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Diffusion of oxygen in Mg-doped α-Al2O3: The corundum conundrum explained
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It has been a puzzle for over two decades that the enhancement of oxygen diffusion in α-Al2O3, with
respect to the amount of Mg doping, is several orders of magnitude less than expected. The standard model,
which envisages that transport is mediated by oxygen vacancies induced to compensate the charge of Mg2+

ions substituting Al3+ ions, has not been able to explain this anomaly. Here, we report a detailed study of
populations of point defects and defect clusters in Mg-doped α-Al2O3. By taking into account calculated defect
formation energies from the literature, the condition of charge neutrality, and the environmental parameters
(chemical potentials) under which the anomalous trend in oxygen diffusivities were previously observed, we
are able to arrive at an explanation. A nonlinear relationship between Mg concentration in the system and key
native point defects, which serve as mediators of self-diffusion in α-Al2O3, is predicted: The concentrations
of such defects increase much more slowly in the supersaturation regime than in the presaturation regime,
matching the anomalous result previously observed in α-Al2O3. We identify the reason for this as buffering
by positively charged Mg interstitials and Mg–oxygen vacancy clusters, which compensate the negative charges
of Mg substitutional defects (Mg1−

Al ). This study answers part of the long-standing question about self-diffusion
in alumina, referred to by Heuer and Lagerlöf in 1999 as the corundum conundrum.

DOI: 10.1103/PhysRevMaterials.6.063404

I. INTRODUCTION

Defect-induced properties of aluminum oxide, in its stable
phase corundum (α-Al2O3), have been extensively studied,
because it is such a widely used ceramic. Some effects are
visible to the naked eye. For example, while a relatively pure
single crystal of α-Al2O3 is transparent, the introduction of
transition metal ions generates various colors in the crystal
depending on the element: Cr3+ ions produce the charac-
teristic red hue of rubies, while a combination of Fe2+ and
Ti4+ generates the hue of blue sapphire. In Ti-rich corundum,
the precipitation of Ti defects to form oriented rutile (TiO2)
particles gives rise to the asterism in star sapphire [1].

The study of defects in α-Al2O3 has, however, been dogged
by a puzzle known as the “corundum conundrum” since the
term was coined by Heuer and Lagerlöf in 1999 [2], which has
hitherto resisted attempts to resolve it [3–5]. The conundrum
involves at its heart several points of disagreement between
theoretical predictions and experimental observations. Chiefly
among these is the observation that doping α-Al2O3 with
MgO (TiO2), to the point of saturation, increases (decreases)
the oxygen diffusivity by a factor of ∼100 (∼50). In both
cases that is orders of magnitude less than suggested by the
simple theory in which charge compensating oxygen vacan-
cies [6] would be the mobile species. It has been proposed
that a yet-undiscovered buffering effect could be at play in
the ensemble of defects, which replaces the expected charge-
compensating defects [3,4,6].

*andy.paul@u.nus.edu

Very recently, Futazuka et al. [7] performed a broad evalu-
ation of defect formation energies in α-Al2O3 with impurities
of group IIA (Be, Mg, Ca, Sr, Ba) and group IV (C, Si,
Ge, Sn, Pb) elements using hybrid density functional theory
(DFT) calculations, and identified dominant, native, charge-
compensating defects corresponding to each impurity element
at the specific temperatures T = 300 K and T = 1800 K.
In their study, a set of native (VAl, VO, Ali, Oi, AlO, and
OAl) and dopant-generated (XAl, XO, and Xi) point defects
were included in the charge balance evaluations, although
calculations of defect concentrations were not reported. In
addition, defect pairs ([VAl · VO] and [XAl · VO]) were included
in the set of defect species. It turns out that making use of
their published formation energies, combined with appropri-
ate experimental conditions, we can explain the conundrum
for Mg-doped α-Al2O3 without involving any additional point
defects or pairs, although for completeness we do test and
reject a possible part played by [MgAl · Ali] pairs. A key
requirement for this is our detailed analysis of the charged
states and concentrations of the defects in equilibrium, with
a self-consistent determination of the Fermi energy, and the
experimental range of concentrations of dissolved Mg.

II. METHODOLOGY

A. Defect formation energy

The defect formation energy �E f (T ) is defined as the
Gibbs energy needed to create one defect or defect clus-
ter associated with a particular atomic site in the crystal,
from reservoirs of defined chemical potential. This includes
a reservoir of electrons if the defect is charged, in which case
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�E f (T ) is also a function of the Fermi energy εF , besides
the temperature T . We adopt here the common practice of ne-
glecting the small vibrational contributions to these energies,
which should be included in a more rigorous representation.
For this reason the notation E rather than G is used. However,
it should be emphasized that the most important temperature-
dependant contribution to the Gibbs energy of formation of
a defect comes from the chemical potential of the atoms in
the notional reservoir to or from which they are transferred
in the process of formation. Considering that ni atoms of
species i, with chemical potential μi, are introduced (positive
�ni) or removed (negative �ni) by the formation of a certain
defect Dq (with charge q), �E f can be determined through the
Zhang-Northrup equation [7,8]:

�E f (Dq) = ET (Dq) − Eperf
T −

∑
i

�niμi + q(εF ), (1)

where ET (Dq) is the total energy of the simulation cell
containing defect (Dq), and Eperf

T is the total energy of the
same simulation cell without the defect. For consistency with
Futazuka’s DFT studies [7], we use the HSE hybrid exchange-
correlation functional and take the energy of the valence band
maximum εVBM as the reference energy. The chemical poten-
tial terms μAl and μO are required to satisfy the equilibrium
condition 2μAl + 3μO = E (Al2O3), where E (Al2O3) is the
total Gibbs energy per unit of Al2O3 in the crystal. The
control parameter here, for a system in a gaseous environ-
ment, is usually the oxygen partial pressure pO2 , and over the
usual range of pressure and temperature, the environmental
oxygen is almost entirely in the form of O2 molecules. The
effective chemical potential of oxygen atoms μO is just half
of the chemical potential per oxygen molecule, since there
is a notional equilibrium between oxygen in diatomic and
monatomic form. For computational purposes, it is unnec-
essary to obtain these quantities entirely from theory, since
an equation can be fitted to the experimental data describing
the gas-phase heat capacity of oxygen [9] versus temperature,
which accounts for the translational, vibrational and rotational
contributions to the free energy of the molecules. A quadratic
form in temperature was fitted to this data for O2 at stan-
dard pressure, with an accuracy of better than 3 kJ/mol O2

(20 meV/atom) for temperatures up to 1800 K:

μO(exp) = 1

2

[
αT 2 + βT + γ + kBT ln

(
pO2

p◦
O2

)]
, (2)

with the parameters α = −2.26 × 10−7 eV/K2, β = −2.05 ×
10−3 eV/K, γ = −0.0118 eV, and p◦

O2
= 0.1 MPa. The last

term in (2) is added to the quadratic form in order to describe
the dependence of the chemical potential of oxygen on its
partial pressure, referred to its standard state. This expres-
sion uses the standard reference states, which the chemistry
community has designed to be compatible for all substances,
whereby the enthalpy of all pure elements in their standard
states at equilibrium is defined to be zero. Now, in order to
combine it with DFT energies in (1), we need to shift the
origin of chemical potential to the value that is implicit in our
DFT calculations. It should be clear that such a shift for any el-
ement must be dependant on the choice of its pseudopotential,
but this dependence cancels out in all measurable quantities.

In this paper we have used the low-temperature formation en-
ergies calculated by Futazuka et al. [7], hence for consistency
we have implicitly adopted their temperature-independent
shift to the chemical potential of oxygen, which they refer to
as 1

2 EO2 (T = 0, pO2 = p◦
O2

) (see Eq. 3 of Ref. [7]).

B. Defect concentrations

The concentration [Dq] of a point defect or defect cluster in
bulk Al2O3 is specified by �E f , and the temperature, together
with the concentration of sites Ns on which it can occur, and
the multiplicity � of configurations at each site that the defect
cluster can adopt in the crystal environment. Ns and � will
enter as prefactors in the familiar Arrhenius relation in order
to model the full configurational entropy in the dilute solution
model. Since for simple point defects on lattice sites there are
no orientational degrees of freedom, they can be neglected
in elementary treatments of point defect concentrations. For
more complex defects, such as a dumbbell interstitial, � also
counts the possible orientations of the defect in the site having
the same energy. For each species, this approach considers
only the discrete configurations of equal energy, thus decou-
pling the vibrations of atoms from their hopping between sites
and orientations. The result is the Boltzmann relation:

[Dq] = Ns� exp

(
−�E f

kBT

)
. (3)

To determine defect concentrations at a particular temperature
T , it is necessary to specify the value of εF . To this end,
we proceed from the assumption of zero net charge in the
bulk crystal; more precisely, the sum of charge contributions
from all charged point defects or defect clusters, electrons in
the conduction band (with concentration ce), and holes in the
valence band (with concentration ch) is zero. Thus

−
∑
Dq

q[Dq] + ce − ch = 0. (4)

Fermi statistics dictate that the concentrations of electrons and
holes can be expressed as functions of temperature, Fermi
energy, and the density of states, DOS(ε):

ce =
∫ ∞

εCBM

DOS(ε) · 1

1 + exp
(

ε−εF
kBT

)dε, and (5)

ch =
∫ εVBM

−∞
DOS(ε) ·

(
1 − 1

1 + exp
(

ε−εF
kBT

)
)

dε. (6)

Since the electron and hole concentrations are monotonic in
εF , we can easily find a unique solution for εF for which the
charge neutrality condition of Eq. (4) is satisfied. This solution
is derived through an iterative minimization of the magnitude
of the total charge in the system, arriving at the value of the
Fermi energy (accurate to ±0.2 × 10−7 eV), which satisfies
Eq. (4). The concentrations of individual point defects, point-
defect pairs, electrons and holes can then be derived using
Eqs. (3), (5), and (6).

C. Bound pairs of point defects

As Eq. (4) assumes that the entire population of point
defects and defect clusters is accounted for, it is desirable to
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FIG. 1. Formation energies of native α-Al2O3 and Mg impurity defects, based on Ref. [7] and readjusted to the experimental tempera-
ture [6] of T = 1673.15 K (1400 ◦C), and partial pressure of oxygen, pO2 = 0.21 atm in (a) and, for comparison purposes, to the reductive
limit in (b), which would correspond to equilibrium with metallic Al. Formation energies of Mg-containing defects are calculated using the
chemical potential of Mg that was adjusted to give a total Mg content of 252 wt. ppm. The gradient of each linear segment in the defect
formation energy corresponds to the dominant charge state of the defect at a given energy; a visual map relating charge state to gradient is
included below the legend. The Fermi energy of the undoped (Mg-doped) α-Al2O3 is marked by solid (dashed) vertical lines.

find a set of defects that is as complete as possible. An ex-
haustive set of point defects can be trivially derived by listing
all possible vacancies, antisite defects, interstitial defects, or
substitutional defects with a dopant atom. However, an ex-
haustive set of defect clusters is unattainable, and assumptions
are necessary to include the most reasonable defect cluster
configurations in our calculations. We restrict our search to
those constructed from a pair of point defects.

A useful construction principle is to consider oppositely
charged defects that might be bound to each other by strong
electrostatic forces; for instance, Ti1+

Al and V 3−
Al [10] would

form the pair [TiAl · VAl]2− and Mg1−
Al and V 2+

O would form
the pair [MgAl · VAl]1+ [4].

It is also worth considering the two other defect pairs com-
prising an Mg-containing defect and a substitutional defect:
[MgAl · AlO]q and [MgAl · Ali]q. From our results in Figs. 1
and 2, we see that the energy of formation for antisite defects
such as AlO are so high as to make any cluster such as
[MgAl · AlO]q very unlikely.

The case of [MgAl · Ali]q is somewhat more complex,
considering that Al3+

i is relatively abundant in the system.
However, we have verified as follows that a hypothetical
bound pair of Mg1−

Al and Al3+
i should collapse into a simple

point defect Mg2+
i by switching the positions of the substitu-

tional Mg and interstitial Al:

[MgAl · Ali]
2+ � Al0

Al + Mg2+
i + �Eswitch. (7)

Structural optimization and total-energy calculations are
performed in the DFT framework with the Vienna Ab initio

Simulation Package (VASP) [11–14], using a rhombohedral
supercell containing 3 × 3 × 3 primitive α-Al2O3 cells. The
total energies of the supercell containing [MgAl · Ali]2+ or a
point defect Mg2+

i are compared. 2 × 2 × 2 k points are used
in the sampling of the first Brillouin zone in the reciprocal
space, corresponding to a k-point spacing of 0.032 Å−1. PBE
functionals are used to represent the atomic species Al, oxy-
gen, and Mg. Our result shows the collapse reaction in Eq. (7)
to be spontaneous, with the energy output �Eswitch on the
order of 2.4 eV. The omission of the defect pair [MgAl · Ali]q

is thus justified in our evaluation of the charge balance and
defect chemistry of the system.

D. Density of states of α-Al2O3

Given the importance of the Fermi energy εF in predicting
defect concentrations via defect formation energies �E f , it
follows that an accurate model of the band structure and DOS
is required in order to generate εF self-consistently with the
equations in Sec. II B. While standard DFT methods are ade-
quate for structure prediction, they underestimate band gaps,
which would be a problem for the determination of electron
and hole densities. We address this source of error post hoc by
using a hybrid functional to recalculate the electronic struc-
ture from the atomic positions. The density of states function
DOS(ε) is calculated based on the settings adopted by Fu-
tazuka et al. [7] for consistency: To start with, the primitive
trigonal unit cell of α-Al2O3 is used as the simulation cell.
Structural optimizations are first performed with VASP, on a
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FIG. 2. Defect-charge concentrations q[Dq] (in e cm−3) for Mg-doped Al2O3 as a function of Mg doping concentrations under (a) ambient
conditions (PO2 = 0.21 atm) and (b) the reductive limit. Positively (negatively)-charged defects are represented by solid (dotted) lines. The
calculated saturation limit for Mg (its concentration in solution if the alumina system were in equilibrium with spinel, MgAl2O4) is marked
with a grey-vertical line. The insets are magnified parts from the top-right of the diagrams, showing more clearly the dominant defects where
the Mg solution is calculated to be supersaturated.

primitive unit cell of α-Al2O3 using the local density approx-
imation (LDA) functional [15]. The convergence criterion for
iterative structural optimization loops is reached when the
forces on all the atoms fall below 0.05 eV/Å, while electronic
convergence is achieved when the energy change between
successive electronic steps falls below 1 meV. The resultant
α-Al2O3 unit cell has the lattice parameters a = b = c =
5.095 Å and α = β = γ = 55.29◦. In comparison, the corre-
sponding experimental parameters are a = b = c = 5.129 Å
and α = β = γ = 55.29◦ [16]. Structural relaxation with the
LDA functional underestimates the cell volume by ∼2%, sim-
ilar to previous calculations (e.g., [17]), and produces a much
better agreement than generalized gradient approximation
(GGA) [18,19] or Perdew-Burke-Ernzerhof (PBE) [20,21]
functionals, which overestimate the cell volume by ∼5%.

Next, the Heyd-Scuseria-Ernzerhof (HSE) hybrid func-
tional with the standard preset screening parameter 0.20 Å−1

is adopted. As in Futazuka et al. [7], the proportion of
the HSE functional represented by the Hartree-Fock equa-
tion is set to 40% to replicate the experimental band gap
of 9.1 eV [22,23]; Partial occupancies are treated by Gaus-
sian smearing, with the smearing width σ = 0.1 eV. For both
steps, a Monkhorst-Pack mesh of 7 × 7 × 7 k points is used to
sample the reciprocal space, maintaining the k-point spacing
at ∼0.028 Å−1.

E. Simulation with experimental conditions

In our evaluation of defect concentrations, although we
can use the values of ground-state defect formation energies
�E f (Dq, εF = 0, T = 0 K) of native and Mg-containing de-
fects and defect clusters from Futazuka et al. [7], we still have
to provide the dependence of �E f on temperature, chemi-
cal potentials and Fermi energy (the chemical potential of
electrons), in order to obtain results that correspond to the spe-
cific experimental conditions with which Lagerlöf, Mitchell,
and Heuer [6] measured oxygen diffusion in doped α-Al2O3,

namely T = 1673.15 K (1400 ◦C) and pO2 = 0.21 atm. We
also need to calculate the concentration of Mg, and how it
is distributed over the different types of defects. Futazuka
et al. [7] defined μMg according to the dominant secondary
phase MgAl2O4: a solution for μMg is attained through the
constraints presented above and the equilibrium condition
2μAl + 4μO + μMg = E (MgAl2O4), where E (MgAl2O4) is
the total energy of each molecular unit of MgAl2O4. This
value of μMg (2.14 eV), hereafter denoted μ0

Mg, corresponds
to the solubility limit of Mg in α-Al2O3. However, as we shall
see, the theoretical concentration of Mg in solution with this
approach turns out to be much lower than in the experimental
case (252 wt. ppm), which we have to suppose was supersat-
urated, since no precipitates were observed. In order to match
the experimental data we found it necessary to adjust the
theoretical concentration of Mg in solution, and to accomplish
this we regard μMg as the independent variable, and we control
it by introducing the parameter A, such that μMg = μ0

Mg + A.
Our choices of μMg, given in Table I, determine the Mg
concentration, which we have calculated over the range from
10−12 to 252 wt. ppm.

It is prudent to note that only native defects and Mg-
containing defects are factored into the defect concentration
calculations, to the exclusion of any other aliovalent impuri-
ties (for example, Ti4+), which may be present in experiment
in smaller concentrations. However, our conclusions relate
mainly to the high Mg-doping limit, where the concentra-
tion of Ti is minuscule compared to that of Mg (see Table I
of Ref. [6]), and would not be able to affect our results
significantly.

III. RESULTS AND DISCUSSION

The defect formation energies as a function of Fermi
energy εF evaluated at the experimental temperature T =
1400 ◦C, ambient oxygen pO2 = 0.21 atm, and experimental
Mg concentration, 252 wt. ppm, are presented in Fig. 1(a).
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TABLE I. The modulated Mg chemical potentials μMg and Fermi
energies �εF = εF − εVBM (both in eV) for various Mg concentra-
tions used in this study. Here, the case μMg = 2.14 eV corresponds
to the solubility limit of Mg in Al2O3. The temperature and pressure
of the system are set to the experimental values of T = 1673.15 K
(1400 ◦C) and pO2 = 0.21 atm following Ref. [6]. The Fermi energy
of the un-doped α-Al2O3 is included for reference.

Ambient Reductive limit

μMg Mg (wt. ppm) �εF μMg Mg (wt. ppm) �εF

2.95 252 2.71 2.95 252 4.52
2.54 16 2.73 2.64 16 4.55
2.14 1.4 2.82 2.14 2.14 4.72
1.64 0.11 2.96 1.64 0.38 4.96
1.14 0.010 3.11 1.14 0.067 5.20
0.72 0.0014 3.25 0.64 0.012 5.45
0.29 1.9 × 10−4 3.39 0.14 0.0020 5.70
−0.14 2.6 × 10−5 3.53 −0.36 1.2 × 10−4 5.79
−0.56 3.3 × 10−6 3.65 −0.76 7.6 × 10−6 5.79
−1.15 6.8 × 10−8 3.69 −1.26 2.4 × 10−7 5.80
−1.74 1.1 × 10−9 3.69 −1.86 3.7 × 10−9 5.80
−2.26 3.1 × 10−11 3.69 −2.46 5.7 × 10−11 5.80
−2.76 9.7 × 10−13 3.69 −3.03 1.1 × 10−12 5.80

– 0 3.69 – 0 5.80

Both the Mg content and the pO2 affect the εF , and all three pa-
rameters determine the defect concentrations. Following our
self-consistent calculations of the equilibrium defect concen-
trations, to be discussed below, we have marked on Fig. 1 the
resulting Fermi energies, both with and without Mg doping,
by dashed- and solid-vertical lines, respectively. For undoped
α-Al2O3, the Fermi energy lies at 3.69 eV in the ambient
oxygen regime. For comparison purposes, Fig. 1(b) shows
how all the results in 1(b) would look if the pO2 were reduced
to the level at which the Al2O3 would be in equilibrium
with metallic Al. In this case, all the formation energies and
concentrations are changed and after calculation of the defect
concentrations we find the Fermi level raised to 5.80 eV in
undoped Al2O3.

An increase in εF will naturally favor negatively charged
defects, compared to those with positive charge. The slope of
the formation energy of a defect versus εF is a direct measure
of the charge on the defect, as shown graphically in Fig. 1.
Thus the formation energy of each defect, in its charge state of
lowest energy, is a piecewise continuous and convex function
of εF . With increasing εF , the slope of the formation energy
decreases abruptly in increments of 1 for each newly acquired
electron. Recalling that, in order to achieve equilibrium, the
Fermi energy must adopt a value at which the total charge in
the system is zero, the replacement of Al in the crystal by Mg
reduces the Fermi energy, because an Al atom had donated
three electrons to the valence band, but the Mg atom can only
donate two. Note also the increase in Fermi energy under
reducing conditions, which are most extreme in Fig. 1(b).
The explanation is straightforward. Removal of oxygen atoms
from the lattice is obviously favoured by the low ambient pO2 ,
which lowers the formation energy of oxygen vacancies. At
the same time, given that the sum 2μAl + 3μO must remain

TABLE II. Concentrations [Dq] (in cm−3) and charge concentra-
tions q[Dq] (in e cm−3) of selected defects in α-Al2O3 containing 252
wt. ppm Mg in the experimental conditions of Ref. [6]. The share (in
%) of positive charge compensation for each defect is also specified.

Dq [Dq] q[Dq] Share (%)

Mg1−
Al 1.2 × 1019 −1.2 × 1019 –

Mg2+
i 4.7 × 1018 9.5 × 1018 80.4

[MgAl · VO]1+ 1.6 × 1018 1.6 × 1018 13.4
Al3+

i 1.8 × 1017 5.5 × 1017 4.6
V 2+

O 8.6 × 1016 1.7 × 1017 1.5
V 1+

O 1.8 × 1012 1.8 × 1012 1.5 × 10−5

[MgAl · VO]0 1.2 × 1012 0 –
Mg0

Al 4.7 × 1011 0 –

nearly constant and equal to the Gibbs energy per formula unit
of the perfect crystal, the low pO2 raises the formation energy
of Al vacancies. Bearing in mind the constraint of total charge
neutrality, if the pO2 decreases, the points where the formation
energies of these positively and negatively charged defects
intersect, which is close to where charge neutrality must occur,
are bound to move to higher Fermi energy.

Now, in order to discuss how the charge of the Mg1−
Al ions is

compensated and hence to explain the corundum conundrum,
we introduce a graph of the concentration of each defect mul-
tiplied by the charge it contributes, versus the total magnesium
concentration, Fig. 2. Again we display as in Fig. 1 the two
separate cases of (a) ambient and (b) very low pO2 . Besides
all the defects, Fig. 2 includes for completeness the concen-
trations of electrons and holes, calculated via Eqs. (5) and (6).
Their concentrations turn out to be relatively low compared to
the dominant defects, so they do not play an important part in
the charge compensation of Mg.

Starting with the lowest doping levels, and looking at
the ambient conditions of pO2 displayed in Fig. 2(a), at
Mg concentrations below about 10−7 wt. ppm the defect
concentrations deviate negligibly from those of pure Al2O3,
in which the dominant defects are the vacancies. In ambi-
ent conditions these are the Schottky quintet of V2+

O and
its charge-compensating V3−

Al , in the ratio 3 :2. As the Mg
concentration increases further and becomes comparable to
the concentration of oxygen vacancies, the concentration of
oxygen vacancies starts to increase, and the positive charge
they carry tracks and compensates the charge of the Mg1−

Al
ions. But as the Mg concentration starts to approach 1 wt.
ppm, something surprising happens, which, however, could
be anticipated by studying Fig. 1: the main role of compen-
sation is taken over by aluminium interstitials Al3+

i . Shortly
above that, the dominant compensation mechanism changes
again, and the dominant compensating defect becomes Mg
itself, in the form of positively charged interstitials, Mg2+

i .
At the experimental level of doping, with 252 wt. ppm of
Mg, the Mg solution is mainly self-compensated by its own
interstititals, and the concentration of free oxygen vacancies
V2+

O is two orders of magnitude less than it would have been
if they were still the main compensating species. This ex-
plains the corundum conundrum. The details of all the defect
concentrations at this Mg composition are given in Table II,
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where we quantify the results visible in Fig. 2(a). Specifi-
cally, mobile oxygen vacancies provide only ∼1.5% of the
compensation for Mg1−

Al , while ∼80% is provided by Mg2+
i ,

and a further 13% by [MgAl · VO]1+ pairs, which are oxygen
vacancies trapped by the Mg substitutional defect. We note
that the calculated saturation limit of Mg is only 1.4 wt. ppm,
which strongly suggests that in the dislocation loop shrinkage
experiments [6], the dissolved Mg was in the supersaturated
regime, since there was no evidence for precipitates of spinel
in those experiments.

For completeness, we examine also the results for strongly
reducing conditions displayed in Fig. 2(b). The higher εF

favors the singly charged oxygen vacancies V1+
O , and instead

of the Schottky quintet seen in ambient pO2 the dominant
intrinsic defects at low Mg concentration are V1+

O and V3−
Al

in the ratio 3 :1, which we might call the Schottky quartet.
At higher Mg concentrations, the compensation follows a
somewhat similar pattern to the ambient oxygen case. The
higher concentration of oxygen vacancies at low pO2 is not
matched by Mg until about 10−5 wt. ppm, and it then tracks
and compensates the Mg−1

Al up to ∼1 ppm Mg. At higher Mg
concentrations the other defects take over compensation, and
at 252 wt. ppm Mg the Mg−1

Al are once again compensated
mainly by Mg2+

i interstitials.

IV. CONCLUSIONS

We have calculated the equilibrium concentrations of a
range of point defects, involving one or two species of atoms,
in Mg-doped α-Al2O3 at 1400 ◦C, under ambient oxygen
partial pressure, self-consistently determining the Fermi en-
ergy to ensure charge neutrality of the system, and with Mg
contents from zero up to 252 wt. ppm With the highest Mg
content, these conditions correspond to the experimental setup
for the measurements of oxygen diffusion reported in Ref. [2].
Our calculations make use of the 0 K defect formation en-
ergies of Futazuka et al. ([7] and private communication).
These authors obtained equilibrium defect geometries by
structural relaxation using density functional theory with the
PBEsol exchange-correlation functional, then calculated ac-
curate defect formation energies and electronic densities of
states corresponding for the relaxed structures using the HSE
exchange-correlation functional.

The thinking behind the conundrum posed in [2] was based
on the widespread theory of how the excess charge on the
Mg ions, Mg1−

Al dissolved in α-Al2O3 must be compensated,
namely by oxygen vacancies V2+

O , which are also assumed
to be the agents of oxygen diffusion. The experimental con-
centration of Mg (∼1.8 × 1019 ions cm−3), if it were all in
the form of Mg1−

Al , would thus require a concentration of
0.9 × 1019 oxygen vacancies per cm−3 for its charge com-
pensation - according to the standard theory. Our calculations
reported here have allowed several more species to enter the
field, the most important of which are listed in the first col-
umn of Table II. Mg appears not only as Mg1−

Al , but also in
significant proportions of positively charged Mg interstitials,
Mg2+

i , and Mg -oxygen vacancy complexes, [MgAl · VO]1+,
increasing with the overall Mg content. Together with intrinsic
Al interstitials, Al3+

i , they all play a part in compensating
the remaining negatively charged Mg1−

Al . At the highest Mg
concentration, 80% of this compensation can be described
as “self-buffering” by the Mg interstitials. As a result our
calculated concentration of V2+

O is 0.9 × 1017 ions cm−3,
which is two orders of magnitude less than predicted by the
standard theory. This is the solution we offer to the corundum
conundrum.

The story is still unfinished however, since the puzzle
called the corundum conundrum also embraces the doping
of Al2O3 with Ti, and the compensation of Ti1+

Al defects. We
expect future work along the lines of the present paper will
also reveal a more complex palette of defects, with which to
resolve that case too.
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