
PHYSICAL REVIEW MATERIALS 6, 064603 (2022)

Configurational entropy significantly influences point defect thermodynamics and diffusion
in crystalline silicon
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It has long been suggested that the familiar intrinsic point defects (vacancies and self-interstitials) encountered
in crystals at low temperatures (T ) transform into extended domains characterized by a missing or excess atom
compared with the same-sized region in the perfect crystal so that such extended defects may be viewed as
dropletlike regions of enhanced or diminished density. However, the implications of such a transformation, or
whether it even occurs in crystalline Si, remain uncertain. To address this fundamental problem, we consider a
comprehensive thermodynamic analysis of the thermodynamics of vacancy and self-interstitial formation over a
broad T range based on thermodynamic integration with a focus on entropic contributions. In cooled liquids, it is
well known that the form of the intermolecular potential can greatly influence the configurational entropy Sc, and
correspondingly, we analyze several empirical Si potentials to determine how the potential influences both the T
dependence of Sc and the enthalpy and entropy of defect formation. We indeed find that the Sc associated with
point defects increases significantly upon heating, consistent with the existence of extended defects. Moreover,
each type of defect species gives a significantly different contribution to Sc at elevated T and to a qualitive
difference in the T dependence of the entropy of defect formation in the extended defect regime. We discuss
some potential consequences of these thermodynamic changes of defect formation on the T dependence of
diffusion in heated crystals.
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I. INTRODUCTION

The thermodynamic and transport properties of intrinsic
point defects, i.e., self-interstitials and vacancies, in crys-
talline Si have been the subject of a vast number of studies
over several decades [1–11]. This persistent interest is not
surprising given the central role that point defects play in
establishing many of the crucial characteristics of semicon-
ductor Si. What is surprising, however, is that, despite this
collective effort, some fundamental questions remain unan-
swered concerning the very nature of these defects. Perhaps
one of the most basic questions is whether the defects remain
truly pointlike at elevated temperature or transform to diffuse
defect domains or extended defects, thereby altering their for-
mation and migration energetics, the configurational entropy
of the crystal as a whole, and by extension, the transport
properties of the material.

The notion of extended defects, proposed by Seeger and
Chik [1], has been invoked to interpret certain features of
Si self-diffusion measurements. In one example, apparent
non-Arrhenius dependence of the self-diffusion coefficient D
was attributed to a transition between point and extended
defect states at an intermediate temperature [12,13]. Here,
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temperature-dependent thermodynamic properties for the va-
cancy were used to describe the effect empirically. In another
study of self-diffusion [14], a very large vacancy migration
energy was inferred, and once again, a transition to an ex-
tended defect state was used to reconcile this behavior with
established cryogenic values [10]. The large migration energy
suggested in Ref. [14] was further rationalized by Cowern
et al. [15] in a model of point defect migration based on the
physics of solid-phase epitaxy. However, others have argued
that there is no need to invoke an entropic transition in de-
fect structure. More precise measurements of self-diffusion at
lower temperatures where the vacancy contribution to self-
diffusion is dominant showed that the data could be fitted
without the high vacancy migration energies hypothesized
earlier [12,16]. Even more recent measurements [17] suggest
that a single Arrhenius fit captures all self-diffusion measure-
ments across both the self-interstitial and vacancy-dominated
regimes and that earlier measurements may have been im-
pacted by interactions with unintentional impurities or even
the formation of point defect clusters [18]. Underpinning this
debate are the unproven notions that (1) if a transition occurs
between pointlike and extended defect conformations, it must
have an obvious impact on self-diffusion, and (2) extended
point defects, if they exist, must have large migration energies.
The existence of extended defects thus remains unresolved.

The resolution of this fundamental problem necessitates
the calculation of the configurational entropy Sc that would
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provide smoking gun evidence of these extended defects if
they exist. Here, Sc is a more complex quantity to determine
than the vibrational entropy of formation since it requires
global sampling of the potential energy landscape (PEL)
[19,20] rather than consideration of individual defect config-
urations. Given the relative simplicity of the calculation, the
vibrational formation entropy of point defects has been stud-
ied extensively. In metals, for example, self-interstitial defects
in the ground-state dumbbell, or interstitialcy, configuration
[21,22] exhibit large vibrational entropies of formation, and
it has been inferred that such defects lead to significant lattice
softening at elevated temperatures [23,24]. Indeed, it was such
calculations that led Granato et al. [24,25] to introduce the in-
terstitialcy theory of simple condensed matter model of crystal
melting and supercooled liquids. Moreover, recent atomistic
studies have shown that vibrational anharmonicity further in-
creases the equilibrium concentration of both self-interstitials
and vacancies near the melting point of Al, Cu [23,26,27],
and Fe [28,29]. Although point defect vibrational entropy in
Si is somewhat less well characterized than in metals, atom-
istic calculations with both electronic structure and empirical
methods have led to similar findings, suggesting significant
vibrational entropies of formation of ≈4–8 kB [5,7,30–32].

By contrast, little is known about the role of Sc in point de-
fect formation beyond the symmetry of the respective ground
states. Our previous atomistic studies demonstrated that small
clusters of point defects in Si are characterized by signifi-
cant Sc at high temperatures [33–37], but those works did
not provide a quantitative analysis of the various entropic
contributions to point defect formation free energies and their
impact on diffusion. Here, we adapt the Stillinger-Weber
(SW) inherent structure (IS) framework, applied to body-
centered cubic (bcc) crystalline materials [22,38] but then
also used extensively in the study of supercooled liquids and
glasses [39–43]. This method allows for the direct estima-
tion of the configurational entropy of point defects and more
generally all (classical) entropic contributions associated with
Si point defect formation. However, the application of this
framework to the study of isolated point defects in a crystal
is subject to certain caveats. First, only parts of the PEL that
are a direct consequence of the point defect are relevant; see
Fig. 1. ISs, which here correspond to local minima in the PEL
introduced by a point defect, and their associated configura-
tional entropy are localized to that defect and do not scale with
the total number of atoms in the system (lower shaded band in
Fig. 1). They are also not strictly part of the bulk crystal PEL
which, in the absence of surfaces, can only nucleate Frenkel
pairs and melt homogeneously (upper shaded band in Fig. 1)
[36]. Finally, the relevant quantities for describing point defect
thermodynamics are formation properties, and consequently,
it is the difference between the portion of the PEL introduced
by the defect and that of the perfect crystal rather than either
alone that governs point defect behavior.

The study described in the remainder of this paper is
based on a comparative analysis using four widely employed
empirical potentials for Si: SW [44], Tersoff-94 (T94) [45],
environment-dependent interatomic potential (EDIP) [46],
and modified Tersoff (MOD) [47]. We show that, while the

FIG. 1. Cartoon representation of the potential energy landscape
(PEL) of a bulk crystal phase. Without surfaces, the crystal must
nucleate its own defects, which eventually drive homogeneous melt-
ing (upper, blue-shaded band). Finite crystals bounded by surfaces
can incorporate isolated point defects, which introduce their own
contribution into the PEL (lower, orange-shaded band).

different potentials predict similar overall trends in tempera-
ture for the overall formation free energies of point defects,
important qualitative discrepancies are apparent when the
formation entropies are dissected into their vibrational and
configurational components. These discrepancies arise from
fundamental differences in how each potential describes the
overall Si PEL, specifically in the density and accessibility of
IS basins as temperature is increased. These findings highlight
the need for future potential model regression to incorporate
a more comprehensive mapping of the PEL. The remainder
of this paper is structured as follows. In Sec. II, we describe
the methodology for computing various thermodynamic prop-
erties as a function of temperature based on alchemical
thermodynamic integration (TI). Formation properties of self-
interstitials and vacancies predicted by the various potential
models are presented in Sec. III. In Sec. IV, we discuss the
implications of the formation properties on point defect dif-
fusion and make a connection to Si self-diffusion. Finally,
conclusions are presented in Sec. V.

II. METHODOLOGY

Our overall computational strategy is based on TI to com-
pute total free energies, a variant of which was recently
demonstrated for self-interstitials in bcc Fe [28]. TI-based ap-
proaches, although computationally expensive, do not require
a priori assumptions about the nature of entropic contri-
butions. In this paper, we employ alchemical integration
pathways using a single ideal gas particle to compute total
classical point defect free energies. The free energy of the
perfect crystal GP(T ) is computed using the standard Frenkel-
Ladd method with an Einstein crystal reference [48], while the
free energy of a crystal containing a point defect is computed
by gradually transforming one Si atom into an ideal-gas par-
ticle. Note that transforming a single particle into an ideal gas
avoids the well-known challenges associated with performing
TI across a bulk phase transformation.

The free energies of systems including a vacancy or self-
interstitial, GV (T ) or GI (T ), respectively, are given by (see S1

064603-2



CONFIGURATIONAL ENTROPY SIGNIFICANTLY … PHYSICAL REVIEW MATERIALS 6, 064603 (2022)

in the Supplemental Material (SM) [49])

GV (T ) = GP(T ) +
∫ 1

0

〈
∂U (λ)

∂λ

〉
dλ + kBT ln

〈V 〉V

NP�3
, (1)

GI (T ) = GP(T ) −
∫ 1

0

〈
∂U (λ)

∂λ

〉
dλ − kBT ln

〈V 〉P

NI�3
, (2)

where 〈V 〉P and 〈V 〉V are the zero-pressure average volumes
of a perfect crystal system and a vacancy containing one,
respectively, at the temperature of interest, and NP = 512 is
the number of atoms in the host lattice (i.e., NI = 513 and
NV = 511). Supercell sizes of 512 atoms have been shown
in prior studies to be sufficiently large to fully capture the
relaxation field around point defects in Si and provide con-
verged values for formation properties [50,51]. Equations (1)
and (2) are evaluated independently at every temperature. The
parameter λ describes the alchemical transformation from an
Si atom (λ = 0) to an ideal gas particle (λ = 1). The sys-
tem potential energy U (λ) is calculated using an empirical
Si interatomic potential function for all atomic interactions
except those that include the alchemical particle. The latter
are computed using a soft-core modification to the potential
energy function to avoid divergence in the system potential
energy as the alchemical particle becomes increasingly ideal;
see S2 in the SM [49]. To reduce the configuration space
that must be sampled during alchemical transformations, we
only consider configurations corresponding to a single defect
structure that also includes the alchemical particle; see S1 in
the SM [49]. All calculations are performed with molecular
dynamics (MD) simulations in a cubic simulation box sub-
ject to periodic boundary conditions. All MD simulations are
performed in the isothermal-isobaric (NPT) ensemble using
the Nosé-Hoover thermostat and barostat implemented in the
LAMMPS software package [52] with the pressure set to zero
and a timestep of 1 fs.

Formation free energies are computed according to
�GI,V (T ) = GI,V (T ) − NI,V

NP GP(T ). At each temperature, the
average zero-pressure formation internal energy �EI,V (T )
is also computed using a similar expression. The to-
tal formation entropy is then given by �SI,V (T ) =
[�EI,V (T ) − �GI,V (T )]/T . We also compute independently
the individual contributions to the total formation entropy.
The configurational entropy is calculated according to the
procedure described in Refs. [53,54] (also see S4 in the SM
[49]) and is given by

SI,V
conf (T ) = SI,V

conf (T0) +
∫ T

T0

1

T ′
∂
〈
eI,V

IS (T ′)
〉

∂T ′ dT ′, (3)

where 〈eI,V
IS (T )〉 is the average potential energy of ISs sampled

at T . Once again, the configurational entropy of formation
is obtained by subtracting the configurational entropy of the
perfect crystal SP

conf (T )—this is generally zero at temperatures
up to the thermodynamic melting point except for the T94
case (see Fig. S3 in the SM [49]). The temperature T0 is a
reference temperature (typically T ≈ 300 K) where only a
single (ground state) configuration is visited, and the con-
figurational entropy is determined only by symmetry (3 for
a vacancy with D2d symmetry, 6 for a 〈110〉-dumbbell inter-
stitial). At each temperature T , Eq. (3) is evaluated along an
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FIG. 2. Formation thermodynamic properties of isolated self-
interstitials (left) and vacancies (right) as a function of temperature
computed with four different empirical potentials. (a) and (b) Total
formation free energy, (c) and (d) average formation energy, and
(e) and (f) total defect formation entropy.

isochore in which the volume is set at a value that corresponds
to zero pressure at that temperature. The configurationally
averaged vibrational entropy of formation is defined as the
difference between the total and configurational entropy, i.e.,
�SI,V

vib (T ) = �SI,V (T ) − �SI,V
conf (T ). We also calculate the

average harmonic vibrational entropy of formation at each
temperature �SI,V

h (T ) over the sampled ISs; see S3 in the SM
[49] for details. The average anharmonic vibrational entropy
of formation at each temperature also may then be estimated
according to �SI,V

anh (T ) = �SI,V
vib (T ) − �SI,V

h (T ).

III. FORMATION THERMODYNAMICS
OF POINT DEFECTS

The total formation free energies for both defect types
are shown in Figs. 2(a) and 2(b) as functions of scaled
temperature, T ∗ ≡ T/ Tm, for all four potential models;
[Tm(SW) = 1685 K, Tm(T94) = 2580 K, Tm(EDIP) =
1520 K, and Tm(MOD) = 1685 K]. For self-interstitials, the
zero-temperature formation energies are clustered at ≈3.5 ±
0.17 eV, while at Tm, the average formation free energy is
≈2.0 ± 0.2 eV, corresponding to an equilibrium defect con-
centration of 1016 to 1018 cm−3. Similar trends are observed
for the vacancy: the formation energy at zero temperature is
≈ 3.0 ± 0.2 eV, decreasing to 1.5 ± 0.1 eV at Tm, correspond-
ing to an equilibrium defect concentration of 1018 to 1019
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eV eV eV eV

eV eV eV eV
FIG. 3. Example relaxed configurations of self-interstitials (top) and vacancies (bottom) predicted by the environment-dependent

interatomic potential (EDIP), along with their corresponding formation energies. The self-interstitial configuration at �EI =
3.77 eV corresponds to the 〈110〉 dumbbell, the vacancy configuration at �EV = 3.22 eV is the vacancy ground state, and the vacancy
configuration at �EV = 3.77 eV is the split vacancy. Color coding represents atomic energy: red > orange > yellow > green > cyan > blue.

cm−3. These concentrations are substantially higher than
values employed in experimentally validated models of mi-
crodefect dynamics, which are typically ≈1015 to 1016 cm−3

[55–58]; we return to this discrepancy later. Also shown in
Fig. 2 are the corresponding formation energies and entropies.
The increase in formation energy with temperature is due
to point defects assuming progressively higher energy con-
figurations as the temperature increases, Figs. 2(c) and 2(d).
This trend is driven by large total formation entropies, which
averaged over the four potentials reach ≈15 kB at the melt-
ing temperature for both point defect species. Interestingly,
the total formation entropies exhibit qualitatively different
temperature dependences for self-interstitials and vacancies,
Figs. 2(e) and 2(f). While the total self-interstitial formation
entropy rises essentially linearly with temperature (for T ∗ >

0.3) across all four potential models, the vacancy formation
entropies tend toward plateaus.

Example configurations after energy minimization of self-
interstitials and vacancies are shown in Fig. 3 that correspond
to several different formation energies computed with the
EDIP model. Although the other potential models predict
different individual configurations, the ones shown here
demonstrate the general trend of increasing structural com-
plexity as the formation energy increases that is common
across all potentials.

The temperature dependence of the total formation entropy
is analyzed further by decomposing it into configurational
and vibrational components, as shown in Fig. 4. Generally,
configurational entropy represents a significant fraction of the
total formation entropy. For self-interstitials, the configura-
tional entropy increases across the entire temperature range,
and for all potentials except T94, the rate of increase is nearly

constant up to the melting point. Overall, the SW potential
predicts the lowest configurational entropy ∼3 kBT at T ∗ = 1,
corresponding to ∼25% of the total formation entropy. At
the other end of the spectrum, the T94 potential predicts
rapidly increasing configurational entropy above T ∗ ∼ 0.6,
and by the melting point, this is the dominant contribution to
the total formation entropy. The temperature dependence of
the vacancy configurational entropy is qualitatively different.
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FIG. 4. Formation entropy components of isolated
self-interstitials (left) and vacancies (right) as a function of
temperature. (a) and (b) Configurational entropy and (c) and (d) total
vibrational entropy.

064603-4



CONFIGURATIONAL ENTROPY SIGNIFICANTLY … PHYSICAL REVIEW MATERIALS 6, 064603 (2022)

T/Tm
SV an

h
(k
B)

0 0.2 0.4 0.6 0.8 10

5

10

15
SW
T94
MOD
EDIP

T/Tm

SI an
h
(k
B)

0 0.2 0.4 0.6 0.8 10

5

10

15
SW
T94
MOD
EDIP

(a) (b)

FIG. 5. Top: Anharmonic vibrational entropy of formation for
(a) isolated self-interstitials and (b) vacancies as a function of
temperature. Bottom: Schematic representation of collective basin
occupancy in (c) low and (d) high configurational entropy settings.
Blue shading in basins denotes the probability of occupancy.

Vacancies exhibit a large temperature window over which
the configurational entropy remains essentially zero, before
suddenly and rapidly increasing at T ∗ ≈ 0.6. For MOD,
EDIP, and T94, vacancy configurational entropy represents
>35% of the total formation entropy at T ∗ = 1. The sole
exception is the SW potential which predicts zero configura-
tional entropy (beyond symmetry) at all temperatures. This is
due to the lack of accessible stable configurations beyond the
ground state. The sharp onset of the vacancy configurational
entropy is suggestive of the Tammann temperature [59], at
which the configurational entropy and mobility at surfaces
become significant. As shown in Figs. 4(c) and 4(d), the
corresponding vibrational formation entropies are remarkable
in that, for all cases where the configurational entropy exhibits
a sufficiently large rate of increase, the vibrational formation
entropy is observed to decrease with increasing temperature.
Consequently, all potentials (except SW) predict maxima in
the vacancy vibrational entropy of formation in the tempera-
ture interval 0.6 < T ∗ < 0.7. The T94 potential also predicts
similar behavior for the self-interstitial.

The origin of the peak in the vibrational entropy of forma-
tion can be traced to anharmonicity in the point defect PEL.
Shown in Figs. 5(a) and 5(b) are the anharmonic contributions
to the total vibrational entropies of formation for both defects.
The corresponding harmonic vibrational entropies of forma-
tion, provided in Fig. S1 in the SM [49], are generally only
weakly dependent on temperature. Overall, the results demon-
strate that the vibrational entropy of formation is significantly
impacted by anharmonicity, which on average is similar in
magnitude to the harmonic contribution. In other words, the
basins in the PEL generated by point defects are significantly
more anharmonic than the perfect crystal basin, although the
extent to which this is true is somewhat potential dependent,
especially for self-interstitials. Interestingly, the anharmonic
vibrational entropies exhibit the same maxima found in the
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FIG. 6. Diffusivities and self-diffusion activation energies for
self-interstitials (left) and vacancies (right) as a function of tempera-
ture. (a) and (b) Diffusion coefficients and (c) and (d) self-diffusion
activation energies.

total vibrational entropies—this effect is particularly notable
for vacancies. A cartoon model for the nonmonotonic be-
havior of the anharmonic vibrational entropy of formation is
shown in Figs. 5(c) and 5(d). For regions of the PEL char-
acterized by gradual increases in configurational entropy, i.e.,
where basins are relatively widely spaced apart in energy, an
increase in temperature leads to progressively higher energy
sampling of a single or a few basins before higher energy
basins are occupied, Fig. 5(c). Under these conditions, anhar-
monicity increases with temperature as expected. However,
when basins become progressively more closely spaced in
energy—corresponding to rapid increases in configurational
entropy—increasing the temperature paradoxically lowers the
overall anharmonicity because many basins are being sampled
only in their harmonic, low-energy regions, Fig. 5(d).

IV. POINT DEFECT DIFFUSION AND Si SELF-DIFFUSION

An important question is how the preceding thermody-
namic predictions impact point defect diffusion. Diffusion
coefficients for self-interstitials and vacancies are shown in
Figs. 6(a) and 6(b) for all four potential models as a function
of temperature; see S5 in the SM [49] for details. To account
for the different melting temperatures of each potential model,
the temperature was rescaled to the experimental melting
temperature of 1685 K, e.g., for T94, the temperature was
scaled by the factor 1685/2580. Up to two distinct Arrhe-
nius fits were defined for each case, one corresponding to a
high-temperature regime and the other to a low-temperature
one; the extracted migration activation energies �Em are sum-
marized in Table I. A clear distinction is apparent between
diffusion that is mediated by high- and low-entropy point
defect states. For all cases in which the configurational en-
tropy is above a threshold value of Sc ≈ 3 kB, the migration
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TABLE I. Migration energy barriers in eV for self-interstitials
and vacancies for all four empirical potential models. High-T and
low-T denote different Arrhenius fit intervals—the same value is
used for both intervals if a single fit is appropriate (see text for
details).

(I , high T ) (I , low T ) (V , high T ) (V , low T )

EDIP 0.32 0.32 0.38 0.81
MOD 0.31 0.31 0.30 0.63
T94 0.33 0.67 0.39 0.62
SW 0.78 0.78 0.40 0.40

barriers are tightly clustered in the range �Em ≈ 0.3–0.4
eV. Very interestingly, this is true for both types of point
defects—if enough configurations are accessible, entropically
assisted diffusion proceeds with a low-energy barrier in this
narrow range. Below the critical threshold of configurational
entropy, point defects exist in one (or a few) low-energy
configurations, and the nature of the diffusion is altered, ex-
hibiting migration barriers in a higher range �Em ≈ 0.6–0.8
eV. Note that it is difficult to access this regime for the MOD
and EDIP self-interstitial diffusivities, and at least down to
T ∗ ≈ 0.6, these potentials still predict entropically assisted
diffusion with a low barrier. For the vacancy cases predicted
by MOD, EDIP, and T94, the transition between these two
migration barrier ranges occurs suddenly at T ∗ ≈ 0.6–0.7,
corresponding closely to the onset of configurational entropy
shown previously in Fig. 5(a). The single exception to this
otherwise very consistent picture is that the SW prediction
for the vacancy migration barrier, even in the absence of
configurational entropy, falls in the lower range at 0.4 eV.

The impact of the predicted diffusion barriers on the self-
diffusion activation energies (i.e., the sum of the formation
and migration energies) is shown in Figs. 6(c) and 6(d).
Although the values across different potentials are scattered
over a 1 eV range, they are each essentially constant over
a wide temperature interval for vacancies and only weakly
temperature dependent for self-interstitials. In the latter case,
the self-diffusion activation energies vary by <0.2 eV across a
temperature interval of 500 °C, which would be very difficult
to discern experimentally. The constant self-diffusion activa-
tion energy for vacancies arises from the competition between
increasing formation energies and decreasing migration en-
ergies as the temperature increases. For self-interstitials, the
weak temperature dependence is due entirely to the formation
energies increasing with temperature, as most potentials pre-
dict a constant migration energy. It is also worth noting that
most of the self-diffusion activation energy arises from the
formation rather than migration energies, particularly at high
temperature.

V. SUMMARY AND CONCLUSIONS

In summary, we show that both types of intrinsic point
defects in Si exhibit significant configurational and vibrational
entropy, the latter being substantially modified by anhar-
monicity. Our results demonstrate that an entropically driven
transition to extended defect states—predicted by all models
except SW—does not necessarily correspond to an obvious

change in the temperature dependence of the self-diffusion
behavior. We suggest that our findings therefore provide ev-
idence that both notions can be true at the same time: (1)
the self-diffusion contribution of a single defect species is
approximately an Arrhenius function of temperature (i.e., ex-
hibits a constant activation energy) over a wide temperature
interval, and (2) configurational entropy drives a transition
from a compact state to an extended one for both defect types.
Nonetheless, it is reasonable to expect that this entropically
driven transition may play an important role in various point-
defect-related phenomena, such as point defect recombination
(as hypothesized by Seeger and Chik [1]) and in the for-
mation/dissolution of point defect aggregates during thermal
annealing [60].

It is also worth noting that, while the configurational en-
tropy associated with individual point defects is large and
meaningfully alters the predicted formation free energies, the
contribution of isolated point defects to a bulk phase configu-
rational entropy is not significant: even at the thermodynamic
melting point, the isolated point defect fractions implied by
the formation free energies computed here are still <10−4

to 10−5. Consequently, finite crystalline Si samples would
not be expected to melt via a point defect generation pro-
cess as in metals but rather by the configurational entropy
accessible through the bounding surfaces. In contrast, homo-
geneous melting in the absence of surfaces, which is driven
by point defect generation, occurs at significantly higher tem-
peratures (≈20% above the thermodynamic melting point).
Nonetheless, the nature of the temperature dependence of
the vacancy configurational entropy computed in this paper
and the general correspondence between homogeneous and
heterogeneous melting temperatures suggests a connection
between the ways that point defects and surfaces impact the
PEL of a crystal.

Lastly, we address the issues of empirical potential reliabil-
ity and consistency. As noted earlier, one important anomaly is
that the predicted equilibrium concentrations of point defects
at the Si melting point are significantly higher than accepted
values by a factor of 20 to 30 averaged over the potentials
[55–58]. While it is impossible to definitively attribute this
error to either the ground state formation energy or to the
temperature-dependent formation entropy, it is worth noting
that the equilibrium concentration discrepancy amounts to
<0.5 eV in their formation energy or ∼3–4 kB in their for-
mation entropy. To put these uncertainties in context, a recent
summary of DFT-generated formation energies shows a scat-
ter across studies that is at least 0.5 eV [61].

With respect to consistency across empirical potentials,
the SW potential clearly predicts a qualitatively less noisy
energy landscape (and lower configurational entropy) than
the other models. Given the wide use of the SW and the
implications with respect to the conclusions of this paper, this
discrepancy deserves further analysis. Based on this paper, it
is not possible to assess whether the noisier PELs predicted
by T94, EDIP, and MOD are more realistic than the sparser
SW one. Generally, most empirical potentials are not directly
fitted to point defect thermodynamic properties, and those that
do incorporate defect information tend to restrict the fitting
to the (single) ground-state configuration. In this paper, we
highlight the need to consider the PEL more globally in the
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fitting of an empirical model, whether it be to point defect
structures or something else, e.g., finite clusters or amorphous
configurations. In this regard, the configurational entropy Sc

may be particularly useful as a global metric for landscape
quantification. A key challenge, of course, is to have this in-
formation available for potential model regression—extensive
DFT-based sampling of the PEL remains extremely computa-
tionally expensive.
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