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Using artificial neural-network machine learning (ANN-ML) to generate interatomic potentials has been
demonstrated to be a promising approach to address the longstanding challenge of accuracy vs efficiency in
molecular dynamics (MD) simulations. Here, taking the Fe-Si-O system as a prototype, we show that accurate
and transferable ANN-ML potentials can be developed for reliable MD simulations of materials at high-pressure
and high-temperature conditions of the Earth’s outer core. The ANN-ML potential for the Fe-Si-O system is
trained by fitting the energies and forces of related binaries and ternary liquid structures at high pressures and
temperatures obtained by first-principles calculations based on density functional theory (DFT). We show that
the generated ANN-ML potential describes well the structure and dynamics of liquid phases of this complex
system. In addition to binary systems (Fe189Si61, Fe189O61, and Si80O160) and ternary systems (Fe189Si38O23),
whose snapshots are included in the training dataset, the reliability of the ANN-ML potential is validated in
two other ternary systems (Fe189Si23O38 and Fe158Si14O28), whose snapshots are not included in the training
dataset. The efficient ANN-ML potential with DFT accuracy provides a promising scheme for accurate atomistic
simulations of structures and dynamics of the complex Fe-Si-O system in the Earth’s outer core.
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I. INTRODUCTION

Molecular dynamics (MD) simulation has been demon-
strated to be a very useful computational tool for investigating
the structure and dynamics at an atomistic level of detail for
many systems in condensed matter physics, materials science,
chemical and biological science, as well as earth science [1,2].
However, to perform reliable MD simulations, accurate and
efficient descriptions of interatomic forces are critical.

Quantum mechanics calculations based on first-principles
density functional theory (DFT) can provide an accurate de-
scription of interatomic forces and total energies for many
materials, and ab init io MD (AIMD) simulations based on
DFT have been successful in studying the structures and dy-
namics of many materials [3,4]. However, due to the heavy
computational workload, AIMD can usually only be per-
formed with a small simulation cell size (usually <500 atoms)
and shorter time (typically <1 ns) even with advanced super-
computers.

To overcome time length and system size limitations in
MD simulations, considerable efforts in the past several
decades have been devoted to developing empirical inter-
atomic potentials for MD simulations of various classes of
materials. Conventionally, such interatomic potentials are
modeled by given mathematical functions with respect to
atomic coordinates in the systems and contain some empir-
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ical parameters to be fitted to the data from experimental
measurement or first-principles calculations. Prototype inter-
atomic potentials include Lennard-Jones potentials for noble
gas and colloidal systems [5,6], Tersoff and Stillinger-Weber
potentials [7,8] for covalent systems such as silicon and
carbon, and embedded-atom method potentials [9] for the
metallic systems. Although these potentials have been widely
used in MD simulations and have produced many useful
results for better understanding the structures and proper-
ties of materials [10,11], limitations for their application in
more complex systems and/or under extreme environments
have also been noticed. In many cases, reliable MD simu-
lations for such complex systems are highly desirable when
direct experimental studies become very difficult. For ex-
ample, the Earth’s outer core is believed to be composed
of a liquid iron alloy with up to 10% of light elements
such as silicon, oxygen, sulfur, carbon, or hydrogen. Despite
extensive studies, chemical compositions and structures of
the Earth’s outer core are still elusive. Owing to the great
pressures (135–363 GPa) and temperatures (3800–6500 K),
experimental studies at core conditions are also limited. While
MD simulations would provide useful insights into these
problems, it is a great challenge to model interatomic po-
tentials for such complex systems to ensure reliable MD
simulations.

Due to the high dimensionality and many-body character
of the interatomic potentials, it would be very difficult to
choose appropriate mathematical functions for interatomic
potentials based on chemical and physical intuition to de-
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FIG. 1. Schematic illustration of the deep learning method for generating artificial neural-network machine learning (ANN-ML) inter-
atomic potentials.

scribe the complicated interactions correctly and efficiently
in complex materials [12]. On the other hand, machine
learning (ML) is well-known for its ability to learn com-
plex and highly nonlinear functional dependence. Artificial
neural networks (ANNs) are universal continuous function
approximators which provide an efficient way of interpolating
high-dimensional functions. Interatomic potential fitting can
be well suited for an ANN-ML method without assuming
any mathematical functions. Within this spirit, considerable
efforts in the last several years have been devoted to the de-
velopment of ML interatomic potentials for MD simulations
of various materials [13–33]. Among various ML interatomic
potentials schemes, a deep-learning-based ANN proposed by
Behler and Parrinello [13] and further improved by Wang
et al. [29] and Zhang et al. [30–32] has been demonstrated to
be very robust for reliable MD simulations of structures and
behaviors of many complex materials [34–40].

In this paper, we develop an ANN-ML interatomic
potential for the Fe-Si-O system, aimed at enabling accurate
MD simulation of materials containing these three elements
at extreme conditions of high pressure and high temperature
like that in the Earth’s outer core. We show that the developed
ANN-ML interatomic potential describes well the structure
and dynamics of the Fe-Si-O system at high pressure (>100
GPa) and high temperature (>3000 K). The potential will en-
able accurate and efficient atomistic simulations of structures
and dynamics of complex Fe-Si-O systems in the Earth’s
outer core with many atoms and longer simulation time.

The paper is organized as follows. In Sec. II, we describe
the datasets and the detailed process and parameters used in
the ANN-ML training. The training and testing accuracies in
comparison with the first-principles DFT results are also dis-
cussed. Application of the developed Fe-Si-O ANN-ML po-
tential to MD simulation studies of the structures and dynam-
ics of Fe-Si and Fe-O binaries and Fe-Si-O ternaries at high-
temperature liquid phases are presented in Secs. III and IV, re-
spectively. Comparisons with available ab init io MD simula-
tions are also discussed. Finally, a summary is given in Sec. V.

II. DEVELOPMENT OF ANN-ML POTENTIAL
FOR Fe-Si-O SYSTEM

An ANN contains three types of layers: an input layer, hid-
den layers, and an output layer. Each layer encompasses a set

of artificial neurons termed a node, which linearly combines
its inputs and then passes it through an activation function.
To model the interatomic potential by the ANN, the input
layer receives the data of atomistic structures, and the output
layer generates the atomistic energy Ei on each atom. The
total potential energy E of an atomistic structure is the sum
of the atomistic energy E = ∑

i Ei. In this paper, we used the
DEEPPOT-SE model as implemented in the DEEPMD-KIT pack-
age to develop the ANN-ML interatomic potential. It has been
demonstrated that it is very robust in developing interatomic
potentials for MD simulation studies of liquid and crystalline
bulk structures and organic molecules.

There are two steps to construct Ei. First, the relative
Cartesian coordinates {Rj} of the neighboring atom j within
a cutoff radius rc with respect to atom i are transferred to the
generalized coordination {R̃i} as

{Ri} = {x ji, y ji, z ji} → {R̃i} = {s(r ji), x̂ ji, ŷ ji, ẑ ji},
where x̂ ji = s(r ji)x ji/r ji, ŷ ji = s(r ji)y ji/r ji, and ẑ ji =
s(r ji)z ji/r ji, have the angular information of the local
environment. Here, s(r ji) contains the radial information,
defined as

s(r ji) =

⎧⎪⎨
⎪⎩

1
r ji

, r ji < rcs
1

r ji

[
1
2 cos

(
π

r ji−rcs

rc−rcs

) + 1
2

]
, rcs < r ji < rc

0, r ji > rc

,

where rcs is the smooth cutoff parameter. The radial informa-
tion s(r ji) is fed as an input into a local embedding neural net-
work (called a filter NN). The output of the filter NN serving
as weight coefficients to the generalized coordination {R̃i} will
generate the local structure descriptor {Di}, which contains
translational, rotational, and permutational symmetries of the
environment. Second, the local structure descriptor {Di} is
transferred to atomistic energy Ei through a deep and forward
neural network (called a fittingNN) which contains multiple
hidden layers. The schematic illustration of constructing the
ANN-ML interatomic potential is shown in Fig. 1.

The training process is a procedure of optimizing the pa-
rameters in filter and fitting NN using the Adam stochastic
gradient decent method [41] with a family of loss functions
[29]:

L(pε, p f , pξ ) = pε|�ε|2 + p f

3N
|�Fi|2 + pξ

9
‖�ξ‖2,
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TABLE I. The training datasets used for the Fe-Si-O ANN-ML potential development. The RMSE of energy and force predicted by the
ANN-ML model are the validation RMSE.

System Total number of atoms Total number of snapshots Density (g/cm3) Energy RMSE (meV/atom) Force RMSE (eV/Å)

Fe189Si38O23 250 23 143 8.36–10.65 5.3 0.43
Fe189Si61 250 29 967 9.63–9.93 4.7 0.39
Fe189O61 250 31 906 8.79–10.49 6.0 0.47
Si80O160 240 19 283 4.98–6.19 5.4 0.31
Fe 256 20 156 10.26–11.28 4.5 0.42

where � denotes the difference between the ANN-ML predic-
tions and the DFT results. Here, N is the total number of atoms
in the structure, ε is the energy per atom, Fi is the force on the
atom i, and ξ is the virial tensor divided by N . The prefactors
pε, p f , and pξ are free to change during the training process.

The DEEPPOT-SE model in the DEEPMD-KIT package [29]
is applied in the training process to develop the ANN-ML
potential for the Fe-Si-O system. The cutoff radius (rc) of the
model is set to 6.5 Å, and descriptors decay smoothly from
6.0 Å (rcs) to the cutoff radius of 6.5 Å. The size of the filter
and fitting neural networks are (60, 120) and (240, 240, 240),
respectively. A skip connection is built (ResNet) between
two neighboring fitting layers [42]. The hyperbolic tangent is

used as the nonlinear activation function. The learning rate
decreases exponentially with respect to the starting value of
0.001. The ANN is initialized with random numbers, and the
total number of training steps is 3 000 000. The decay rate and
decay step are set to 0.96 and 10 000, respectively. In addition,
the prefactors in the loss functions are pstart

ε = 0.1, plimit
ε =

0.1, pstart
f = 1000, plimit

f = 1, pstart
ξ = 0, and plimit

ξ = 0.
The dataset used to train the ANN-ML interatomic

potential for the Fe-Si-O ternary system consists of high-
temperature and high-pressure liquids of pure Fe and related
binaries and ternary, as listed in Table I. These data are gen-
erated by AIMD simulations and consist of potential energies
for each structure and force on every atom in the structures.

FIG. 2. Artificial neural-network machine learning (ANN-ML) vs density functional theory (DFT) energies and forces for the validation
dataset of Fe189Si38O23.
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FIG. 3. Total and partial pair correlation functions of liquid (a) Fe189Si61, (b) Fe189O61, and (c) Si80O160 at 3800 K.

The AIMD simulations are performed using Vienna Ab ini-
tio Simulation Package (VASP) [4,43]. Projector augmented
waves with the Perdew-Burke-Ernzerhof form of exchange-
correlation potentials are adopted [44,45]. Only the � point is
utilized to sample the Brillouin zone, and the default energy
cutoffs of 400 eV are employed. The AIMD simulations are
carried out using the NVT ensemble with a Nóse-Hoover
thermostat under periodic boundary conditions. The time step
of the AIMD simulations is 3 fs. A total of 124 455 snapshot
structures with several different compositions from the AIMD
have been collected for ML training, as can be seen from
Table I. The AIMD simulations for each Fe-Si-O system to
collect the snapshots for ML are performed at 3800, 4000,
4300, and 4800 K. At each temperature, the AIMD simula-
tions for each system are performed at least with two different
densities in the range specified in Table I. More details of
training datasets are listed in Table S1 in the Supplemental
Material [46].

Figure 2 shows the comparison of total potential energies
and forces on each atom from the trained ANN-ML potential
and ab init io calculated results for Fe189Si38O23 liquid. The
energies and forces predicted by the ANN-ML model and
calculated by the ab init io method are plotted in the same
figure as vertical and horizontal coordinates, respectively. The
root mean square error (RMSE) of energy is ∼5.3 meV/atom,
and the force RMSE is ∼0.43 eV/Å for the validation data.
The training accuracy for other systems listed in Table I is like
the one shown in Fig. 2. In comparison with the ab init io DFT
calculation results, the relative error in energy and force from
the ANN-ML potential prediction is ∼1 and 4%, respectively.

III. MD SIMULATION OF Fe-Si, Fe-O, AND Si-O
BINARY LIQUIDS

With the interface of the DEEPMD-KIT to the LAMMPS code
[47], MD simulations can be directly performed with the
generated ANN-ML potential [29]. We first validate the relia-
bility of the developed ANN-ML potential by comparing the
structures and dynamics of Fe189Si61, Fe189O61, and Si80O160

liquids obtained from the MD simulations using the developed
ANN-ML potential with those from AIMD simulations. The
MD simulations by the ANN-ML potential are performed
using a NVT ensemble and a Nóse-Hoover thermostat. Small
and large simulation cells are used in the ANN-ML potential
MD simulations. For the small simulation cell, the same box
length as in the AIMD simulation is used. The large cell is a 2
× 2 × 2 supercell of the small one; thus, the densities of the
small and large cells are the same. Periodic boundary condi-
tions are applied in the three directions, and the time step of
the simulations is 3 fs. According to the size of the simulation
cell, we refer to a small simulation cell of 200–256 atoms as S
and a large simulation cell of 2000–5000 atoms as L. For ex-
ample, the AIMDS model of the Fe189Si38O23 system contains
240 atoms, whereas the ANN-MDL model of the Fe189Si38O23

system contains 2000 atoms. The same simulation conditions
are applied, i.e., initial configurations, simulation steps, and
NVT ensemble, on AIMDS and ANN-MDS models. The den-
sity of the studied Fe189Si61, Fe189O61, and Si80O160 liquids
in this section are 9.78, 9.57, and 5.31 g/cm3 at 3800 K,
respectively. The pressures obtained from the ANN-MDS and
ANN-MDL models are almost the same but are ∼ 6.8–10.1%
larger than that from the AIMDS model. The pressures of
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FIG. 4. Mean square displacement of (a) Fe189Si61, (b) Fe189O61, and (c) Si80O160 liquid from the ANN-MDL model at 3800 K.

the Fe189Si61, Fe189O61, and Si80O160 liquids are 135 (144),
134 (147), and 133 (143) GPa from the AIMDS (ANN-MDS)
model at 3800 K, respectively.

The structures of the Fe189Si61, Fe189O61, and Si80O160

liquids at 3800 K are analyzed from the AIMDS, ANN-MDS,
and ANN-MDL models. Pair correlation functions (PCFs)
are calculated to quantitatively describe the structure of liq-

uids. The PCF g(r) is a conditional probability density of
finding a particle at distance r, given that there is a particle
at the coordinate origin. Thus, g(r) provides a measure of
local spatial ordering in a liquid. Mathematically, the partial
PCF between the atom types α and β is given by gαβ (r) =
ρ−2

αβ 〈∑i

∑
j �=i δ(�riα )δ(�r jβ − r)〉, where ραβ = ρ0

√
aαaβ cor-

responds to a partial density with ρ0 being the atomic density

FIG. 5. (a)–(f) Partial pair correlation functions of liquid Fe189Si38O23 at 3800 K. (g) Snapshot of Fe189Si38O23 liquid from the ANN-MDL

model at 3800 K and 145 GPa at 3.0 ns.
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FIG. 6. Mean square displacement of liquid Fe189Si38O23 at
3800 K from the ANN-MDL model.

of the liquid and aα and aβ being the atomic concentrations
of the corresponding elements in the liquid [48]. The total and
partial PCFs of the liquid from our simulations are shown in
Fig. 3. The PCFs of binary Fe189Si61, Fe189O61, and Si80O160

liquids at 3800 K obtained by AIMD and ANN-MD agree
well with each other. For the Fe189Si61 binary system, the
positions of the first peak of partial PCFs of Fe-Fe, Fe-Si,
and Si-Si are ∼2.2, 2.1, and 2.2 Å, respectively. These results
indicate that the nearest-neighbor distances between Fe and Si
atoms and among the Fe or Si atoms themselves in Fe189Si61

binary liquid are very similar, which is in good agreement
with previous works [49,50]. For the Fe189O61 binary system,

the first PCF peak of O-O is 2.2 Å, which is significantly
larger than Fe-O (1.7 Å) and Fe-Fe (2.1 Å). This indicates
that O atoms do not form the nearest-neighbor bonds among
themselves in the liquid Fe-O system. The first PCF peak
of O-O in the Si80O160 binary system is also 2.2 Å, which
stands as the median of Si-Si (2.8 Å) and Si-O (1.6 Å). It is
noteworthy that the bond length of O-O in the Si80O160 system
is the same to that in the Fe189O61 system, indicating that O
atoms also do not form the nearest-neighbor bonds among
themselves in the liquid Si-O system. In addition to the PCF,
the partial angular distribution functions (ADFs) can provide
more local structural information about the liquid samples.
The ADFs obtained from AIMD and ANN-MD coincide with
each other, as shown in the Supplemental Material [46], which
further indicates the reliability of the ANN-ML potential.
Excellent agreement of PCFs and ADFs is also observed
for AIMD with small (ANN-MDS) and large (ANN-MDL)
simulation cells, therefore confirming the validation of the
ANN-ML potential for large systems. Thanks to the local de-
composition and the near-neighbor dependence of the atomic
energies, the ANN-ML potential trained on a relatively small
system can be used to investigate a bigger system, as discussed
above. We compared the computational time per MD step
in AIMD and the inference time per MD step in ANN-MD
for the SiO2 liquid with different system sizes, as shown in
Fig. S1 in the Supplemental Material [46]. The results show
that the inference time of the ANN-MD scales linearly with
the number of atoms and would be ∼105 times faster than
AIMD for a system with 5000 atoms, which is consistent with
previous studies [30,35].

To quantitatively study the dynamic properties, we calcu-
lated the self-diffusion constants D of every element in the

FIG. 7. (a)–(f) Partial pair correlation functions of Fe189Si23O38 liquid at 4800 K. (g) Snapshot of Fe189Si38O23 liquid from ANN-MDL

at 4800 K and 145 GPa at 3.0 ns. The ab init io molecular dynamics (AIMD) snapshots of Fe189Si38O23 liquid are not used in the artificial
neural-network machine learning (ANN-ML) training.
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FIG. 8. (a)–(f) Partial pair correlation functions of Fe158Si14O28 liquid at 4500 K. (g) Snapshot of Fe158Si14O28 liquid from ANN-MDL

at 4500 K and 148 GPa at 20 ps. The ab init io molecular dynamics (AIMD) snapshots of Fe158Si14O28 liquid are not used in the artificial
neural-network machine learning (ANN-ML) training.

binary liquids. The mean squared displacement (MSD) as a
function of time is given by [48,51]

〈
R2

α (t )
〉 = 1

Nα

〈
Nα∑
i=1

|Riα (t + τ ) − Riα (τ )|2
〉
,

where Nα is the total atomic number of α species, Riα is
the coordinates of the atom i, and τ is the arbitrary ori-
gin of time. The MSD of the liquids in the limit of long
time should behave linearly with the time, and the slope of
the line gives the self-diffusion constant D by the Einstein
relationship:

D = lim
t→∞

〈
R2

iα (t )
〉
/6t .

The self-diffusion constants D of Fe189Si61, Fe189O61, and
Si80O160 binary systems are calculated within 1.5 ns from
the ANN-MDL models, as shown in Fig. 4. For the Fe189Si61

binary system, Fe and Si have similar diffusing constant, i.e.,
DFe = 0.26 × 10−8m2/s and DSi = 0.20 × 10−8m2/s. The
diffusion constants of Fe and O in the Fe189O61 binary system
are DFe = 0.63 × 10−8m2/s and DO = 1.20 × 10−8m2/s, re-
spectively, which means O atoms move faster than Fe atoms
in the Fe189O61 system. The diffusion constants of Si and O in
the Si80O160 binary system are DSi = 0.60 × 10−8m2/s and
DO = 0.73 × 10−8m2/s, respectively. These data agree with
those obtained from liquid Fe and Fe-O under Earth’s outer
core conditions [50,52–56].

IV. MD SIMULATION OF Fe-Si-O TERNARY LIQUIDS

A. Validation of ANN-ML potential for Fe189Si38O23

ternary liquid

We performed MD simulation of the Fe189Si38O23 ternary
system with density of 9.91 g/cm3 at 3800 K. The pres-
sures of the Fe189Si38O23 liquid at 3800 K are 132, 145, and
145 GPa from AIMDS, ANN-MDS, and ANN-MDL models,
respectively. The partial PCFs of the Fe189Si38O23 ternary
system at 3800 K from AIMDS, ANN-MDS, and ANN-MDL

models are shown in Fig. 5. The partial PCF distributions
from AIMDS, ANN-MDS, and ANN-MDL models are sim-
ilar, especially the peak positions. This further indicates the
validation of the ANN-ML potential for ternary systems. The
first peak of the O-O partial PCF is located at 2.2 Å, whereas
the positions of the first peak of Fe-O and Si-O are both
1.7 Å. This indicates O atoms do not form nearest-neighbor
bonds among themselves in the Fe-Si-O ternary system. The
bond lengths of O-O, Fe-O, and Si-O in the Fe189Si38O23

ternary system are like those in Fe189O61 and Si80O160 binary
systems. The bond lengths of Fe-Fe, Si-Si, and Fe-Si in the
Fe189Si38O23 ternary system are 2.2, 2.2, and 2.1 Å, respec-
tively, which are like that in the Fe189Si61 binary system. In
addition, the potential energy fluctuates around a constant
value with MD simulation time, indicating no phase transi-
tion or separation takes place at 3800 K, as shown in the
Supplemental Material [46]. Figure 5(g) shows that Fe, Si,
and O atoms are mixed well with each other. This indicates
there is no phase separation in the Fe-Si-O system and no
immiscibility between Fe-Si and Fe-Si-O liquids at 3800 K,
which is consistent with previous work [50].
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The self-diffusion constant D of the Fe189Si38O23 ternary
system at 3800 K is calculated within 1.5 ns from
the ANN-MDL model, as shown in Fig. 6. We find
DFe = 0.36 × 10−8m2/s, DSi = 0.34 × 10−8m2/s, and DO =
1.07 × 10−8m2/s. The self-diffusion constants of Fe and Si
in the Fe189Si38O23 ternary system are similar, which is also
found in the Fe189O61 binary system. DO is ∼3 times DFe or
DSi, which is consistent with previous work [50].

B. Further test of ANN-ML potential for Fe189Si23O38 and
Fe158Si14O28 ternary liquids

In addition to the Fe189Si38O23 ternary system at 3800 K
whose AIMD snapshots have been used in the training data
for the ANN-ML potential, we also performed MD simula-
tions for liquid Fe189Si23O38 and Fe158Si14O28 ternary systems
(whose AIMD snapshots are not used in the ANN-ML train-
ing) to further test the accuracy and transferability of the
obtained ANN-ML potential for Fe-Si-O systems with O
richer than Si.

The density of Fe189Si23O38 liquid at 4800 K is 9.85 g/cm3

for the AIMDS, ANN-MDS, and ANN-MDL models, whereas
the pressures are 132, 143, and 143 GPa from the three mod-
els, respectively. The partial PCF of the Fe189Si23O38 from
the ANN-MDS model (250 atoms) agrees well with that from
the AIMDS model (250 atoms), as shown in Fig. 7. From
Fig. 7(g), we can see that Fe, Si, and O atoms mix well
with each other, which means no phase separation in the
Fe189Si23O38 ternary system.

The density of Fe158Si14O28 liquid at 4500 K is
10.16 g/cm3 for the AIMDS, ANN-MDS, and ANN-MDL

models, whereas the pressures are 136, 148, and 148 GPa
from the three models, respectively. The partial PCF of
Fe158Si14O28 from the AIMDS model (200 atoms) agrees well
with that from the ANN-MDS and ANN-MDL models (5000
atoms), as shown in Fig. 8. The efficiency of the ANN-ML
potential enables MD simulations with a larger unit cell to
be compared with the results from the small (200 atoms) unit
cell. From Fig. 8(g), we can see that Fe, Si, and O atoms mix
well with each other, which means no phase separation in the
Fe158Si14O28 ternary system. The reliability of the ANN-ML

potential is further tested on Fe158Si42 at 4500 K and pure Fe
at 3500 K. We note that the structures of Fe158Si42 liquid are
not included in the training dataset, while the AIMD snapshots
of Fe are included in the training dataset. The PCFs of the two
systems are shown in the Supplemental Material [46]. The
PCFs of Fe158Si42 and Fe from AIMD and ANN-MD agree
with each other.

V. SUMMARY

In this paper, we have developed an ANN-ML potential for
the Fe-Si-O system at the high-pressure and high-temperature
conditions of the Earth’s outer core using the DEEPMD-KIT

and VASP software packages. The developed ANN-ML
potential can be used in the LAMMPS package to perform
MD simulations. The ANN-ML potential not only can
reproduce well the AIMD results on structures of the binary
and ternary liquids whose snapshot structures were included
in the ANN-ML training dataset but also provide consistent
MD simulation results of ternary liquids (Fe189Si23O38 and
Fe158Si14O28) whose snapshot structures were not included
in the training dataset. The results show there is no phase
separation and exsolution in our studied three ternary systems
(Fe189Si38O23, Fe189Si23O38, and Fe158Si14O28) ∼ 136 GPa.
More training data and larger neural network size would help
to further improve the accuracy and transferability of the
ANN-ML interatomic potential of the Fe-Si-O system. Our
results suggest the ANN-ML potential would be a promising
avenue for MD simulation of complex Fe-Si-O systems under
the Earth’s outer core conditions.
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G. Steinle-Neumann, Geochim. Cosmochim. Acta 203, 323
(2017).

[56] E. S. Posner, G. Steinle-Neumann, V. Vlček, and D. C. Rubie,
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