted from all migration
cases with different values of �E , thereby further supporting
the generality and validity of Eq. (9).

D. Surrogate models to predict the MEP

Although Eq. (9) can be helpful to estimate �ea and �Ea

without using the computationally expensive CI-NEB method
for Al-Mg-Zn and potentially other multicomponent fcc al-

loys, it still requires DFT calculations that need considerable
computational resources. To study diffusion and precipitation
in mesoscale methods such as kMC simulations [8,9], we still
need to accurately and efficiently predict �Ea and �E in
different local chemical environments. A practical approach is
to construct surrogate models that can predict the coefficients
(a, b, and c) of Eq. (5) with respect to the local lattice occu-
pations; then the properties of the MEP (�Ea, �E , and DMEP)
can be automatically obtained based on Eq. (5) and Fig. 4(a).
The general strategy to construct these surrogate models and
train them based on DFT + CI-NEB results is described as
follows.

To train the surrogate models for coefficients of Eq. (5),
2000 training data points of �E and �Ea pairs (plus the
corresponding supercell configurations of the initial and final
states) were chosen randomly from the total 2500 data points
generated from the DFT + CI-NEB calculations. The remain-
ing 500 data points were utilized as testing data to evaluate
the predictive accuracy of the surrogate models. All of the
data were divided into three different groups based on the
chemical type of the migrating atom (Al, Mg, or Zn) [52,53].
The input information was chosen to be the type of the mi-
grating atom and the type of all atoms on the 1st, 2nd, and
3rd nearest neighbor lattice sites relative to the vacancy site
before and after the migration event, as shown Fig. 7(a). This
difference between the even-order-term coefficients of Eq. (5)
(a and c) and the odd-order-term coefficient (b) suggests that
we should use different symmetry constraints to construct
the inputs of the surrogate models for coefficients. Thus, the
input information (only 1st nearest neighbor lattice sites are
shown) for surrogate models of a and c is constructed based
on the symmetry operations of the mmm point group shown in
Fig. 7(b), and input for the surrogate model of b is constructed
based on the symmetry operations of the mm2 point group
shown in Fig. 7(c).

In both Figs. 7(b) and 7(c), the vacancy (black color) and
the migration atom (yellow color) are aligned along the 〈110〉
direction (x axis). For the mmm point group illustrated in
Fig. 7(b), there is a mirror symmetry plane perpendicular to
the 〈1̄10〉 (y axis), a mirror symmetry plane perpendicular to
the 〈001〉 (z axis), and a mirror symmetry plane perpendicular
to the 〈110〉 direction (x axis). For the mm2 point group
illustrated in Fig. 7(c), there is a mirror symmetry plane per-
pendicular to the 〈1̄10〉 (y axis), a mirror plane perpendicular
to the 〈001〉 (z axis), and a 2-fold rotation axis along the
〈110〉 direction (x axis). Thus, the neighboring sites can be
divided into different sets based on their symmetry relative to

073601-7



XI, ZHANG, HECTOR JR., MISRA, AND QI PHYSICAL REVIEW MATERIALS 6, 073601 (2022)

FIG. 7. Illustrations of local lattice sites related to the vacancy
migration and their symmetry properties considered in the surrogate
models of coefficients of Eq. (5). (a) Plot of the 1st, 2nd, and 3rd
nearest neighboring sites of the vacancy (black) and the migrating
atom (yellow) aligned along the 〈110〉 direction (x axis). The vacancy
and the migrating atom are plotted in the same way in (b) and (c).
(b) and (c) Effects of mmm and mm2 point group symmetry applied
on the 1st neighboring lattice sites, respectively. Atoms with the same
color are at the symmetrically equivalent lattice sites, so their contri-
butions to the inputs of the surrogate models are averaged together.
Here, the mmm point group shown in (b) has a mirror symmetry
plane perpendicular to the 〈1̄10〉 (y axis), a mirror symmetry plane
perpendicular to the 〈001〉 (z axis), and a mirror symmetry plane
perpendicular to the 〈110〉 direction (x axis). The mm2 point group
shown in (c) has a mirror symmetry plane perpendicular to the 〈1̄10〉
(y axis), a mirror symmetry plane perpendicular to the 〈001〉 (z axis),
and 2-fold symmetry along the 〈110〉 direction (x axis).

the vacancy and the migrating atom. As shown in Figs. 7(b)
and 7(c), the mmm point group sorts the 1st nearest neighbor
sites into 4 sets; the mm2 point group sorts the 1st nearest
neighbor sites into 7 sets; each set of lattice sites is plotted in
the same color. The same strategy is applied to 2nd and 3rd
nearest neighbors and 2-atom clusters (atoms at two lattice
sites not farther apart than 3rd nearest neighbor distance,
4.955 Å) as well. Atoms and clusters that are symmetrically

equivalent should have the same contribution to the inputs of
the surrogate models for coefficients of Eq. (5).

Besides the symmetry effect, the encoding strategy of the
lattice occupations has a significant impact on the surrogate
model. In this work, we applied the one-hot encoding method
[54,55] to construct feature vectors to describe types of single
atoms and 2-atom clusters. The advantage of using the one-hot
encoding method for categorical data is that since it represents
each type of the variable by a unique digit, there is no quan-
titative relationship between the values of variables. Hence,
one-hot encoding without introducing any fictional ordinal
relationship can be more accurate. The symmetry properties
related to vacancy migrations in the fcc lattice illustrated in
Fig. 7 are applied to construct these feature vectors. Because
a and c of Eq. (5) are the coefficients of fourth-order and
second-order terms, respectively, each should have the same
values for the forward and backward migration processes
in a vacancy migration case. However, b of Eq. (5) is the
coefficient of a third-order term, so it should have the op-
posite values in forward and backward migration processes.
Consequently, the feature vectors for the surrogate models of
a and c are constructed based on the symmetry operations
of the mmm point group as illustrated in Fig. 7(b), and the
feature vectors for the surrogate model of b are constructed
based on the symmetry operations of the mm2 point group
as illustrated in Fig. 7(c). In both Figs. 7(b) and 7(c), the
symmetrically equivalent lattice sites are of the same color, so
the contributions of chemical elements on these symmetrically
equivalent sites to the feature vectors should be averaged.

Examples of feature vectors and the symmetry constraints
on feature vectors are described as follows. We used a fea-
ture vector v ∈ R3 to represent the chemical type of a single
atom:

vAl = (1, 0, 0),

vMg = (0, 1, 0),

vZn = (0, 0, 1).

(10)

For 2-atom clusters, if both of two lattice sites are from the
same symmetry-equivalent sets [two sites with the same color
in Figs. 7(b) or 7(c)], such as the cluster of atom 8 and
atom 9 shown in Figs. 7(b) or 7(c), then their orientations
and orders relative to the vacancy site and the migrating
atom can be neglected. Therefore, there are 6 combinations
in total to put different types of chemical elements into these
two sites. We used a feature vector v ∈ R6 to represent each
type:

vAl-Al = (1, 0, 0, 0, 0, 0),

vAl-Mg = (0, 1, 0, 0, 0, 0),

vAl-Zn = (0, 0, 1, 0, 0, 0),

vMg-Mg = (0, 0, 0, 1, 0, 0),

vMg-Zn = (0, 0, 0, 0, 1, 0),

vZn-Zn = (0, 0, 0, 0, 0, 1).

(11)

However, if two lattice sites are from different symmetry
sets, for instance, the cluster of atom 3 and atom 9 shown
in Figs. 7(b) or 7(c), then their orientations and order can
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affect the vacancy migration energetics. Therefore, there are 9
combinations to put different types of chemical elements into
these two sites. This required use of a feature vector v ∈ R9

to represent each type:

vAl-Al = (1, 0, 0, 0, 0, 0, 0, 0, 0),

vAl-Mg = (0, 1, 0, 0, 0, 0, 0, 0, 0),

vAl-Zn = (0, 0, 1, 0, 0, 0, 0, 0, 0),

vMg-Al = (0, 0, 0, 1, 0, 0, 0, 0, 0),

vMg-Mg = (0, 0, 0, 0, 1, 0, 0, 0, 0),

vMg-Zn = (0, 0, 0, 0, 0, 1, 0, 0, 0),

vZn-Al = (0, 0, 0, 0, 0, 0, 1, 0, 0),

vZn-Mg = (0, 0, 0, 0, 0, 0, 0, 1, 0),

vZn-Zn = (0, 0, 0, 0, 0, 0, 0, 0, 1).
(12)

After using feature vectors to label single atoms and
2-atom clusters on the local lattice occupations near the va-
cancy and the migrating atom, we can average the one-hot
feature encoding vectors from the clusters that share the
same symmetry. A feature vector that represents the averaged
information can be obtained. For example, if the 18 first near-
est neighboring sites shown in Fig. 7(b) have the following
lattice occupations [σi, where i is the site index plotted in
Fig. 7(b)]: σ1 = Al, σ2 = Mg, σ3 = Al, σ4 = Al, σ5 = Zn,
σ6 = Mg, σ7 = Al, σ8 = Al, σ9 = Zn, σ10 = Mg, σ11 = Zn,
σ12 = Al, σ13 = Al, σ14 = Al, σ15 = Al, σ16 = Mg, σ17 =
Zn, and σ18 = Al, respectively, then four feature vectors can
be obtained for the single-atom occupations in 4 sets of
1st nearest neighbor sites by considering the mmm point
group:

v̂1 = 1
2vAl + 1

2vAl

= (1, 0, 0),

v̂2 = 1
8vMg + 1

8vAl + 1
8vAl + 1

8vZn

+ 1
8vAl + 1

8vAl + 1
8vMg + 1

8vZn

= (0.5, 0.25, 0.25),

v̂3 = 1
4vMg + 1

4vAl + 1
4vAl + 1

4vAl

= (0.75, 0.25, 0),

v̂4 = 1
4vAl + 1

4vZn + 1
4vMg + 1

4vZn

= (0.25, 0.25, 0.5). (13)

Here, each R3 feature vector of a single atom is multi-
plied by a weighting factor 1

ns
, where ns is the number

of symmetry-equivalent sites in each of these 4 sets. Con-
catenating these feature vectors together, we can obtain a
combined feature vector v̂ = (v̂1, v̂1, v̂1, v̂4) ∈ R12.
When we extended this method to 2-atom clusters within 3rd
nearest neighboring distance among all lattice sites shown
in Fig. 7(a), we obtained the combined feature vectors
that describe the local environment of a vacancy migration
event.

The dimensionalities of the combined feature vectors of
lattice occupations in lattice sites of Fig. 7(a) were 1401
based on the mm2 point group symmetry operations and 711
based on the mmm point group symmetry operations. These
large dimensionalities were at the same scale as the size of
our three training data sets (for three different elements of
migrating atoms), which reflect a typical downside of one-hot
encoding: it tends to create multicollinearity among indi-
vidual variables because it creates multiple new variables.
However, we can apply principal component analysis (PCA)
to reduce the dimensionality of the feature vectors. Overall,
using one-hot encoding and the PCA method together, we
can eliminate potential quantitative relationships and multi-
collinearity between the individual variables at the same time,
which significantly increases the accuracy and robustness of
the surrogate model. See Supplemental Material [44] for more
details regarding the dimensionality and PCA methods.

After the dimensionality reduction, the ridge regression
(linear least squares with the L2 regularization) was applied
to the training data. It can be described in the form of least
squares as

X̂ β̂ridge = y, (14)

where the estimated parameters β̂ridge minimize the objective
function:

min
β

{| y − X̂β‖2
2 + λ|β‖2

2

}
. (15)

Here, X̂ is the dimension-reduced feature space. Each row in
X̂ represents a dimension-reduced feature vector, and it has m
rows in total, where m is the size of the training data set. y is a
vector that contains the results of the targeted coefficients a, b,
or c. Since there are two constraints (a > 0 and c < 0) to make
sure that Eq. (5) represents the MEP in Fig. 1(c), elements in
y can be ln(a), b, or ln(−c) for each data point. The scalar λ is
a user-defined regularization parameter, which was set to 1 in
our calculations. Based on Eq. (15), the estimated parameter
vector is β̂ridge = (XTX + λI )−1X Ty, where I is an identity
matrix.

After training the surrogate models to output the coef-
ficients a, b, and c based on the local lattice occupations,
we calculated the properties of the MEP (�Ea, �E , and
DMEP) from Eq. (5) as follows: �E = EMEP(xf ) − EMEP(xi ) =
b2(x3

f − x3
i ) = b(9b2−32ac)3/2

256a3 , DMEP = xf − xi =
√

9b2−32ac
4a , and

�Ea = −EMEP(xi ). See Supplemental Material [44] for details
of the training performance of surrogate models.

Figures 8(a)–8(c) show how predictions of the coefficients
of Eq. (5) from our surrogate models (X axis) match with the
coefficients of Eq. (5) directly fitted based on DFT + CI-NEB
results (Y axis) for 500 test cases chosen randomly from the
total 2500 DFT + CI-NEB calculations. With the predicted
coefficients, the values of �E , DMEP, and �Ea can then be
calculated based on Eq. (5) and Fig. 4(a). Figures 8(d)–8(f)
compare these predicted values from surrogate models (X
axis) with �E , DMEP, and �Ea directly from DFT + CI-NEB
calculations (Y axis). All plots in Fig. 8 indicate accurate
matches between the surrogate model predictions and DFT +
CI-NEB calculations, with low RMSE and high R2 values
(close or larger than 90%). Particularly, the RMSE values of
both �E and �Ea values are less than 0.04 eV, indicating our
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FIG. 8. Performances of surrogate models to predict vacancy
migration energetics based on Eq. (5). (a)–(c) Comparisons between
directly fitted results and predictions from our surrogate models for
EMEP(x) coefficients [a, b, and c in Eq. (5)]. (d)–(f) Comparisons
between DFT + CI-NEB calculated results and predictions based on
our surrogate-model-predicted EMEP(x) for �E (d), DMEP (e), and
�Ea (f).

surrogate models can give precise descriptions of both the en-
ergetic driving force and energy barrier of vacancy migrations
in complex local chemical environments. Using the one-hot
encoding methods to describe the local lattice occupations as
the inputs, these surrogate models can be easily implemented
into kMC simulations for studies of early-stage precipitation
kinetics in Al-Mg-Zn alloys.

IV. DISCUSSION AND CONCLUSIONS

Several previous studies support the generality of our stud-
ies of lattice distortion effects on vacancy migration barriers.
For example, Eq. (9) is similar to the general linear correlation
between �Ea and a3

l B0 (al is the lattice constant and B0 is
the bulk modulus) for many pure metals with stable (such
as Al, Ni, Cu, and Pt) or metastable (such as Fe and Ti)
fcc structures [56,57]. Both k f and B0 are related to second
derivatives of the energy landscape at local-minimum states.
As another example, correlations between site distortions and
Li-ion migration barriers and correlations between Li-ion
vibrational frequencies and Li-ion migration barriers were
found separately in superionic conductors with antiperovskite
structures (related to fcc lattice) [58]. Yet another example is
that an equation similar to Eq. (9) in this study was proposed
to estimate the local free energy barriers in glass materials
[59]. These results suggest Eq. (5) and Eq. (9) can be applied
to atomic migrations in many other materials with fcc and
similar crystal structures if each migration MEP only has one
local energy maximum as plotted in Fig. 1(c). Thus, not only
are these equations [Eq. (5) and Eq. (9)] and the related surro-
gate models suitable for describing the energetics of vacancy
migrations in multicomponent Al alloys, but they can also be
applied in other multicomponent alloys such as high-entropy
alloys and the related concept of complex concentrated alloys,
where there can be strong lattice distortion effects on diffusion
kinetics due to fluctuations in local chemical compositions
[5–7,60,61]. However, the validity and the detailed forms of
these equations in the ionic compounds need further investiga-

tions due to the different characteristics of interatomic bonds
compared with the metallic alloys studied here.

The surrogate models to predict coefficients of Eq. (5) can
be further improved from different aspects. First, only the
feature vectors related to 2-atom clusters have been consid-
ered. We have confirmed that the accuracy of the surrogate
models can increase if the feature vectors related to 3-atom
clusters are considered (the R2 values of the predictions of �E
can be more than 90% in these cases). Second, higher-order
methods other than the linear ridge regression can be applied
to train the surrogate models. However, since these surrogate
models will be implemented into kMC simulations, these
improvement strategies may increase the computational cost
significantly and impede the ability of the kMC simulations
to study the relatively long-time and large-scale diffusion and
precipitation kinetics. Thus, the trade-off between accuracy
and efficiency should be carefully considered for the con-
struction of these surrogate models. These decisions can be
made if kMC simulations are performed and compared with
experimental validations, which will be the subject of future
research.

In addition, physical mechanisms (including the symmetry
properties discussed in Sec. III C and Sec. III D) will be ap-
plied to discover more efficient approaches to construct the
DFT + CI-NEB data set to train the surrogate models. For
example, Eq. (9) provides a criterion to select the represen-
tative data with appropriate distributions of �ea and �Ea

as the training data set. Last but not least, the generality of
our surrogate models based on Eq. (5) for different alloy
compositions should also be verified. We have performed
the DFT + CI-NEB calculations and analyses of quaternary
Al-Mg-Zn-X alloy systems, where X is the alloying element
possibly affecting the vacancy migration kinetics. Our prelim-
inary results show that surrogate models based on Eq. (5) can
also accurately describe the MEPs and the related �Ea/�E
in these quaternary alloy systems, which will be discussed in
our future work.

In summary, the major conclusions of this study are as
follows:

(1) DFT + CI-NEB calculations provide energy barriers
�Ea and driving forces �E of many (>1000) vacancy mi-
gration events in different local chemical environments within
the face-centered cubic (fcc) lattices of Al-Mg-Zn alloys.

(2) The widely applied kinetic Ising model [10], which
states �Ea = �ea + 1

2�E and �ea is a constant value for one
type of migrating atom in different local chemical environ-
ments inside a lattice, is not broadly applicable to fcc alloys,
such as multicomponent Al alloys (Al-Mg system and Al-
Mg-Zn system). This is because of the local lattice distortion
effects resulting from changes in the chemical environment
experienced by a migrating atom. Only Zn atoms near vacancy
cites in Al lattices induce small lattice distortions due to the
relatively small size difference between Al and Zn atoms [50].
Alternatively, large fluctuations (∼1 eV) of �Ea in Al-Mg and
Al-Mg-Zn alloys originate primarily from changes in �ea =
�Ea − 1

2�E due to local lattice distortion effects because of
the relatively large size of Mg atoms compared with Al and Zn
atoms [50]. Here �ea can be regarded as the transition-state
energy (Et) relative to the average of the initial-state (Ei) and
final-state (Ef) energies [25].
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(3) Based upon comparisons with DFT + CI-NEB results,
a quartic function of the reaction coordinate x, EMEP(x) =
ax4 + bx3 + cx2, accurately describes the energy landscape
of the minimum energy path (MEP) for each vacancy mi-
gration event in the fcc lattice, where EMEP(x) of a vacancy
migration event only has a single maximum at the transition
state.

(4) The quartic functions of the MEPs in Al-Mg-Zn alloys
suggest that �ea of all types of migrating atoms in the fcc
lattice of Al can be approximated with �ea ≈ αk f D2, where
α ∼ 0.022 is a constant value. Here D is the distance of a
migrating atom between two adjacent equilibrium positions
and k f is the average vibration spring constant of this atom
at these two equilibrium positions. This relation provides a
significant speedup in estimating �Ea without computation-
ally costly CI-NEB calculations since k f is calculated rapidly
by displacing only the migrating atom from its equilibrium
positions.

(5) Surrogate models using local lattice occupations as
inputs were trained to predict the coefficients of the quartic
function. The quartic function can then predict both �Ea and
�E with ab initio accuracy but without additional DFT or
CI-NEB calculations. The efficient and accurate predictions
of �Ea and �E using these surrogate models will facilitate
mesoscale studies, such as kinetic Monte Carlo simulations, of
diffusional transformations that are critical for the processing
and applications of Al-Mg-Zn-based and other fcc alloys, such
as the solute clustering and early-stage precipitation during
the natural aging of 7XXX series of Al alloys [28–31].
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