
PHYSICAL REVIEW MATERIALS 6, 065603 (2022)
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Hydrogenation of amorphous silicon (a-Si : H) is critical for reducing defect densities, passivating midgap
states and surfaces, and improving photoconductivity in silicon-based electro-optical devices. Modeling the
atomic-scale structure of this material is critical to understanding these processes, which in turn is needed to
describe c-Si/a-Si : H heterojunctions that are at the heart of modern solar cells with world-record efficiency.
Density functional theory (DFT) studies achieve the required high accuracy but are limited to moderate system
sizes of 100 atoms or so by their high computational cost. Simulations of amorphous materials have been
hindered by this high cost because large structural models are required to capture the medium-range order
that is characteristic of such materials. Empirical potential models are much faster, but their accuracy is not
sufficient to correctly describe the frustrated local structure. Data-driven, machine-learned interatomic potentials
have broken this impasse and have been highly successful in describing a variety of amorphous materials in their
elemental phase. Here, we extend the Gaussian approximation potential (GAP) for silicon by incorporating the
interaction with hydrogen, thereby significantly improving the degree of realism with which amorphous silicon
can be modeled. We show that our Si : H GAP enables the simulation of hydrogenated silicon with an accuracy
very close to DFT but with computational expense and run times reduced by several orders of magnitude for
large structures. We demonstrate the capabilities of the Si : H GAP by creating models of hydrogenated liquid
and amorphous silicon and showing that their energies, forces, and stresses are in excellent agreement with DFT
results, and their structure as captured by bond and angle distributions are in agreement with both DFT and
experiments.
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I. INTRODUCTION

Hydrogenated amorphous silicon (a-Si : H) is a widely
used material, with applications ranging from thin-film tran-
sistors [1] to solar cells [2,3]. Created using plasma-enhanced
chemical vapor deposition (PECVD) of silane gas (SiH4) [4],
a-Si : H has far fewer defects than pure amorphous silicon
due to the passivating role of the H atoms, the concentration of
which typically ranges from 6 to 18 at. %. As a result, a-Si : H
has demonstrably superior electrical transport properties and
photoconductivity [5,6] in comparison with pure amorphous
silicon. Therefore, the role of H in a-Si : H films is crucial for
obtaining effective devices.

Remarkably, several aspects of a-Si : H remain the fo-
cus of research: understanding the local atomic interactions,
the classes of defects and their formation and statistics, and
the long-term structural dynamics all pose questions that are
unsettled. Of particular interest is the light-induced defect
formation, known as the Staebler-Wronski effect [7], which
is directly relevant for photovoltaic applications. Another im-
portant issue is the degradation of hydrogen passivation at
the amorphous/crystalline interface in silicon heterojunctions
(HJs) [3,8,9], which is probably a key driver of the enhanced
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degradation [10] of the efficiency world record holder: Si
HJ solar cells [11]. This enhanced degradation is one of the
main factors that slows down the market acceptance of these
extremely promising Si HJ solar cells.

All of the above challenges demonstrate the need for
theoretical and simulation-based research efforts to provide
crucial guidance and insight. Atomistic simulation methods
are the primary tools for materials modeling. The most ac-
curate of these methods are those based on first principles,
in this case, electronic-structure theory. The most prominent
method is density functional theory (DFT) [12], which is
highly accurate but at the cost of significant computational
expense and unfavorable scaling behavior (typically cubic,
although linear scaling versions exist with large prefactors
[13]). With rare and heroic exceptions, DFT techniques are
typically used to simulate systems with no more than a few
hundred atoms. Larger-scale simulations of many hundreds
or a few thousand atoms or disordered systems that require
simulating many thousands of samples are typically under-
taken using parameterized empirical interatomic potentials
within molecular dynamics (MD) methods [14]. These poten-
tials typically have simple functional forms and are usually
optimized to reproduce a few key material characteristics on a
limited set of structures with good accuracy. These functional
forms are parameterized to strike a balance between obtaining
good accuracy for the selected observables for the selected
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structures and transferability to other observables and/or
other structures for which the potential was not fitted to. The
limited number of parameters of these models makes it very
hard to satisfy both of these goals.

It is also important to note that an alternative exists in
the form of tight-binding (TB) models, which represent a
middle ground between DFT and interatomic potentials. The
TB approach enables a minimal description of the electronic
structure and is capable of using inputs from DFT, yielding a
qualitatively robust description of the electron behavior in a
wide range of solids with a computational cost that is signifi-
cantly reduced compared with DFT [15]. These models scale
similarly to interatomic potentials [16,17], and substantial
effort has gone into developing accurate TB models for a wide
range of materials [18–20]. However, their utility remains
primarily limited to materials where the inclusion of charge
transfer is of the utmost priority [21,22]. In other cases, it is
not clear that they are more accurate or transferable than clas-
sical interatomic potentials, despite being significantly more
expensive [23].

Several interatomic potentials have been developed for MD
simulations of pure silicon phases and achieved reasonable ac-
curacy [24–26]. However, as discussed further below, even for
Si, there was clearly room for improving the correspondence
with experimental and DFT results. There have been notably
fewer papers on Si-H interatomic potentials, even though
these are essential for accurate modeling of solar cells. Ref-
erence [27] reported limited correlation between a-Si : H MD
simulations using the Stillinger-Weber interatomic potential
for the Si-H pair-correlation function with experiments. Ref-
erence [28] reported moderate correlation between a-Si : H
MD simulations of the Si-H pair correlation function using the
Tersoff potential with experiments. Reference [29] reported
discrepancies between a-Si : H MD simulations using various
MD potentials and experiments regarding the radial distribu-
tion function (RDF) and vibrational frequencies. Reference
[30] reported that the hydrogen pairing tendencies observed
in Ref. [31] were not adequately captured by MD simulation.
Finally, Ref. [32] reported that MD simulations of reaction
processes were inadequate with existing MD potentials and
went on to suggest improvements.

In the last decade, the adoption of machine-learning (ML)
methods [23,33–45] has changed the above picture, particu-
larly for the simulation of hard materials. These ML-based
methods construct highly flexible nonparametric interatomic
potentials by training them on DFT-computed energies and
gradients of a wide variety of structures and can deliver near-
DFT-level accuracy for similar structures at a computational
cost that is thousands of times less than that of DFT for mod-
erate sizes systems. Since interatomic potentials scale linearly
with system size, the savings can reach factors of millions for
large structures or when using expensive hybrid correlation
functionals. Some of these ML models additionally include
descriptions of charge transfer, enabling more accurate treat-
ment of systems with strong nonlocal dependencies in the
electronic structure [46–48]. For recent reviews of all of these
methods and their application to materials simulation, see
Refs. [49,50].

The advantage of ML models in general and ML-based
potentials in particular is the flexibility of their functional

form, which enables them to accurately interpolate the poten-
tial energy of structures in a broad training database, covering
a wide variety of structures and phases. However, the nature
of this flexibility also leads ML models to be increasingly less
accurate for structures that are farther away from the training
dataset. Thus, the disadvantage of ML-based potentials is their
limited transferability or extrapolation. The key to success is
to transform the problem of fitting the total energy of large
systems into smaller subtasks for which interpolation suffices:
for extended materials, this is achieved by the ansatz that the
total energy is a sum of local terms, site or atomic energies,
which are only functions of the local environment. Creating
a truly general-purpose potential thus requires a very large
training database that covers all relevant local environments
well. When the potential is used, it will be accurate if the
configurations encountered consist of local environments that
are near those in the database. If radically new local environ-
ments are encountered (e.g., because of phase unanticipated
transitions or the system is taken to a pressure or temperature
range far outside where the training structures came from), ac-
curacy will be severely compromised. Note that the notion of
nearness used above in practice is defined by the architecture
of the ML model and the types of regularization that are used
in obtaining the optimal parameters.

In this paper, we use the Gaussian approximation poten-
tial (GAP) framework [33,34]. The GAP is based on the
Gaussian process regression (also known as kernel regression)
methodology, typically using the smooth overlap of atomic
positions (SOAP) kernel to describe the similarity between
local environments in materials [34]. One advantage of kernel
regression is that the flexibility of the functional form nat-
urally grows with the amount of training data. The general
approach, which has recently been reviewed in detail [50],
is to fit a potential to an initial training set of total ener-
gies, forces, and stresses calculated using a given electronic
structure method (typically DFT) and then use this poten-
tial to explore a wide range of structures using a variety of
algorithms including MD and geometry optimization. The
training dataset is then iteratively broadened, particularly with
configurations where the fit is not yet good enough, until the
desired accuracy is reached for the configurations and observ-
ables of interest. The ultimate validation of the potential is by
testing macroscopic observables using samples generated by
the potential and not explicitly used in the training.

A GAP model has already been developed to describe pure
Si [23], including many crystalline and amorphous phases,
and has been used to study the structure of a-Si [51] and its
phase transitions under pressure in unprecedented detail and
precision [52]. However, a-Si/c-Si HJ solar cells contain a
significant amount of hydrogen, most often in the 10–15%
range. It is well known that existing interatomic potentials of
Si : H are unable to capture experimentally measurable quan-
tities with sufficient precision, as discussed earlier [27–32],
including partial RDFs, pairing tendencies, and reaction pro-
cesses. Therefore, the effort to describe, analyze, and then
mitigate the problematic excess degradation of these HJ cells
requires the development of a GAP model for Si : H, which
we report on in this paper. We validate our Si : H GAP on
hydrogenated liquid Si and amorphous Si, which are the two
most relevant phases since a-Si : H is typically modeled using
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melt-quench simulations of liquid Si : H. To gauge the utility
of our Si : H GAP, we show how it qualitatively outper-
forms state-of-the-art parameterized interatomic potentials by
delivering excellent agreement with DFT calculations and
experimental results. This Si : H GAP will be key for fu-
ture research by qualitatively enhancing the precision of MD
simulations of hydrogenated silicon solids to DFT levels, en-
abling a wide variety of electro-optical simulations, including
simulations of a-Si : H/c-Si HJ solar cells and degradation
simulations which may eventually clarify long-term structural
dynamics problems such as the Staeble-Wronski effect.

II. THE GAP PLATFORM

In this paper, we train a GAP on a set of structures and
accompanying energies, forces, and stresses, all computed
using DFT. The GAP is constructed as the sum of a purely
repulsive core potential and a SOAP kernel. The repulsive
potential is built with cubic splines that are fitted to the in-
teraction of pairs of atoms in vacuum as computed by DFT.
These pair potentials are built for all three relevant atomic
pairs: Si-Si, Si-H, and H-H. Including these repulsive core
pair potentials serves a dual purpose. First, a large fraction of
the interaction energy between atoms can in fact be described
by a pair potential, which describes exchange repulsion at
close atomic distances and some effects of chemical bonding
at far distances. Second, the repulsive portion of the potential
is difficult to capture using the same kernel function that is
appropriate to describe valence bonding due to the steepness
of the energy curve at close approach, and thus, capturing it
with a pair potential with a piece-wise spline enhances overall
numerical efficiency significantly.

The total GAP energy for the system is generated as a
sum of the repulsive pair potential and the many-body SOAP
kernel which is constructed as a linear sum over kernel basis
functions:

E =
∑
i< j

V (2)(ri j ) +
∑

i

M∑
s

αsK (Ri, Rs), (1)

where i and j index the atoms in the system, V (2) is the
two-body repulsive pair potential, ri j is the distance between
atoms i and j, K is the SOAP kernel basis function, and Ri

is the collection of relative position vectors corresponding to
the neighbors of atom i which is termed a neighborhood. The
s sum ranges over the set of M representative atoms, selected
from the input dataset, whose neighborhoods are chosen to
serve as a basis in which the potential is expanded. The coef-
ficients αs are determined by a regularized linear regression of
the energies, forces, and stresses of the system computed with
Eq. (1) that are parameterized by these αs values and com-
pared with the corresponding energies, forces, and stresses
computed by DFT for the same structures. This comparison
results in a set of linear equations that are solved for the coef-
ficients αs using Tikhonov regularization. The representative
neighborhoods over which Eq. (1) is evaluated are selected by
choosing basis neighborhoods which are maximally dissimilar
from each other (using CUR matrix decomposition of the
matrix corresponding to all the neighborhoods in the training
dataset), such that the variety of the entire set of possible

neighborhoods can be well represented by interpolation over
a small number of these basis neighborhoods. The details of
all these algorithms and their general application to fitting a
GAP model have recently been reviewed in Ref. [50].

The SOAP kernel K (Ri, Rs) characterizes the similarity
between two neighborhoods: it is maximal when the two
neighborhoods are identical, and it is smaller and smaller
for more and more different neighborhoods. To quantify the
similarity of two neighborhoods, each neighborhood Ri of
atom i is represented by a set of corresponding neighbor
densities, a separate one built for each kind of element in the
neighborhood:

ρz
i (r) =

∑
i′

δzzi′ fcut(rii′ ) exp

(
−r − rii′

2σ 2
atom

)
, (2)

where z corresponds to the element whose density around
atom i is constructed, and the δzzi′ x factor selects neighbors
corresponding to element z to be included in the sum. In
the present case, there are two elements (Si and H), so two
neighbor densities are built around each atom. The calculation
of the SOAP kernel starts by integrating the overlap of the two
neighbor densities:

K̃ (Ri, Rj ) =
∑
zz′

∫
R̂∈SO(3)

dR̂

∣∣∣∣
∫

drρz
i (r)ρz′

j (R̂r)

∣∣∣∣
2

. (3)

Next, the integral K̃ is normalized by the self-overlaps. Fi-
nally, it is raised to an integer power and has a suitable
hyperparameter prefactor assigned:

K (Ri, Rj ) = δ2

∣∣∣∣∣∣
K̃ (Ri, Rj )√

K̃ (Ri, Ri )K̃ (Rj, Rj )

∣∣∣∣∣∣
ζ

. (4)

In practice, the neighbor densities are represented by an ex-
pansion in a basis of spherical harmonics and radial functions,
and the integral in Eq. (3) is efficiently evaluated as a scalar
product. A detailed review of SOAP and similar neighbor
density based representations, descriptors, and kernels is in
Ref. [53]. The application to pure Si was comprehensively
described in Ref. [23], which we refer to for further details
and validation.

III. Parameterizing THE SI : H GAP

A. Outline of training and reference structures

ML models in general and GAP models in particular are
trained using three sets of structures. First, the GAP is trained
by fitting to DFT-calculated energies, forces, and stresses
on the structures of an adaptively created training set. This
training set is iteratively expanded by creating new structures
with simple MD simulations (such as a structural relaxation
or a brief thermal protocol) that use the current version of the
GAP model, starting from structures already contained within
the training set. We then carry out DFT and GAP tests on the
new structures and determine the differences between them.
Structures for which the comparative fit is poor are added to
the next-generation training set, and the Si-H GAP model is
retrained.
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Second, the results of the training procedure are regularly
evaluated using a reference set. The GAP is not trained on
this reference set of structures. Instead, the energies, forces,
and stresses are calculated with both the GAP and with DFT
on the structures within the validation set, and the difference
is used to quantify and monitor the progress of the training.

Third, the model undergoes final testing on an additional
validation set of structures. This set of data is not used to
inform the progress of the training but is instead utilized as
a final benchmark for performance, augmenting the reference
set.

The structures of the training set and the reference set were
assembled by adding H to pure Si structures of representative
Si phases and structures. The initial training set included
about 150 structures. The reference set included about 110
structures. These pure Si structures were taken from our pre-
vious work on a-Si/c-Si interface degradation [9], from the
reference database on which the published Si-only GAP was
trained [23], or were generated using the atomic simulation
environment [54]. The representative phases of Si were (1)
amorphous silicon, (2) liquid silicon, (3) diamond silicon with
a vacancy, (4) diamond silicon with a divacancy, (5) diamond
silicon with an interstitial Si, (6) amorphous/crystalline sil-
icon interface structures, and (7) diamond surface structures
with (100) and (111) orientation. The atomic concentration
of added H was in the 6–12 at. % range for the liquid and
amorphous phases and for the interface structures, in the
4–8 at. % range for the bulk diamond phases, and in the 12–20
at. % range for the diamond surfaces. In each of these struc-
tures, a sufficient amount of H was added to fully passivate
all dangling or highly strained bonds. Furthermore, to train
the Si-H GAP to accurately model hydrogen-related defects,
structures with an H atom added or taken away from the fully
passivated structures were also added both to the training set
and to the reference set.

The additional structures of the validation set were assem-
bled by using the new Si-H GAP to perform MD simulations
(see Sec. III E below for details of the MD procedures).
The validation set consisted of 150 additional hydrogenated
structures. The representative phases were (1) amorphous sil-
icon, (2) liquid silicon, and (3) amorphous/crystalline silicon
interface structures.

Finally, it is noted that the training set also contains an
isolated Si atom and an isolated H atom as structures. Isolated
here means the structure possesses a large enough unit cell
that the atom is effectively in isolation, even though its en-
ergy is computed using periodic boundary conditions and the
same DFT parameter settings for consistency. Including these
isolated atoms as training structures is essential because the
GAP is fit to the binding energy, not the total energy (i.e., the
binding energy plus the energy of isolated atoms).

B. DFT calculation details

The DFT calculations were performed using the QUAN-
TUM ESPRESSO 6.2.1 software package [55–57], with the
key parameters as follows. The Perdew-Burke-Ernzerhof
(PBE) exchange-correlation functional was used with pe-
riodic boundary conditions [58]. The core and valence
electron interactions were described by the norm-conserving

TABLE I. Si and H SOAP kernel parameter values.

Element nmax lmax δ ζ rcut w σatom

Si 10 6 3 4 5.0 1.0 0.5
H 9 6 1 4 3.5 0.5 0.4

pseudopotential function. The calculations were performed
with Marzari-Vanderbilt electronic smearing [59]. This smear-
ing method was chosen, as it ensures that the DFT energies
and forces are consistent, and the electronic free energy was
used as the energy training target because its derivatives with
respect to the atomic positions are reported as forces by the
DFT code (according to the Hellman-Feynman theorem). An
energy cutoff of 42 Ry was employed for the plane-wave basis
set, and a Monkhorst-Pack grid method was used to define the
k-point mesh which samples the Brillouin zone. The k-point
spacing was chosen to be 0.2 Å−1.

We also made sure that the energy/atom values calculated
for each structure were accurate within 1 meV/atom. This was
tested by verifying that the energy/atom values did not change
>±1 meV/atom when the cutoff was pushed to exceptionally
large values or the k-point density was substantially increased.

A separate set of parameters was used to perform
DFT Born-Oppenheimer MD (DFT-BOMD) simulations [60].
DFT-BOMD was employed to compare the performance of
GAP-driven MD simulations vs DFT-driven MD simulations.
The DFT-BOMD simulations utilized the PWSCF module
of the QUANTUM ESPRESSO software, using the same PBE
exchange-correlation functional as before. An energy cutoff
of 36 Ry was used for the plane-wave basis set, and the
first Brillouin zone was sampled using only the � point. A
Gaussian smearing width of 0.01 Ry was implemented to the
density of states to avoid convergence problems with metallic
configurations.

C. Fitting the Si-H GAP

Several hyperparameters were needed to define the SOAP
kernels centered on Si and H atoms. These included (1) nmax

and lmax, the maximum number of radial and angular indices
for the spherical harmonic expansion of the neighbor densi-
ties; (2) δ, a hyperparameter that set the energy scale of the
many-body term in the SOAP kernel; (3) ζ , the exponent
used to construct the SOAP kernel; (4) the cutoff radius rcut

that characterized the radius beyond which the cutoff function
within the neighbor densities converges to zero, and its asso-
ciated transition width w that set the rate of this convergence;
and (5) σatom, the smearing parameter for the neighbor density
function. Table I summarizes the values of these parameters.

The fitting also required choosing regularization parame-
ters for each kind of target data: σenergy for energies, σforce

for force components, and σvirial for virial stress components.
These regularization parameters can be set at different values
for different parts of the training set. These parameters repre-
sented the accuracy of the GAP to be reached with the fitting
procedure. The relative values of these same parameters for
different parts of the training set also determined the relative
weight each phase/structure has in the loss function. It is
possible to input these values in the potential in a number of
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TABLE II. σenergy values for each structure type.

Phase σenergy (eV/atom)

Amorphous silicon 0.0015
Liquid silicon 0.003
a-Si/c-Si interface 0.003
Diamond Si phases 0.001
Isolated atom 0.0001

different ways, including using the same value for all struc-
tures or as the same value for all structures in a single phase,
or structure type, for instance, liquid Si. We ended up using a
combination of these methods: we assigned the regularization
values on a structure-by-structure basis. The σenergy values
were chosen to be the same for all structures in a given phase,
see Table II. In some detail, σforce was defined on a per-atom
basis as

σforce =
{

0.1, |F | < 2.0 eV Å−1

0.05|F |, |F | � 2.0 eV Å−1 , (5)

where |F | was the magnitude of the force vector on that
respective atom. Here, σvirial was defined on a per-structure
basis as

σvirial =
{

0.025Natoms, max (|τi|) < 1.0 eV
0.025Natoms max (|τi|), max (|τi|) � 1.0 eV ,

(6)
where Natoms was the number of atoms in the structure, and
max (|τi|) was the maximal norm of the virial stress tensor.

D. Adaptive training of the Si-H GAP

As described in the Introduction, the conventional wisdom
is that a ML model needs to be trained on a broad database of
structures, containing as many structures as possible, to be us-
able in a general sense. Such an approach requires training on
enormous training sets, and its product can end up overfitted
with an excessive number of parameters. As an efficient al-
ternative, we adopted an adaptive training procedure, wherein
first the GAP was trained on the structures contained in the
training set/database. Subsequently, the GAP was validated
on structures outside the training set with DFT measurements
of energies, forces, and virial stresses. The reference struc-
tures for which the quality of the fits fell below a threshold
were then added to the training set, and the GAP was then re-
trained. Such adaptive procedures grow the training database
in an iterative manner. Using this procedure, it was not nec-
essary to add thousands of structures indiscriminately to the
training set, as the adaptive training procedure on its own
preferentially gravitated only toward structures that needed to
be included into the training set without any external input,
thereby avoiding the problem of overfitting.

We performed all MD simulations using the LAMMPS soft-
ware package built with QUIP package support [61–63] that
can use GAP models. We evaluated the accuracy of the GAP
compared with DFT with the error metric of the weighted root
mean square error (RMSE). As the targeted accuracy of the
GAP varied from structure to structure, set by their regular-
ization parameters σ , the natural measure of accuracy is not

FIG. 1. Iterative progression of the average of the root mean
square error (RMSE) of the Si (gray dashed) and H (red dotted)
Cartesian force components, measured with respect to density func-
tional theory (DFT) on the reference structure set.

the absolute RMSE value but its ratio to the regularization
parameter σ . We captured this by weighting the RMSE by
σ 2 as follows:

RMSEweighted =
⎡
⎣

∑N
i=1

(xi,GAP−xi,DFT )2

σ 2
i∑N

i=1
1
σ 2

i

⎤
⎦

1/2

. (7)

Here, N is the number of data points, xGAP is the value
measured by GAP, and xDFT is the value measured by DFT,
where x can be an energy, a force, or a virial stress.

We conducted 27 full rounds of iterative training of the
Si-H GAP. Figure 1 shows the iteration-by-iteration progress
of the average of the (unweighted) RMSE of the force compo-
nents, measured by comparing the Si-H GAP forces with the
DFT forces on the reference database, separately for Si and
for H. In iterations 1–11 of the above-described adaptive pro-
cedure, we added new structures, shown in the right column
of Table III, distinguished by the phase and the preparation
method, such as heating or annealing, and doing so across
different temperature ranges. Beginning with iteration 12, we
started to add new structures to the adaptive training set that
were distinguished by their different a-Si : H architecture
or structure, such as c-Si/a-Si : H interfaces and different
vacancy structures. A few sets of such structures from various
phases were added to the training set. Once the new struc-
tures were added to the training set, the training of the GAP
continued with the newly added structures. Table III lists the
structures added to the training set over the 27 iterations. The
results of this 27-iteration training are discussed next.
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TABLE III. Structure types added in each iteration.

Iteration Structure type

1 Optimized structures (all phases)
2 Optimized structures (all phases)
3 Low-T anneal of a-Si : H
4 High-T anneal of liq-Si : H
5 High-T anneal of liq-Si : H
6 Med-T anneal (1100 K) of a-Si : H
7 Heating a-Si : H from 500 to 800 K at 1013 K/s
8 Heating a-Si : H from 800 to 1100 K at 1013 K/s
9 Heating a-Si : H from 1100 to 1400 K at 1013 K/s
10 Heating a-Si : H from 1100 to 1400 K at 1013 K/s
11 Heating a-Si : H from 800 to 1400 K at 1012 K/s
12 Added new a-Si : H structures
13 Added new a-Si : H structures
14 Added c-Si/a-Si : H interface structures
15 Added c-Si/a-Si : H interface structures
16 Added new c-Si divacancy structures
17 Added new liq-Si : H structures
18 Added new c-Si vacancy structures
19 Added new c-Si interstitial structures
20 Low-T anneal of c-Si/a-Si : H interface structures
21 Optimization of c-Si/a-Si : H interface structures
22 NPT high-T anneal of liq-Si : H structures
23 NVT high-T anneal of liq-Si : H structures
24 Quenching liq-Si : H from 2000 to 1500 K at 1013

K/s
25 Annealing quenched liq-Si : H structures at

1500 K
26 Quenching liq-Si : H from 1500 to 1400 K at 1012

K/s
27 Added hydrogen passivated c-Si surface (100)

and c-Si surface (111) structures

Figure 1 shows how the force RMSE on the Si and H atoms
evolved over the 27 training iterations. Broadly speaking, ev-
ery iteration successfully reduced the force RMSE. The force
RMSE improved notably in iteration 7 because we changed
the method of assigning the regularization parameters σforce.
In the first six iterations, the regularization parameters σforce

were assigned the same value for all structures in a given
phase. From iteration 7, we switched to assigning the σforce

values for each structure individually.
In addition, in the same iteration we changed the fitting

protocol for the regularization parameters σforce and σvirial to
depend on the magnitude of the atomic force |F |, or stress,
measured by DFT, as shown in Eq. (5). We changed the
regularization because it was natural to relax the fitting for
atoms, structures, and phases where the forces and stresses
were larger. These two changes reduced the force RMSE
and thus increased the accuracy of the GAP considerably, as
visible in Fig. 1.

To form an overall picture about the efficiency of the train-
ing, we recall that the fitting of each quantity x was guided by
the corresponding regularization parameter σx. As captured by
the concept of the weighted RMSE, the GAP-simulated quan-
tities were fitted to the DFT-simulated quantities only with a
σx accuracy, or tolerance. As such, the σx values represent the

lowest error thresholds typically attainable with this regular-
ization procedure. We recall that the regularization parameter
σforce was set to σforce,min = 0.100 eV Å−1 for weaker forces
F < Fth = 2.0 eV Å−1 and proportionally higher for stronger
forces F > Fth. Visibly, the training successfully reduced the
(unweighted) RMSE for the forces on the Si atoms from 50%
above σforce,min to only 20% above σforce,min. Moreover, since
the forces F often exceeded the threshold value Fth, the effec-
tive σforce,eff was in fact higher than σforce,min. Therefore, the
training brought the accuracy of the RMSE even closer than
20% to the effective σforce,eff. Thus, the training of the Si-H
GAP substantially improved the precision of the calculated
force values and made the Si-H GAP very close to reaching
the theoretical limit of its precision.

The same training also reduced the RMSE for the forces on
the H atoms from ∼0.34 eV Å−1 down to 0.22 eV Å−1. Just
like for the Si atoms, we place this training into context. For
the H atoms, the forces F exceeded Fth much more often than
for Si atoms. The reason for the higher force RMSE values for
H are likely due to locality, as explained and evidenced below.

We recall that a locality limit applies to the Si-H GAP
because it does not include long-range interactions beyond 5
Å for Si and 3.5 Å for H. For a discussion of this aspect, see
Ref. [64]. This locality limit provides a natural procedure to
determine an accuracy threshold the Si-H GAP forces can pos-
sibly achieve [33,64]. We can quantify this limit by a locality
test procedure: a central atom is selected in a simulation cell,
and a sphere is defined around it with a radius rfix. The atoms
inside this sphere are kept fixed. The atoms outside this sphere
are assigned a velocity corresponding to a high temperature
of, e.g., T = 2000 K, and evolved with MD using the Si-H
GAP for 1 ps. Representative snapshot structures are gathered
over the course of this evolution. The force acting on the
central atom in these snapshot structures is calculated using
DFT. The standard deviation of the distribution of the forces
on the central atom over all snapshots is a natural measure of
a threshold accuracy attainable by any interatomic potential
with the given finite cutoff since it captures how much the
DFT-calculated forces can vary due to configuration changes
outside the cutoff. Note that this test is entirely independent of
the interatomic potential, and the locality that it measures is a
quantum mechanical property of the system.

We performed this locality test on the H atoms in the most
disordered phases: the amorphous and liquid structures. We
found that, for the appropriate cutoff radius of rfix = 3.5 Å,
the above-defined force standard deviation was 0.20 eV Å−1.
Adopting this result of the locality test as the attainable value
of the force RMSE, we conclude that the 27-round training of
the Si-H GAP reduced the force RMSE of the H atoms from
70% above the locality limit to only 10% above.

Next, Fig. 2 shows the correlation between the
energies/atom computed by the Si-H GAP and by DFT,
as measured on the reference and validation sets after 27
iterations. Our adaptive method reached an RMSE of the
reference correlation curve to be as little as 4 meV/atom,
close to the precision of our DFT calculations, 1 meV/atom.
The RMSE of the validation correlation curve, which
only contains higher excess energy liquid, amorphous, and
interface structures and covers slightly different regions of
the potential energy surface, was as little as 6 meV/atom,
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FIG. 2. Correlation between Gaussian approximation potential
(GAP) and density functional theory (DFT) measurements of the
energies/atom on both the reference (blue) and validation (red) sets
of structures, after iteration 27.

still close to DFT precision. To account for the difference
in excess energies of the structures in the two datasets, a
weighted RMSE was also included. This weighted RMSE
used the average excess energy of each type of configuration
as inputs, computed across both datasets, assigning the
weights [the σ values in Eq. (7)] to be the inverse average
excess energy multiplied by the highest of these averages.
This weighted RMSE is 0.005 meV/atom for the reference
set and 0.006 meV/atom for the validation set, indicating the
model is performing as expected.

E. Analysis and validation of the Si-H GAP

We will now analyze the usability of our GAP model by
conducting MD simulations with it, calculating experimen-
tally observable quantities, and comparing the results to those
obtained by using DFT and by experiments. While our broad
goal was to create a universally useful Si-H GAP, our pri-
mary motivation and intended use for this Si-H GAP was to
create highly accurate a-Si : H structures via a melt-quench
procedure from the liquid Si : H and to subsequently use it
to measure defect creation/annihilation energy barriers via
the nudged elastic band method. Therefore, we will focus our
analysis of the Si-H GAP on the liquid phase liq-Si : H, on the
amorphous phase a-Si : H, and on some representative defect
structures.

There are several different metrics for evaluating the re-
alness of the resulting structures that can be experimentally
observed and tested. These include (1) the RDF for mono-
atomic systems or the partial pair correlation function for
multi-atomic systems; (2) the bond length distributions and
the bond angle distribution; (3) the excess energy/atom, mea-
sured relative to c-Si; and (4) the vibrational spectra. The
relative importance of these experimental metrics is the sub-
ject of ongoing debate, with different proponents arguing in
favor of either the RDF or the vibrational spectra [65]. It is
significantly easier to measure the RDF computationally, but
its experimental determination is more difficult, as it requires

FIG. 3. Partial pair correlation functions of equilibrated liquid Si
infused with H, with a density of 2.58 g/cm3 and T = 2000 K. Top:
Si-Si; bottom: Si-H. Comparison provided between the Gaussian
approximation potential (GAP), a Si-H Tersoff potential, and density
functional theory (DFT).

x-ray diffraction measurements of the structure factor S(Q)
out to at least 40 Å−1 [66]. Conversely, it is much easier to
measure the vibrational spectra experimentally using Raman
and Fourier-transform infrared spectroscopy [67], but it is a
substantial challenge computationally. In this paper, we report
the computation and analysis of the following observables:
the partial pair correlation functions, bond angle distributions,
coordination statistics, and some defect characteristics, while
we leave the study of the vibrational spectra to future work.

1. Liquid phase

To simulate the structure of liquid Si infused with H,
we performed constant number/volume/temperature (NVT
ensemble) MD simulations as implemented in the LAMMPS

software package, built with QUIP package support [61–63].
Separate simulations were carried out using the Si-H GAP
and a Si-H Tersoff potential [68,69] to provide a comparison
basis. Each simulation started with a cubic supercell of side
length 5.26 Å, containing 64 Si atoms and 8 H atoms placed
at random, corresponding to a density of 2.58 g/cm3 and to an
approximate H at. concentration of 12%. The locations of the
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FIG. 4. Angular distribution functions, or g3(r, θ ), of equili-
brated liquid Si infused with H, with a density of 2.58 g/cm3 and
T = 2000 K. Top: Si-Si-Si; bottom: Si-Si-H. Comparison provided
between the Si-H Gaussian approximation potential (GAP), a Si-H
Tersoff potential, and density functional theory (DFT).

atoms were optimized with the interatomic potential, before
equilibrating at T = 2000 K for 150 000 time steps of 0.5 fs
duration. Structural data were gathered over an additional
10 000 time steps of 0.25 fs.

The same observables were also determined by DFT-
BOMD simulations using QUANTUM ESPRESSO or gathered
from the literature where available. Just as above, the start-
ing configuration consisted of 64 Si and 8 H atoms located
at random nonoverlapping positions in a cubic supercell of
side length 5.26 Å. Simulations consisted of equilibrating the
structure at T = 2000 K over 100 000 time steps of 0.25 ps,
using the Verlet algorithm, rescaling the velocities at every
step to keep the temperature fixed at T = 2000 K. After
equilibration, structural data were gathered over an additional
6000 time steps of 0.25 ps.

Figure 3 shows the Si-Si and Si-H partial pair correlation
functions g(r) computed by these three methods, sometimes
also referred to as RDFs. Visibly, the partial pair correlation
functions g(r) computed with our Si-H GAP are in excellent
agreement with the results of the DFT computation: both the
peak locations and peak heights exhibit high-quality match-

FIG. 5. Averaged coordination statistics of Si atoms in equili-
brated liquid Si infused with H, with a density of 2.58 g/cm3 and
T = 2000 K. Top: Gaussian approximation potential (GAP); bottom:
density functional theory (DFT).

ing. In contrast, the partial pair correlation functions g(r)
determined with the Tersoff potential deliver much poorer
correspondence with DFT.

Figure 4 shows the bond angle distribution functions
p(θ ) = g3(rcutoff, θ ), also known as the angular distribution
functions. The cutoff bond length rcutoff for g3(rcutoff, θ ) is
taken to be the radius corresponding to the first minimum of
the partial pair correlation functions g(r) beyond their initial
peaks, 3.1 Å for Si-Si and 2.2 Å for Si-H. Just like with
the partial pair correlation functions g(r), the computational
results with our Si-H GAP for both the Si-Si-Si bond angle
distribution and the Si-Si-H bond angle distribution are in
excellent agreement with the DFT computations. They repro-
duce all notable features of the DFT results with high quality.
As before, the calculations using the Tersoff potential track
the DFT results with a substantially inferior quality.

Finally, Fig. 5 shows the coordination statistics of the Si
atoms. Results are only shown for the Si-H GAP and DFT.
Here, the coordination includes both the neighboring Si and H
atoms. The coordination shell for each atomic species is again
defined using the first minimum of the corresponding partial
pair correlation function. On this front, the Si-H GAP once
again delivers excellent agreement with DFT. To place these
observables in context, we refer to Ref. [70], which provides
these same observables for pure liquid Si.
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2. Amorphous phase

Next, we simulated the structure of a-Si : H. To this end, we
performed both constant volume (NVT ensemble) and con-
stant pressure (NPT) MD simulations, again as implemented
in the LAMMPS software package with QUIP package support.
As before, we performed the calculation using our Si-H GAP
and then performed the same calculation using a Si-H Ter-
soff potential [68,69] to provide a point of comparison. Each
simulation started with the same general procedure as the
previous liquid phase section, except with a larger supercell
containing 216 Si atoms and 28 H atoms and an initial density
of 2.3 g/cm3. Once the liquid structures were equilibrated,
the same general procedure was followed for each potential,
except the Tersoff calculations used cooling rates which were
reduced by a factor of two for further accuracy.

The details of the GAP simulation procedure were as fol-
lows. We formed a liquid Si : H phase structure at T = 2000 K.
Once the liquid structure was equilibrated, it was cooled in the
NVT ensemble down from T = 2000 to 1500 K at a rate of
1013 K/s with a time step of 1 fs. Further equilibration was
then performed at T = 1500 K for 100 ps before the structure
was cooled down to T = 500 K at a rate of 1012 K/s. Both
of these steps were also performed in the NVT ensemble. To
collect structural data, the structure was relaxed to the local
energy minimum in atomic positions, then equilibrated over
20 000 time steps of 1 fs in the NPT ensemble at 0 pressure
and T = 500 K, followed by gathering the structural data over
an additional 10 000 time steps. This procedure resulted in
a-Si : H with a mass density of ∼2.22 g/cm3, consistent with
PECVD films containing 12 at. % H [71].

It should be noted that these choices of cooling rates are
important for matching to experiment. While in DFT-BOMD
studies the lowest achievable cooling rates are on the order of
1014 K/s, further lowering the cooling rate used in classical
MD simulations results in a closer match to experimental
atomic structures. Our choice of cooling rates is consistent
with previous melt-quench studies of pure a-Si [72–76]. The
choice of cooling rate was discussed explicitly in Ref. [51],
where it was found that, in pure a-Si, using a GAP and a
variable cooling rate between 1011 and 1013 K/s was capable
of obtaining reliable structural models of a-Si. In our system,
we found that using a constant 1012 K/s cooling rate was
sufficient to yield reliable structural models of a-Si : H.

For this comparative analysis, the DFT-BOMD data were
gathered from Ref. [77]. This paper performed a very exten-
sive and therefore computationally expensive study, thereby
producing very high-quality data. Finally, the comparison
base was extended by including experimental data acquired
by neutron scattering measurements [78].

The partial pair coordination functions g(r) are presented
in Fig. 6. Results are given for the Si-Si and the Si-H partial
pair correlation functions g(r). The key features of the Si-
Si g(r) are the three strong peaks at ∼2.4, 3.8, and 5.6 Å,
corresponding to the first, second, and third neighbor peaks.
Similarly, the key features of the Si-H g(r) are the four
peaks at ∼1.5, 3.1, 4.9, and 6.5 Å, corresponding to preferen-
tial Si-H separations. Remarkably, the Si-Si and Si-H partial
pair correlation functions produced with our Si-H GAP both
achieved excellent agreement with the reference g(r) of the

FIG. 6. Partial pair correlation functions of a-Si : H. Top: Si-Si;
bottom: Si-H. Results provided for Gaussian approximation potential
(GAP) and Tersoff simulations and reference results generated by
a neutron scattering experiment (reproduced as published) [78] and
density functional theory (DFT) calculations [77] are shown for
comparison.

DFT calculations once again, matching peak locations and
heights. In fact, the Si-H GAP correlation functions achieved
slightly better agreement with the experiments than the DFT
correlation functions. The Si-Si partial pair correlation func-
tion of the Tersoff potential notably improved compared with
the liquid-Si : H case, but the Si-H partial pair correlation
function continued to provide only a poor fit to the DFT and
experimental results.

We extended and strengthened our validation of the Si-H
GAP by performing further structural measurements. Table IV
shows time-averaged measurements of the following quanti-
ties: the average coordination of the Si atoms Nc, the mean
Si-Si bond length r and its standard deviation σr , and the
mean angle θSi-Si-Si of the Si-Si-Si bond angle distribution
and its standard deviation σθ,Si-Si-Si. (The Si-Si-Si bond angle
distribution is Gaussian in the case of a-Si : H, so its stan-
dard deviation is a well-defined quantity.) When taking these
measurements, the cutoff bond lengths were taken to be the
first minimum values of the partial pair correlation functions
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TABLE IV. Short-range order of the a-Si : H produced by the Si-H GAP compared with Tersoff, DFT, and PECVD and sputtering
(experiment) methods. Nc is the average coordination of the Si atoms. r and σr are the mean and the deviation of the Si-Si bond length. θSi-Si-Si

and σθ,Si-Si-Si are the mean and the deviation of the Si-Si-Si bond angle distribution. The coordination and means are gathered at T = 300 K,
while the deviations were measured on a snapshot of an optimized structure.

a-Si : H structure (H at. %) Nc r (Å) σr (Å) θSi-Si-Si σθ,Si-Si-Si

Si-H GAP (11.5%) 3.98 ± 0.01 2.376 0.047 109.2 10.7
Tersoff (11.5%) 4.14 ± 0.01 2.392 0.077 109.0 13.2
Jarolimek (DFT, 11.1%) [77] 3.89 ± 0.03 2.377 0.049 108.9 13.6
Filipponi (PECVD, 8%) [79] 3.88 ± 0.12 2.35 ± 0.01
Vignoli (PECVD, 12%) [80] 3.71 ± 0.07 2.37 ± 0.04 8.7
Wakagi (sputtering, 12.8%) [81] 4.0 2.363 ± 0.004 0.038 ± 0.008 9.3
Kail (various, 12-15%) [82] 9.0–9.7

in Fig. 6 after their initial peaks, 2.75 Å for Si-Si and 1.9 Å
for Si-H.

As before, the validation and utility of the Si-H GAP
is demonstrated by a comparison with corresponding mea-
surements with three relevant techniques: MD using Tersoff
potentials, DFT, and experimental measurements of the
PECVD and sputtering type. The atomic concentrations of
H in the referenced a-Si : H measurements varied from 8 to
12.8%. In all cases, the coordination and means were calcu-
lated on atomic configurations held at T = 300 K. Also shown
in Table IV are measurements of the static disorder, namely,
the deviation of the Si-Si bond lengths and Si-Si-Si bond
angles, measured on a snapshot of an optimized structure.

The key message of Table IV is that MD calculations
with the Si-H GAP reached the precision of DFT and thus
produced results consistent with the experiments for 4 of the
5 observables, whereas Tersoff-based MD showed notable
variance relative to DFT and experiments. Intriguingly, for
the fifth observable, the width of the bond angle distribution
σθ,Si-Si-Si of the DFT results deviated from the experiments
considerably, and in this case, the Si-H GAP result reproduced
the experiments even better than DFT. We also measured the
Si-Si-H bond angle distribution, where the mean bond angle
was found to be 105.9 ± 6.0◦, and the average Si-H bond
length was found to be 1.53 ± 0.03 Å.

We also note that the coordination of the Si atoms Nc

was found to be very close to 4, which indicated that very
few dangling bonds were present in the GAP supercell even
at T = 300 K. This is compelling evidence that even this
limited concentration of H of 12.5% could passivate Si dan-
gling bonds so efficiently that only 2% of all bonds remained
unsatisfied.

Next, we calculated the lowest achievable excess energy
of the Si : H supercell. This excess energy was defined as
the energy difference of the supercell compared with a same-
size supercell containing hydrogenated crystalline silicon with
the same number of Si and H atoms, where the H atoms were
placed at the tetrahedral interstitial sites. When both energies
were computed with Si-H GAP alone, the excess energy was
0.20 eV/atom. When both structures were additionally re-
laxed with DFT, the excess energy was 0.09 eV/atom. This
latter excess energy is well within the measured a-Si : H
experimental range of 0.06–0.13 eV/atom [83]. As expected,
it is lower than the excess energies of 0.13–0.14 eV/atom of
pure amorphous silicon structures that we generated using the

Si-only GAP [23] for a previous work [9], as the presence of
the H atoms relieved some of the atomic strain.

As a final demonstration of the utility of our ML-based
Si-H interatomic potential GAP, we conducted a study of
extended defects, as those play an important role in the de-
scription of a-Si. Using the same procedure as above, we
created a large a-Si : H supercell that contained 4096 Si atoms
and 558 H atoms. This system size is prohibitively expensive
for DFT-BOMD since the computational resources required
by DFT-BOMD scale with N3, while this size is comfortably
attainable for MD utilizing the Si-H GAP. We created this
large supercell using the same melt-quench procedure as de-
scribed for the smaller supercells. A ball-and-stick rendering
of the large supercell is presented in Fig. 7(a). We checked
that the partial pair correlation functions and other short-range
order statistics are almost identical for Si216H28 and Si4096H558

supercells, so we do not separately show them here. Instead,
we highlight features that manifest on medium- to long-range
scales, and thus can only be studied in such large supercells:
the void structure of a-Si : H.

We characterized the void structure. First, we used the
ZEO++ package [84] to sweep a set of Monte Carlo sampled
points in our structural model and constructed the largest
spheres which could be centered on each point without touch-
ing any atoms [85]. We then switched to the OVITO package to
analyze whether these individual spheres overlapped/joined
with other spheres. When this happened, we constructed the
union of these spheres as a definition of larger voids. An
example is visible at the lower-front of Figs. 7(a) and 7(b).
Figure 7(b) offers an alternative visualization, where we only
show the hydrogen atoms (in red) and the larger voids (in
gray).

Figure 8 shows the void radius histogram, or pore-size
distribution function, for the structural model of Fig. 7.
Conspicuously, the majority of the voids present in the
structure have radii between 2 and 4 Å, which is consistent
with the void structure observed in WWW-generated a-Si : H
configurations [86]. This range of void radii approximately
corresponds to the size of mono- or divacancies in c-Si. There
are also a few larger voids present in the structure with radii
between 5 and 6 Å. Figure 7(b) shows that these larger-radius
voids can and do have irregular shapes, often referred to as
nanovoids [71]. In the studied H concentration range ∼12%,
hydrogen released the structural strains very efficiently,
and this relaxation caused most of the defects to shrink into
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FIG. 7. (a) Ball-and-stick rendering of a structural model of
a-Si : H, containing 4096 Si atoms and 558 H atoms. Si atoms
are presented in blue, and H atoms are presented in red. The
larger voids which are present in the atomic configuration are high-
lighted here with white surface meshes. (b) A visualization of the
distribution of H atoms and voids within the supercell of the struc-
tural model. The voids here are represented with transparent white
meshes.

mono- and divacancies, with only a few nanovoids left. Exper-
imenters studying the nature of voids in a-Si : H have found
that nanovoids only begin to dominate >14 ± 2 at. % H [71].

IV. CONCLUSIONS

In this paper, we reported on the development of a silicon-
hydrogen GAP with a SOAP kernel, Si-H GAP. We trained
this potential over 27 iterative rounds, simulating a wide
range of phases, structures, and thermal protocols, while
fitting energies, forces, and stresses to the results of DFT

FIG. 8. The void radius histogram of the a-Si : H structural
model shown in Fig. 7, as calculated by ZEO++.

calculations in each round. The training set was expanded
in each round only as required by an adaptive protocol. This
adaptive training enables the economic use of computational
resources.

The Si-H GAP was not only able to closely match DFT
measurements of microscopic quantities such as the energies,
forces, and virial stresses, but it was also able to reproduce
structural characteristics including partial pair correlation
functions, bond angle distributions, bond length distributions,
and average coordination numbers.

For context and comparison, we also performed MD sim-
ulations based on the Tersoff potential and calculated the
same quantities. The comparison of the parametric Tersoff
and nonparametric ML-based Si-H GAP results demon-
strated the improvement that is obtained by adopting the
nonparameteric ML model. While the impressive increase
of accuracy of the Si-H GAP comes at a cost of compu-
tational complexity and speed over traditional parameteric
interatomic potentials, the Si-H GAP achieves DFT-level ac-
curacy while still being many orders of magnitude faster than
DFT.

The Si-H GAP developed here is limited in a few ways.
(i) It was not developed to be a general-purpose interatomic
potential and thus did not include structural phases beyond
the key phases which are needed to reliably produce experi-
mentally accurate amorphous Si : H. For instance, it did not
include all of the various surface reconstructions of diamond
Si. Fortunately, future training could simply add additional
structures to the training set, should this be desired, and
thus, the potential can be adapted as needed in future work.
(ii) Long-range interactions beyond 5 Å for Si and 3.5 Å
for H were not included. This limits the maximum accu-
racy of the potential, as it runs into locality limits. For a
discussion of this phenomenon, see Ref. [64]. Properly in-
cluding long-range interactions and integrating them with the
short-range interactions is still an outstanding problem within
the GAP framework, although simple dispersion and Coulomb
interactions are easy to add on, as has been done before in
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Refs. [33,87,88]. (iii) The training database was assembled
by hand and did not include any automated procedures for
constructing the database. Using an active learning approach
to create and manage the training set would reduce the cost
of adaptively expanding the training set, as DFT would only
be performed on an as-needed basis and would speed up the
training of the potential.

Those issues aside, the merits of the presented potential are
clear. Since in electro-optical applications and in most experi-
mental studies amorphous silicon structures typically contain
some amount of hydrogen, our Si-H GAP can prove to be
very useful to enable simulation studies with unprecedented
accuracy and utility.

The Si-H GAP [89,90], the GAP suite of programs (for
noncommercial use) [91], the QUANTUM ESPRESSO software
package [92], the LAMMPS software package [62], and ZEO++
[93] are freely available.
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