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While anomalous diffusion coefficients with non-Arrhenius-like temperature dependence are observed in a
number of metals, a conclusive comprehensive framework of explanation has not been brought forward to date.
Here, we use first-principles calculations based on density functional theory to calculate self-diffusion coeffi-
cients in the bcc metals Mo and β-Ti by coupling quasiharmonic transition state theory and large-displacement
phonon calculations and show that anharmonicity from thermal expansion is the major reason for the anomalous
temperature dependence. We use a modified Debye approach to quantify the thermal expansion over the entire
temperature range and introduce a method to relax the vacancy structure in a mechanically unstable crystal such
as β-Ti. The effect of thermal expansion is found to be crucial for the nonlinear, non-Arrhenius “anomalous”
self-diffusion in both bcc systems, with β-Ti showing a 60% larger relative nonlinearity parameter than Mo. Our
results point to temperature dependence in the diffusion prefactor from thermal expansion as the major origin of
anomalous self-diffusion. The methodology proposed for β-Ti is general and simple enough to be applicable to
other mechanically unstable crystals.
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I. INTRODUCTION

Self-diffusion in metals is believed to be understood rather
well and their coefficients (D) obey a linear temperature (T )
dependency on an Arrhenius plot (ln D vs 1/T ). However, a
number of elements show a remarkable “curvature” and thus
deviation from linearity. Although such an anomaly is rare
for non-bcc metals, it has been found to be especially strong
in the group IVB metals Ti, Zr, and Hf, whose bcc phases
are mechanically unstable at lower temperatures, while it is
much weaker in other bcc metals like Mo and Nb that are
mechanically stable for all temperatures [1].

Focusing on bcc Mo (in the following “Mo”) and bcc
Ti (in the following “β-Ti”) as prototypes for mechanically
stable and unstable bcc metals, the underlying mechanism(s)
for such a non-Arrhenius behavior has been under debate
for many decades and remains unsettled. Given that self-
diffusion in elementary metals is governed by vacancy jumps,
initial explanations were mostly based on the contribution
of “secondary” diffusion mechanisms and include diffusion
via divacancies [2], next-nearest-neighbor (NNN) jumps [3,4],
diffusion via interstitials [5], or diffusion enhancement by
phase transformations [6,7]. While none of these mechanisms
could be conclusively confirmed for either Mo or β-Ti, it
has been argued in the late 1980s that secondary mecha-
nisms would not be consistent with experiments [8,9], and
it was suggested that self-diffusion should be dominated by
the traditional monovacancy jumps through nearest-neighbor
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(NN) sites in both Mo and β-Ti [9–11]. This would leave
some form of anharmonicity as the explanation for the dif-
fusion anomaly, since within harmonic transition state theory
[12,13], the temperature dependence of the diffusion coeffi-
cient should exactly follow the Arrhenius equation D(T ) =
D0 exp(−E0/kBT ) with temperature-independent prefactor
D0 and activation energy E0, which for monovacancy dif-
fusion is the sum of vacancy formation enthalpy E f and
migration enthalpy Em. The anharmonicity was initially sug-
gested to manifest itself in the form of soft phonons due to the
specific distribution of the d electrons [14,15].

By now, the continuous advances in atomistic simulation
methods and computational capabilities have provided new
opportunities to gain insight into the microscopic origin of
anomalous diffusion, and lead to a variety of explanations
for non-Arrhenius diffusion. Proposed mechanisms include a
vacancy-interstitial model in β-Ti [16], anharmonic effects in
both β-Ti [17] and in Mo [18], and concerted atomic motion
[19,20].

The previous work has been performed either with classical
molecular dynamics (MD) based on empirical potentials or
with density functional theory (DFT). On the classical MD
side, in Ref. [16] diffusion coefficients in β-Ti were deter-
mined from the mean-square displacement of the atoms. The
results suggested that interstitials would play a non-negligible
role at self-diffusion near melting temperature and the sum of
Arrhenius-like vacancy and interstitial diffusions with differ-
ent slopes would result in the observed anomalous diffusion.
The spontaneous formation of Frenkel pairs was also found
in Ref. [20], leading to temperature-dependent formation en-
ergies. While no diffusion coefficients were calculated in
Ref. [20], it was argued that the temperature-dependent for-
mation energy would give rise to anomalous diffusion. The
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fact that the high-temperature defect concentrations varied
by several orders of magnitude between Refs. [16] and [20]
as well as the fact that interstitial concentrations have been
found exceedingly small in Mo even at its melting temperature
casts doubt on this explanation. In another MD study [19],
it was proposed that concerted motion of atoms significantly
contributed to diffusion at temperatures >83% of the melting
temperature, in addition to the otherwise dominant vacancy
diffusion which followed a straight Arrhenius behavior over
the entire examined temperature range from 73% to 97% of
the melting temperature. While the considerable variation in
results of these studies may at least partially originate from
the different interatomic potentials used [21–23], the fact
that experiments show pronounced nonlinearity already in the
sub-1600 K range where all MD studies find Arrhenius-like
behavior makes further studies desirable.

Other than classical MD, DFT-based methods do not rely
on empirical interatomic potentials. Performing harmonic
transition state theory based DFT calculations of diffusion
coefficients started to become standard in the late 1990s for
semiconductors [24] and were adopted into the metallic sys-
tems a decade later [25–28]. Mattson et al. [18] proposed a
large quadratic temperature dependence of the vacancy forma-
tion energy in bcc Mo based on ab intio molecular dynamics
(AIMD) simulations, but did not study the temperature depen-
dence of the formation entropy. Their results consist only of
two data points obtained at >2400 K and the zero-temperature
value, thus are insufficient to quantify the nonlinearity over
a wide temperature range. Non-MD-based first-principles
calculations on the high-temperature bcc phases of group
IVB metals like titanium, zirconium, and hafnium have re-
mained quite challenging due to their mechanical instability
at zero temperature [29,30], with a manifestation of decreas-
ing energies and negative curvatures as a function of atomic
displacement [30] or strain [29] in certain directions at 0 K.
Since phonon frequencies are determined by square roots of
energy versus displacement curvatures, this corresponds to
vibrational modes with imaginary frequencies. Since within
the common harmonic or quasiharmonic approximations, vi-
brational free energies in solids are calculated from phonon
frequencies, the appearance of imaginary frequencies impedes
free-energy calculations at finite temperatures for mechani-
cally unstable crystals.

A number of approaches have been suggested to over-
come the limitations from mechanical instabilities through
molecular dynamics [31] or phonon calculations on cells
with self-consistently displaced atoms [32] to capture the
temperature-induced anharmonicity, but most of them are
computationally too expensive to perform calculations on
supercells with point defects. Kadkhodaei et al. employed
a combination of self-consistent ab initio lattice dynamics
(SCAILD) and the temperature-dependent effective potential
(TDEP) method and examined in a thorough study the in-
fluence of phonon anharmonicity on the diffusion coefficient
[17] in β-Ti. They obtained much improved self-diffusion
coefficients of β-Ti in comparison to the harmonic approach.
However, their work did not include thermal expansion, which
we will show in this work to be the prime suspect to cause
anomalous diffusion, and left the lattice parameters fixed,
resulting in an almost linear relation between ln D and 1/T .

Herein, we perform a comprehensive study of the thermal
expansion and self-diffusion anomaly in the mechanically sta-
ble Mo and the unstable β-Ti with an accurate and efficient
ab initio approach. Our work utilizes the large-displacement
method (LDM), first proposed by Antolin et al. [30], from
which we demonstrate that the thermal expansion coeffi-
cients are well captured in the temperature range where
the quasiharmonic approximation (QHA) applies. For the
minimum-volume at each temperature, we then calculate the
free energy of vacancy formation and diffusion coefficients
within LDM-based harmonic transition state theory, effec-
tively forming a quasiharmonic version of it. Our predicted
self-diffusion coefficients are within the range of previous
measurements, and their anomalous temperature dependence
in both Mo and β-Ti strongly indicates that going beyond
harmonic to quasiharmonic transition state theory can ex-
plain anomalous temperature dependence of self-diffusion in a
natural way that eliminates the need to invoke ad hoc nontradi-
tional assumptions about the diffusion mechanism. Finally, we
quantify the deviation from the Arrhenius dependence using a
previously proposed nonlinearity parameter [33] and discuss
our findings in light of both previous experimental data and
computational work. Our results show strong evidence that
nonlinear Arrhenius self-diffusion arises mostly from thermal
expansion, and further pinpoint that it is not the migration
enthalpy, but the formation entropy and, in the case of β-Ti,
attempt frequency that carries the majority of the tempera-
ture dependence. This work sheds new light on the nature
of anomalous self-diffusion in Mo and β-Ti, and validates
that LDM is an effective way to perform such calculations in
mechanically unstable metals.

II. METHODOLOGY

A. Self-diffusion theory for the bcc lattice

In the monovacancy mechanism of self-diffusion in the bcc
lattice, the atom-vacancy exchange jump happens between
two nearest-neighbor positions along 1

2 [111]. The bcc self-
diffusion coefficient can be written as

D = gf a2Cv�, (1)

where g is the geometrical factor (1 for cubic lattices), f the
correlation factor (0.7272 for bcc [34,35]), a the lattice con-
stant, Cv the vacancy concentration, and � the atom-vacancy
exchange jump frequency along 1

2 [111].
The atomic fraction of vacancy lattice sites Cv is given by

Cv = exp

(
−�G f

kBT

)
= exp

(
�S

kB

)
exp

(
−�Hf

kBT

)
, (2)

where �G f is the free energy of vacancy formation within the
bcc lattice. �S f and �Hf are the vacancy formation entropy
and enthalpy, respectively. The atom-vacancy exchange jump
frequency � can be calculated within transition state theory as
[36]

� = ν∗ exp

(
−�Hm

kBT

)
, (3)

where �Hm denotes the migration enthalpy and ν∗ the at-
tempt frequency. Substituting Eqs. (2) and (3) into Eq. (1), the
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self-diffusion coefficients in bcc metals can be calculated by

D(T ) =

D0︷ ︸︸ ︷
0.7272a2ν∗ exp

(
�S f

kB

)
exp

⎛
⎜⎜⎝−

E0︷ ︸︸ ︷
�Hf + �Hm

kBT

⎞
⎟⎟⎠.

(4)

Therefore, four parameters will be calculated to obtain
self-diffusion coefficients through DFT calculations: �Hf ,
�S f , �Hm, and ν∗. Of those, �Hf and �Hm contribute to
the thermal activation energy E0, while �S f and ν∗ contribute
to the prefactor D0.

We will describe the methodology to compute these param-
eters from ab initio in Sec. II B. Before that, in practice the
vacancy structures of Mo and β-Ti need to be relaxed, which
is a straightforward task for Mo, but requires some extra
attention for Ti and techniques such as the large-displacement
method (Sec. II C), which we will discuss in Sec. II D. Sec-
tion II E summarizes the calculation of thermal expansion
within QHA, followed by descriptions of the nonlinearity
parameter (Sec. II F), overall procedure (Sec. II G), and com-
putational details of DFT calculations (Sec. II H).

B. Calculation of the diffusion coefficient

Formation quantities such as �G f , �S f , or �Hf can be
calculated by the respective difference between the perfect su-
percell and the relaxed cell with one vacancy. As an example,

�G f = G(XN−1V1) − N − 1

N
G(XN ), (5)

where X is the lattice atom, V indicates a vacancy, and N
indicates the number of lattice sites in the supercell.

In order to calculate the vibrational contribution to the
free energies of formation at finite temperatures, Ff (T ), and
the entropy of formation, S f (T ), we use the quasiharmonic
approximation (QHA) [37] based on supercell �-point calcu-
lations as described in previous work [38]. There, the entropy
is approximated by

S(V, K ) = k

{∫ hν
kBT

exp( hν
kBT ) − 1

g[ν(V )]dν

−
∫

g[ν(V )]ln

[
1 − exp

(
− hν

kBT

)]
dν

}
, (6)

where g[ν(V )] is the phonon density of states [38] and the �-
point phonon frequencies ν(V ) are calculated for a supercell
with volume V .

The attempt frequency ν∗ can be calculated as

ν∗ =
3N−3∏
i=1

νi

/ 3N−4∏
j=1

ν j, (7)

where νi and ν j are the normal-mode (�-point phonon)
frequencies of the stable and saddle point configurations, re-
spectively, for a system of N atoms and one vacancy. The
product in the denominator specifically excludes the (imag-
inary) frequency corresponding to the unstable mode at the
transition state.

FIG. 1. (a) Schematic representation of the effect of thermal ex-
pansion on vibrational properties for atoms in a harmonic (dashed
black line) vs an anharmonic (solid black line) potential. As the tem-
perature increases, the system gains kinetic energy, and states with
higher energy on the energy landscape are sampled. The equilibrium
position of atoms is the “midpoint” of the potential wall. The har-
monic potential is symmetric, and the equilibrium bond length of the
atom (distance between green and blue circles) does not change with
temperature, whereas the bond length in the anharmonic potential
increases (distance between green and red/purple circles). At the
same time, the curvature of the quasiharmonic potentials (red/purple
dashed lines) decreases with increasing temperature. (b) Energy dif-
ference with respect to the perfect cell in a frozen-phonon cell for the
unstable N-point displacement pattern as a function of displacement
(black circles) in β-Ti. The energy “hump” at zero displacement
corresponds to the mechanical instability, i.e., a negative curvature
E ′′ < 0, at zero temperature. A harmonic potential well (red curve)
is obtained by matching energy and curvature of the energy data at
the large-displacement value of 0.88 Å proposed in Ref. [30]. This
represents the high-temperature regime (black dashed line), where
the atomic vibration exhibits large amplitude (blue marker) with
high thermal energy, resulting in real phonon frequencies (E ′′ > 0)
governed by the envelope harmonic potential.

According to Eq. (4), the dependence of ln D vs 1/T will
be perfectly Arrhenius based on harmonic transition state the-
ory, where the atoms oscillate in perfect harmonic (parabolic)
energy wells, and the energy landscape around the transition
state is also perfectly parabolic. Within these assumptions,
thermal expansion is zero and the Arrhenius plot is perfectly
linear. Anharmonicities, which are deviations of any kind
from parabolicity, are the most likely, if not the only, possible
explanation for nonlinear Arrhenius behavior in this situa-
tion. The thorough work by Kadkhodaei et al. [17] includes
the phonon-anharmonicities in a very complete way. How-
ever, thermal expansion was not included in that work. Since
thermal expansion is directly proportional to the Grüneisen
parameter, which is the most widely used quantitative measure
of anharmonicity [39], thermal expansion thus becomes the
most likely candidate to cause anomalous diffusion. In order
to include thermal expansion into our calculations, all four
parameters in Eq. (4) that determine the diffusivity need to be
calculated for simulation cells whose volume increases with
temperature, which methodically corresponds to the QHA.
For example, when a single atom vibrates in an anharmonic
energy potential [Fig. 1(a), solid curve], the equilibrium
atomic position, here represented by the bond length, in-
creases with temperature in comparison to the harmonic case
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[Fig. 1(a), dashed parabola], resulting in enthalpy gain due to
the elastic energy. Meanwhile, the effective curvature [E ′′ =
average(E ′′

left, E ′′
right ) in the schematic of Fig. 1(a)] of the an-

harmonic potential that determines the vibrational frequencies
also changes with temperature as higher potential energies are
sampled due to the increased kinetic energy, affecting both
hopping frequency [Eq. (7)] and entropy [Eq. (6)]. In most
cases the relative change of phonon frequencies of the initial
vs saddle point configuration (attempt frequency) and vacancy
vs perfect configuration (formation entropy) cancels out so
that QHA does not lead to a significant nonlinearity in the ln D
vs 1/T relation. However, we show here that consideration of
the previously neglected effect of thermal expansion is crucial
to capture the anomalous diffusion in bcc metals, and for β-Ti
more so than for Mo.

The climbing image nudged elastic band method (CI-NEB)
[40] with 3 images was employed to determine the transition
state (saddle point) structures for Mo and Ta (see Sec. II D
why Ta), with the saddle point configuration of Ti determined
from those as described in the following section due to the re-
laxation problems in mechanically unstable high-temperature
structures. The initial and final structures, i.e., stable states,
were fully relaxed first. Then during the CI-NEB calculations,
all supercell volumes were fixed.

C. Large-displacement quasiharmonic transition state theory

The large-displacement method (LDM) treats the an-
harmonicity through large atomic displacements into the
high-temperature anharmonic range of the atoms’ energy
wells. Within LDM, phonons are calculated from the cur-
vature of the harmonic envelope [red curve in Fig. 1(b)] of
the quartic energy-vs-displacement curve (circles). At high
temperatures, or above the transition temperature, the atoms
actually sample at large vibrational amplitudes, which makes
them carry across the “hump” at zero displacement [black
circles in Fig. 1(b)], i.e., the local energetic barrier, and thus
overcomes the mechanical instability of the bcc phase, there-
fore eliminating all imaginary frequencies from the phonon
dispersions. Technically, this approach thus works like any
standard finite-difference phonon calculation with the excep-
tion that the displacements are one or two orders of magnitude
larger. The only question there is how large the displacement
should be. In Ref. [30], a large-displacement value of 0.88 Å
was proposed for β-Ti, resulting in good agreement of the-
oretical and experimental phonon dispersion. The sensibility
of this large-displacement value for β-Ti proposed is further
confirmed by the comparison of the theoretical thermal expan-
sion coefficients with the experimental values (Sec. III A). For
Mo which is mechanically stable at zero temperature, regular
moderately small displacements (we use 0.05 Å) are the most
sensible choice as was also shown in Ref. [30].

D. Relaxation of vacancy structure for Ti

Due to β-Ti’s mechanical instability, one cannot simply
relax its supercell with one vacancy at zero temperature like
is commonly done for other crystals to determine the ground
state structure. If one tried, one would end up with unphys-
ically large atomic displacements and a negative formation

energy as shown in Sec. III B. Because of the same reason,
the CI-NEB method also cannot be used to find the saddle
point structure. To circumvent this problem, we first perform
an approximate, nearest-neighbor (NN) only, relaxation based
on free energies for Ti, where free-energy calculations based
on the LDM (Sec. II C) at three different temperatures be-
tween phase transformation temperature (1150 K) and melting
temperature (1940 K) were performed for differently dis-
placed NN shells in an otherwise unrelaxed vacancy cell. The
minimum-energy displacement was then linearly extrapolated
to zero temperature, dTi(T ) = d0

Ti + ϑT . Since in the final
calculations, we want to use full instead of NN-only relax-
ation, we now use the zero-temperature extrapolated value to
identify an appropriate surrogate structure for Ti from other
mechanically stable bcc materials, scaled to the correct lattice
constant. For NN-only relaxation, Mo is found to have one of
the smallest and Ta one of the largest relative NN relaxations.
Thus, the positions of the atoms in the interpolated surrogate
Ti cell can be calculated from

xTi = d0
Ta − d0

Ti

d0
Ta − d0

Mo

xMo + d0
Ti − d0

Mo

d0
Ta − d0

Mo

xTa, (8)

a procedure that is easily transferable to other mechanically
unstable bcc crystals. The saddle point structure of β-Ti is
calculated in the same way from CI-NEB results for Mo and
Ta. Results for these relaxation calculations are discussed in
detail in Sec. III B.

E. Thermal expansion

In the quasiharmonic version of transition state theory we
employ in this paper, the four variables that determine the
self-diffusion coefficients according to Eq. (4) are �Hf , �S f ,
�Hm, and ν∗. They are evaluated at the minimum-lattice
constant in the Helmholtz free energy for each temperature,
determined in turn from the traditional quasiharmonic approx-
imation to vibrational entropy. The Helmholtz free energy of
a system as a function of volume (V ) and temperature (T ) is
expressed as

F (V, K ) = Etot (V ) + kBT

{
g[ν(V )]hνdν

+
∫

g[ν(V )]ln

[
1 − exp

(
− hν

kBT

)]
dν

}
, (9)

where Etot is the total (internal) energy at 0 K, in addition to
the quantities defined for Eq. (6). As described in Sec. II C, we
used the LDM for the Ti phonon calculations and traditional
displacements for Mo.

In order to determine the thermal expansion coefficient, we
fit the lattice constant data vs temperature with a modified
expression derived from the Debye model [41],

a(T ) = a0[1 + Ia(T )T ϕ(θD/T )], (10)

where a0 is the lattice parameter at 0 K, θD is the Debye
temperature, and ϕ is the Thacher function to approxi-
mate the Bose-Einstein weighted integral from the Debye
specific heat, Eq. (6) from Ref. [42]. Other than in the
original model, we give Ia a linear temperature dependence,
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Ia(T ) = I0(1 + χT ) with I0 and χ as fitting parameters in
addition to θD, since Ia, originally given by Ia = Kγ kB/V0 (K
is the compressibility, γ the Grüneisen constant, and V0 the
minimum volume of the cell), should be temperature depen-
dent because both Grüneisen parameter and elastic constants
[43] are temperature dependent. Without this, the typically
observed increase in thermal expansion with temperature in
the high-temperature limit is not described well enough. The
linear thermal expansion coefficient (α) is finally calculated
by α = 1

a0

∂a
∂T from the temperature derivative of Eq. (10).

F. Quantification of nonlinearity

In order to quantify the nonlinearity in our calculated
and previous (experimental) data, we fit the logarithm of
the diffusion coefficient in an Arrhenius plot with an equa-
tion analogous to bowing-parameter-dependent quadratic
equations used for lattice parameters or elastic constants [44],

lnD(β ) = β − βl

βh − βl
lnDh + βh − β

βh − βl
lnDl

+ η
(β − βl )(βh − β )

(βh − βl )2
. (11)

There, the first two terms are the linear interpolation be-
tween the logarithms of highest (l) and lowest (l) diffusion
coefficients (respectively, Dh and Dl can be fitting coeffi-
cients), β = 1/kBT , and η is the “bowing parameter,” i.e.,
the measure of the quadratic term, whose form is chosen to
be zero at the extremal temperatures. An absolute nonlin-
earity parameter λ can then be used to compare the degree
of nonlinearity between the different elements independently
of whether the temperature ranges exactly overlap or not.
Following Eqs. (3) and (9) in Ref. [33], we calculate λ by

λ = η√
30|lnDh − lnDl |

. (12)

G. Overall procedure

In order to determine the diffusion coefficients for Ti and
Mo within the quasiharmonic transition state theory employed
in this paper, we performed the following steps:

(1) The thermal expansion, i.e., the temperature depen-
dence of the lattice constants, was calculated within the
quasiharmonic approximation as described in Sec. II E based
on perfect bcc supercells for Ti and Mo.

(2) Supercells with one vacancy (initial and final position,
separated by one bond length) were relaxed to their ground
state in the traditional way for Mo and Ta, while the structure
for Ti was determined as described in Sec. II D. Then, the
CI-NEB (Sec. II B) was used to determine the saddle point
configuration for Mo and Ta, while Ti was again gained from
the interpolation procedure.

(3) The lattice constants calculated in (1) were assigned to
the ground state and transition state (saddle point) structures
for Mo and Ti determined in (2).

(4) �-point phonon calculations using a finite difference
method with displacements as described in Sec. II C were per-
formed for all temperature-dependent structures, along with
zero-temperature total energies.

(5) Self-diffusion coefficients at different temperatures
were calculated based on the results from (4) using
Eqs. (4)–(7).

(6) Analysis of the source of the nonlinearity of the
diffusion coefficient was carried out by quantifying the non-
linearity of its different components in Eq. (4).

H. Computational details

First-principles calculations were employed to perform all
structural relaxations and CI-NEB runs as well as energy
and phonon-frequency calculations. To describe ion-electron
interactions, we used projector augmented plane-wave poten-
tials [45] as implemented in the Vienna ab initio simulation
package (VASP), version 5.4.1 [45,46]. Exchange and cor-
relation contributions to the total energy were described by
the Perdew-Burke-Ernzerhof (PBE) functional [47]. After
convergence tests, we chose a 54-atom supercell (3 × 3 × 3
conventional bcc unit cells) with 4 × 4 × 4 Monkhorst-Pack
k-point mesh for Brillouin zone integration. Cutoff energies of
300 eV for Mo and 700 eV for Ti were found to be necessary
for convergence in the phonon calculations. For Ta, the cutoff
energy was 300 eV as well. The settings were kept constant
for all runs.

III. RESULTS AND DISCUSSION

A. Thermal expansion in Mo and β-Ti

The results from the quasiharmonic approximation for the
Helmholtz free energy vs volume for temperatures between 0
and 1800 K in steps of 200 K for Mo and β-Ti are shown in
Fig. 2(a). The energy minima are determined by a fit based
on the assumption of a harmonic dependence of energy on
the volume and are indicated by open markers in the plot
at the minima of the parabolas. The minimum-energy lattice
constants for both materials as a function of temperature are
shown in Fig. 2(b).

The results for thermal expansion in Mo, based on tra-
ditional phonon calculations, are shown in Fig. 2(b). Fitting
Eq. (10) to the DFT data results in parameter values of
a0 = 3.1514 Å, θD = 327 K, Ia = 5.91 × 10−6 K−1, and χ =
6.42 × 10−6 K−1. The lattice constant at 298 K is calculated
with Eq. (10) to be 3.155 Å, while the experimental lattice
constant at room temperature is 3.147 Å. The thermal ex-
pansion coefficient of Mo is calculated from the temperature
derivative of Eq. (10) and is shown in Fig. 2(c) in compar-
ison to experimental data from Ref. [48]. While the (weak)
increase with temperature in the calculations is slightly lower
than what is found in experiment, the general agreement is
rather good with an average deviation in the linear regime
between 600 and 1800 K of 5%.

The results for β-Ti, which are based on phonon calcula-
tions from the LDM, are shown in Fig. 2(a) and Fig. 2(b).
Since, as described in Sec. II C, the LDM uses the harmonic
envelope of the quartic energy-vs-displacement curve irre-
spective of whether or not the kinetic energy of the vibrating
atoms is high enough to overcome the energy “hump” at zero
displacement, which in the real system only happens above
the transition temperature, it can also be used to calculate
the energy vs volume dependence of metastable β-Ti below
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FIG. 2. (a) Free energy for bcc Mo and bcc Ti with respect to lattice constant at temperatures from 0 to 1800 K with 200 K step are depicted
by solid circles. The values are fitted by quadratic curves (solid lines). Open markers denote the energy minima of the respective curves and
simultaneously the equilibrium lattice constants. (b) Ground state lattice constants as a function of temperature for Mo (triangles) and β-Ti
(circles), determined from the minima of the parabolic fits to DFT calculations of the Helmholtz free energy in panel (a) with the same color
scheme. (c) Calculated thermal expansion for β-Ti (blue, upper line and data) and Mo (red, lower line and data). The lines are determined by
fitting the DFT data from panel (b) with Eq. (10) and taking the temperature derivative. The circles denote experimental data from Ref. [48]
for Mo and Ref. [49] for β-Ti.

the transition temperature and thus is shown here for the entire
range. As seen in Fig. 2(a), the calculated values are well
described by a quadratic fit for all temperatures, as was the
case for Mo. Thus, we can use the entire range for fitting
Eq. (10) to get more reliable coefficients and find parameters
of a0 = 3.2383 Å, θD = 474 K, Ia = 7.08 × 10−6 K−1, and
χ = 1.47 × 10−4 K−1.

Experimental values compiled in Ref. [49] are for pure Ti
only available above the transition temperature from α-Ti to
β-Ti, which we have calculated previously to be at 1200 K
with the LDM [30], within 4% of the experimental value of
1155 K. The calculated lattice constant of the β-Ti phase at
1200 K is 3.27 Å, compared to an experimental value at the
same temperature of 3.33 Å. The calculated linear thermal
expansion coefficient aligns well with the experimental values
between 1200 and 1300 K with a considerable temperature de-
pendence of dα/dT = 2 × 10−10 K−2 [Fig. 2(c)]. For higher
temperatures, it seems that anharmonic effects other than
large displacements become important as already discussed
in Ref. [30], causing a faster increase in thermal expansion
in experiment than captured by LDM alone, which is one of

the temperature limits for the applicability of the QHA [50],
with the other being 2/3 of the melting temperature of 1941 K
[51,52], which is also ∼1300 K. Therefore, we restrict our
calculations here to this temperature range.

Overall, we have successfully determined the temperature
dependence of the lattice constants, which agrees with ex-
periments, and thus gives us reliable input for the following
vacancy and diffusion-coefficient calculations.

B. Ground state of vacancy structure in β-Ti

Following the procedure described in Sec. II D, we have
performed free-energy calculations of vacancy formation en-
ergies in constant-volume cells of β-Ti [lattice constant the
zero-temperature value from Fig. 2(b), 3.237 Å] for three
different temperatures (1155 K (experimental transition tem-
perature), 1941 K (experimental melting point), and 1548 K
(halfway in between) as a function of simultaneous nearest-
neighbor displacement along the bond direction to the vacancy
[Fig. 3(b)]. For each temperature, the minimum-energy dis-
placement and energy minimum were determined from a
parabolic fit. The results are shown in Fig. 3(a).
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(a) (b)

(c)

FIG. 3. (a) Free energy of formation for a vacancy in a 54-atom
supercell of β-Ti as a function of simultaneous nearest-neighbor
relaxation along the {111} bond directions [illustrated in (b)] with
other atoms in fixed perfect lattice sites. Calculations were performed
with DFT within the LDM quasiharmonic approximation. The sym-
bols are calculation results for 1155 K (black diamonds, experimental
transition temperature), 1941 K (blue triangles, experimental melting
temperature), and 1548 K (red squares, halfway in between) with cor-
responding parabolic fits to find the minimum-energy displacements.
The green circles are zero-temperature results, and the orange dot
is the linear extrapolation vs temperature from the high-temperature
minimum-energy displacements (hollow black circles along the
dashed line) to the zero-temperature curve. (b) The nearest-neighbor
displacement directions, with negative values moving toward the
site of the vacancy (empty sphere). (c) Minimum-displacement free
energy of formation [indicated by the hollow circles in (a)] for a
vacancy in a 54-atom supercell of β-Ti as a function of temperature
(circles), along with a linear fit with F (T ) = 1.90 eV − 4.3kBT .

Figure 3(c) shows the free energy of formation as a func-
tion of temperature for the three calculation temperatures.
In principle, the calculations performed here result in the
Helmholtz free energy of formation at constant volume. In or-
der to estimate the energy error with respect to the Gibbs free
energy from the nonzero pressure that comes from neglecting
the formation volume of the vacancy [30], we estimate the
formation volume from the pressure in the VASP output for
the NN-displaced cell and the bulk modulus and pressure
derivative reported previously [30] through the pressure ex-
pression of the Murnaghan equation [53]. We find typical
pressures of <10 kbar, indicating a volume relaxation in the
supercell by less than 1%. Multiplying the formation volume
from that with the pressures, we find that the pV term con-
tributes less than 0.04 eV to the free energy, thus is small.
Fitting F (T ) = E f − T S to the three values, we find E f =
1.90 eV and S f = 4.3kB. Combining these results with the
lattice site density, we find an equilibrium vacancy concentra-
tion of Ceq

V,Ti = 1.8 × 1021 cm−3 exp{−1.90[eV]/(kBT )}. For
the unrelaxed cell, we had previously found with the same
method E f = 2.05 eV and S f = 8.15kB [30]. Overall, the NN
relaxation decreases the formation energy by 0.15 eV.

Next, we examine the NN relaxation as a function of
temperature and extrapolate from it a zero-temperature dis-
placement which can be used for a fully relaxed surrogate
structure with all neighbor shells relaxed. Having three tem-
peratures, extrapolation can either be done linearly [dashed
line in Fig. 3(a)] or with a second-degree polynomial. We
perform here both and take their average for our zero-
temperature structure. For a linear extrapolation, we find a
zero-temperature displacement of −0.035 Å, for a quadratic
one −0.058 Å, with an average of −0.047 Å. All of
these are considerably smaller than the minimum-energy
zero-temperature relaxation of −0.101 Å, which is another
expression of the mechanical instability of the structure and
its strong stabilization by entropy. Following the procedure
described in Sec. II D of interpolating fully relaxed cells of
mechanically stable Mo and Ta vacancies with scaled lat-
tice constants, which have NN relaxations of −0.008 Å and
−0.082 Å in cells with otherwise clamped other neighbors,
we then create a “relaxed” β-Ti cell which is more or less
the straight average of the atomic positions in relaxed Mo and
Ta cells, scaled to the β-Ti lattice constant. Both ground state
structure and saddle point configuration were determined this
way.

The formation energy from this process agrees with the
formation energy from the interpolated structure discussed in
Sec. II D within 0.01 eV, which is less than the uncertainties in
our numbers from the different approximations and numerical
calculations such as the 0.04 eV from enthalpy discussed
in the present section. This suggests that relaxation beyond
nearest neighbors adds only small changes to the calculated
formation energies.

C. Self-diffusion in Mo

Our self-diffusion coefficients for Mo calculated within the
quasiharmonic transition state theory are shown with previous
experimental data [54–56] in Fig. 4(a). Our quasiharmonic
transition state theory (qhTST) calculations with varying lat-
tice constants that include thermal expansion are represented
by the six individual points (1400–1900 K, with 100 K steps).
We limit our highest calculated temperature to two-third of
its melting point, one of the commonly accepted applicability
range limits for QHA [51].

To further quantify the degree of nonlinearity in our data,
we use Sec. II F to determine the deviation from linear ln D vs
1/T dependence, and then show that the normalized quadratic
approximation suggested in Eqs. (11) and (12) is a satisfactory
way to quantify the nonlinearity. In order to visualize the
deviation from linearity, we adopt the concept of “enthalpy of
mixing” and apply it to the ln D data. For that, we subtract the
linear interpolation between highest and lowest values from
the raw ln D data,

� ln D(β ) = ln D(β ) − β − βl

βh − βl
lnDh − βh − β

βh − βl
lnDl , (13)

which then automatically sets the high- and low-temperature
end points to zero. Next, we use the interval normalization
shown in Eq. (12) to � ln D(β ) in order to normalize the
different temperature intervals to the same scale as described
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FIG. 4. Nonlinear Arrhenius self-diffusion in Mo. (a) Comparison between calculated self-diffusion coefficient D and experimental data
from Refs. [54–56]. The solid line represents a parabolic fit of the experimental data by Maier et al. [56] to guide the eye. Inset: Comparison
of D computed with (red markers as in main figure) and without (purple line) thermal expansion. (b) Nonlinearity plot of the normalized
self-diffusion coefficient � ln D̃ [Eq. (14)] vs normalized temperature parameter β̃ [Eq. (15)] for the data from (a). The dashed curves are
� ln D̃fit (β̃ ) = λβ̃(1 − β̃ ) fits to determine λ. The purple flat line with zero curvature is for the harmonic approximation result from the inset
of (a).

in Ref. [33],

� ln D̃(β ) = � ln D(β )√
30|lnDh − lnDl |

. (14)

As before, β = 1/(kBT ). We therefore display the deviation in
the self-diffusion coefficients vs the normalized temperature
given by

β̃ = β − βl

βh − βl
. (15)

The resulting plot is shown in Fig. 4(b), along with the
Arrhenius plot of the same data sets in Fig. 4(a). Assuming
lowest-order nonlinearity as expressed in Eq. (11), we fit the
normalized lnD and 1/T data with the relation � ln D̃fit (β̃ ) =
λβ̃(1 − β̃ ), shown by the dashed lines in Fig. 4(b). The fitted
nonlinearity parameter is λ = −0.044 for our work. Figure 4
further shows that eliminating the thermal expansion effect
leads to the perfect Arrhenius dependence [purple line in the
inset of Fig. 4(a)] and thus zero deviation from the linear
term contribution [purple flat line in Fig. 4(b)]. This strongly
suggests that thermal expansion is the crucial ingredient in our
approach to correctly model the nonlinearity in the diffusion
behavior of bcc Mo. While our absolute data are on the same
order of magnitude with the experimental results in Fig. 4(a),
they have a somewhat higher degree of nonlinearity than the
rather expansive set of experimental values of Maier et al.
[56], for which we calculate λ = −0.021. There is a larger
uncertainty for the data sets of Bronfin et al. [55] and Borisov
et al. [54] because of their small size and limited temperature
range, for which we find λ = −0.102 and λ = 0.054, respec-
tively, spanning a wide range.

In order to explore the origin of the bowing anomaly, we
now investigate the temperature dependence of formation and
migration enthalpies, as well as of formation entropy and
attempt frequency. The results are shown in Figs. 5(a), 5(b)

FIG. 5. Formation enthalpy �Hf , migration enthalpy �Hm, for-
mation entropy �Sf , and diffusion attempt frequency ν∗ for Mo
[(a), (b), (c)] and β-Ti [(d), (e), (f)], calculated with DFT within
quasiharmonic transition state theory.
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FIG. 6. Nonlinear Arrhenius self-diffusion in β-Ti. (a) Comparison between calculated self-diffusion coefficients D and experimental data
from Refs. [14] and [57], as well as recent computational work from Ref. [17]. The solid line represents a parabolic fit of the experimental
data to guide the eye. Inset: Comparison of D computed with (red markers as in main figure) and without (purple line) thermal expansion.
(b) Nonlinearity plot of the normalized self-diffusion coefficient � ln D̃ [Eq. (14)] vs normalized temperature parameter β̃ [Eq. (15)] for the
data from (a). The dashed curves are � ln D̃fit (β̃ ) = λβ̃(1 − β̃ ) fits to determine λ. The purple flat line with zero curvature is for the harmonic
approximation result from the inset of (a).

and 5(c). The calculated vacancy formation enthalpy �Hv

increases monotonically with temperature from 3.08 eV to
3.17 eV between 1400 and 1900 K [Fig. 5(a)] and is slightly
larger than values proposed from experiments of 3.0 eV [58].
The calculated vacancy migration enthalpy �Hm decreases
slightly from 1.167 eV to 1.163 eV [Fig. 5(a)], slightly smaller
than the reported migration enthalpy of 1.30 eV from experi-
mental analysis [58]. The calculated attempt frequency ν∗ also
shows small temperature dependence and only decreases from
2.3 × 1012 Hz to 2.2 × 1012 Hz as temperature increases from
1400 to 1900 K [Fig. 5(c)]. On the other hand, the temperature
dependence of the calculated vacancy formation entropy �S f

shows a much more pronounced temperature dependence and
is found to be the major reason for non-Arrhenius-like dif-
fusion in Mo. It decreases from 3.27kB at 1400 K to 2.79kB

at 1700 K, before recovering back to 3.22kB at 1900 K, as
shown in Fig. 5(b). The curved shape of �S f (T ) then directly
progresses into the curvature of the calculated self-diffusion
coefficients in Fig. 4. In order to quantify the effect of the
different contributions, we perform two fits of Eq. (11), first
one for calculated diffusion coefficients where the prefac-
tor is fixed to the average value of all calculated prefactors
(which results in a value of Davg

0 = 3.25 × 10−6 m2/s), and
second an analogous set of diffusion coefficients where the
activation energy is fixed to the average calculated value of
E avg

0 = 4.268 eV. For the first fit, we find almost zero nonlin-
earity, while for fixed Ea, we find λ = −0.041, which is 93%
of the overall nonlinearity. Thus, the nonlinearity in vacancy
diffusion in Mo is clearly dominated by the nonlinearity of the
diffusion prefactor as a consequence of anharmonicity from
thermal expansion. To investigate the effect further, a similar
analysis was made with fixed averaged attempt frequency,

resulting in a change of nonlinearity by less than 1%, making
the nonlinearity in the formation entropy by far the most
important factor.

This conclusion is different from the DFT-MD calcula-
tion by Mattsson et al. [18], in which the anomaly was
mostly attributed to anharmonicity in the vacancy formation
enthalpy �Hv . In their simulations, thermal expansion was
not considered and all MD simulations were performed at
the zero-temperature volume of vacancy and bulk, which ne-
glected important volume-dependent anharmonic effects from
thermal expansion. The fundamental proportionality between
the Grüneisen parameter, the prime indicator for anharmonic-
ity, and thermal expansion [41] as well as our results here
are strong indicators that thermal expansion cannot be ne-
glected when trying to understand anharmonic effects. Our
findings are further supported by the resistivity measurements
by Schwirtlich and Schultz [59], who find the temperature
dependence of the formation enthalpy is small and constant to
within 0.1 eV between 2000 K and 2600 K, whereas Mattson
et al. predict a much larger increase of 0.5 eV for that interval.

D. Self-diffusion in β-Ti

Our calculation results of self-diffusion coefficients in β-Ti
are plotted in Fig. 6(a) in comparison to both experimen-
tal and computational data [15,17,57]. Calculations based on
TST and the large-displacement algorithm are applied at five
temperatures: 1200, 1230, 1250, 1280, and 1300 K. As al-
ready described in Sec. III A, we choose the lower limit of
1200 K as the α-to-β transition temperature from LDM-DFT
calculations [30]. As to the higher limit, both the divergence
between experimental and theoretical thermal expansion coef-
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ficient as well as the 2/3 melting-temperature cutoff limit the
QHA applicability range to <1300 K [50–52]. Although these
choices make the temperature range for the DFT calculations
rather small, the anomaly of the self-diffusion coefficient can
still be seen in Fig. 6(b), and the data are sufficient to extract
the nonlinearity parameter, which is independent of the tem-
perature interval as we have discussed earlier.

To compare the nonlinearity of the self-diffusion in bcc Ti,
we plotted the normalized � ln D̃ vs β̃ in Fig. 6(b), taking a
procedure similar to that in Sec. III C. From the LDM-DFT
calculations, we find for β-Ti a nonlinearity coefficient of
λ = −0.068, about 1.6 times than what we had found for Mo.
A similarly stronger nonlinearity is also found in experiments,
where we fit a nonlinearity parameter of λ = −0.045 for
Murdock et al. [57], and λ = −0.040 for Kohler et al. [14],
which is about 2 times the Mo value.

In contrast to these positive normalized curvature param-
eters, the computational results from Kadkhodaei et al. [17]
show a small but positive nonlinearity parameter of λ =
0.012. This is a qualitative discrepancy since the compre-
hensive theoretical approach Kadkhodaei et al. should have
accounted for all contributions from lattice anharmonicity at
different temperatures except for the effect from thermal ex-
pansion since the same volume was used for all temperatures.
To further demonstrate the significance of thermal expansion,
we performed the same calculations with fixed volume at
the low-temperature limit. As shown in the inset of Fig. 6(a)
and the purple flat line in Fig. 6(b), the ln D vs. 1/T depen-
dence is perfectly linear. This striking contrast is a strong
indication that thermal expansion is the most likely cause
for the negative nonlinearity parameter λ in the anomalous
diffusion behavior in β-Ti. In order to explore whether the
origins of the bowing anomalies in β-Ti and Mo differ, we
again investigate the temperature dependence of formation
and migration enthalpies, as well as of formation entropy
and attempt frequency. The results are shown in Figs. 5(d),
5(e) and 5(f). The vacancy formation enthalpy �Hf increases
from 1.91 eV to 1.92 eV at the temperature from 1200 K to
1300 K [Fig. 5(d)], compared with an experimental estima-
tion of >1.50 eV [60]. This value from interpolated Mo and
Ta zero-temperature cells (Secs. II D and III B) agrees well
with the results from the nearest-neighbor-only free-energy
minimization, where the nearly perfect linearity with temper-
ature indicated a very weak temperature dependence of the
formation enthalpy [Fig. 5(d)]. Similarly, the vacancy migra-
tion enthalpy �Hm increases only slightly from 0.146 eV to
0.147 eV as temperature increases [Fig. 5(d)]. Indeed, when
we fit the calculated diffusion coefficients once again with
an averaged prefactor (which has a value of Davg

0 = 3.403 ×
10−5 m2/s for β-Ti), we find a slightly positive nonlinearity.
Thus, it is once again the prefactor that we identify as the
major source (90%) of the nonlinearity with λ = −0.0616.
Unlike Mo, however, both vacancy formation entropy and at-
tempt frequency contribute to a more comparable degree to the
nonlinear Arrhenius curve in β-Ti. Specifically, the vacancy
formation entropy �S f decreases from 5.08kB at 1200 K to
a minimum of 4.92kB at 1230 K before increasing back to
4.95kB at 1300 K [Fig. 5(e)], and the attempt frequency ν∗
decreases from 3.1 × 1012 Hz at 1200 K to 2.9 × 1012 Hz
at 1250 K, then increases back to 3.1 × 1012 Hz at 1300 K

[Fig. 5(f)]. With that, the formation entropy carries 64% of
the nonlinearity, leaving the remaining 36% to the attempt
frequency. Without the anharmonic attempt frequency, the
calculated nonlinearity in β-Ti would only be 25% larger than
that in Mo, and thus the effect of the formation entropy is
rather comparable in both materials.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have demonstrated that the nonlinear Ar-
rhenius self-diffusion behavior in bcc metals for the examples
of Mo and β-Ti can be largely attributed to the thermal expan-
sion effect, using the framework of quasiharmonic transition
state theory. In order to be able to calculate phonon frequen-
cies needed for attempt frequency and formation entropy in
the mechanically unstable β-Ti, we use the previously pro-
posed large-displacement method and introduce a two-step
approach for structural relaxation in mechanically unstable
crystals, which is first free-energy relaxation of the nearest-
neighbor shell and second further refinement by interpolation
of relaxed stable structures weighted by the nearest-neighbor
displacements. We also use a modified Debye formula to fit
thermal expansion over the entire temperature range allowing
prediction of lattice constants for any elevated temperature
from a few explicit calibration QHA calculations. We find
that phonon frequencies, at the heart of the two quantities
that define the diffusion prefactor—vibrational entropy and
attempt frequency—are greatly affected by thermal expan-
sion, and further lead to a nonlinear ln D vs 1/T dependence.
In order to quantify the degree of such nonlinearity in both
bcc Mo and β-Ti, we formulated a nonlinearity parameter λ

with respect to normalized diffusion coefficients at various
temperature ranges, and compare our results with previous
experimental data and computational work. β-Ti shows much
stronger nonlinearity than bcc Mo, and we further find a con-
siderable difference in the distribution of the nonlinearity on
formation entropy: While nearly all of the nonlinearity in Mo
comes from the formation entropy, the nonlinearity in β-Ti
is divided 2/3 : 1/3 between formation entropy and attempt
frequency, respectively, in contrast to previous suggestions.
The nonlinearity analysis of our calculated diffusion coeffi-
cients indicates that thermal expansion is largely responsible
for the deviation from linear Arrhenius-type self-diffusion
in bcc metals. Finally, our proposed methodology is general
enough that it also can be applied to other crystals with similar
mechanical instability.
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