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Machine learning for metallurgy V: A neural-network potential for zirconium

Manura Liyanage ®,'-" David Reith®,? Volker Eyert®,? and W. A. Curtin'

! Laboratory for Multiscale Mechanics Modelling, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

>Materials Design SARL, 42 avenue Verdier, 92120 Montrouge, France
® (Received 27 February 2022; accepted 31 May 2022; published 24 June 2022)

The mechanical performance—including deformation, fracture and radiation damage—of zirconium is de-
termined at the atomic scale. With Zr and its alloys extensively used in the nuclear industry, understanding
that atomic scale behavior is crucial. The defects controlling that performance are at size scales far larger
than accessible by first principles methods, necessitating the use of semiempirical interatomic potentials.
Existing potentials for Zr are not sufficiently quantitative, nor easily extendable to alloys, oxides, or hydrides.
To overcome these issues, a neural network machine learning potential (NNP) is developed here within the
Behler-Parrinello framework for Zr. With a careful choice of descriptors of the atomic environments and the
creation of a first-principles training dataset that includes a wide spectrum of configurations of metallurgical
relevance, a very accurate NNP is demonstrated. Specifically, the Zr NNP yields a good description of dislocation
structures and their relative energies and fracture behavior, along with bulk, surface, and point-defect properties
and structures, and significantly outperforms the best available traditional potentials. Results here will enable
large-scale simulations of complex processes and provide the basis for future extensions to alloys, oxides, and

hydrides.
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I. INTRODUCTION

The physical properties of zirconium alloys, such as a low
neutron absorption cross section accompanied by good me-
chanical properties and corrosion resistance, [1-4] preordain
their usage in nuclear reactors. For instance, they are utilized
as fuel cladding, pressure tubes, fuel channels, and fuel spacer
grids [5-7]. Zr exhibits a number of complex features rel-
evant to these applications, such as competing slip systems
for dislocation motion, multiple possible cleavage planes, sev-
eral modes of twinning deformations, and a high-temperature
hexagonal close-packed (hcp) to body-centered cubic (bcc)
phase transformation [4,8—10]. Experimental investigations
provide important information about the real material be-
havior but probing the underlying mechanisms governing
the atomic-scale phenomena is challenging. Computational
studies provide means for a more in-depth understanding of
atomistic mechanisms involved.

First-principles methods such as density functional theory
(DFT) provide highly accurate energy information, but the
complexity and size of structures that can be analyzed is lim-
ited by the high computational cost. Semiempirical potentials
using the embedded atom model (EAM) and the modified
embedded atom model (MEAM) have been developed to over-
come the computational cost [11-13] but with compromises
to the accuracy of describing the potential energy surface
(PES) leading to lower chemical accuracy and thus reduc-
ing the scope of applications. The limited flexibility of these
semiempirical potentials for capturing increasingly complex
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structures, and especially for extensions to alloys, motivates
the continued search for more accurate but computationally
accessible methods.

The challenges in modeling the mechanical behavior of hcp
metals like Zr, Ti, and Mg lie in the diversity of active slip
systems and possible fracture modes. Figure 1 shows the ac-
cessible active slip systems in hcp Zr. Slip by the (a) Burgers
vector has a competition between basal, prismatic I-w, and
pyramidal I-n slip planes (“w” represents the wide or loosely
packed planes, while “n” represents the narrow or densely
packed planes; see Yin et al. [14]) since the (a) vector is con-
tained in all three planes. Zr exhibits preferential (a) prismatic
I-w slip with some activity on the pyramidal I-n plane due to
cross-slip, but with the basal (a) being unstable [15,16]. In
contrast, Mg shows preferential basal (a) slip, no pyramidal I
(a) slip, and some prismatic activity due to cross-slip. Zr also
strongly prefers (¢ + a) slip on the pyramidal I-w plane over
the pyramidal II plane, whereas in Mg the two slip systems
are very similar [17-19]. Due to the high stresses needed to
activate (c + a) slip with deformation in the (c) direction,
deformation twinning becomes operative in Zr (and other hcp
metals) to provide further (c) axis deformation. High twinning
activity has been observed in Zr compared to less ductile
hcp metals such as Mg [20]. Fracture behavior involves the
surface energies of all of these different possible cleavage
planes and the blunting of cracks by dislocation emission on
the various slip planes that intersect the crack front. These
points highlight that any potential for Zr should accurately
capture the competing slip activity and surface energies in Zr.

To address the challenge of modeling Zr a number of
EAM and MEAM potentials have been developed by Igarashi
et al. [21], Ackland et al. [22], Pasianot and Monti [23],
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FIG. 1. Slip planes in the hcp crystal structure, where (a) and (c + a) represent the 1/3(1210) and 1/3(1213) families of dislocations.
Basal, prismatic I, pyramidal I, and pyramidal II are the {0001}, {1010}, {1011}, and {1121} families of planes, respectively.

and Kim et al. [24], achieving varying accuracy for prop-
erties such as lattice parameters and elastic constants. The
generalized stacking fault energies (GSFEs) that are impor-
tant for dislocation and fracture behavior are, however, not
sufficiently accurate. Wimmer et al. [25] recently introduced
an EAM potential for Zr-H that describes some important
hydride and Zr-H properties well compared to DFT, but the
totality of properties of pure Zr studied are not captured with
the necessary accuracy. The most widely used Zr potential
is that of Mendelev and Ackland [4] that was initially de-
veloped to model phase transformations. The Mendelev and
Ackland [4] “no. 3” potential was developed for hcp-Zr and
predicts many mechanical properties with good accuracy and
give reasonable qualitative results for some nonlinear behav-
ior [15,16]. Not surprisingly, due to the limited flexiblity of
the EAM form, this potential is inaccurate for a number of
slip-related quantities such as the stable stacking fault energy
in the prismatic I-w plane {1010} that is a critical property
for (a) dislocation slip. Thus, at present, there are no com-
prehensive potentials for Zr that capture the myriad aspects
that are necessary for modeling of Zr deformation and frac-
ture.

A new approach to achieving both accuracy and efficiency
is through potentials developed using machine learning (ML)
techniques. ML methods have the advantage of not being
limited to a specific functional form, giving them the ability
to be fitted to an ab initio PES covering a wide range of
the configurational space. Unlike empirical potentials, ML
potentials are fitted to local atomic environments rather than
properties of materials, and so accuracy depends on sufficient
precision and breadth of the structural space to which the ML
is applied. Structures should be selected to encompass the
metallurgical configurations pertinent to the performance of
the potential. The use of ab initio methods such as DFT pro-
vides the chemical accuracy for the chosen structures. Finally,
the adroit choice of local descriptors for representing the local
atomic environments and connecting local environments to
structure energies provides the computational efficiency, rel-
ative to DFT. Hence, the development of a machine learning
potential can be divided into the following phases:

(1) Development of a database of structures with ab initio
calculated energies and forces that accurately capture the PES

(forces and energies) relevant to metallurgical properties of
interest

(2) Selection of descriptors for the local environments of
the chosen structures; these descriptors should be invariant
under rotations, translations, and exchange of coordinates of
like atoms

(3) Training of an ML potential using the selected de-
scriptors on the database of structures through regression to
optimize model parameters that map the descriptors to the
local PES

(4) Optimization of the choice of descriptors to
enhance efficiency while preserving accuracy of the final
potential.

The development of ML potentials for Zr has seen consid-
erable recent success, but with a limited focus on capturing the
hcp-bee phase transition [26-29] and phonon dispersion [30].
ML potentials suitable for modeling of mechanical properties,
especially dislocation plasticity and fracture, have not yet
been developed. The goal of the present paper is to develop
a broadly useful neural network potential (NNP) for Zr that
captures the many features important for deformation and
fracture of hcp Zr. Current work follows recent developments
of NNPs for metals and alloys (Al-Cu [31]; Mg [32]; Al-
Mg-Si [33]) using the Behler-Parrinello (BP) framework and
symmetry functions (SF) [34,35] as descriptors. The resulting
NNP potential captures the mechanical and plastic behavior
much better than the best existing EAM potentials.

The remainder of this paper is organized as follows. In
Sec. II the methodology of the training process within the
BP framework is discussed along with details about the struc-
tures included in the training dataset. Section III presents the
validation of the developed NNP. Initially, the predictions of
energies and the forces of the structures in the dataset are
examined in Sec. Il A. Then Secs. III B to III F analyze the
mechanical and plastic behavior of Zr (lattice parameters,
elastic properties, surface energies, stacking fault and deco-
hesion curves, dislocations, twin boundaries, and fracture)
observed for “best” NNP potential with comparison to DFT
results where available. Comparisons to the Mendelev and
Ackland [4] “no. 37 EAM potential will be made for many
properties. Section IV summarizes the performance of the
NNP for Zr and points toward future work.
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II. METHODS

This section summarizes the composition of the training
set, the ab initio approach applied to the training set to calcu-
late energies and forces, the Behler-Parrinello neural-network
potential (NNP) framework, and the selection of symmetry
functions (SFs) entering the NNP formalism.

A. Training set

In general, the reference structures used for the training
of the neural network should encompass sufficient detail of
the atomic environments that are encountered in metallurgical
applications. Mechanical, plastic, and fracture properties are
the main focus in the current study; we do not attempt to
capture the complexities that arise in direct modeling of ra-
diation damage [36,37] The initial training set thus consists of
structures relevant for these properties. These include hydro-
statically and uniaxially strained structures (within 6% strain
of the equilibrium lattice parameters) as well as structures
with vacancies and vicinal surfaces of the different crys-
talline phases of Zr (hcp, fcc, bce, and hexagonal w phases).
Additionally, snapshots of ab initio molecular dynamics sim-
ulations at 1000 K of the above-mentioned structures were
also considered. Exclusively for the hcp phase, structures re-
lated to decohesion curves, generalized stacking fault energy
curves, and stable stacking faults along relevant directions of
the various active slip planes (see Fig. 1) and self-interstitials
are also included in the training set. NNPs trained on this
dataset perform sufficiently well for many properties but, sim-
ilar to the case of Mg [32], perform very poorly in fracture
tests. To rectify this problem, guided by previous work on
Mg, additional structures consisting of hcp rod and cuboidal
structures that contain corners and edges are added to the
training set, leading to significant improvement in fracture
performance (see Sec. III F). The final total dataset consisted
of 1875 structures containing a total of 96 981 atoms that
encompass a broad range of local atomic environments.

In the loss function used to create the NNP (see Eq. (7))
the total energy of each structure is considered irrespective
of the size of the cell. The number of atoms in all structures
of the training set is kept at comparable values in order to
avoid bias towards larger structures [32]. Specifically, most
structures have between 32 and 72 atoms while the the rod
and cuboidal structures have 216 atoms. These system sizes
are all large enough to avoid any size effects entering the DFT
reference energies and structures.

B. DFT methodology

All training set calculations are based on density func-
tional theory (DFT) [38,39] with electron-electron exchange
and correlation effects described within the standard general-
ized gradient approximation (GGA) as proposed by Perdew
et al. [40]. The Kohn-Sham equations were solved with
projector-augmented-wave (PAW) potentials (PAW_PBE Zr_-
sv 04Jan2005) and wave functions [41] as implemented in
the Vienna Ab initio Simulation Package (VASP version
6.0) [42,43]. Specifically, the basis set comprised the 4s, 4p,
5s, and 4d states. The planewave cutoff energy was set to
520 eV, and a I'-centered Monkhorst-Pack k-point mesh with

a spacing of 0.2 A~ [44] was used as well as a Gaussian
integration scheme with a broadening of 0.05 eV. All cal-
culations were performed within the MedeA computational
environment of Materials Design [45].

For the training data set used here (1875 structures, each
containing 20 to 216 atoms), the total energies of these struc-
tures cover a wide range between —1840.58 and —168.50 eV.
More interesting are the energies per atom, which vary from
—8.52 to —7.47 eV /atom. The atomic forces are found be-
tween —39.5 and 34.2 eV/A.

C. Neural-network formulation and symmetry functions

In the same way as classical potentials, machine-learned
potentials (MLP) establish the potential energy of a structure
as a sum of the individual atom contributions [34,46]. The
potential energy E of a structure with N atoms is calculated as

E=) E, M

where E, is the individual atom energy of the nth atom. The
atomic energies depend on the local environments around
each individual atom and are resolved by means of local de-
scriptors, also called symmetry functions [34,35,46]. Here we
use three types of Behler-Parrinello SFs: radial (G?), narrow
angular (G?), and wide angular (G”) SFs, having the func-
tional forms

Gi2 — Z e*n(m‘*rx)zfc(rij)7 )
i#]
G =2t Z(l + A cos Hijk)zefn("‘zf“'zk”fz‘k)
Joksti
X fe(rij) fe(ri) fe(r i), (3)
G) =2 3" (1 + hcos 6y) e (+7E)
Jiketi
X felrip) fe(rin), €]

where r;; = |rj — rj| is the radial distance between atoms i and
Jj and 6;j the angle between the vectors from atom i to atoms
Jj and k, respectively. While 7;; in the Gaussian components of
angular SFs (G? and G°) can be shifted by r, similar to radial
SFs, they are generally kept at zero 0, and hence not included
in Egs. (3) and (4). The so-called hyperparameters 1 and r;
vary the width and radial position of the Gaussian functions
in the radial SFs. The cutoff function f. smoothly decreases
the radial components to zero at a radial cutoff r. (for the
current work, f.(r) = tanh?(1 — r/r.)). The hyperparameters
X and ¢ define the shape of the angular components of the
SFs. For the radial SFs, the hyperparameters are varied in
two ways. For shifted SFs (G>*), n is kept constant and r;
is varied, while for centered SFs (G*€), r, = 0 while 5 is
varied. Egs. 3 and 4 have the same angular variation, while
the radial components are different. The choice of the SFs
(chosen hyperparameters) needs to be optimized to capture
the local atomic environments sufficiently without overfitting
and with the fewest number of SFs for the best computational
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efficiency. The process of SF selection will be discussed later
in this section.

Atom energies are calculated through a neural network
with two hidden layers as

Muayer 2

E, =f13{b31 + > wafe

Miayer,1 sym
x |:b§+ > whifl <b'+2w°‘c)” (5)
j=1

where f(-) are the activation functions for each node (for
the current study f; and f; are softplus functions and f; is
the identity function), Miayer,» is the number of nodes in the
mth hidden layer, My, is the number of SFs (G;). Fitting
parameters of the training are the weights and the biases,
wy,and by, connecting the pth node in the uth layer or the bias
to the gth node in the vth layer, of the neural network. Force
components of the nth atom (F, ;) are obtained by taking the
derivative of the total energy (E) with the spatial coordinate
of the atom (x, ;) as

IE
Fui = 3%, m; 3%

N e YE,, 3G,
2;21: 9G; s ©
m=1 j

Training is carried out through regression to minimize the
loss function [47],

3Ni

Nslrucl strucl atom

= Z (EIZ\IN rlef +,3 Z Z JNN /ref 2’ (7)

i=1 i=1 j=I

where E and F are the energies of the structures and the
forces of the atoms in each of these structures, respectively. 8
(with A units) is used to scale the relative weight of the forces
(ineV/ A) vs the energies (in eV). Performance of the training
is initially assessed with root mean square errors (RMSEs)
calculated separately for energy and forces as

NS[I’“C(
RusEe = |3 (BB ®
struct ;7
NSU'IIC[ 3NL:‘[UH]
1 1 i i \?
RMSEg = 3N (FjNN - Fjref) (9)
struct : atom

i=1 j=1

to provide an overall estimate of how well the structures in
the dataset are represented by the NNP. Subsequently, the
resulting NNP is used to compute bulk, surface, and point
defect properties, which enables assessment of the quality of
the potential for capturing the key metallurgical features.

The NNP training is carried out using the open source
code n2p2 [48]. Training is performed with a Kalman filter
for a fixed number of 400 epochs, as proposed by Stricker
et al. [32]. All structures in the dataset are used for training
since validation of the NNP will eventually rest on computed
properties, not direct comparison of the NNP to the training
data. Initially 8 = 10 A was used for the force weighting in
Eq. (7), as used in Stricker et al. [32], but greatly improved
training quality was achieved using g = 1 A. Also at each

500 T T
—%—  DFT
NNP 7, =6 A
——NNP 7, =T7A
400 - e re=8A B
£ 300f |
ﬁ
£
= 200 N
P
n
100 - B
0 | | | | |

Slip (A)

FIG. 2. Generalized stacking fault energy.

epoch, only 2% of the forces (selected randomly from can-
didates whose current error falls above a certain threshold)
and 100% of the energies of the training dataset are updated.
Larger values of the fraction of force used led to much larger
RSMEs.

D. Selection of symmetry functions

Selection of SFs is crucial in developing an accurate and
efficient NNP. The final SFs here are chosen after a number of
trials by investigating the predicted bulk, surface, and point-
defect Zr properties. To describe a single set of SFs, the format
“ure, iG>, jG*°,1G*, kG is used, where pu, i, j, k, and [
indicate the radial cutoff (r.) and the number of G>5, G>¢,
G, and G° SFs, respectively. For each set of SFs, training is
done for 10 different random initial sets of weights and biases.
Zr has a c¢/a ratio which is quite low compared to the ideal
c¢/a ratio, indicative of angular bonding in such hcp structures
and thus suggesting the need for additional angular symmetry
functions to describe the local environments.

The initial set of SFs follows Stricker et al. [32], who
successfully developed an NNP for hcp Mg. This set contains
82 unique SFs, with 32 radial SFs and 50 narrow angular
SFs as shown in Egs. (2) and (3), has r. of 6, 8, 9, and
12 A for the radial SFs, and 6 and 12 A for the narrow
angular SFs. SF hyperparameters are selected as guided by
Imbalzano et al. [49], with no wide angular SFs. Thereafter
the number of SFs is reduced using a CUR decomposition
algorithm [49] to obtain the 48 most useful SFs. Training
with these SFs yields an NNP of poor quality, with RMSEs
of ~20 meV /atom and ~150 meV /A for energy and forces,
respectively. This indicates that this initial set of SFs is un-
suitable for capturing the atomic environments that control
energies and forces in Zr. Hence, a new set of SFs is se-
lected with a single radial cutoff of 6 A containing 66 unique
SFs (6r,, 10G*>*, 8G**, 24G?, 24G°) including now the wide
angular SFs, where the hyperparameters of the shifted angu-
lar SFs is determined on a grid as proposed by Gastegger
et al. [50] and the hyperparameters of the remaining SFs
selected as per Imbalzano et al. [49]. Again the CUR selec-
tion algorithm is used to find the 48 “best” SFs. The NNP
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FIG. 3. Atoms above the basal slip plane lying within the radial cutoff distance of an atom just below the slip plane for different radial
cutoff (r.) values. The central atom below the slip plane is shown in red, while the atoms entering the r. are shown in the green, atoms leaving
the r, are shown in brown, atoms remaining inside 7, are shown in orange, and all other atoms are shown in gray. The dotted lines indicate the

slip plane.

developed with this set of SFs resulted in significant improve-
ments, with reductions in the RMSEs of energy and force to
4-6 meV /atom and 80-100 meV /A, respectively.

With the above encouraging results, a broader sensitivity
analysis is executed considering combinations of radial cut-
offs of 6 A, 8 A, 10 A, 6+8 A, and 6+8+10 A. Using the
CUR selection algorithm, the 48 “optimal” SFs were selected
for each case. The best RMSE values were obtained using
the combination of 6+8 A radial cutoffs. Although improve-
ment is observed with RMSE (RMSEg ~ 4 meV /atom and
RMSEr ~ 80 meV/A), the stacking fault curves are faulty,
with the unstable basal stacking fault energies significantly
lower than the DFT values. It was speculated that this could
be due to the radial cutoff, since a stacking fault will incur a
large displacement along the plane, which can cause notable
changes to the atomic environment within any given radius.

Hence, the analysis for the sensitivity to the radial cutoff
was extended to the SF sets of the following:

(1) 6 A (6re, 11G*5, 6G*<, 48G?, 48G®)

(2) 7 A (Tre, 13G?, 6G>*, 48G, 48G°)

(3) 8 A (8re, 15G>*, 6G>*, 48G, 48G°)

@) 9 A (9., 17G>S, 6G>*, 48G3, 48G").

The number of most useful SFs selected by CUR decompo-
sition method is also varied to find the number of SFs required
to accurately represent atomic environments. From these, the
NNPs developed with a radial cutoff of 7 A and 80 SFs
showed the best RMSE and the deviations in the generalized
stacking fault curves decreased significantly (see below).

Identifying that the radial cutoff r, for the symmetry func-
tions must be set to 7 A for good accuracy is one main
breakthrough in achieving a very good overall NNP for Zr;
Fig. 2 shows the predicted basal GSFEs for r. = 6, 7, and
8 A where the most significant improvement was found. Thus
atomic positions relative to the r, during basal slip are exam-
ined. Focusing on an atom just below the slip plane, the atoms
above the slip plane within r, are shown in Fig. 3 for the per-
fect crystal, the unstable stacking fault configuration, and the
stable stacking fault configuration. For r. = 6 A, only a few
atoms in the first two planes above the slip plane interact with
the lower atom, and various atoms are entering and exiting the
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domain within the cutoff. For r, =7 A, several atoms enter
the domain at the unstable point and then exit the domain at
the stable fault, but in a smooth manner relative to the situation
forr. =6 A. For r. =38 A, overall more atoms are included,
naturally, but there are significant shifts of atoms out of the
domain without rather different atoms entering the domain.
It may be that the relatively symmetric case for r. =7 A
avoids small changes in total energy that may occur in the
asymmetric cases of r., = 6 and 8 A that, while small, are fully
attributed to the (also small) GSFE energy changes and thus
may lead to inaccurate stacking fault results. This examination
is far from rigorous, but suggests why a particular cutoff of
r. = 7 A may be notably better than other choices.

Based on the above studies, a set of ten NNPs with dif-
ferent initial weights and biases were developed using the
final set of SFs (80 SFs chosen with CUR selection from
Tre, 13G%%, 6G?*¢, 48G?, 48G®). As shown in the next section,
these NNPs have low RMSE for the forces and energies
of structures in the training dataset, and will subsequently
be shown to give good bulk and defect properties, relative
to DFT. Comparisons to results from one EAM potential
(Mendelev and Ackland [4] “no. 3” potential) will also be
shown.

III. RESULTS AND DISCUSSION

To evaluate the quality and the usefulness of a potential for
metallurgical problems an examination of its application on
various properties is required. A comprehensive investigation
is performed considering mechanical and elastic properties,
surface energies and decohesion curves, stacking fault curves,
dislocation core structures, twin boundaries, and fracture be-
havior. Each of these aspects are discussed below in detail.
The same properties are also investigated with an EAM po-
tential (Mendelev and Ackland [4] “no. 3” potential) and are
discussed briefly for comparison. All the predicted properties
are obtained through simulations performed with LAMMPS [51]
with the n2p2 module for the NNPs and using system sizes
equal to and larger than those used for the DFT training data
with no dependence of properties on system size. Ovito is
used in visualizing the atomic structures [52].

A. NNP energies and forces vs DFT reference values

The 10 NNPs developed with the final set of symmetry
functions give similar RMSE (RMSEg < 1 meV/atom and
RMSE; ~ 60 meV/A). To select the most balanced NNP
from among the 10 NNPs, a root mean square percentage error
(RMPSE) is calculated as

N 2
1 XNnNp — XprT
RMPSE = | — _— 100, 10
N E < ) X (10)

P XpFr

with X =1, ..., N being the elastic properties (the five in-
dependent components for hcp crystals (Cyy, Ci2, Ci3, Cs3,
Cu4) and the stacking fault energies (unstable (y,sr) and lower
(yst, which may be different from the stable stacking fault
energy) defined as the first maxima and the first minima of

the GSFE curves) for basal {0001}, prismatic I-w {1010},
pyramidal I-w {1011}, and pyramidal II {1121} planes (see
Fig. 1) with N = 13. The NNP denoted “NNP4” is found to
give the best RMPSE of 7.33%, along with best agreement for
most individual properties, with other NNPs having RMPSEs
between 10% and 16%. NNP also has errors of RMSEg =
0.712 meV /atom and RMSEg = 60.58 meV /A relative to the
DFT training set. Finally, NNP4 is also found to perform
well for dislocation, twin boundaries, and fracture simulations
(see below). Hence, NNP4 is selected as the proposed NNP
emerging from the current study that is capable of modeling
most mechanical and plastic behavior of Zr with very good
agreement to DFT results and other ab initio studies available
in the literature. The SFs and the respective hyperparameters
of NNP4 are shown in the Appendix.

The energies and forces predicted by NNP4 follows the
trend of the reference values with no discernible outliers.
Figure 4(a) shows a histogram of percentage errors of NNP4
energies relative to the DFT database. The majority of the
energy errors (~90%) are below 1 meV/atom, which is com-
parable to DFT accuracy. No errors are above 10 meV /atom,
which is excellent. On the other hand, Fig. 4(b) shows a
histogram of percent forces errors, which are much larger. The
maximum error of 1.76 eV/A is found for a structure having
a self-interstitial and most of the large errors (>500 meV/A)
were also for similar structures containing self-interstitials
(minimum energy structure and snapshots of the molecular
dynamic evolution of this structure at 1000 K), but the DFT
forces of these structures were immense (7 to 30 eV/ ;\) and
hence the relative errors are between 5% and 20% and these
structures will rarely occur in reality. The high error could be
due to the fact that there are only a small number of atomic
environments in the training set that come close to these inter-
stitial configurations, causing less accurate PES and then large
force errors (derivatives of the PES). Although these force
errors are quite significant, the equilibrium Zr self-interstitial
energy and the atomic configuration predicted by NNP4 are in
good agreement with the DFT values.

B. Lattice, elastic, and surface properties

A summary of properties commonly used to compare in-
teratomic potentials is shown in Table I as calculated via
DFT, NNP4, and the Mendelev and Ackland [4] “no. 3” EAM
potential. Figure 5 shows the percentage errors of these prop-
erties relative to DFT. Overall, there is very good agreement
between NNP4 and DFT, with almost every property of NNP4
captured more accurately than that of the EAM, which was
often fitted directly to the properties (although not to the
precise DFT executed here).

A closer look at the lattice parameters from both potentials
(EAM and NNP) show that they match DFT well, which
itself slightly overestimates experimental values. The c¢/a ra-
tio for Zr is quite low compared to the ideal value for hcp
structures of /8/3(~ 1.633). This difference may account for
the substantially greater difficulty in obtaining a good NNP
for Zr as compared to earlier studies for near-ideal-c/a Mg,
necessitating the use of many more SFs (with higher number
of angular symmetry functions) and inclusion of the wide-
angle SFs.
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TABLE I. Comparison of the properties obtained for the NNP4 with the corresponding properties obtained from DFT calculations and the
EAM (Mendelev and Ackland [4] “no. 3”) potential. Between the EAM and NNP4, the most accurate prediction for each property (compared

to DFT values) are shown in bold.

Property Experimental DFT (0 K) NNP4 EAM
Lattice parameters

aA) 3.228* 3.237 3.231 3.234
c/a 1.592* 1.595 1.602 1.598
Elastic properties (GPa)

Ci 155° 150 141.5 141.5
Cp 67° 61 67.2 74.2
Cis 65° 66 67.2 74.0
Cs3 173° 153 168.7 167.7
Cyy 36° 31 28.9 439
Surface energies (mJ /m?)

Yeurt: basal — 1580 1593.8 1528.9
Ysurt: Prismatic I-w — 1664 1631.9 1540.8
Ysurt: pyramidal I-w — 1573 1582.9 1553.8
Vsurf: pyramidal 11 — 1713 1731.1 1645.4
Stacking fault energies (mJ/m?)

Vst : basal — 215 196.7 197.8
Vist: prismatic I-w — 208 219.7 135.5¢
Yise: pyramidal I-w — 202 198.6 161.8
Yist: pyramidal IT — 399 400.8 339.2
Yust: basal — 271 253.1 323.4
Yust: prismatic I-w — 223 237.0 272.7
Yust: pyramidal I-w — 482 461.1 336.1
Yust: pyramidal IT — 580 545.8 415.2
Ysst© pyramidal I-w — 113 139.2 136.1
Ysst© pyramidal I-n — 161¢ 164.0 244.2
Ysst: pyramidal IT — 304 290.9 334.8
Other properties

Vacancy formation energy Ey,. (€V) — 2.02 2.04 1.69
Self-interstitial energy Egia (eV) — 2.99 3.01 2.77
Ece—hep (€V) — 0.084 0.085 0.103
Efec—hep (€V) — 0.038 0.037 0.054

2Goldak er al. [53] at O K.
YFisher and Renken [54] at 4 K.

‘For prismatic I-w plane, the generalized stacking fault energy curve doesn’t show a minimum. The value here indicates the stable stacking
fault energy only obtained with an additional 0.15¢ [0001] shift from the expected minimum. Ref. [54] confirms this.

9Yin et al. [14].

The 10 NNPs based on the final set of symmetry functions
yield elastic properties that are in fair agreement with DFT
values. In general large variations are observed for Cj, and
Cy3, but NNP4 gives very good agreement for Cj, and Cj3
(see Fig. 5). The predicted Cs3 is overestimated by all the
NNPs but coincidentally these are closer to the experimental
value. Overall for elastic properties, NNP4 shows the best
agreement but the EAM potential is on par with most of the
NNPs. It is noted that DFT itself differs from experiments,
underestimating Cs3 and Cyy (as reported also in [55-59]).

The equations of states (EOS) for hcp and bee Zr as pre-
dicted by the NNP and the EAM are compared to DFT result
(Fig. 6). The DFT structures in the training dataset are only
in the range of £6%, and here the NNP and EAM both agree
well with DFT. Both EAM and NNP4 deviate from DFT for
a/ap < 0.9 and a/ag < 0.94 for hep and bee phases respec-
tively, but the EAM result is smooth, by construction, whereas
NNP4 becomes highly unphysical at very large compression.

This domain is not relevant for most metallurgical problems,
but can be important in studying radiation damage phenom-
ena. The erroneous behavior under high compression can be
rectified by the addition of a simple cut-and-shifted Lennard-
Jones (LJ) pair potential at small atom separations (see, for
example, Jain et al. [33]). Figure 6 shows the total potential us-
ing the LJ parameters € = 5 eV and o = 2.584 A with cutoff
at r. = 2!/ =2.90 A; while the high-compression regime
does not match DFT, it avoids the unphysical behaviors and is
in an energy range that is not relevant for most applications.
Similar results are obtained for the 7 = 0 K EOS of bcc Zr
using the same LJ parameters. The only property value shown
in Table I that is affected by introduction of the cut-and-shifted
LJ potential is the self-interstitial energy, which is increased
by 0.2 eV.

Surface energies predicted by the NNPs are in excellent
agreement with the DFT results across all the different vicinal
surfaces studied (Table I). The decohesion behavior, i.e., rigid
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FIG. 4. Histogram of errors for energies and forces of the struc-
tures in the dataset as predicted by NNP4. The tiny fraction of
structures having force errors >500 meV /A (see text for discussion)
are shown in the inset.

separation of two semi-infinite blocks of perfect crystal nor-
mal to the surface of interest, is also very well captured by the
NNPs for all surfaces studied (see Fig. 7). Surface energies are
often a source of larger error for many available Zr potentials
(e.g., Wimmer et al. [25], Kim et al. [24] with errors of
~25%). The Mendelev and Ackland [4] “no. 3” EAM shows
fair agreement with DFT, but the decohesion behavior is not
as well described, but mainly at larger separation distances.
The decohesion behavior provides the base-level behavior
associated with atomic-scale separation at a sharp crack tip,
and the relaxed surface energy sets the load level for cleavage
fracture. It is necessary, but not sufficient, for both of these
features to be well reproduced for applications of any potential
to fracture problems.

C. Stacking fault energies

The generalized stacking fault energies (GSFEs) of all
the different slip planes are very important in predicting the

plasticity behavior as they significantly influence the disloca-
tion core structures and energies, and the often delicate ener-
getic competition between slip modes. DFT calculated stack-
ing fault curves and fully relaxed stable stacking fault energies
(SSFEs) agree well with results from Yin et al. [14]. These
are included in the training dataset. Since the basal, prismatic
I-wide, and pyramidal I-narrow slip planes (see Yin et al. [14])
all contain the critical (a) screw dislocation while the pyra-
midal I-w and pyramidal II planes both contain the (¢ + a)
screw dislocation (see Fig. 1), careful determination of the
stacking fault energies for these planes is especially important
in Zr.

Figure 8 shows the GSFE curves along the basal, prismatic
I-w, pyramidal I-w, and pyramidal II directions obtained from
DFT calculations, the NNPs, and the EAM potential. The fully
relaxed stable stacking fault energies are also shown with an .
It is important to note that the stable stacking fault energies
in the pyramidal I-w, pyramidal I-n, and pyramidal II planes
deviate significantly from the minima of the GSFE curves due
to nonnegligible atomic relaxations of atoms not immediately
adjacent to the slip plane (again see Yin et al. [14]). The
NNPs show quite good agreement for most of the crucial
details in the GSFE (see Table I and Fig. 8), while the EAM
potential studied here, and all others investigated, show very
poor stacking fault energies. Similar to the elastic properties,
among the NNPs, NNP4 gives the overall best agreement with
the DFT results.

Looking in detail, the NNP predictions for the prismatic
I-w slip show some variability. However, all NNPs predict a
local minimum (stable stacking fault). The existence of this
minimum is quite important since it indicates that a stable (a)
screw dislocation can exist on this plane, and experimentally
this is the dominant (a) slip plane in hcp Zr. This differs
significantly from hcp Mg, for example, where the prismatic
I-w has no local minimum and the (a) is not stable relative
to the basal (a) [32]. The actual dislocations will be analyzed
later.

In addition, the pyramidal I-w stable stacking fault is sub-
stantially lower than that on the pyramidal II plane. This
indicates that the pyramidal I-w (c 4 a) is strongly pref-
erentially relative to the pyramidal II (c + a), and indeed
pyramidal I-w slip is observed in Zr and pyramidal II slip
is essentially absent. Again, this contrasts with Mg, where
the two fault energies are almost equal, and pyramidal II slip
is very slightly favorable relative to pyramidal I-w slip, as
observed experimentally.

Mendelev and Ackland [4] only considered the SSFE in
the basal and prismatic I-w planes when developing the EAM
potential (Mendelev and Ackland [4] “no. 3”) for the stacking
fault energies due to the limited form of the potential. Hence,
important aspects of the GSFE curves may not be accurately
captured. As observed in Fig. 8(a), the SSFE in the basal plane
is determined accurately with the EAM potential but the SSFE
in the prismatic I-w plane shows a considerably lower energy
(135.5 mJ/m?) than the DFT value, and also with an offset
of 0.15¢[0001] from the path of the GSFE curve. Udagawa
et al. [60] found that the reason for the incorrect SSFE in
the prismatic I-w plane was the use of an incorrect DFT
reference value (145 mJ/m? as given by Domain et al. [61])
due to an insufficient number of planes in the simulation cell.
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FIG. 5. Percentages errors compared to DFT for the material properties shown in Table I. EAM refers to the Mendelev and Ackland [4]
“no. 3” potential. For the mean and standard deviation (SD) the 10 NNPs developed with the final set of symmetry functions are considered.

Bacon and Vitek [62] also showed that potentials with simple
hard-sphere models, such as EAMs, inherently suffer from an
artifact for the hep structures wherein the stable stacking fault
position for the prismatic I-w plane is found with an offset of
ac[0001](x # 0) from the GSFE path. Thus, the SSFEs for
the pyramidal planes (pyramidal I-w and pyramidal II) are at
incorrect positions even though the SSFE values show some
agreement with DFT. The EAM fails to capture remaining
aspects of the GSFE curves such as the unstable stacking fault
energy, which is expected because such information is not
included in the fitting process.

T T
— DFT
— EAM
= NNP4.NNP4+LJ

Energy (eV /atom)

afag

(a) hep

D. Dislocations

The plastic flow of metals mainly depends on the availabil-
ity and mobility of dislocations. Hence, accurate descriptions
of all the dislocation core structures are quite important. With
the hcp crystal structure, the relevant dislocations are those
with Burgers vectors (a) (1(1210)) and (¢ +a) (3(1213))
(Fig. 1). (a) dislocations are dominant, but c-axis deformation,
required to satisfy the von Mises criterion for macroscopic
plasticity, necessitates the motion of (¢ + a) dislocations
or twinning. The five possible glide planes are the basal,
prismatic I-w, and pyramidal I-n for (a) dislocations and

T T
—w— DFT
—— EAM
—— NNP4
——— NNP4+Lj

Energy (eV /atom)

afag

(b) bee

FIG. 6. Equation of state for Zr obtained with DFT, EAM (Mendelev and Ackland “no. 3" potential), and NNP4 for (a) hcp and (b) bcc
structures. NNP4+LJ shows the modified EOS using the NNP4 and a cut-and-shift LJ potential to avoid unphysical behavior for high

compressive strains.
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FIG. 7. Decohesion curves for basal, prismatic I-2, pyramidal I-w, and pyramidal II planes, comparing the DFT, EAM (Mendelev and
Ackland [4] “no. 3” potential), and the 10 NNPs developed with the final set of symmetry functions. NNP4 is shown in red to distinguish
it from rest of the NNPs. All initial structures here are contained in the training dataset, with the non-DFT results corresponding to relaxed

structures using the relevant potential.

pyramidal I-w and pyramidal II for (¢ + a) dislocations, as
shown in Fig. 1.

Here all five slip systems are analyzed for the relevant
edge and screw dislocations separately (10 different core
structures). For each case, initial full dislocation and ex-
pected partial dislocations are created using the anisotropic
Volterra elastic dislocation solution [63], with initial partial
dislocation spacings ranging from 5 to 30 A in steps of 5 A
along the respective slip planes. Simulation cells with in-
plane dimensions of approximately 300 A x 300 A with one
periodic length along the dislocation line direction are used.
During relaxation starting from the initial structure, the outer
boundary atoms in a 10 A-thick layer are fixed and all inner
atoms are relaxed until a stable configuration is reached. The
resulting dislocation core structures are analyzed using the
Nye tensor [64,65], differential displacement maps [66], and
disregistry along the slip plane using the atomman python
package [67]. Gradients of the disregistries give the Burgers

vector distribution along the glide plane and enable an esti-
mate of any dissociation into partial dislocations [68].

Edge dislocations are stable for all these slip planes but the
same screw dislocation can exist on several different planes.
Hence, the energetic competition among the different slip sys-
tems for the same Burgers vector screw dislocation is crucial
to the deformation. The stability of a screw dislocation on a
given plane is mainly determined by the stacking fault energy,
and it is encouraging that NNP4 captures these energies with
good accuracy.

For the critical (a) screw dislocation, previous com-
putational studies [15,16,69] and experimental investiga-
tions [70,71] find that the most stable (a) screw dislocation
plane in Zr is the prismatic I-w plane. DFT studies us-
ing periodic systems with dislocation dipoles in relatively
small simulation cells have predicted metastable pyramidal
I-n core structures that have higher energies (per dislocation
line length) of 3.2 & 1.6 meV/A [16] and ~2.9 meV/A [72],
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contained in the training dataset, with the non-DFT results corresponding to relaxed structures using the relevant potential.

while the basal core is unstable except at very high temper-
atures [69]. The EAM potential (Mendelev and Ackland [4]
“no. 3”) shows the pyramidal I-n to be much higher in energy
24 meV/A) and also shows a gliding basal core [15] not
found in ab initio calculations nor observed; the EAM poten-
tial is thus not quantitatively accurate. As shown in Fig. 9,
the NNP4 predicts two stable core structures at T = 0K, one
on the prismatic I-w plane and one on the pyramidal I-n
plane. The first core structure is very compact and the glide
plane direction is hard to distinguish via the Nye tensor field.
However, the differential displacement maps (see Fig. 9) and
disregistry gradients show disassociation on the prismatic I-w
plane. Under a small resolved shear stress, this dislocation
also glides along the prismatic plane. This prismatic I-w core
remains stable when heated to 100 K with molecular dynamics
evolution. Furthermore, the edge components of the Nye ten-
sor are almost negligible for this core, which can only be the
case for the prismatic I-w (a) due to symmetry requirements.

The second core is on the pyramidal I-n plane and is found
to be metastable, transforming to the prismatic I-w core during
molecular dynamics at 100 K. Using the NNP for the DFT
structures of Ref. [72] (192 atom periodic cells with dislo-
cation dipoles), we compute a pyramidal I-n energy that is
3.8 meV/A higher than the prismatic I-w energy, in very good
agreement with the DFT. Furthermore, the NNP then enables
study of the same dislocations in much larger simulation cells,
thus eliminating spurious energy contributions that arise when
using the small periodic dipolar cells. In large cells (14 976
atoms or more), the NNP predicts that the energy difference
between the pyramidal I-n and prismatic I-w dislocations in-
creases to 7 meV/ 10\, independent of cell size. The NNP thus
both captures the DFT results and enables a more-realistic
energy difference to be determined, which will lead to ac-
curate modeling of the stresses and temperatures needed to
activate any pyramidal I-n (a) slip. No stable dislocation on
the basal plane was found, using a number of different initial
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FIG. 9. Atomistic core structures for the (a) screw dislocation in
the prismatic I-w and pyramidal I-n planes with the Nye tensor screw
components and differential displacement maps overlaid. Green cir-
cles indicate the centers of the partial dislocations as identified by
the disregistry plots. Theoretical and observed dislocation separation
distances are indicated as dpeory and doperved (N A), respectively.
These structures are not contained in the training dataset.

conditions to attempt to find a stable configuration. The NNP4
thus predicts all of the observed behaviors found in Zr, and
with very good quantitative accuracy in the energy difference
relative to the DFT result computed using different details.
This represents a significant success for the Zr NNP4 and
is a notable improvement over the predictions of any other
potentials.

Deformations in the c-axis direction of Zr are found to
be facilitated through twinning and (¢ + a) dislocations that
are shared by both the pyramidal I-w and pyramidal II planes
(see Fig. 1). The experimental consensus is that (¢ + a) glide
occurs along the pyramidal I-w plane [73-79] and not the
pyramidal II plane. Only Long er al. [78] observed a dislo-
cation with pyramidal II glide, but this result is suspected
to be due to the presence of Nb [79]. The NNP4 predicts a
stable (¢ + a) screw dislocation on the pyramidal I-w plane. A
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(b) Pyramidal II plane

FIG. 10. Atomistic core structures for the (¢ + a) screw dislo-
cation in the pyramidal I-w and pyramidal II planes with the Nye
tensor screw components and differential displacement maps over-
laid. Green circles indicate the centers of the partial dislocations as
identified by the disregistry plots. Theoretical and observed dislo-
cation separation distances are indicated as dicory and dgpservea (in
A), respectively. These structures are not contained in the training
dataset.

metastable pyramidal II dislocation core is also observed with
an energy 64 meV /A higher (see Fig. 10). This is a very large
energy difference, indicating strong preference for the pyrami-
dal I-w plane. Hence, when a Burgers-vector-length pyramidal
I screw is studied in molecular dynamics at 100 K, it quickly
cross-slips into the more stable pyramidal I-w structure.

In contrast, available EAM potentials did not consider the
stable stacking fault energies of the pyramidal planes. The
resulting values for both the energy and the minimum position
are thus inaccurate relative to DFT. Hence, the EAM poten-
tials are likely not suitable for modeling (¢ + a) dislocations.

Compared to screw dislocations, edge dislocations can be
uniquely defined for each of slip system. NNP4 predicts rea-
sonable core structures for most of the edge dislocations in
hcp Zr. Figure 11 shows the edge and screw components of the
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FIG. 11. Atomistic core structures for the (a) edge dislocation
in the basal plane with the Nye tensor and differential displace-
ment maps overlaid. Green circles indicate the centers of the partial
dislocations as identified by the disregistry plots. Theoretical and
observed dislocation separation distances are indicated as dipeory and
dopserved (in A), respectively. These structures are not contained in the
training dataset.

Nye tensor of the (a) edge dislocation along the basal plane.
The (a) (1/3(1210)) dislocation disassociates into mixed
partial dislocations (1/3[1100] and 1/3[0110]) as expected.
Similarly, (a) edge dislocations on the prismatic [-w and pyra-
midal I-n slip planes disassociate into partial dislocations with
Burgers vectors corresponding to the positions of the stable
stacking faults.

For the (c + a) edge dislocation, the slip system in pyra-
midal I-w plane is modeled without any issues. For slip along
the pyramidal II plane, however, two core arrangement are ob-
served (see Fig. 12) differing in energy by 6.04 meV/A. The
lower-energy structure shows a local rearrangement (shown
with the yellow square in Fig. 12(a)) close to one of the
partial dislocations. This is expected to be an artifact of
the potential and disappears when the spacing between the
partials is increased. The rearrangement can be identified as
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(c) Rearrangement of atoms

FIG. 12. The two atomistic core structures for the (c + a) edge
dislocation in the pyramidal II plane with the Nye tensor and dif-
ferential displacement maps overlaid, with green circles indicating
the centers of the partial dislocations as identified by the disregistry
plots. Theoretical and observed dislocation separation distances are
indicated as dineory and dgpservea (in A), respectively. The yellow square
shows the location of the spurious local rearrangement in structure
(a). In (c) this region is magnified and overlapped with the same
region in structure (b), with red atoms showing structure in (a) and
white atoms showing structure in (b). These structures are not con-
tained in the training dataset.
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mainly associated with three atom pairs, as seen in Fig. 12(c)
(contained in blue ovals), where the red atoms shows the low
energy structure with the artifact and the white atoms show
the structure without the artifact. The higher energy structure
in Fig. 12(b) is more likely to be the physical core structure.
However, as observed in previous studies, pyramidal II dislo-
cations are rarely observed. These dislocations might only be
created in a specific fracture geometry along the basal plane
(see Sec. IITF). Hence, this artifact is not expected to be a
significant issue in modeling any plastic behavior in Zr.

As a further qualitative examination of the dislocation
structures, the partial dislocation distance d is estimated
within anisotropic elasticity theory as

(1) (2)
b{"KbS

(11
2z Vssf

theory =
where bV and b)) are the Burgers vectors of the partial dis-
locations, K is the Stroh matrix [80,81], and s is the stable
stacking fault energy of the respective plane. Figures 9-12
indicate the analytically estimated (dipeory) and atomistically
observed (dopserved Obtained using gradients of the atomistic
disregistry across the slip plane) partial spacing for several
core structures. NNP4 shows general agreement, providing
further confidence in the potential. Significant deviations that
would point to possible subtle problems in a potential are not
found.

As mentioned above, the stacking faults of the EAM
potential (Mendelev and Ackland [4] “no. 3”) vary rather
significantly from the DFT properties, hinting at challenges in
modeling dislocations. The EAM can give some adequate core
structures but several shortcomings are also observed. The (a)
screw dislocation shows a stable basal structure that should
not exist (see also Clouet [15]). In addition, the partial separa-
tion distances can vary more significantly from the elasticity
estimate mainly for the (¢ + a) dislocations.

E. Twin boundaries

Plastic deformation in hcp Zr is mainly accommodated by
the prismatic (a) dislocations. Generalized plasticity requires,
however, c-axis deformation, which is achieved in Zr by either
pyramidal I-w (¢ + a) dislocations or twinning [70,76,82,83].
Twinning is observed abundantly at low temperatures (twin-
ning almost exclusively contributes to c-axis deformation
below 77 K [76,84]) and high strain rates, while (¢ + a) dislo-
cations become dominant at high temperatures (above 373 K
slip dominates the deformation). Four different twin systems
have been observed in Zr. For tensile strains (extensions)
along the c axis, {1012} (T-I) twins are most frequently ob-
served while {1121} (T-II) twins are increasingly observed at
high strain rates and temperatures [70,76,85]. For compressive
strains (contraction) along the ¢ axis, the {1122} (C-I) twins
are predominantly observed with the {1011} (C-II) observed
only at high temperatures [85].

The NNP development here contained no twin boundaries
in the training set. Thus the ability of NNP4 to predict the
structures and energies of the four observed twinning systems
is examined. Simulation cells containing twin boundaries
were created, with periodicity along the twin planes. Bound-
aries above and below the twin plane at a distance of ~300 A

(d) C-IT ({1011})

FIG. 13. Relaxed twin boundaries obtained with the NNP4 po-
tential relevant for the deformation twins observed for Zr. Red circles
represent atoms in hcp crystal structures, and white circles repre-
sent atoms which cannot be classified to any structural system as
identified by common neighbor analysis [86,87]. Twin boundaries
are shown with a dashed line, and an outline of the orthogonal unit
cell for hep Zr is shown on either side of the twin boundary. These
structures are not contained in the training dataset.

were free, and all atoms were relaxed to the low-energy
stable structures. The minimum energy structures are shown
in Fig. 13 and agree well with those obtained by DFT Mackain
et al. [83]. The predicted twin boundary energies also agree
very well with DFT, as shown in Table II. NNP4 correctly
reproduces the relative energies across the four boundaries,
and also the very low energy of the C-II boundary. In contrast,
predictions using the EAM potential (Mackain et al. [83])
show an accurate energy for the T-I boundary but errors of
35%—-60% for all others. Without any training information,

TABLE II. Twin boundary energies (in mJ/m?) as predicted by
NNP4 potential and as computed by DFT [83] and [88]. These
structures are not contained in the training dataset.

System NNP4 DFT? DFT®
TI 270 272 253
T-1I 211 229 —
C-I 290 355 —
C-II 94 96 65

Mackain et al. [83].
"Kumar et al. [88].
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NNP4 thus captures the twin boundary structures and energies
extremely well, and notably outperforms the EAM potential.

F. Fracture

Fracture is perhaps the most difficult phenomenon to model
due to the complex behavior involving high stresses at the tip
of an atomistically sharp crack. Semi-infinite cracks, which
are the key reference structures to obtain the relevant critical
stress intensity factors for various behaviors, are not periodic.
Thus, DFT calculations of fracture are challenging, and re-
quire the use of short center cracks in small system sizes, then
requiring very high applied loads at which the entire sample
is deforming nonlinearly (see Andric and Curtin [89]). Many
empirical potentials also fail to show physically reasonable
behavior near the crack tip, and across various metals and
crystal structures (fcc, bee, hep). However, capturing the cor-
rect crack tip behavior is quite important since it determines
whether a material is intrinsically ductile or brittle. More
broadly, no problems involving the creation or evolution of
cracks can be studied using a potential that fails for the sharp
crack.

The relevant quantities controlling fracture behavior are the
three stress intensity factors Kj, Kj;, and Kj;; for opening,
in-plane shearing, and antiplane shearing, respectively, that
uniquely characterize the asymptotic singular fields around a
crack, independent of the overall problem geometry or applied
loads. Of most interest is the mode I opening behavior, for
which there are two fundamental crack tip responses: brittle
cleavage that maintains a sharp crack occurring at the crit-
ical value Kj. [90] and dislocation emission that blunts the
crack and encourages ductility occurring at the critical value
Kie [91,92]. These two critical quantities depend on the sur-
face energy y, and unstable stacking fault energy y, for the
relevant cleavage and fracture planes. Linear elastic fracture
mechanics predicts that the critical values are

2y,
K= |22 (12)
Ay

Kle = —MM’ (]3)
[F12(6)]

with

G = {0.145;4 +0.5%ust Vs > 3.45Vust (14)

Yusf Vs < 3-45Vusf ’

where A, and o(6, ¢) are anisotropic elastic constant factors,
6 is the inclination of slip plane relative to the crack plane, ¢
is the the orientation angle of the dislocation Burgers vector
relative to the crack front direction in the slip plane, and F,(6)
is a geometric factor related to the angular distribution of
shear stress at the crack tip. In simulations with an increasing
applied K, the controlling behavior (cleavage or emission) is
determined by the smaller of K;. and Kj.. These predictions
are not exact and so should be considered as indicative rather
than definitive. Also, although these criteria depend only on
basic material properties that are often fit in the development
of an interatomic potential, capturing these values accurately
in no way ensures that an actual simulation of the crack tip
fracture behavior will be physical.

Fracture is studied using the K-controlled geometry in a
cell with in-plane dimensions ~300 A x 300 A and minimum
periodicity along the crack front [89]. Loading is accom-
plished by displacing all atoms according to the anisotropic
elastic solution at an initial stress intensity factor slightly
below the theoretically predicted controlling value (Kj. or
Kj.). Atoms near the boundary are held fixed and then all
interior atoms are relaxed to equilibrium. Displacements are
then incremented by a small AK followed by full relaxation
of the interior atoms, and the response monitored for crack
tip behavior (cleavage, emission, or other behavior). To avoid
crack closure below Kj., atomic interactions between atoms
on either side of the crack plane are set to zero. Five different
crack systems (crack plane, crack front direction) are stud-
ied: basal I {0001}(1210), basal II {0001}(1010), prismatic
I {1010}(1210), pyramidal I {1011}{(1210), and pyramidal II
{1121}(1010).

Initial NNPs trained without the cuboidal and rod struc-
tures are found to show nonphysical behavior near crack tips
(e.g., amorphization.). Such behavior was previously seen in
studies on Mg and other systems. All results in this paper
are based on training that included these addition structures,
which were found to successfully resolve issues in the fracture
behavior of Mg.

Atomistic simulations using the NNP4 potential show one
of the two expected mechanism (brittle cleavage, ductile emis-
sion) and at K levels comparable to the theoretical values
predicted using the NNP4 properties (see Table III) for all
crack geometries studied. Figure 14 shows atomistic images
of the system just after the creation of the failure event. In
general, all the cracks are well behaved and nearly all show
no spurious deformations. The main problematic case is the
basal II system, where at failure there is some disordering
close to the crack tip. This disorder [see Fig. 14(b)] appears
similar to the artifacts observed in the pyramidal II dislocation
edge core structure, which is the dislocation that is predicted
to be emitted from this crack geometry. Cleavage is the pre-
dicted failure mechanism but the difference in critical K value
between cleavage and emission is very small and cleavage
can be hindered by lattice trapping [93]. So, emission is not
surprising. Another deviation from theory is that the mech-
anism operative for the pyramidal I crack plane is observed
to be cleavage but emission is predicted because Kj. is ~10%
higher than Kj,.. This is a notable difference which, since the K
value is close to Kj. suggests that emission is being inhibited
in this geometry. The critical loads in other cases are quite
close to the predicted values.

Table III also shows the predicted critical K; values using
the DFT material properties. Fracture calculations were not
performed with DFT as the system sizes required are too large
to perform DFT calculations. The values differ slightly from
those obtained with the NNP4 potential. However, with these
small differences, the predicted mechanisms can be different
in a few cases. For the basal I case, DFT predicts cleavage and
emission to be equal while the NNP predicts emission. Hence,
the NNP may overestimate stability of basal I cracks, and real
Zr may be more prone to cleavage. Basal II, prismatic I-w, and
pyramidal I-w are all predicted to show the same phenomenon
in DFT and NNP4. DFT values predict that pyramidal II
should show cleavage, while NNP4 predicts emission, which
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TABLE III. Comparison of predicted and simulation fracture behavior (load level and event) for sharp cracks using the NNP4 potential.
The theoretical critical stress intensity factor K ueo is the smaller of Kj. and Kj. and is shown in bold. The stress intensity factor at failure as
found in the simulations is denoted as K| . Predictions using DFT material properties are shown for comparison.

Prediction Simulation

Orientation K. Kie Event Event K sim /K theo

Basal I NNP4 0.588 0.558 Emit-Pyramidal Emit-Pyramidal 0.954
DFT 0.587 0.587 Emit/Cleave

Basal I NNP4 0.588 0.598 Cleave Disordering+emission 1.018
DFT 0.587 0.654 Cleave

Prismatic I-w NNP4 0.569 0.548 Emit-Basal Emit-Basal 1.020
DFT 0.599 0.577 Emit-Basal

Pyramidal I-w NNP4 0.566 0.518 Emit-Basal Cleave 1.094
DFT 0.584 0.545 Emit-Basal

Pyramidal IT NNP4 0.593 0.579 Emit-Basal Emit-Basal 0.986
DFT 0.609 0.615 Cleave

is observed in the simulations. All of these competitions are
very subtle, and the true behavior can differ from the DFT esti-
mate. Hence, we mainly look for consistency and avoidance of
unphysical crack tip behavior. Finally, the crack tip behavior
observed for other NNPs having the same set of symmetry
functions as NNP4 give similar results for fracture, so that
NNP4 is not special in this regard.

The EAM potential (Mendelev and Ackland [4] “no. 3”)
shows reasonable predictions for surface energies but not

for unstable stacking fault energies. Hence, the EAM is not
expected to predict fracture behavior accurately. Indeed, the
EAM potential shows mainly cleavage failure in simulations,
contradicting almost all predictions based on DFT and EAM
properties. The cleavage failure also displayed unusual be-
havior where the crack extension was gradual with increasing
stress, whereas the crack should normally extend further when
K;. is reached. These variations could be due to the limitations
in the properties used when fitting the EAM. Properties such

°% oge
000960605080

(a) Basal I

(b) Basal II

o
co8

o
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000620003030395%

(c) Prismatic I-w

L)
O0g0%@
o0

-

(e) Pyramidal II - near tip

(f) Pyramidal IT - emitted dislocation

(d) Pyramidal I-w

FIG. 14. Postfracture view of the near crack tip region for sharp crack tips obtained with the NNP4 potential, where red, green, and yellow
circles represent atoms in hcp, fcc, and icosahedral crystal structures, respectively, and white circles represent atoms which cannot be classified
to any structural system as identified by common neighbor analysis [86,87]. For the pyramidal I system, the initial crack tip location is shown
with a “x”. These structures are not contained in the training dataset.
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as surface energies and stacking fault energies that are im-
portant for fracture behavior, are not considered adequately.
Hence the behavior around crack tips may not be properly
captured with the EAM.

IV. CONCLUSION

A neural network potential (NNP) has been developed
for hcp Zr that achieves the goal of providing a broadly
accurate potential for a wide range of applications. This
Behler-Parrinello NNP is constructed based on previous NNP
development experience for metals and alloys. It is found
necessary to greatly expand the number and nature of the
symmetry functions, relative to those used in hcp Mg and
fcc Al-based alloys. The c/a ratio differs substantially from
the ideal value, unlike in Mg, and thus creating many more

complex local environments within the typical structures. This
makes the requirement for symmetry functions capturing the
angular relationships higher, thereby increasing an expansion
of the total symmetry functions. In particular, it is found
necessary to include wide angular symmetry functions and
use a radial cutoff of 7.0 A to obtain an accurate description
of some key Zr properties.

The selected NNP, labeled NNP4, shows very good agree-
ment for mechanical properties, GSFE curves, stable stacking
fault energies, decohesion curves, and surface energies, across
the spectrum of slip and fracture planes relevant for defor-
mation and fracture. Beyond matching the properties coming
directly from DFT energies, NNP4 shows very good twin
boundaries, dislocation structures, and fracture behavior. One
notable success is the correct prediction of the relative en-
ergetics of the (a) screw, with the prismatic plane slightly

TABLE IV. Hyperparameters for the symmetry functions as described in Eqs. (2)— (4), where type 2, type 3, and type 9 are for radial (G?),
narrow angular (G*), and wide angular (G°) symmetry functions, respectively. . = 7.0 for all the symmetry functions.

Type n A ¢ T Type n A ¢ T
2 2.000 - - 0.50 3 5.102x 107! —1 1 -
2 2.000 - - 3.50 3 5.102x 107! 1 1 -
2 2.000 - - 4.00 3 5.102x 10! -1 3 -
2 2.000 - - 4.50 3 5.102x 10! 1 3 -
2 2.000 - - 5.00 3 5.102x 107! -1 12 -
2 2.000 - - 5.50 3 5.102x 107! 1 12 -
2 2.000 - - 6.00 3 5.102x 107! —1 64 -
2 2.000 - - 6.50 3 5.102x 107! 1 64 -
2 2.041x1072 - - 0.00 9 2.041x1072 —1 1 -
2 3.885x 1072 - - 0.00 9 2.041x1072 —1 3 -
2 7.396 x 1072 - - 0.00 9 2.041x1072 1 3 -
2 1.408x 10! - - 0.00 9 2.041x1072 —1 12 -
2 2.680x 107! - - 0.00 9 2.041x1072 1 12 -
2 5.102x10"! - - 0.00 9 2.041x1072 -1 64 -
3 2.041x1072 1 1 - 9 2.041x 1072 1 64 -
3 2.041x1072 -1 3 - 9 7.396 x 102 1 1 -
3 2.041x1072 -1 12 - 9 7.396x 1072 -1 3 -
3 2.041x1072 1 12 - 9 7.396x 1072 —1 12 -
3 2.041x1072 -1 64 - 9 7.396x 1072 1 12 -
3 3.885x 1072 -1 12 - 9 7.396x 1072 -1 64 -
3 3.885x 1072 -1 64 - 9 7.396x 1072 1 64 -
3 3.885x 1072 1 64 - 9 1.408x 107! —1 1 -
3 7.396x 1072 1 1 - 9 1.408x 10! -1 3 -
3 7.396x 1072 -1 3 - 9 1.408x 107! 1 3 -
3 7.396x 1072 1 12 - 9 1.408x 107! —1 12 -
3 7.396x 1072 -1 64 - 9 1.408x 10! 1 12 -
3 7.396x 1072 1 64 - 9 1.408x10~! —1 64 -
3 1.408x 107! 1 1 - 9 1.408x 107! 1 64 -
3 1.408 x 10! -1 3 - 9 2.680x 10! -1 3 -
3 1.408x 10! -1 12 - 9 2.680x10™! 1 3 -
3 1.408x 107! 1 12 - 9 2.680x 107! —1 12 -
3 1.408x 10! -1 64 - 9 2.680x 10! 1 12 -
3 1.408x 107! 1 64 - 9 2.680x 10! —1 64 -
3 2.680x107! 1 1 - 9 2.680x 107! 1 64 -
3 2.680x 10! -1 3 - 9 5.102x 10! 1 1 -
3 2.680x 107! -1 12 - 9 5.102x 107! —1 3 -
3 2.680x 107! 1 12 - 9 5.102x 107! 1 3 -
3 2.680x10"! -1 64 - 9 5.102x 10! -1 12 -
3 2.680x 107! 1 64 - 9 5.102x 10! 1 12 -
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favored over the pyramidal I plane and the basal plane show-
ing no stable structure. Another notable success is the accurate
predictions of the structures and energies of all four twin
systems, none of which were included in the training set.

Several issues remain to be rectified in future generations
of a machine learning potential for hcp Zr. First, the behavior
in high compression is poor because this domain is outside the
scope of the training set. The unphysical behavior can be recti-
fied by the ad-hoc addition of a repulsive potential (see Fig. 6)
but this is not a full solution. Expanding the training data
is possible, but the addition of high-energy structures could
drive the NNP toward fitting of those structures at the expense
of lower-energy structures related to more-crucial properties.
Other regression methods using the current training set or
an expanded training set might show better results. Lastly,
the pyramidal II edge dislocation core shows some likely
unphysical local rearrangements in the lowest-energy struc-
ture. Fortunately, pyramidal II slip is not very relevant in Zr,
since pyramidal I-w slip dominates. But this rearrangement
does affect the crack tip behavior of the basal II orientation
where emission onto the pyramidal II plane should occur, and
so improvements to the pyramidal II slip description remain
desirable.

In spite of some of the above limitations, comparisons of
NNP4 against the EAM potential (Mendelev and Ackland [4]
“no. 3”) show that NNP4 is clearly superior. NNP4 not only
predicts basic properties as well or better than the EAM po-
tential, but is far better in capturing intricate details related to
dislocations, twins, and fracture. Other EAM potentials not
discussed here were also studied and showed even poorer
performance than the EAM potential (Mendelev and Ack-
land [4] “no. 3”). While the computational cost of NNP4 is

approximately one order of magnitude higher than that for
the EAM potential, the far better accuracy in qualitative and
quantitative predictions related to metallurgical phenomena
fully offsets the increased computational cost.

In light of our present study, the current NNP4, while not
perfect, sets a standard for the performance of interatomic
Zr potentials. Future work will involve extending this NNP
framework to Zr-H and Zr alloys. This will enable accurate
simulations of critical application problems of Zr alloys in
nuclear reactors.
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APPENDIX: SYMMETRY FUNCTION
HYPERPARAMETERS USED IN DEVELOPING NNP4
POTENTIAL

Hyperparameters of the symmetry functions used when
developing the NNP4 potential are shown in Table IV. Sym-
metry function types 2, 3, and 9 corresponds to G%, G*, and G°
symmetry functions as shown in Egs. (2)— (4), respectively.
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