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A commonly used procedure for computing the properties of defects in crystalline materials is to consider a
large supercell that includes the defect of interest. This is a straightforward technique as standard energy band
codes can be used for such computations. For neutral defects, the only impediment of such an approach is to
avoid defect-defect interactions between adjoining cells. However, this procedure can be complex if the defect
of interest is charged as the system at large contains Coulombic divergences. Moreover, some have recently
argued that the conventional definition of formation energies for charged defects cannot be reconciled with
statistical mechanics. Here, we focus on an alternative approach. We consider large nanocrystals wherein a
charged defect can be placed. Since the system is confined, a charged defect within the nanocrystal does not result
in a Coulombic divergence. The chief impediment is computational, i.e., while no defect-defect or Coulombic
divergences are present, the nanocrystal must be sufficiently large to allow the system to properly replicate
a bulklike configuration. With the development of new algorithms and hardware advances, computations for
systems of sufficient size to address this issue are feasible. In particular, we solve the Kohn-Sham equation in real
space using pseudopotential-density-functional theory for large silicon nanocrystals, which contain thousands of
atoms. We focus on (i) the screening of a point charge and (ii) the formation of a charged vacancy in hydrogen-
terminated silicon nanocrystals. This approach allows us to examine the role of quantum confinement in addition
to exploring the bulk limit. Comparisons to other methods confirm the viability of this approach.
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I. INTRODUCTION

A key aspect of electronic materials is the controlled in-
troduction of defects or dopants to alter intrinsic properties
for electronic device applications. The nature of these de-
fects across different length scales is a matter of continued
study as the length scales in device applications approach the
nanoregime. In particular, the interplay of restricted dimen-
sionality and quantum confinement can complicate the role
defects play in altering electronic properties, e.g., well-known
rules for describing defects in the bulk may become inopera-
tive at the nanoscale [1].

Here, we illustrate how computational methods based on
confined systems in real space can be used to predict the emer-
gence of nanoscale electronic properties in semiconductors
such as dielectric screening and how these properties evolve
from the nanoscale to the bulk limit.

Silicon nanocrystals (NCs) often serve as a prototypi-
cal semiconductor owing to the large number of theoretical
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and experimental studies [2]. The possible application of Si
NCs as photovoltaic and luminescent devices is among the
forefront of silicon research [3–10]. Here, we examine the
approaches for the modeling of charged systems with Si NCs
to avoid issues with divergent Coulomb terms. Traditionally,
using confined systems to model defects, charged or not, in
the bulk limit has been problematic as one needs to consider
very large systems to converge a solution [11]. However, the
advent of computational methods in real space allows one to
consider systems with thousands of atoms [12–14]. The use
of confined systems offers an additional advantage. We can
examine the role of quantum confinement on the electronic
properties of defects and the emergence of bulk configurations
as the size of a NC is increased.

Our focus resides in two areas: First, we will compute
dielectric properties by considering the screening of a test
charge. This will allow us to examine how dielectric properties
evolve and assess the distribution of the screening charge.
Similar computations have been done for a number of NC
configurations, although well before the bulk limit is achieved
[15–24]. Computational demands have limited previous cal-
culations of the microscopic dielectric screening function to
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using NCs consisting of ∼700 atoms [25] whereas we will
consider systems up to 5500 atoms. We will also avoid ad hoc
procedures needed to avoid the Columbic divergence when
using supercells containing a charged system [26,27]. Second,
we will examine the electronic structure of charged defects.
In particular, we examine charged vacancies in bulk silicon.
Vacancies are known to lower device performance because
they act as carrier traps, i.e., vacancies introduce states in
the gap thus decrease the carriers available. The key quantity
which determines the vacancy concentration [28–32] is the
formation energy [33–57].

A popular method of modeling a vacancy centers on con-
sidering a supercell of the bulk material wherein the system
retains translational symmetry. If the cell is of sufficient size,
the vacancy in each cell will not interact with vacancies in
adjoining cells. To remove vacancy-vacancy interactions re-
quires large cells.

When the vacancy considered is charged, special care is
required to resolve the Columbic divergence [53,56,58–61].
Also, some workers have argued that the conventional def-
inition of formation energy used for supercells cannot be
reconciled with statistical mechanics [31].

As an example, consider a positively charged vacancy.
One procedure to avoid charging the supercell is to add a
compensating background charge to keep the cell neutral. The
consequences of adding this background, e.g., determining the
total energy of the vacancy, can be problematic. A recently
proposed alternative is to place the “removed” electron into
an empty state in which case the system remains neutral [31].
One might argue that the added electron reflects a situation
where the system resembles an “excited state.” Nonetheless,
the agreement with other computational approaches appears
to be satisfactory.

In the case of a NC charging issues are moot, the electron
is removed from the system, and no divergent terms exist. Of
course, we can also examine the case where the electron is not
removed from the NC and assess what differences might exist.
We can also examine such issues as a function of NC size to
assess how the charged vacancies converge to the bulk limit.
We compare our structures and formation energies to previous
work and assess how large NCs need be to reproduce the bulk
limit.

II. COMPUTATIONAL METHODS

We form our Si NCs by taking a spherical fragment from a
bulk crystal with a calculated lattice constant of 5.37 Å, about
1% smaller than the experimental value. At the surface of the
NC, broken Si bonds are passivated with hydrogenlike atoms.
The role of the passivating atoms is solely to remove any
dangling bond states from the gap and to structurally terminate
the NC. Singly coordinated Si surface atoms are removed and
replaced by the passivating H-like atoms. The radius of the
NC is defined as the distance from the center of the NC to the
furthest passivating atom. A ball and stick model of a large
NC is illustrated in Fig. 1.

We solve the Kohn-Sham equation [63,64] on a uniform
grid in real space as implemented in the PARSEC code [12,65–
67]. The Laplacian in the kinetic-energy term is expanded
using high-order finite differencing. Periodic and confined

FIG. 1. Ball and stick model [62] of a Si nanocrystal, Si1523H524,
of radius 39 a.u. (1 a.u. = 0.5292 Å). The boundary of the bulk-
terminated fragment is passivated by H-like atoms (light pink). When
structural optimization is performed, the Si atoms at the surface (red)
are not relaxed, whereas the interior Si (blue) atoms are.

boundary conditions are available in this code. For NCs, we
use confined boundary conditions. We enclose the NC in a
spherical domain to simulate an isolated NC as the wave func-
tions are required to vanish beyond the domain boundary. The
domain boundary is set to be at least 7 a.u. (atomic units) from
the outermost atom of the NC. This ensures that the electronic
structure of the NC will not be affected by the domain size.

The local density approximation (LDA) as determined by
Ceperley and Alder [68] and parametrized by Perdew and
Zunger [69] is used for the exchange-correlation functional
within density-functional theory (DFT). Troullier-Martins
pseudopotentials [70] are used with Si having a valence con-
figuration 3s23p23d0 and a cutoff radius of 2.49 a.u. for all
the angular momentum channels. The H-like pseudopotential
has a valence 1s1 using a 1.99 a.u. cutoff. The large radius for
the H-like atom allows a “soft” pseudopotential, but preserves
the bond length of the Si-H bond and yields a reasonable
description of a H-H bond and the Si-H charge density. The P
and Al pseudopotentials were constructed using valence con-
figurations 3s23p33d0 and 3s23p13d0, respectively. The cutoff
radii for the angular momentum channels for P and Al are 1.95
and 1.98 a.u., respectively. We employ spin polarization to
describe the electronic structure of defects. In all cases, we use
a uniform grid spacing h. The spectral features are typically
well converged with h = 0.7 a.u., which we use to study the
dielectric screening. For accurate structural relaxation prob-
lems such as that of the vacancy, we use a grid of h = 0.5 a.u.
All atoms are relaxed [71–73], save the surface atoms. This
distinction is indicated in Fig. 1. Upon relaxation, the residual
forces are required to be less than ∼10−3 Ry/a.u.

A key aspect of our work is the availability of algorithms
that can address large systems. The “routinely solvable” sys-
tem size for materials has increased from dozens of atoms in
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the 1990s to thousands of atoms today, owing to algorithm
developments and advances in computing power. Real-space
pseudopotential-DFT coupled with a Chebyshev-filtered sub-
space iteration algorithm (CheFSI) can be used to solve
the electronic structures of systems containing over 26000
atoms [14]. Reducing the computational load for solving
the Kohn-Sham equation rests on an efficient eigensolver,
which can be accomplished with subspace filtering. During a
self-consistent-field (SCF) calculation, the linear eigenvalue
problems do not need to be solved to full accuracy in the
initial iterations when the electronic charge density is far from
converged [74]. CheFSI exploits this characteristic of SCF
calculations and focuses on improving the wave functions and
electronic charge density at the same time during the SCF
cycle. This strategy proves quite efficacious when solving
the nonlinear eigenvalue problem defined by the Kohn-Sham
equation.

CheFSI can be used to approximate the invariant sub-
space associated with the occupied states in a real-space
DFT calculation algorithm. The advantages of using Cheby-
shev polynomial filtering are as follows: (1) It only requires
multiplying the Hamiltonian matrix with vectors. (2) The
three-term recurrence of the Chebyshev polynomials makes
the filtering process efficient in terms of a memory footprint.
(3) Ritz vectors from a previous SCF iteration can be used as
the starting guess for the desired eigenvectors in the current
SCF iteration. (4) CheFSI is a block method that increases
concurrency and memory efficiency.

The key operation in CheFSI is the repeated application
of the Hamiltonian H, expressed as a “damped” Chebyshev
polynomial of degree m, Pm(H), on an initial subspace {ψi} at
each SCF step. The new basis is

{ψ̂i} = Pm(H){ψi}. (1)

If the polynomial is properly constructed, only components
in the desired subspace are preserved. Choosing the proper
subspace for the system of interest is in general straightfor-
ward. CheFSI is easily five to ten times faster than solving
the eigenproblem at each SCF step. Additional details can be
found elsewhere [14,74].

III. DIELECTRIC PROPERTIES OF Si NANOCRYSTALS

To approximate the dielectric properties of Si NCs, we
place a point charge within the NC. In particular, we replace
a Si ionic core potential by either an Al or a P ion core,
depending on whether we wish to remove or add a positive
charge from the ion core, respectively. We keep the number of
electrons constant.

The change in the electrostatic (i.e., Hartree) potential due
to the rearrangement of the electron density in the presence of
the point charge is the difference between the total screened
electrostatic potential and the bare point charge potential [25],

δVH = q

ε̄ · r
− q

r
. (2)

The screening function is given by

ε̄(�r) = 1

1 + |�r| · δVH(�r)/q
, (3)

FIG. 2. Spherically averaged screening function vs normalized
distance from center. (a) For the screening of a negative charge,
we compare results for Si4403H1060 to previous work [25] and to a
classical model. (b) The screening of a positive charge.

where q = ∓1, δVH(�r) = V 0
H (�r) − V −/+

H (�r), and VH(�r) is the
Hartree potential of the intrinsic (superscript 0) or charged
(superscript −/+) NC.

In Fig. 2(a), we compare our work for negative screening
to a classical model [75],

εeff (r) = εclassical

1 + r
R · (εclassical − 1)

(r < R), (4)

where R is the NC radius and we take εclassical = 11.9. We
also compare to previous work. Results for NCs smaller than
and including Si465H228 are from previous work [25]. Our
results for Si275H172 are indistinguishable to those presented
elsewhere [25]. We focus on results for a much larger NC:
Si4403H1060.

As the NC size increases, the peak of the screening func-
tions of the NCs moves to smaller distances while the height
of the peak increases. The NC screening functions approach
the classical model in the range 0 < r � 0.4R with increasing
NC size. The long-range tail of the screening function for
different sized NCs converges to the classical model. The ε̄(�r)
for Si4403H1060 agrees with the trend from the smaller NCs
using a plane-wave code [25]. The screening of a positive
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FIG. 3. Spherically averaged change in electron density. The y
axes are in units of e/a.u., e being the fundamental charge. Please
refer to the text for the definition for the symbols in the legends.
The NC surface is at ∼54.2 a.u., indicated by the gray vertical line.
Shown for (a) a negative charge and (b) a positive charge.

charge is shown in Fig. 2(b). The peak in Fig. 2(b) is higher
than the peak for Si4403H1060 in Fig. 2(a). Previous work also
found that the peak for the positive-charge screening function
is higher than the negative-charge screening function [25].

The induced charge δρ(�r) in Si4403H1060 for the screening
of a point charge is shown in Fig. 3: δρ−(�r) = ρ (Al ion
replacing the Si ion at the NC center) −ρ (the intrinsic NC),
δρ+(�r) = ρ (P ion replacing the Si ion at the NC center) −ρ

(the intrinsic NC), and δρ0(�r) = ρ (P ion replacing the Si ion
at the NC center then adding an electron) −ρ (the intrinsic
NC). Note that

∫
all space δρ+/−(�r) · d�r = 0 as the total number

of electrons did not change, while
∫

all space δρ0(�r) · d�r = 1
owing to the added electron.

The difference between δρ+(�r) and δρ0(�r) is consistent
with classical electrostatics [25]. As indicated in Fig. 3(b),
an electron added to a NC with a positive point charge at its
center will effectively spread itself over the surface. That is,
the added electron accommodates the charge deficiency near
54 a.u.

 

FIG. 4. Atomic relaxation magnitudes in Si1522H524 (i.e., with
vacancy) and in Si1523H524 (intrinsic).

The largest NC we examined converged to the bulk limit
as expected. Accessing NC of this size should allow us to ex-
amine defects in NC that from small systems where quantum
confinement plays a large role to the bulk limit where it does
not.

IV. VACANCY FORMATION ENERGIES

We consider monovacancies in Si NCs, where the vacancy
is placed at the center of a NC. By adding a net charge to the
system, we can charge the vacancy.

The formation energy of the vacancy [52] is determined by

E form = EN−1
q − EN + μSi + q(εVBE + EF), (5)

where EN is the total energy of the neutral intrinsic NC, EN−1
q

is the total energy of the NC containing a vacancy with net
charge q = 0,±1, εVBE is the valence band edge eigenvalue of
the intrinsic NC of the same size, μSi is the chemical potential
of bulk Si [76], and EF is the Fermi level, which is set to zero.

We consider a set of NCs that range from 29 to 1523 Si
atoms: Si29H36, Si87H76, Si275H172, Si657H300, and Si1523H524.
The sizes of the NCs included have R = 10.94, 15.98, 22.23,
29.79, and 38.63 a.u., respectively.

Atomic relaxation is not significant (<0.1 a.u.) for shells
more than five bonds away from the center of the NC as de-
termined for Si1522H524 (Fig. 4). Using the elastic constant of
Si NCs, the strain energy from the displacements in the outer-
most three shells is estimated to be about 0.2 meV/atom [77].
As such, there is no residual strain energy of any consequence.
Previous work found that when the NC included 12 shells,
95% of the charge density associated with the vacancy lies
in the bulk region, indicating a relatively small defect-surface
interaction [78].

We found an inward relaxation of the first shell atoms for
V +/V 0/V − for all the NCs considered, save the smallest NC
for V +. In Table I, we present fractional distances (relative to
the bulk distance

√
2

2 · lattice constant) between the four first
shell atoms surrounding the vacancy and their multiplicities
in parentheses. The multiplicities are not always six because
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TABLE I. Charged and neutral vacancy formation energies (in eV), neighboring distances, and point groups. E f labels the formation
energy. The fractional distance relative to the bulk structure is labeled by fd. The point group symmetry is given by pg. Calculations are
shown for several density functionals, included LDA, GGA, and the revised Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE06). In
addition to the NC’s work, supercell computations are also presented along with the numbers of atoms in the cell. See text for more details.

V + V 0 V −

E f fd pg E f fd pg E f fd pg

LDA
Si28H36 5.21 1.02 (6) Td 5.25 0.98 (6) Td 8.08 0.96 (6) Td

Si86H76 4.39 1.00 (4) D2d 4.41 0.94 (4) D2d 6.52 0.92 (6) Td

0.97 (2) 0.85 (2)
Si274H172 4.02 0.95 (4) D2d 3.79 0.90 (4) D2d 5.42 0.88 (4) C2v

0.91 (2) 0.77 (2) 0.83 (1)
0.72 (1)

Si656H300 3.85 0.90 (4) D2d 3.58 0.89 (4) D2d 4.91 0.87 (4) C2v

0.83 (1) 0.76 (2) 0.83 (1)
0.82 (1) 0.71 (1)

Si1522H524 3.67 0.89 (2) D2d 3.43 0.89 (4) D2d 4.57 0.86 (4) C2v

0.88 (2) 0.75 (2) 0.83 (1)
0.78 (2) 0.71 (1)

215 atoms [53] 3.20 ∼D2d 3.27 D2d 3.88 ∼D3d

999 V +, 255 V 0,V − atoms [51] 3.50 D2d 3.55 D2d 3.71 ∼C2v

999 atoms [52] 3.19 0.89 (4) D2d 3.47 0.89 (4) D2d 4.23 0.91 (3) D3d

0.76 (2) 0.75 (2) 0.69 (3)

GGA
Si656H300 4.02 D2d 3.89 D2d 5.16 C2v

Si1522H524 4.04 D2d 3.86 D2d 4.89 C2v

215 atoms [55] 3.61 ∼D2d 3.67 D2d 4.04 C2v

511 atoms [31] ∼3.5 ∼3.6 ∼4.2
511 atoms [54] 3.49 D2d 3.53 D2d 4.14 D2

999 atoms [52] 3.50 0.92 (4) D2d 3.62 0.91 (4) D2d 4.25 0.89 (4) C2v

0.81 (2) 0.78 (2) 0.84 (1)
0.73 (1)

1727 atoms [44] 3.46

HSE06
511 atoms [54] 4.06 4.08 5.13
Experiment [33,84] D2d 3.6 ± 0.2 C2v

Jahn-Teller induced distortions can break the symmetry. The
displacement of the first two shells in Si1522H524 are presented
in Fig. 5 [62]. Previous work also found an inward relaxation,
especially for large NCs [45,46,52,53,57,79–83].

The degeneracy and occupancy of the states introduced
into the bulk gap is related to the point group of the relaxed
structure. The Kohn-Sham gap states and the point groups are
consistent with the tight-binding seminal work by Watkins
[51,84]. For V +/V 0, there is a half/fully occupied b2 (repre-
sentation) state and an empty, doubly degenerate, e state. The
b2 and e states arise from a triply degenerate t2 state owing to
a Jahn-Teller distortion, which lowers the symmetry from that
of the perfect crystal (Td ) to D2d [85]. For V −, the Jahn-Teller
distortion lowers the symmetry to C2v and splits the e level.
We found the degeneracy and the occupancy number of the
gap states to be consistent with the Watkins model (Fig. 6) and
with previous work on V 0 [42,43] and on V +/V 0/V − [79].
Quantum confinement is responsible for the increase of the
Kohn-Sham gap from 1.02 to 1.92 eV upon decreasing the NC
size from Si1522H524 to Si28H36. The correct degeneracy and
occupancy of the gap states are seen in NCs larger than and

FIG. 5. Wave function squared using an isosurface (yellow) of
value 5 × 10−5 e/Å3, for the (a) filled and (b) empty gap state of
the neutral Si1522H524. The first (red) and second (blue) shell atoms
are shown in their unrelaxed positions. Their relaxation movement
vectors, scaled by a factor of 2.5, are represented by the arrows in (a).
For the second shell atoms, only a few vectors are (barely) visible.
The wave function in (b) is an average over doubly degenerate states.
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FIG. 6. Kohn-Sham energy levels in the gap for Si1522H524. We
show the gap of Si1523H524 at the left column for easy comparison.
Red, light green, and dark blue denote full, half, and empty occu-
pancy, respectively. The left and right half of each column are for the
spin-up and spin-down channels, respectively. Singly (s) and doubly
(d) degenerate states are also labeled.

including Si86H76 for V +/V 0 and larger than and including
Si274H172 for V −.

The point group D2d/D2d/C2v for V +/V 0/V − in NCs
larger than Si86H76/Si86H76/Si274H172 is consistent with the
Watkins model and with electron paramagnetic resonance
(EPR) studies (for V +/V −) [84]. The point groups are pre-
sented in Table I in Schoenflies notation.

The symmetry is determined using the distribution of
fractional distances among the first shell atoms. Symmetry
detection using the entire NC could be erroneous as the
boundary atoms are fixed in their bulk positions. Previous
theoretical work also found D2d for V + [51–55,57,79] and
V 0 [42–44,48,51–55,57,79] and C2v for V − [51,55,79,82].
The lack of Jahn-Teller symmetry breaking in our Si28H36

stems from the fact that we only relaxed the first shell. We
found higher-energy (“metastable”) structures with the D2

point group for V − using Si86H76 and Si274H172. We suggest
that the structures with the D2 point group for V − reported in
Refs. [54,57] may not represent the ground state.

We examine the defect charge densities in Si1522H524 which
are shown in Fig. 5. The densities are consistent with the
Watkins model and the previous work on a smaller NC
(Si166H124) [78]. The density for the filled b2 state is large
between the first shell paired atoms and has a node in the va-
cancy plane. The dangling bond orbitals of each pair linearly
combine as a bonding state. The two bonding states then form
an antibonding state, giving rise to the center node. For the
empty e state, the dangling bond orbitals of each pair combine
to form an antibonding state. Then the two antibonding states
form an antibonding state. Thus there are nodes between the
paired atoms and at the center.

The formation energy, 3.43 eV, for V 0 using Si1522H524

agrees with the 3.6 ± 0.2 eV from positron-lifetime exper-
iments [33] (Table I). In Table I, we give results for the
formation energy from NC and supercell models for different
energy functionals and different sized systems.

We employed two functionals: LDA [69] (mentioned ear-
lier) and the generalized gradient approximation (GGA) as
parametrized by Perdew, Burke, and Ernzerhof (PBE) [86,87].
We compared our LDA work with GGA from our work and
results from similar-sized systems in the literature [31,44,52].
For our largest system Si1522H524 the GGA formation energy
is 4.04/3.86/4.89 eV for V +/V 0/V −, respectively, which is
0.37/0.43/0.32 eV higher than the LDA results. This uniform
shift agrees quite well with previous comparisons between
GGA and LDA for smaller systems [53,55]. Also presented in
Table I are results in the literature using a hybrid functional.
These results agree quite well (within ∼0.1 eV) with our GGA
computations.

We can also compare our work with an approximate sta-
tistical model [31] where the occupancy of the Kohn-Sham
levels is constrained. For example, for a positively charged va-
cancy an electron is placed in an empty state corresponding to
the conduction band as opposed to removing the electron from
the bulk crystal. As noted, the later process presents com-
putational issues for supercell models where compensating
backgrounds are often employed. The approximate statistical
model using GGA for a 511-atom supercell yields 3.5, 3.6,
and 4.2 eV for V +/V 0/V −, respectively. In principle, it should
be possible to consider an approximate statistical model for
a large NC. However, estimating the valence and conduction
band energies can be problematic owing to quantum confine-
ment. Nonetheless, we find a statistical model yields energies
for the V +/V 0/V − for our NC (Si656H300) that agree to within
0.2 eV.

Our NC results for this system without employing the
statistical model, i.e., wherein an electron is added or removed
from the system, yield values of 4.0, 3.9, and 4.9 eV for
V +/V 0/V −. The formation energy for the positively charged
vacancy state is within ∼0.1 eV of the neutral vacancy, which
appears consistent with other GGA calculations. The forma-
tion energy for the negatively charged vacancy compared to
the neutral vacancy energy is ∼1 eV larger. This is higher
than the statistical model value of ∼0.6 eV. We note that the
negatively charged value appears to decrease as a function
of NC size. Some of the difference might be reduced if we
considered an even larger NC.

As the size of the NC decreases, the vacancy formation en-
ergies increase, i.e., the energy required to introduce a vacancy
in the NC becomes less favorable. This trend, as illustrated
in Fig. 7, is not accessible within supercell geometries since
the systems are not confined. Similar effects are known for
other energetically unfavorable defects in NCs and results
from a phenomena known as “self-purification” [88]. Within
a NC an energetically unfavorable defect may readily diffuse
to the surface and lower the energy of the system [88]. We
know that the reconstruction energy of a vacancy is significant
[78]. As the NC increases in size, the strain energy associated
with the vacancy becomes dispersed across a large number
of atoms and the vacancy formation energy is reduced. Small
NCs exhibit a strong strain energy per atom since the strain
is distributed only over the first couple of shells. For large
NCs, the additional shells are not strongly perturbed. Also,
quantum confinement is known to alter the electronic states
for small NC’s, e.g., the band gap is known to increase as the
size of the NC decreases. The role of quantum confinement in
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FIG. 7. Formation energies for neutral and charged vacancy.

terms of formation energies does not lend itself to a simple
interpretation. The electronic states are physically confined
for smaller NCs; however, defect states tend to be localized
and are not as strongly affected by confinement. This accounts
for the lack of a strong size dependence for the relative energy
differences between the charged states.

The relative energy differences between adding and sub-
tracting charge to the vacancies is clear from Fig. 6. For a
positively charged vacancy V +, an electron is removed from
the lowest gap state, leaving it half occupied. But when we add
an electron, according to the V − panel, we add it to a different
state, a higher-energy state. In one case we are removing an
electron from a filled state, and in the other case, we are
adding an electron to an empty state.

V. SUMMARY

The ability to calculate dielectric and energetic properties
of a large confined system allows us to consider charged

defects in bulk Si in a straightforward manner without invok-
ing a supercell with a compensating background or the use of
statistical models. The use of NCs for this purpose requires
the use of large systems, typically composed of thousands of
atoms. With the advent of real-space algorithms for solving
the Kohn-Sham equations and the accompanying hardware,
access to such NCs is feasible.

Here, we examined (i) the screening of a point charge
and (ii) the formation of charged vacancies in hydrogen-
terminated Si NCs. The screening function for our largest NC
(Si4403H1060) has essentially converged to the bulk limit and is
in agreement with a classical electrostatics model.

The formation energy for the neutral vacancy as deter-
mined from NC systems is consistent with the positron-
lifetime experiments [33]. The point groups for the charged
vacancies are also consistent with the electron paramagnetic
resonance experiments and the well-known Watkins model
[84].

Our work is consistent with calculations that use supercells
with compensating backgrounds to handle Coulombic diver-
gences. It is also consistent with calculations that invoke a
statistical model where no compensating background is re-
quired. Moreover, unlike supercell computations, we can also
investigate the role of quantum confinement for the vacancy
formation energy as a function of the NC size. This reinforces
the use of confined systems for modeling defects.
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