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Predicting the location of shear band initiation in a metallic glass
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We report atomistic simulation results which indicate that the location of shear banding in a metallic glass
(MG) can be ascertained with reasonably high accuracy solely from the undeformed static structure. Correlation
is observed between the location of the initiation of shear bands in a simulated MG and the initial distribution
of the density of fertile sites (DFS) for stress-driven shear transformations identified a priori based on a deep
learning model devised in our recent work [Fan and Ma, Nat. Commun. 12, 1506 (2021)]. In addition, we
demonstrated that one can judge whether a glass is brittle or ductile solely based upon its initial DFS distribution.
These validate that shear bands in MG arise from nonlinear instabilities and that the as-quenched glass structure
contains inhomogeneities that influence these instabilities. In this paper, we also reveal an important subtlety
regarding the nondeterministic nature of athermal quasistatic shear simulations.
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I. INTRODUCTION

The dominant flow and failure mode in metallic glasses
(MGs) is shear banding, a plastic instability that localizes
large amounts of shear strain within a narrow region when
a MG is deformed [1–5], which is a nonlocal event. Un-
derstanding and controlling the shear banding behavior is of
importance for enhancing the ductility of MGs, and thus, shear
banding has been a research focus in the MG community
over the past few decades [6–26]. However, owing to the
disordered structure of MGs and the lack of well-defined topo-
logical defects like dislocations, it remains an open question
whether one can identify a priori where shear bands will
initiate solely based upon their as-quenched undeformed static
structure. Also, it is not clear whether one can determine
solely from the initial static structure of a MG if it is brittle or
ductile. Several investigations have been undertaken seeking
to apply machine learning (ML) methodologies to this prob-
lem. These have included simulations of amorphous polymer
nanopillars [27] where surface properties and features are
crucial to determining the mode of failure [28]. In this paper,
we build on prior investigations using a linear support vector
machine (SVM) [29] and graph neural networks (GNNs) [30]
to analyze bulk glass structure, although these prior works
did not focus on predicting shear band formation per se. We
also compare our convolutional neural network (CNN)-based
approach to physically derived indicators.

Previous researchers [15,16,31] have demonstrated that a
shear band is formed by the coalescence of a series of ad-
jacent shear transformation zones (STZs) [32], elementary
plastic events that occur under externally applied stresses.
Our conjecture is that one would be able to predict where
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shear bands initiate in MGs if one were to know which atoms
would be involved in STZs under a specific loading condition
a priori solely from the initial static structure. This would be
consistent with models such as the STZ theory of amorphous
plasticity wherein the shear banding instability arises from
an underlying nonlinear instability [33,34]. Over the years,
much progress has been achieved in predicting elementary
plastic events from initial structure in glasses [35,36]. One
recent numerical study has, for example, indicated a cor-
relation between a region of low anomalously local yield
stress and the location of shear band formation [37]. Very
recently, we demonstrated that, even at 10% strain (around the
yielding point), the atoms which will experience extremely
large plastic rearrangement can be identified a priori with
high accuracy solely from the static structure in the initial
glassy sample before deformation [38]. This was achieved
through the combination of a rotationally noninvariant struc-
ture representation—spatial density map and a powerful deep
learning method (CNN) [39]. In this paper, these atoms with
high predicted plastic susceptibility (class probability > 0.5)
via this method will be referred to as fertile sites for shear
transformation, and we will demonstrate that shear bands pre-
fer to initiate around regions with a high density of such fertile
sites in simulated Cu50Zr50 MGs. Additionally, we will show
that whether a glass is brittle or ductile can be determined
solely based upon its initial distribution of the density of
fertile sites (DFS).

II. INITIATION SITES OF SHEAR BANDS IN A MG

In a recent study, Golkia et al. [40] revealed that, for
identical Lennard-Jones glass models that were quenched in-
stantaneously from supercooled liquids and then annealed,
small changes in the deformation protocol, such as the
use of different initial random numbers for the thermostat,
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FIG. 1. Location of shear bands in a metallic glass (MG). (a) and (b) Color maps where bright (dark) atoms represent large (small) D2
min

after athermal quasistatic shear to 20% strain is imposed on the same Cu50Zr50 MG sample under the same loading conditions but from
simulation runs in which the atom sequence is reordered. (c) and (d) Distribution of the fraction of atoms in the top 1% of the D2

min distribution
in (a) and (b), respectively. The location of the distribution along the X axis (blue curve) was multiplied by −1 to differentiate it from that of
the distribution along the Y axis (pink curve).

changed the flow patterns from vertical to horizontal bands
and could result in horizontal bands arising at different lo-
cations. This occurred even though the shear deformation
was conducted at very low temperature. From this, the au-
thors concluded that the initial undeformed glass sample does
not determine whether and where shear bands will form.
Rather, they assert that the formation of shear band is en-
tirely stochastic. We have also studied deformation under
athermal quasistatic shear (AQS) [41,42], a methodology
that is usually considered deterministic since deformation is
imposed in small shear increments followed by energy min-
imization operations. In our prior study [38], we discovered
that the AQS result varies if the atom sequence in the initial
configuration file is reordered while keeping all atom posi-
tions and deformation conditions the same. Furthermore, the
larger the strain, the larger the difference between simula-
tions with different atom sequences [38]. This unexpected
stochasticity appears to arise from the effect of numerical
noise on the conjugate gradient minimization within the high-
dimensional energy landscape of the glass, although other
minimization algorithms were also tried and similar stochas-
ticity was observed. In this paper, we examine the degree to
which shear banding in a relatively slowly quenched glass
is stochastic with respect to location and orientation. We
wish to ascertain whether the result of Golkia et al. [40] is
specific to the way their systems were prepared and simu-
lated.

To this end, we simulate the identical Cu50Zr50 MG system
consisting of 32 000 atoms in a cubic simulation cell with an
edge length of ∼82 Å. This initial system was prepared by a
quench at an effective cooling rate of 1010 K/s (other details
regarding the sample preparation are the same as in Ref. [38]).
The system was sheared 100 times under the same loading
conditions using the AQS method on the same computer. The

only difference among the 100 deformation simulations is the
atom sequence in the file of the initial undeformed configura-
tion. In this way, we hope to determine the reproducibility of
the shear band location and orientation.

Figures 1(a) and 1(b) show the field of deviation from
affine displacement (D2

min) [32] at 20% strain for two typical
simulations among the 100 performed (both the calculation
and visualization of the D2

min field were performed using the
OVITO package [43]). As can been seen from the two D2

min
fields, a horizontal shear band (the bright region in Fig. 1(a),
parallel to the X axis along the shear direction) formed in one
simulation, while a vertical shear band (the bright region in
Fig. 1(b), parallel to the Y axis perpendicular to the shear
direction) formed in another simulation. This demonstrates
that the location of a shear band is not fully reproducible for
the same MG model even under AQS simulation. However,
one cannot reach the conclusion that the formation of shear
bands is fully stochastic with respect to location for the slowly
quenched glass subjected to AQS by considering select cases.
The entire databank generated of 100 simulations must be
examined in a proper statistical analysis, as will be done in
the next section.

To determine the center position of each shear band, since
only one shear band occurs in each of the simulated samples,
we calculate the locations of the atoms in the top 1% (= ftop)
of the D2

min distribution at 20% shear strain. We will refer
to these atoms as the highly deformed atoms. As the shear
bands have two possible orientations (horizontal or vertical),
the distribution along both X and Y axes are examined. We
calculate the fraction of highly deformed atoms within par-
allelepipeds that have a width along the X axis ωSB = 19 Å.
The lengths along all other dimensions are equal to that of
the simulation box. We will denote the middle point of each
parallelepiped aligned with the X axis as x. Similarly, we
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FIG. 2. Connection between initial distribution of density of fertile sites (DFS) and final location of a shear band in a Cu50Zr50 metallic
glass (MG). (a) and (b) Two independent samples. In each plot, the red curve (left vertical axis) displays the initial distribution of convolutional
neural network (CNN)-predicted DFS, and the blue curve (right vertical axis) shows the number of shear bands initiated at each position
obtained by shearing the same MG configuration 100 times under the same loading conditions but with different atom sequences.

calculate the fraction of highly deformed atoms along the Y
axis at the locations denoted y.

To differentiate the locations along the X and Y axes,
the coordinate along the X axis was multiplied by −1 in all
figures. Thus, for a horizontal shear band, the peak position
of the distribution of the fraction of highly deformed atoms
should be positive, while the peak position is negative for a
vertical shear band. Figures 1(c) and 1(d) display the distribu-
tion of the fraction of highly deformed atoms corresponding
to Figs. 1(a) and 1(b), respectively. Systematically varying
the values for both ftop and ωSB does not result in significant
change in the center position, see Figs. S1 and S2 in the
Supplemental Material (SM) [44].

III. PREDICTING SHEAR BAND LOCATIONS
FROM INITIAL DFS

If the location of the initiation of a shear band is determined
by the glass structure, deforming the same glassy sample mul-
tiple times under identical loading conditions should result in
repeated shear band initiation at highly correlated locations.
To test whether this is the case, we count the number of shear
bands initiated at each position for the 100 shearing simu-
lations conducted on the same Cu50Zr50 MG sample under
identical loading conditions using the AQS method. As pre-
viously noted, before each simulation run, the atom sequence
was reshuffled. For the sample shown in Fig. 2(a), shear bands
are observed to initiate predominately around two regions, and
48 out of the 100 shear bands are horizontal, while the re-
maining 52 shear bands are vertical. We also sheared another
independent Cu50Zr50 MG sample with identical processing
history 100 times under the same protocol and found that,
for this initial condition, 99 out of the 100 shear bands are
horizontal, and most of them initiated in the same region,
while only one results in a vertical shear band, as shown in the
blue curve (right vertical axis) in Fig. 2(b). These observations

indicate that the shear band location is strongly determined
by the initial static structure in these relatively gradually
quenched glasses and that the strain localization process is
not purely stochastic. Based on the reasoning presented in
the Introduction section, we anticipate that the DFS predicted
by the CNN model introduced in Ref. [38] should be higher
around the peak positions of the blue curves shown in Fig. 2
relative to other regions.

To test this hypothesis, we took an approach like that
used to determine the center position of the shear bands. We
calculated the distribution of the DFS in the two indepen-
dent samples before deformation, i.e., fraction of atoms with
class probability > 0.5 in each of the parallelepiped regions.
Here, we again chose a value of 19 Å for ωDFS, the width of
the parallelepiped along the X (or Y) dimension. This value of
ωDFS optimizes the correlation between the initial distribution
of the DFS and the location of shear band initiations, as shown
in Fig. S3 in the SM [44]. The red curve (left vertical axis)
in each panel of Fig. 2 displays the initial distribution of the
DFS in the two independent samples, respectively. Indeed, the
peak positions of the distribution of the DFS generally overlap
with the peaks of the corresponding blue curve in Fig. 2,
which is consistent with our expectation and suggests there
is correlation between the initial static structure, i.e., the DFS
predicted with our CNN model, and the sites of shear band
initiation in MGs. We note that the overlap in Fig. 2(a) is much
more obvious than that in Fig. 2(b), where the predominant
location of shear banding is near the second highest peak
for horizontal bands, which is significantly smaller than the
peak for vertical bands. This suggests that the structural order
revealed by the DFS is likely only one of several factors that
contributes to determining the location of the shear band.

We also note that, as evident from Fig. 2, sometimes no
shear band coincides with the peak of DFS. This implies that
the correlation revealed here is only statistically meaningful.
In other words, while we can determine that some regions
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have higher propensity for shear band initiation, it remains
difficult to predict the exact position of shear band initiation
in a MG solely based on the initial static structure. This is be-
cause shear band initiation in MGs is a stochastic process, and
this is true even in simulations of athermal deformation due to
the numerical noise. Similar randomness is also expected to
exist in real MG samples primarily due to thermal fluctuation.
How best to characterize this stochasticity warrants further
investigation.

IV. FIGURE OF MERIT FOR THE CORRELATION

In the preceding section, we showed that the shear band
location is potentially predictable solely based on the initial
DFS distribution in a MG. In this section, we evaluate the
predictive power of this approach by surveying 480 cases. To
do this, we prepared 20 Cu50Zr50 MG samples (not used in
the training of our CNN model) and then sheared each of the
20 samples to 20% strain with the AQS method along 24 load-
ing orientations using the strategy introduced in Ref. [38]. For
each sample in each loading orientation, we first map out the
CNN-predicted DFS along both X and Y dimensions. Inspired
by the methodology introduced in Ref. [45], we then define a
parameter γ as a figure of merit, the fraction of locations at
which the DFS is lower than or equal to that at the location
of the shear band. If the shear band preferentially initiates
in the region having the highest DFS, γ would approach 1.0
for all cases, and the cumulative distribution function C(γ )
of γ would be a step function: C(γ ) = 1 for γ = 1 and 0
otherwise. At the other extreme, if there is no correlation
between the DFS and the location of shear band initiation,
the value of γ should be stochastic, and C(γ ) should be close
to a straight line, i.e., the dashed diagonal line in Fig. 3(a).
The resulting C(γ ) data are denoted by the red curve shown
in Fig. 3(a), revealing a positive correlation.

To show the advantage of our CNN-predicted DFS, we
compare with predictions based on other data-driven models
such as that derived from a GNN [30], a linear SVM [29],
and three methods based on physical parameters: flexibility
volume (vflex) [46], fraction of fivefold bonds (FFB) [47],
and the atomic density in the local region (ρa, an analog
for free volume [48,49]). These metrics were all previously
used in attempts to predict stress-driven shear transformations.
Specifically, the fertile sites are defined as those atoms with
GNN-predicted class probability > 0.5, SVM-predicted dis-
tance to the separation boundary > 0, or within the top 20%
of the values of vflex (we tried different thresholds for vflex but
did not see obvious difference; average vflex within each band
was tried as well, and the resultant predictive power is slightly
lower). For FFB and ρa, a lower value is expected to be more
favorable for shear band initiation; we therefore modify γ as
the fraction of locations at which the density of FFBs or ρa is
higher than or equal to that in the region where a shear band is
initiated. As seen from Fig. 3(a), the prediction based on our
CNN-predicted DFS is superior to those from all five other
methods.

We also can use γ̄ (the arithmetic mean of γ ) to quantify
the predictive power for these methods, as γ̄ = 1.0 corre-
sponds to perfect prediction and γ̄ = 0.5 would imply no
correlation. As seen from the bar chart shown in Fig. 3(b),

FIG. 3. Quantifying and comparing the predictive power of dif-
ferent methods with regard to shear band formation. (a) Cumulative
distribution function C(γ ) of γ (see text) for the predictions based on
six different methods: convolutional neural network (CNN), graph
neural network (GNN), linear support vector machine (SVM), flex-
ibility volume (vflex), fivefold bonds (FFB), and volume density of
atoms (ρa). The diagonal dashed line represents random distribution
with no correlation. A perfect prediction would entail C(γ ) = 1
for γ = 1 and 0 otherwise. (b) γ̄ (arithmetic mean of γ ) for the
prediction based on the six methods. γ̄ = 0.5 means no predictive
power and γ̄ = 1.0 perfect predictive power.

the γ̄ of 0.712 for our CNN-based prediction is the highest.
The advantage of our CNN over other ML methods is due to
(i) the completeness of our new structural representation, the
spatial density map, (ii) the stronger learning capability of the
CNN models than the SVM and GNN models used in previous
studies, and (iii) the anisotropy of local mechanical response
of glasses has been considered in the CNN framework but
ignored in all previous ML methods, see more discussion in
Ref. [38]. Other ML methods such as conventional neural
networks and the one proposed in Ref. [50] have been found
to be comparable with the SVM method [36].

The structure representations and training procedures for
all deep learning or ML methods in this paper also follow the
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FIG. 4. The γ̄ achieved with the convolutional neural network
(CNN) model on glasses with different processing histories or at
different compositions (denoted on each bar).

procedures detailed in Ref. [38]. In this paper, the fertile sites
were predicted using the CNN, GNN, or SVM model, each of
which was trained at a strain of 10% with fthres = 5.0% based
on the results shown in Figs. S4 and S5 in the SM [44].

The transferability of CNN models to different processing
histories or compositions within the same alloy system has
been demonstrated when predicting elementary plastic events
in other recent work [38]. Therefore, success at one composi-
tion and processing history give us reason to expect that the
CNN-based predicted DFS distribution can be used to predict
the location of shear band initiation of glasses with different
processing histories or at different compositions within the
same alloy system. We have undertaken several simulations to
confirm this, as shown in Fig. 4. We note that the γ̄ achieved
on a more quickly quenched glass is higher, which may be
because deformation is more evenly distributed in such as
system.

V. BRITTLE VS DUCTILE

The results above demonstrate that shear bands prefer to
initiate at locations with higher CNN-based predicted DFS.
This implies that plastic flow will not localize into a narrow
region but will instead distribute over the entire sample, i.e.,
its deformation would be ductile, if the difference of DFS is
small within a glass. Thus, it may be possible for us to judge
if a glass would be brittle or ductile, which is another problem
of interest to the community [51], based on the degree of
fluctuation of the initial DFS distribution.

To verify this conjecture, we slowly reduce the temperature
of a Cu50Zr50 liquid model containing 31 250 atoms from
2500 K to various temperatures (Tq) at a constant rate of 1 ×
1010 K/s and then instantly quench them to 0 K via energy
minimization. Next, we calculate the CNN-based predicted
DFS distribution of these glasses with different Tq and use
the difference between the largest and smallest values of DFS
distribution to denote the degree of fluctuation of the initial
DFS distribution (�). As seen from Fig. 5, it is easy to find a
critical � value (6.0% denoted by the red dashed line in Fig. 5)

FIG. 5. Brittle vs ductile. The degree of fluctuation of convolu-
tional neural network (CNN)-based predicted density of fertile sites
(DFS) distribution (�) as a function of Tq. The red dashed line
denotes the critical value of � we suggested to separate brittle and
ductile glasses. The right upper (left lower) inset shows the D2

min field
of a brittle (ductile) glass. Bright and dark color correspond to large
and small D2

min, respectively.

that separates these glasses into low and high Tq regimes. By
shearing these glasses via the AQS method, we confirmed that
a shear band was formed in almost all glasses with � > 6%
(the only exception is the glass with Tq = 850 K), and no
shear band appeared in glasses with � < 6%. Figure S6 in
the SM [44] shows the projection of the D2

min field on the
XY plane for all these glasses after being strained to 20%.
Two typical snapshots are shown as the insets in Fig. 5. These
results confirmed that one can determine whether a glass is
brittle or ductile based on its initial static structural informa-
tion, i.e., the degree of fluctuation of CNN-based predicted
DFS distribution.

VI. CONCLUSIONS

In summary, we sheared the same simulated (gradually
quenched) MG sample under the same loading conditions
using the AQS method and varying the atom sequence in the
initial configuration. We found that shear bands initiate along
one of the two maximum-shear planes but, in doing so, prefer
to initiate at locations with higher CNN-based predicted DFS,
although this correlation is not perfect. We defined a figure
of merit to quantify the correlation strength between CNN-
based predicted DFS and the shear band initiation in the MG
samples. We find that this indicator is superior in making this
prediction when compared with several other structural indi-
cators suggested previously. This is evidence of correlation
between the initial static structure and shear band locations in
simulated MGs. We also demonstrated that whether a glass
is brittle or ductile can be ascertained solely based upon its
initial DFS distribution. The demonstrated correlation may
be useful for establishing robust physical models of plastic
behavior in amorphous solids. It also provides some optimism
for controlling shear banding behavior and thus optimizing
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mechanical properties of MGs via the tuning of their initial
structural state before deformation. At the same time, in this
paper, we point to the need to better understand the stochas-
ticity of the strain localization process as well as factors other
than DFS that may play a role in determining how and where
these bands develop.
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