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The second- and third-order nonlinear susceptibilities of the ferroelectric oxides LiNbO3, LiTaO3, and KNbO3

are calculated from first principles. Two distinct methodologies are compared: one approach is based on a
perturbative approach within the frequency domain, another on the time evolution of the electric polarization.
The frequency dependence of the second harmonic coefficients of the ferroelectric phase of LiNbO3 calculated
within the two approaches is in excellent agreement. This is further validated by experimental data for LiNbO3

and LiTaO3, measured for an incident range of photon energies between 0.78 and 1.6 eV. The real-time-based
approach is furthermore employed to estimate the third-order nonlinear susceptibilities of all investigated ferro-
electric oxides. We show that the quasiparticle effects, considered by means of a scissors shift in combination
with the computationally efficient independent particle approximation, result in a shift of all spectral features
towards higher energies, and decrease the magnitude of the optical nonlinearities. The energy of the main
resonances in the hyperpolarizabilities suggests that the spectra can be understood by multiphoton absorption
within the fundamental band gap for all investigated materials.
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I. INTRODUCTION

Nonlinear optical phenomena are at the basis of many
technological applications [1–3]. They range from, e.g.,
well-established frequency converters [4] to exciting novel ap-
proaches for white-light generation [5–11], which is currently
understood as a combination of several nonlinear optical ef-
fects of different order [12,13]. The demand for a theoretical
description of nonlinear effects and the accurate calculation of
the related susceptibilities has grown parallel to the employ-
ment of nonlinear optical materials in different devices.

Unfortunately, the ab initio modeling of the nonlinear opti-
cal response of a medium is one of the most challenging tasks
in theoretical physics. While the linear-response optical prop-
erties are successfully calculated from first principles within
Green’s function theory [14], this is not the case for non-
linear optical susceptibilities. The state-of-the-art approach
for the computation of the linear optical response combines
band structures calculated in many-body perturbation theory
[15] (e.g., by G0W0) to include quasiparticle effects, with the
solution of the Bethe-Salpeter equation to account for the
electron-hole attraction [16].

Within this approach, it is difficult to elaborate expres-
sions for the nonlinear optical susceptibilities which include
many-body effects [17]. Accurate second-order susceptibil-
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ities can be calculated, e.g., on the basis of the electronic
wave functions from a combination of density functional and
a perturbation theory [18,19]. However, the complexity of the
expressions derived within perturbation theory quickly grows
with the perturbation order [20], and makes nonlinearities of
higher orders de facto inaccessible [21]. The applications are
generally limited to smaller systems such as periodic crystals
[17]. Up to our knowledge, very few attempts to solve the
Bethe-Salpeter equation for second-harmonic generation can
be found in the literature [19,20].

The calculation of the nonlinear optical susceptibilities
can be also performed in the time domain from the dy-
namical polarization [22–25]. The response of a medium to
a time-dependent electrical field may be expanded into a
power series:

Pα (ω) =
∑

β

χ
(1)
αβ (−ω; ω)Eβ (ω)

+
∑
βγ

χ
(2)
αβγ [−ω = −(ω′ + ω′′); ω′, ω′′]

× Eβ (ω′)Eγ (ω′′)

+
∑
βγ δ

χ
(3)
αβγ δ[−ω = −(ω′ + ω′′ + ω′′′); ω′, ω′′, ω′′′]

× Eβ (ω′)Eγ (ω′′)Eδ (ω′′′)

+ · · · . (1)
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Thus, if the dynamical polarization is calculated, e.g., by
numerical integration of the equations of motion in presence
of a laser field, optical susceptibilities of virtually any order
can be obtained. Moreover, several nonlinear phenomena such
as sum- and difference-frequency generation or four-wave
mixing can be calculated simultaneously, as they are described
by the same equations of motion. Thereby, the dynamical
polarization must be calculated as a geometric Berry phase
as described in the modern theory of polarization [26], if
periodic boundary conditions are applied; this is generally
required for the description of crystalline solids. In the past,
one of the authors has presented a practical implementation
of this approach [27,28], in which the equations of motion
are derived following the scheme introduced by Souza et al.
[29], based on the generalization of the Berry phase to the
dynamical polarization [30,31].

In this work, we calculate the nonlinear optical suscep-
tibilities of different ferroelectric oxides both within the
frequency-domain and within the time-domain approaches
and corroborate the results with corresponding experimen-
tal data. In a first step, we calculate the second-harmonic
generation (SHG) spectrum of LiNbO3 up to energy of the
incoming photons of 6 eV, based both on the momentum
matrix approach and on the time evolution of the polarization.
The excellent agreement of the spectra calculated by the dif-
ferent methods validates both approaches against each other,
furthermore confirming earlier theoretical and experimental
results [32]. In a second step, we calculate the SHG spectrum
as well as the third-harmonic generation (THG) spectra of
LiNbO3, LiTaO3, as well as KNbO3, and, if possible, compare
them with the experimental results and calculations from the

literature. Furthermore, we investigate the role of quasiparticle
effects on the nonlinear optical response by making use of
the computationally efficient independent particle approxima-
tion and incorporating quasiparticle effects by a previously
determined scissors shift. In addition, we show that the ma-
jor resonances in the nonlinear spectra can be explained by
multiphoton processes within the fundamental band gap.

II. METHODOLOGY

A. Second-harmonic generation in the frequency domain: The
momentum matrix approach

In this work, we employ the perturbative approach ex-
plained in detail in Refs. [19,32]. The method is based on the
calculation of the momentum matrix elements

Pα
nm = 〈

n�k| p̂α|m�k〉
, (2)

where |m�k〉 and |n�k〉 are two Bloch states.
Considering the transition energies h̄ωn,m = εm�k − εn�k be-

tween the states m and n at the reciprocal space point �k, and
the notation (derived from the anticommutator of the momen-
tum operators in the Cartesian directions β and γ )

{
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γ
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} = 1

2

[
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γ

ln + Pγ

ml P
β
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]
, (3)

the SHG susceptibility is calculated for a complex frequency
ω̃ = ω + iη, in which the small positive imaginary part iη
adiabatically switches the electromagnetic field on. In our
work, we set η to 0.2 eV for all the calculations.

The expression for the SHG susceptibility reads as

χ
(2)
αβγ (−2ω; ω,ω) = − ie3

ω̃3h̄2m3V

∑
�k

∑
nml

1[
ωmn(�k) − 2ω̃

]
[
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nm

{
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ml P
γ
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}
ωln(�k) − ω̃

+ fml (�k)Pα
nm

{
Pγ

ml P
β

ln

}
ωml (�k) − ω̃

]
. (4)

In this expression, the eigenvalues εn�k can be evaluated either within the independent particle approximation [IPA, i.e., DFT with
(semi)local exchange-correlation (xc) potentials] or within the independent quasiparticle approximation (IQA, e.g., from G0W0

calculations).
Equation (4) can be divided into a two-band term

χ
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(5)

and a three-band term

χ
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(6)

In Eq. (5), the matrix elements of the intraband transitions

β

mn(�k) = pβ
mm(�k)pβ

nn(�k) are calculated as

pβ
mm(�k) = me

h̄
∂kβ

εn(�k). (7)

B. Hyperpolarizabilites in the time domain: Time evolution of
the polarization

For the calculation of the nonlinear optical response in
time domain from the time evolution of the polarization, we
employ the procedure described in Ref. [28], which we briefly
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outline in the following. The starting point is the (zero-field)
Kohn-Sham equations of the form

Ĥ0,IPA = − h̄2

2m

∑
i

∇2
i + V̂eI + V̂H[ρ0] + V̂xc[ρ0], (8)

where VeI is the electron-ion interaction and VH and V̂xc are the
Hartree and the exchange-correlation potentials, respectively.
Improvements beyond the IPA might be introduced at this step
to consider quasiparticle shifts or effects originating from the
response of the effective potential to density fluctuations in
a time-dependent screened Hartree-Fock manner. The corre-
sponding Hamiltonian is denoted in this case as Ĥ0 instead of
Ĥ0,IPA.

The laser excitation of frequency ωL of the form �E (t ) =
�E0 sin(ωLt ) is used to define the non-Hermitian field coupling
operator

ŵ�k = ie f

4π

∑
m

3∑
α=1

(�aα · �E )N�kα

∑
σ=±

σ
∣∣ṽ�kσ

α ,m

〉〈
v�k,m

∣∣. (9)

In this expression,∣∣ṽ�k±
α ,n

〉 =
∑

m

(S(�k, �k±
α ))mn

∣∣v�k±
α ,m

〉
(10)

and Smn are matrix elements defined by Eq. (12).
Replacing the coupling operator ŵ�k with the Hermitian

form ŵ�k + ŵ
†
�k [33], the equations of motion are obtained:

ih̄
d

dt

∣∣v�k,m

〉 = (
Ĥ0 + ŵ�k ( �E ) + ŵ

†
�k ( �E )

)∣∣v�k,m

〉
. (11)

To account for quasiparticle effects, a scissor operator can be
included in Eq. (11), which modifies the eigenvalues of the
Hamiltonian Ĥ0 without modifying the corresponding eigen-
vectors. The equations of motion are then solved to obtain the
lattice-periodic part v�k,n of the Bloch states |n�k〉. From these,
the overlap integrals

Smn(�k, �k + �qα ) = 〈
v�k,m

∣∣v�k+�qα,n

〉
(12)

are calculated, which are the elements of the matrix S, from
which the time-dependent polarization is calculated as

�Pα = − e f

2πv

�aα

N�k⊥
α

∑
�k⊥
α

Im

⎡
⎣N�kα −1∑

i=1

Tr ln S(�ki, �ki + �qα )

⎤
⎦. (13)

In a final step, the nonlinear susceptibilities are obtained by
postprocessing the polarization in a signal analysis procedure
as described in Ref. [28].

C. Computational parameters and electronic ground state

The calculation of the nonlinear optical response in fre-
quency domain from the momentum matrix elements is
performed within the density functional theory (DFT) as im-
plemented in the Vienna ab initio simulation package (VASP,
Version 5.4.4 [34,35]). The exchange-correlation potential in
the formulation of Perdew, Burke, and Ernzerhof [36] and
projector-augmented wave potentials [37] are employed, that
include the 2s1 valence electrons in case of lithium, 2s2 2p4 in

the case of oxygen, and 4s2 4p6 4d4 5s1 for niobium, respec-
tively. The basis set for the expansion of the wave functions
contains plane waves with kinetic energy up to 400 eV. The
unit cell for the simulation of LiNbO3 (and LiTaO3) is rhom-
bohedral and consists of two formula units. In this case, the
integration in the reciprocal space is performed on a 6 × 6 × 6
Monkhorst-Pack grid [38], which reflects the symmetry of the
unit cell and corresponds to 38 �k points in the irreducible
Brillouin zone.

With these computational parameters, the atomic structure
of lithium niobate closely matches that of earlier calculations
[32,39,40] and reproduces the experimental values within 1 %
[41,42]. The corresponding structure is shown in Fig. 1 to-
gether with partial charge densities associated to the valence
and (at � degenerate) conduction band edges.

The electronic band structure of LiNbO3 is shown in Fig. 2.
It features a very flat dispersion of both valence and conduc-
tion states, which is characteristic of the material [32,43,44].
The direct (indirect) fundamental electronic band gap amounts
to 3.52 eV (3.42 eV) which also is in agreement with earlier
calculations [32,39].

The rhombohedral unit cell of LiNbO3 contains 64 elec-
trons, which occupy the lowest 32 Kohn-Sham states. In total,
256 bands are employed for the calculation of the linear op-
tical properties because of the slow convergence of the real
part of the dielectric function with respect to the number of
conduction bands. The resulting dielectric function (absolute
value, along with the real and imaginary parts) is shown
exemplarily for the εzz component in Fig. 3 (left-hand side).
The structured peak of the imaginary part at about 4 eV
represents the most important spectral feature in agreement
with previous results [32]. The onset of the optical absorption
corresponds to the band-gap energy.

The calculation of the nonlinear optical response in the
time domain from the time evolution of the dynamical polar-
ization is performed on the basis of the electronic ground state
calculated within the DFT as implemented in the QUANTUM

ESPRESSO code [45,46] (version 6.5) using also in this case
the Perdew-Burke-Ernzerhof [36] (PBE) functional. The set
of SG15 ONCV pseudopotentials [47,48] is used to describe
the electron-core interaction of the involved atoms. The wave
functions are expanded in a plane-wave basis up to a cutoff
energy of E = h̄|�k|2/(2m) = 80 Ry ≈ 1090 eV. Integration
of the reciprocal space has been performed with a �-centered
10 × 10 × 10 k-point mesh, which consists of 172 individual
�k points.

The YAMBO [49] code is employed to calculate the opti-
cal properties. To this end, the DFT (single-particle) wave
functions calculated with QUANTUM ESPRESSO are imported
to build a Kohn-Sham basis set consisting of 22 topmost
valence bands and the 43 lowest conduction bands. These
values guarantee a converged spectrum in the frequency range
we are interested in. Test calculations of the linear optics
show an indirect (direct) fundamental electronic band gap
of 3.45 eV (3.52 eV). The band-gap energy values, the
band structure, and the dielectric function are in overall very
good agreement with the VASP calculations. Furthermore,
additional occupied or unoccupied states only lead to mi-
nor changes in the imaginary part of the dielectric constant.
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FIG. 1. Rhombohedral LiNbO3 unit cell with Li, Nb, and O in gray, white, and red, respectively. Partial charge densities of the electronic
ground state are shown as isosurfaces (0.011 eV/Å3). The topmost occupied valence state (left part) and the lowermost unoccupied conduction
states (central and right part) strongly resemble the O 2p and Nb 4d orbitals, respectively.

Six additional states modify the dielectric function by less
than 1 %.

The optical susceptibilities are explicitly calculated for ω

representing 64 energy values between 0.2 and 6 eV, as well as
for an incident electric field with a field strength of 1014 W/m2

and a damping of 0.2 eV. The Crank-Nicholson algorithm
is used to calculate �P(t ) for 5364 time steps 0.01-fs apart.
Taking dephasing of eigenmodes introduced by the sudden
switch-on of the electric field into consideration, only the last
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FIG. 2. Electronic band structure of LiNbO3. The energies are
given relative to the valence band maximum. The direct (indirect)
fundamental electronic band gap amounts to 3.52 eV (3.42 eV).

20.68 fs of the polarization are eligible for frequency analysis,
which are used to extract �P(2ω) and �P(3ω). Next, this result
is converted into χ (2)(−2ω; ω; ω) and χ (3)(−3ω; ω,ω,ω) for
the outbound radiation corresponding to 2h̄ω and 3h̄ω, respec-
tively, i.e., the harmonic generation of inbound radiation with
energy h̄ω of second and third order, respectively.

In order to explore the effect of chemical variations in
the cationic sublattice on the nonlinear optical response of
LiNbO3, the ferroelectric oxides LiTaO3 and KNbO3 were
modeled. The substitution of the transition metal Nb (group
5, period 5) with the heavier, isovalent Ta (group 5, period
6) leads to the formation of an isomorph crystal, ferroelectric
LiTaO3, which likewise crystallizes into the R3c space group
and can be modeled by a rhombohedral unit cell containing
two formula units. The material as well as its properties and
applications are in general very similar to LiNbO3. How-
ever, the Curie [50] and melting (1923 vs 1526 K) [51]
temperatures, as well as the coercive fields (17 kV/cm vs
40 kV/mm) [52] are lower, and the optical nonlinearities in
the visible range less pronounced. In our simulations, LiNbO3

and LiTaO3 are modeled with identical numerical parameters.
Aside from a different value of the fundamental electronic
band gap (3.56 eV), LiTaO3 has a very similar, likewise flat
electronic band structure to LiNbO3, whereby the valence
band maximum and the conduction band minimum have O
2p and Ta 5d character, respectively. The dielectric function
of LiTaO3 strongly resembles that of LiNbO3 (see Fig. 3, left-
hand side) although all spectral features are slightly shifted to
higher energies due to the larger band-gap energy.

The substitution of the alkali metal Li (group 1,
period 2) with the heavier, isovalent K (group 1, period 4)
leads to a fundamentally different crystal, KNbO3. KNbO3

crystallizes, with decreasing temperature, in a cubic, tetrag-
onal, orthorhombic, and monoclinic phase [53]. In this work,
we focus on the tetragonal phase (space group P4mm, c/a
ratio of 1.023), as it is computationally convenient and be-
cause recent studies have shown that it features the largest
SHG coefficients in comparison to the other phases [54]. The
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FIG. 3. Left-hand side: zz component of dielectric tensor calculated for ferroelectric LiNbO3 within DFT-PBE in the IPA. Right-hand side:
zzz component of the SHG tensor of LiNbO3 calculated on the same footing. For better comparison, the real and imaginary parts of χ (2) are
also multiplied by (−1) (dashed lines).

DFT-PBE calculated atomic structure reproduces within 1%
the experimentally determined structural parameters [50,55].

Similarly to LiNbO3 and LiTaO3, the valence band top
originates from the anionic sublattice and has O character,
while the cations (Nb) determine the conduction band bottom,
as shown in Fig. 4.

For the calculation of the optical response, a very dense
16×16 × 16 k-point mesh (corresponding to a total of 720 k
points) is necessary. For the time evolution of the wave
functions of the 40 electrons contained in the unit cell, a
Kohn-Sham basis made of 15 occupied states and 27 unoc-
cupied states is considered. The nonlinear susceptibilities are
calculated sampling the energy axis with points at a distance
of 0.08 eV.

D. Experimental setup

All investigated samples are commercially available
X-cut wafers (Surface Net GmbH, Germany). We use a 50-fs
pulse duration 5-kHz repetition rate Ti:Sa amplifier to drive
an optical parametric amplifier including mixing stages to

FIG. 4. Tetragonal structure of KNbO3, with K, Nb, and O atoms
depicted in yellow, white, and red, respectively. Partial charge den-
sities corresponding to the highest valence band (left-hand side) and
the lowest conduction band (right-hand side) are shown. Isosurfaces
correspond to a charge density of 0.017 eV/Å3.

generate sub-100-fs pulses from 800 to 1580 nm. The beam
diameter is reduced by two concave mirrors and split into two
beams using a symmetric Michelson interferometer. SHG is
measured by placing the crystal in the unfocused beam under
normal incidence. Lock-in technique on Si photodiodes is
used for detection. The fundamental laser is suppressed by the
appropriate dielectric short-pass filters. The data are corrected
against a simultaneously acquired reference on z-cut quartz
for which the literature absolute value of d11 = 0.3 pm/V
at 1064 nm is assuemd [56]. We use Miller’s constant-delta
condition [57] with a Miller delta of δ11 = 1.328 × 102 m/C
to account for the dispersion of the second-order nonlinear
coefficient of the quartz reference, as was already performed,
for example, in Ref. [54].

III. RESULTS AND DISCUSSION

We start our discussion with the comparison of the SHG
spectra obtained with the momentum matrix approach and
with the time evolution of the dynamical polarization. As the
focus is partially set on the comparison of the two methods,
results within the IPA are presented. Many-body effects are
considered in a second step, based on the quasiparticle shifts
reported in Refs. [32,54].

After expansion of the wave functions from the irreducible
part to the full Brillouin zone, and the calculation of their
derivatives, the second-order optical susceptibility∣∣χ (2)

∣∣2 = Re
[
χ (2)

]2 + Im
[
χ (2)

]2
(14)

can be estimated in the frequency domain as a sum over
momentum matrix elements. We find that the two-band con-
tributions are negligible and the three-band contributions play
the crucial role. Figure 3 (right-hand side) shows the result of
this procedure exemplarily for the |χ (2)

zzz (−2ω,ω,ω)| tensor
component. The most prominent feature is the first peak at
1.9 eV with an intensity of 91 pm/V confirming the strong
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FIG. 5. Absolute values of the zzz component of the SHG tensor of LiNbO3 calculated by the momentum matrix elements (left-hand side)
and by the time evolution of the polarization (right-hand side). Each of them is compared with the imaginary part of the dielectric function
εzz(ω) and its energy-scaled counterpart εzz(ω/2).

optical nonlinearity of LiNbO3. In the static limit, |χ (2)
zzz (0)|

is as high as 21 pm/V. The calculated spectrum is in overall
good agreement with the results reported in Ref. [32].

The position of the resonances in the SHG spectrum can be
understood on the basis of the optical absorption. To this end,
we show in Fig. 5 (left-hand side) the absolute values of the
SHG coefficients χ (2)

zzz and the imaginary part of the dielectric
tensor εzz(ω) as well as εzz(ω/2). The latter is characterized
by spectral signatures roughly at energies for which also the
SHG spectrum shows the main peaks. This means that the
SHG spectral features might be understood as two-photon
processes.

In a second step, the SHG spectrum of LiNbO3 is calcu-
lated from the time evolution of the polarization. After calcu-
lation of P(t ) and expansion in a power row up to the sixth
order, a Fourier analysis yields the spectrum shown in Fig. 5
(right-hand side). For energies within the fundamental band
gap, two peaks at 1.9 and 2.5 eV represent the most prominent
signatures. Both peaks match the spectral features calculated
in the frequency domain, both in peak position and intensity.

The direct comparison of the LiNbO3 SHG spectra cal-
culated with the two approaches is shown in Fig. 6. In the
investigated frequency range, the agreement is excellent con-
cerning both the position and intensity of the spectral features.
The main difference between the two spectra is represented by
the magnitude of the deeps as calculated in the time domain,
which might be due, however, to a different choice of the
damping parameter which determines the resonance widths
and to the use of different pseudopotentials. The agreement
between the results obtained with two fundamentally different
approaches is by no means a matter of course, and represents
a major mutual validation of the two methods and their imple-
mentations.

The major advantage of the time-domain approach over the
frequency-domain approach is the simultaneous calculation of

the higher harmonics. Figure 7 shows exemplarily the zzzz
component of the THG tensor of LiNbO3. It is characterized
by a dominant peak at 1.4 eV with a very strong intensity of
about 1.7 × 105 pm2/V2, a minor feature at 2.6 eV and a small
shoulder at 3.9 eV. A comparison with the corresponding
component of the dielectric function shows clearly that the
first peak is due to three-photon processes, the second feature
to two-photon processes, and the minor shoulder with roughly

FIG. 6. Absolute values of the SHG susceptibility of LiNbO3

(the zzz component is representatively shown) as calculated in the
time domain (dashed blue line) and in the frequency domain (solid
red line).
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FIG. 7. Absolute values of the zzzz component of the THG tensor
of LiNbO3 as calculated from the time evolution of the polarization.
The imaginary part of the corresponding component of the dielec-
tric tensor εzz(ω) and its energy-scaled counterparts εzz(ω/2) and
εzz(ω/3) are reported for comparison.

the band-gap energy is due to one-photon resonances. These
are schematically shown in the figure inset.

Next, we compare the calculated optical response of
LiNbO3 with that of LiTaO3 and KNbO3 to determine how
the substitutions of the transition metal and of the alkali metal
affect the optical properties.

Figure 8 (left-hand side) shows a comparison of the χ (2)
zzz

component of the second-order optical susceptibility calcu-

lated for the investigated crystals, while Fig. 9 shows a
comparison of calculated and measured SHG spectra for
LiNbO3 and LiTaO3. Notably, the calculations correctly pre-
dict the spectral dependence of the measured values in the
experimentally accessible range from 0.78 to 1.55 eV and
also the magnitude agrees exceptionally well, i.e., within a
factor of 2.

The SHG coefficients of LiNbO3 and LiTaO3 are similar
concerning both peak position and intensity, although the
LiTaO3 spectrum is blueshifted due to the higher band gap.
We observe, however, that the energy shift between the two
spectra (the distance between the first peak of each spectrum
is of about 0.45 eV) is higher than the difference between
the two band-gap energies (about 0.15 eV). This suggests
that not only the band edges but also additional states close
to the gap contribute to this spectral feature. As the band
structure of the two ferroelectrics are very similar, the energy
shift might be explained by the different lattice parameters
of the two compounds. In particular, the two spectra differ in
the low-energy region before the first peak. While LiNbO3 is
characterized by a continuous increase, the SHG coefficient
of LiTaO3 remains below 15 pm/V until 1.8 eV, followed
by a steep gradient which brings the optical susceptibility to
101 pm/V at 2.4 eV. This behavior, which also holds true
when quasiparticle effects are included in the calculation,
might explain why lower SHG coefficients are measured for
LiTaO3 in the visible range.

The SHG spectrum of KNbO3 is fundamentally different
from those of LiNbO3 or LiTaO3. In the long-wavelength
limit, the zzz component of the SHG coefficient (about
40 pm/V) is much larger than in the case of LiNbO3 or
LiTaO3. After a steep gradient beginning at 1.5 eV, the SHG
coefficient reaches a global maximum of 330 pm/V at 2.6 eV.
Thus, the zzz component of the SHG coefficient as calculated
within the time domain is in qualitative agreement with the

FIG. 8. Absolute values of the zzz component of the SHG tensor in the IPA (left-hand side) and in the independent quasiparticle
approximation (right-hand side) calculated for different ferroelectric oxides.
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FIG. 9. Absolute values of the zzz component of the SHG tensor of LiNbO3 and LiTaO3 as calculated by DFT in the IPA (left-hand side)
and measured (right-hand side).

calculations presented in Ref. [54] and based on the momen-
tum matrix approach.

Figure 8 (right-hand side) shows how the χ (2)
zzz component

of the second-order optical susceptibility of the investigated
crystals is affected by quasiparticle effects. Aside from an ex-
pected blueshift of half the value of the shifts (indicated in the
figure), the quasiparticle effects lead to an overall reduction
of the signal intensity. A similar effect has been predicted by
Riefer et al. [32] for LiNbO3. Nevertheless, no major redis-
tribution of the spectral weights is observed, and the relative
differences between the spectra closely mirror those described
for the IPA spectra.

The χ (3)
zzzz component of the THG spectra (reported in

Fig. 10, left-hand side) as calculated in the IPA for the
investigated oxides has a rather similar behavior for all
crystals and does not feature the differences observed for
the corresponding SHG tensor component. All spectra are
dominated by a main THG peak between 1 and 2 eV, whose
onset mirrors the order of the band-gap energies of KNbO3,

LiNbO3, and LiTaO3. Yet, the third-order energy differences
amount to one third of the band-gap energy, so that the three
main peaks are rather close to each other. The height of the
maxima grows from KNbO3 (115 000 pm2/V2) to LiNbO3

(169 000 pm2/V2) which is the reverse order of the SHG
maxima. On contrary, the order of the THG activity in the
long-wavelength limit mirrors that of the corresponding
SHG component, with the highest value for KNbO3

(15 500 pm2/V2) and the lowest for LiTaO3

(11 500 pm2/V2).
When quasiparticle effects are considered (Fig. 10, right-

hand side) the intensity of the THG signatures is drastically
reduced by about 50% of the IPA value. Yet, LiNbO3 and
LiTaO3 do not undergo large redistributions of the relative
spectral weights. However, due to the quasiparticle-induced
shifts the THG spectra of LiNbO3 and LiTaO3 become almost
indistinguishable in the visible range.

Differently than in the case of LiNbO3 and LiTaO3,
the quasiparticle effects strongly modify the KNbO3 THG

FIG. 10. Absolute values of the zzzz component of the THG tensor in the IPA (left-hand side) and in the independent quasiparticle
approximation (right-hand side) of different ferroelectric oxides.
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FIG. 11. Left-hand side: Band structure of LiNbO3, in which the energy relative to the valence band maximum is given on the left axis and
the corresponding band indices (cf. right-hand side) are given on the right axis. Right-hand side: Resulting SHG spectra of LiNbO3 calculated
with different Kohn-Sham basis sets. In the bottom (top) half of the figure, the lower (higher) boundary of the band range of the Kohn-Sham
basis is varied, while the higher (lower) boundary is fixed. In each case, the corresponding band indices are given in the key. These calculations
are all performed with a 4 × 4 × 4 grid of k points. VB and CB stand for valence and conduction bands, respectively.

spectrum. The intensity of the main peak is somewhat less
affected than in the case of the other ferroelectrics, and, more
important, the intensity of the peak at 3.4 eV is strongly

FIG. 12. SHG spectra of LiNbO3 calculated with different num-
ber of subdivisions regarding the discretization of the Brillouin zone.
All calculations are performed with a Kohn-Sham basis consisting of
bands 11–75.

increased to 47 000 pm2/V2. This is an unusual feature, as the
general decrease of the optical susceptibility upon widening
of the fundamental gap is a known effect based on the sum
rules for the harmonic susceptibilities [58,59].

Although our results are converged with respect to the
numerical parameters (see Figs. 11 and 12), other effects
might affect the comparison with experimental results. We re-
mark that neither the crystal local fields nor the electron-hole
interaction have been considered in our calculations. While
local fields are expected to reduce the optical nonlinearities,
excitonic effects typically enhance them [60,61], so that some
error cancellation might be expected. Yet exciton effects are in
some cases not strong enough to compensate the quasiparticle
effects in THG [62].

Thermal lattice vibrations, which are not accounted for
in our approach, are also expected to modify the electronic
structure and thus the optical response of the material. The
renormalization of the band gap of LiNbO3 due to electron-
phonon coupling, e.g., reduces its value by about 0.4–0.5 eV
at room temperature, as demonstrated by molecular dynam-
ics and density functional perturbation theory calculations
[40,63].

IV. CONCLUSIONS

The nonlinear optical response of the ferroelectric ox-
ides LiTaO3, LiNbO3, and KNbO3 is investigated from first
principles and compared with specifically performed mea-
surements of the SHG spectra of LiTaO3 and LiNbO3. To this
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end, two different approaches, based on the calculation of the
momentum matrix elements and of the dynamical polarization
in its Berry phase formulation, are employed, respectively.
While the second-order optical susceptibility is calculated in
the frequency domain, second- and third-order nonlinearities
are calculated within the time domain. The excellent agree-
ment between the two approaches concerning the calculated
second-order optical susceptibility validates both methods
against each other, and allows to reproduce the experimen-
tal results as well as earlier results where available. KNbO3

shows the highest SHG coefficients, while all three materials
are comparable concerning THG. The main spectral features
of all investigated ferroelectrics can be explained by paramet-
ric processes and multiphoton resonances. The consideration
of quasiparticle effects blueshifts the spectra without affecting
the relative differences between them, and reduces the optical
nonlinearities. This reduction is particularly severe concern-
ing THG, which is reduced by about 50% with respect to the
IPA calculations. The only exception is an anomalous peak at
3.4 eV in the THG of KNbO3, which gains in intensity upon
consideration of quasiparticle effects. This strong peak can be
understood by the fact that a scissor operator is not a rigid shift
in nonlinear response, where multiple photon processes are
present [28]. In the case of KNbO3 two close peaks are present
2.4 and 3 eV, respectively, at the IPA level of approximation.
These peaks originate from multiple phonon resonances (as
shown exemplarily in Fig. 7 in the case of LiNbO3). Applying

the quasiparticle corrections, these two peaks merge, explain-
ing the appearance of a strong peak around 3.4 eV.

Our calculations furthermore reveal that LiNbO3 and
LiTaO3 have distinct SHG spectra but almost indistin-
guishable THG spectra. It must be therefore possible by
means of LiNbxTa1−xO3 solid solutions to tune the crystal’s
second-order optical susceptibility without affecting the third-
harmonic generation.

Due to the efficiency of the time-domain approach and
the possibility to calculate higher harmonics, this method
seems particularly suitable to investigate complex nonlinear
processes from first principles. This might be particularly
important, e.g., to understand the mechanisms underlying the
generation of a high directional light supercontinuum upon in-
frared irradiation recently observed in organotetrel molecular
crystals [64].
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