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Ferroelectric HfO2 and the importance of strain
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Ferroelectric oxides based on HfO2 show tremendous promise for the next generation of memory and logic
devices. The ferroelectric polymorph is one of several that can be derived from the high symmetry cubic
fluorite structure of HfO2. A single grain of HfO2 may consist of a coherent mixture of multiple orientational
and translational variants of different polymorphs. Here, we use symmetry-adapted strain-order parameters to
elucidate the relationship between the different HfO2 polymorphs and their symmetrically equivalent variants.
We use first-principles electronic structure methods to identify minimum energy pathways and map them in
subspaces of the symmetry-adapted strain order parameters. We next investigate the atomic structure of domain
boundaries that separate coexisting variants of ferroelectric HfO2. We rely on Gibbsian excess quantities and a
precise specification of mechanical boundary conditions to describe the thermodynamic properties of domain
boundaries. Our first-principles calculations show that the O and Hf shuffle arrangement within a domain bound-
ary is closely related to the intermediate shuffle patterns of the homogeneous pathways between ferroelectric
variants. Furthermore, the preferred structure within a boundary is very sensitive to local strain constraints
imposed by the adjacent ferroelectric variants, leading to highly anisotropic domain boundary energies.
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I. INTRODUCTION

Ferroelectric materials are of interest for high-density
electronics such as ferroelectric field-effect transistors (Fe-
FET) [1–4] and ferroelectric random-access memory (FRAM)
[5,6]. The ever-increasing desire to reduce device dimensions,
however, is leading to significant materials challenges [7,8].
Traditional perovskite ferroelectrics, for example, lose their
ferroelectric properties below a thickness of 1.2 nm [9–11]
and their small band gaps make them susceptible to high
leakage currents [12,13]. They often also contain numer-
ous chemical elements [1,14–19], making them difficult to
deposit, especially in 3-dimensional geometries [20,21]. Fur-
thermore, many promising perovskite ferroelectrics contain
Pb [1,15,22–24], a large and volatile element that is not only
difficult to incorporate during atomic layer deposition (ALD)
[21,25], but is also toxic.

The report of a ferroelectric form of HfO2 in 2011
[26,27] has made this material a prime candidate for multiple
logic and memory devices [28,29]. The ferroelectric form of
HfO2 is identified to be a noncentrosymmetric orthorhom-
bic structure belonging to the Pca21 space group [26,27,30].
Ferroelectric HfO2 exhibits the remarkable property that its
ferroelectric character becomes stronger as its dimensions get
smaller [31]. A recent report demonstrated ferroelectric be-
havior in a 1-nm-thick HfO2 based film [32]. Electric dipoles
in HfO2 are extremely localized (∼ 0.3 nm) and stable due to
flat phonon bands [33]. This enables ferroelectric switching
at an angstrom scale, which is not possible in conventional
perovskites [33]. For applications that need thicker layers or
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to minimize leakage currents, it is possible to incorporate
ferroelectric HfO2 in superlattice structures or to combine
it with thin layers of other oxides, such as Al2O3, without
negatively affecting ferroelectric properties [28,34,35]. HfO2

based oxides are also compatible with current CMOS chem-
istry and manufacturing, and have already been in widespread
use in Si-based electronics as high-k dielectrics [28,29]. The
processing technology of HfO2 based heterostructures with
ALD is mature and the chemistry is easy to integrate in 3-
dimensional architectures [28,29]. Ferroelectric HfO2 is not
only very promising for FRAM and FeFET, but also for
ferroelectric tunnel junctions (FTJ), synapses for neuromor-
phic computing and devices that exploit negative capacitance
[28,29,36,37].

HfO2 has many polymorphs depending on its tempera-
ture, state of stress or strain, and thermomechanical history
[38–41]. Most of these polymorphs can be derived from a
common cubic fluorite structure through the application of
small symmetry breaking distortions. The structural common-
ality among the HfO2 polymorphs allows for the coherent
coexistence of several polymorphs within a single grain
[42,43]. It also allows for the coherent coexistence of sym-
metrically equivalent orientational and translational variants
of the same polymorph. The coherent coexistence of multiple
variants of the ferroelectric polymorph of HfO2, for exam-
ple, enables the switching of the net polarization of a grain
through the enlargement of favorably oriented domains at
the expense of less favorably oriented domains [44–48]. This
occurs through the migration of domain walls, the boundaries
that separate different variants of a polymorph that coexist
coherently within the same grain [49–51].

In this paper, we build on and unify previous first-
principles studies of HfO2 [38,49–59] and clarify the re-
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lationship between the different polymorphs of HfO2 with
the help of symmetry-adapted strain-order parameters. We
systematically identify pathways that connect different HfO2

polymorphs and their symmetrically equivalent variants and
map them in subspaces of symmetry-adapted strain-order
parameters. Several of the pathways identified in this study
have lower energies than those identified in previous studies.
We also explore the energies and atomic structures of do-
main boundaries, using a Gibbsian approach that relies on
excess quantities to describe the thermodynamic properties
of domain boundaries. The atomic structure within the stud-
ied domain boundaries are found to be very similar to the
intermediate states of the homogeneous pathways that con-
nect different variants. We find that the imposed strains and
stresses play an important role in determining the energy and
atomic structure of domain boundaries. This leads to highly
anisotropic domain boundary energies.

II. METHODS

All electronic structure calculations were performed us-
ing the Vienna ab initio simulation package (VASP) [60–62]
with the projector-augmented wave (PAW) method [63,64].
The SCAN exchange-correlational functional [65] was used
as it is capable of accurately predicting the structure and
relative stabilities of oxides [66]. The total energy was con-
verged to 10−5 eV and the forces on atoms were converged
to 0.02 eV/Å when performing atomic relaxations. An au-
tomatic k-point mesh generation scheme was used with the
length parameter Rk set equal to 32 Å. A plane wave en-
ergy cut-off of 520 eV was used for all the calculations.
Spontaneous polarization calculations were performed using
Berry phase expressions [67] as implemented within the VASP

package. To overcome the multivaluedness of polarization in
periodic cells, dipole moments of different variants of HfO2

were determined relative to a close nonpolar structure [68].
Solid-state nudged elastic band (ss-NEB) calculations were
performed using the transition state tools for VASP [69–71].
A climbing image method [72] with a Quick-Min optimizer
[73] was used to find the saddle points along the minimum
energy path. The forces on atoms are converged to 0.03 eV/Å.
A crystal mapping algorithm was used [74] to determine sym-
metry relations between various phases and variants of HfO2.

III. RESULTS

A. Crystallography and strain order parameters

The high temperature phase of HfO2, referred to as c-HfO2,
has a cubic fluorite structure with space group Fm3̄m. The Hf
atoms of c-HfO2 reside on an fcc sublattice with the oxygen
atoms filling the interstitial tetrahedral sites of the Hf sub-
lattice. A variety of lower-symmetry polymorphs, including
the tetragonal (t-HfO2, space group P42/nmc), orthorhombic
(o-HfO2, space group Pca21) and monoclinic (m-HfO2, space
group P21/c) polymorphs, can be generated upon straining the
c-HfO2 unit cell and displacing the atoms within the nonprim-
itive cubic unit cell of c-HfO2. The degree and nature of these
distortions become clear with the use of symmetry-adapted
strain and shuffle order parameters. To track the strains that
relate one polymorph to another, we use the following strain
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FIG. 1. The placement of the c-HfO2 (blue circle), t-HfO2 (or-
ange triangles), and o-HfO2 (green diamonds) polymorphs in e2 − e3

space. The cubic phase c-HfO2 serves as the reference crystal to
measure strain and appears at the origin. Also shown are the electric
polarization vectors for each orientational variant of o-HfO2. The
distortions of the unit cells are exaggerated to highlight the nature
of the distortion.

order parameters [75]:
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where the Exx etc. refer to Cartesian strains applied to a cubic
reference crystal of HfO2 with its cubic axes aligned with the
Cartesian axes. The first symmetry-adapted order parameter
e1 measures symmetry preserving volumetric changes when
strains are infinitesimal or when using the Henky strain metric
[75]. The next two strain order parameters, e2 and e3, measure
tetragonal and orthorhombic distortions of the cubic unit cell.
The last three strain order parameters, e4, e5, and e6, are shear
strains. Figure 1 shows the placement of different polymorphs
in the subspace spanned by e2 and e3, with c-HfO2 residing at
the origin.

The tetragonal t-HfO2 polymorph can be obtained from
c-HfO2 through a combination of an oxygen shuffle and a
tetragonal lattice strain. There are three symmetrically equiv-
alent tetragonal strains that can be applied to the cubic
reference crystal. One t-HfO2 variant emerges upon the ap-
plication of a tetragonal elongation along the ẑ axis of the
cubic phase coupled with a uniform contraction along the x̂
and ŷ axes. This deformation corresponds to a finite value of
e3 at e2 = 0 and is illustrated in Fig. 1 as the orange triangle
on the positive e3 axis. Symmetrically equivalent tetragonal
strains can also be applied along the x̂ axis and along the ŷ
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(a) (b)

(c) (d)

FIG. 2. Translational variants of tetragonal HfO2 showing (a) the
+ẑ shuffle viewed down the x̂ axis, (b) the −ẑ shuffle viewed down
the x̂ axis, (c) the +ẑ shuffle viewed down the ẑ axis and (d) the −ẑ
shuffle viewed down the ẑ axis. The red oxygens occupy the (400)
plane whereas the orange oxygens occupy (400) plane translated by
[1/2 0 0].

axis, which appear in e2-e3 space along lines that have been
rotated by ± 120o relative to the e3 axis as shown in Fig. 1.

Each tetragonal variant undergoes an oxygen shuffle par-
allel to the tetragonal axis. For the tetragonal distortion along
the ẑ axis, columns of oxygen parallel to the <001 > direction
shuffle up and down in a checkerboard pattern within the (001)
plane. There are two translational variants of the ẑ shuffle.
The shuffle distortion can be realized with a single phonon
mode of c-HfO2 (a X −

2 phonon mode), with a positive am-
plitude generating one translational variant and a negative
amplitude generating the other translational variant [54]. We
refer to these translational variants as +ẑ and −ẑ, respectively
as shown in Fig. 2. Since there are two translational variants
for each of the three orientational tetragonal variants, a total
of six tetragonal variants can form from a common high tem-
perature c-HfO2 crystal.

Each tetragonal variant can undergo orthorhombic strains,
leading to two symmetrically equivalent orthorhombic distor-
tions applied to a common tetragonal variant. The ẑ tetragonal
variant along the e3 axis, for example, can deform to or-
thorhombic symmetry through the activation of either a
positive or a negative e2 strain. Figure 1 shows two symmet-
rically equivalent orthorhombic distortions (green diamonds)
of the ẑ oriented tetragonal variant. Rotating these strains by
± 120o in e2-e3 space yields the symmetrically equivalent
orthorhombic distortions relative to the x̂ and ŷ tetragonal
variants.

The ferroelectric orthorhombic form of HfO2, (o-HfO2)
can be generated by applying additional atomic shuffles to the
nearest tetragonal variant. As an illustration, consider the ẑ
tetragonal variant along the e3 axis in Fig. 1. An application

(a) (b)

FIG. 3. The (a) orthorhombic and (b) monoclinic structures.
Both structures have oxygen that are coordinated by four Hf (orange
polyhedra) and three Hf (red polyhedra). The fourfold and threefold
coordinated oxygen segregate to alternating planes that are parallel
to the yz plane.

of a negative e2 leads to an orthorhombic cell where the lattice
vector parallel to x̂ is shortened relative to that parallel to ŷ.
For this orientational variant of the orthorhombic cell, the a
and b lattice vectors are parallel to the x̂ and ŷ directions,
respectively, while the c lattice vector is parallel to the ẑ di-
rection. In o-HfO2, four of the eight oxygen ions per unit cell
remain tetrahedrally coordinated by Zr (albeit off-centered),
while the other four oxygen displace to triangular faces of
the Zr tetrahedra, leading to threefold coordination [76]. The
ordering of fourfold and threefold coordinated oxygen occurs
in layers that are perpendicular to the short a axis of the
orthorhombic cell. This is illustrated in Fig. 3(a). The layered
ordering of fourfold and threefold coordinated oxygen ensures
that each Hf is coordinated by seven oxygen ions.

There are six orientational variants of o-HfO2 that can be
derived from a common c-HfO2 as illustrated by the green
diamonds in Fig. 1. Each orientational variant can in turn
host eight symmetrically equivalent oxygen shuffles, leading
to a total of 48 symmetrically equivalent variants of o-HfO2

having a common cubic reference crystal. The eight symmet-
rically equivalent oxygen shuffles for a particular orientational
variant are shown in Fig. 4. The layers of fourfold and three-
fold coordinated oxygen are indicated by the orange and red
atoms, respectively, and are perpendicular to the a lattice vec-
tor of the orthorhombic cell. These variants have been derived
from a ẑ-shuffled tetragonal variant (the ẑ axis points out of
the page in Fig. 4). For a particular orientational variant of the
orthorhombic form, four oxygen shuffles are derived from a
+ẑ tetragonal shuffle (1, 4, 5, and 8 in Fig. 4) while the other
four oxygen shuffles derive from a −ẑ tetragonal shuffle (2, 3,
6, and 7 in Fig. 4). The o-HfO2 lacks an inversion symmetry
and therefore has an electric polarization. The polarization
directions for each orientational variant are shown in Fig. 1.
The polarization vector is parallel to the planes of fourfold
and threefold coordinated oxygen but is perpendicular to the
tetragonal axis of the tetragonal variant that it is derived
from, thereby making it parallel to the b lattice vector of the
orthorhombic cell. This is illustrated in Fig. 4 by the black ar-
row. The value of spontaneous polarization as calculated with
SCAN is 45.75 µC/cm2, which is in good agreement with
the experimental value [77]. The oxygen shuffle within each
orientational variant determines whether the polarization is
positive or negative. The relation between the atomic shuffles
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(a)

(b)

FIG. 4. All 8 symmetrically equivalent shuffle variants of an ori-
entational variant of o-HfO2. The 8 shuffle variants have been derived
from a ẑ tetragonal variant that has undergone a negative e2 strain.
For this orientational variant of the orthorhombic unit cell, the a and
b lattice vectors are parallel to the x̂ and ŷ axes, respectively, while the
c lattice vector is parallel to the ẑ axis. (a) shows variants 1 to 4 and
(b) shows variants 5 to 8, both in clockwise order. Variants 1, 4, 5, and
8 have a +ẑ shuffle whereas variants 2, 3, 6, and 7 have a −ẑ shuffle.
Black arrows indicate the direction of the electric polarization.

⊕
indicates that the oxygen shuffle is coming out of the plane whereas⊗

indicates the shuffle is going into the plane.

of o-HfO2 and phonon modes of c-HfO2 has been described
in detail by Qi and Rabe [54].

The monoclinic form of HfO2 (m-HfO2) can be derived
from t-HfO2 in a manner that is similar to that described for o-
HfO2. A particular monoclinic variant can be obtained by first
applying an orthorhombic strain to a tetragonal variant in e2-e3

space followed by an application of a shear strain to produce
a monoclinic unit cell [76]. This is illustrated in Fig. 5 for the
four orientational variants of the monoclinic form that can be
derived from a tetragonal ẑ variant. Application of a negative
e2 strain to a tetragonal ẑ variant, for example, generates an

4

4
-

4
+

+

-

FIG. 5. A strain map in e2 − e4 − e5 space at a finite value of
e3 showing the relationship between the tetragonal, orthorhombic
and monoclinic polymorphs derived from a ẑ tetragonal variant [76].
Two monoclinic orientational variants can be derived from each or-
thorhombic variant. There are 4 shuffle variants for each monoclinic
strain.

orthorhombic unit cell that can then be sheared by a positive
or negative e5 strain to generate two orientational variants of
the monoclinic unit cell. Four orientational variants of the
monoclinic unit cell can be obtained from each tetragonal
distortion, leading to a total of twelve orientational variants of
the monoclinic unit cell that can be derived from a common
cubic reference.

The oxygen shuffles in m-HfO2 have much in common
with those in o-HfO2. Similar to o-HfO2, the oxygen of
m-HfO2 shuffle to form alternating layers of fourfold and
threefold coordinated oxygen [76]. For the monoclinic variant
obtained from a tetragonal ẑ shuffle upon application of a
negative e2 strain (Fig. 5) these layers are parallel to the (100)
planes. Figure 3(b) shows the alternating layers of fourfold
(orange polyhedra) and threefold (red polyhedra) coordinated
oxygen. A crucial difference between the shuffle of m-HfO2

and that of o-HfO2 is the arrangement of oxygen in the three-
fold coordinated layers. This is illustrated in Fig. 6, which
shows a projection of the threefold coordinated oxygen ions
of the (100) layers of the monoclinic and orthorhombic forms.
The particular ordering of the oxygen ions over threefold
coordinated sites of o-HfO2 is responsible for the electric
polarization.

B. Pathways between different polymorphs

The stability of different polymorphs of HfO2 depends on
temperature and state of strain. In some instances, multiple
polymorphs can coexist within the same grain, where one
polymorph is the stable phase and the others are metastable
phases [42]. In this context, it is of interest to explore min-
imum energy pathways connecting the different polymorphs
of HfO2. Similar to cubic ZrO2 [78,79], it is well known that
the cubic form of HfO2 is dynamically unstable with respect
to oxygen shuffles [38]. The lower symmetry polymorphs,
in contrast, are stable with respect to small displacements
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(a) (b)

FIG. 6. Projection of the oxygen layer (red atoms) having
threefold coordinated Hf atoms in the (a) orthorhombic and (b) mon-
oclinic structures. The green and grey Hf atoms occupy adjacent
(200) planes.

and strains and each reside within a local energy well. This
is evident in Fig. 7, which collects the results of solid-state
nudged elastic band calculations performed between different
pairs of HfO2 polymorphs.

Figure 7 shows that c-HfO2 has the highest energy of all
polymorphs and is a local maximum with respect to a path
connecting c-HfO2 with t-HfO2. It will, therefore, sponta-
neously collapse to a tetragonal variant (at zero Kelvin). The
tetragonal variant t-HfO2 resides in a shallow energy well and
is separated by a small barrier from m-HfO2. The monoclinic
form, m-HfO2, has the lowest energy among the four poly-
morphs considered here. A large barrier separates m-HfO2

from o-HfO2, with the latter having an energy between that
of t-HfO2 and m-HfO2. Figure 7 also shows the energy along
a path that connects o-HfO2 and t-HfO2. The tetragonal form,
t-HfO2, again resides in a shallow well with respect this path.

It is instructive to track the strains of the crystal relative to
that of c-HfO2 along the pathways connecting the different
polymorphs of HfO2. Figure 8 shows a projection of the
strain order parameters in the e2-e3 subspace. The transfor-

FIG. 7. The energy along pathways connecting different poly-
morphs of HfO2. The blue circle corresponds to c-HfO2, the orange
triangles to t-HfO2, the purple pentagon to m-HfO2 and the green
diamond to o-HfO2.

(a) (b)

(c) (d)

FIG. 8. The strain paths in e2 − e3 space between (a) c-HfO2 (at
the origin) and the three symmetrically equivalent t-HfO2 variants
(orange triangles), (b) t-HfO2 and m-HfO2 (purple pentagons), (c) m-
HfO2 and o-HfO2 (green diamonds), and (d) o-HfO2 and t-HfO2.

mation from c-HfO2 to t-HfO2 follows a path corresponding
to a simple tetragonal strain as shown in Fig. 8(a). All three
symmetrically equivalent paths are shown in Fig. 8(a). Fig-
ure 8(b) shows the six symmetrically equivalent minimum
energy pathways connecting t-HfO2 and m-HfO2 projected
in e2-e3 space. The projected strains of the six orientational
variants of m-HfO2 are shown as purple pentagons in Fig. 8.
The projections in e2-e3 space represent the tetragonal and
orthorhombic strains that must be applied to c-HfO2 to ob-
tain the monoclinic unit cell. The projection of the strain
path between t-HfO2 and m-HfO2 follows a curved path. The
tetragonal variant is first stretched along its tetragonal axis
before picking up an orthorhombic strain. The onset of or-
thorhombic strains is accompanied by a contraction along the
tetragonal axis. A similar path is followed in e2-e3 space when
m-HfO2 transforms to o-HfO2 as shown in Fig. 8(c). Instead
of following the shortest path in e2-e3 space, the crystal first
adopts tetragonal symmetry before it becomes orthorhombic.
The path connecting t-HfO2 and o-HfO2 is shown in Fig. 8(d).
Neighboring t-HfO2 and o-HfO2 variants are close together
in e2-e3 space, and the minimum energy path connecting the
polymorphs is almost linear in strain space. In calculating the
path between o-HfO2 and m-HfO2, care was taken to ensure
that the particular oxygen shuffle variant for each polymorph
minimized the required atomic displacements to go from o-
HfO2 and m-HfO2. This was achieved by using a mapping
algorithm recently implemented within CASM [74].

C. Pathways between different tetragonal variants

The strain maps in the e2-e3 subspace show that the tetrago-
nal variants, t-HfO2, serve as hub phases from which clusters
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of orientational and translational variants of m-HfO2 and o-
HfO2 can be obtained. It is, therefore, of interest to explore
pathways that connect different orientational variants of t-
HfO2. Figure 9(a) shows the energy along a path connecting
a ẑ variant of t-HfO2 to a ŷ variant. The pathway connecting
different orientational variants of t-HfO2 of a common c-HfO2

follows a curved path in e2-e3 space, bypassing the inter-
mediate cubic phase, as shown in Fig. 9(b). The tetragonal
shuffle of the oxygen ions also does not pass through the
cubic phase, but instead simply rotates from one orientation
to another orientation. This can be understood upon inspecting
the energy surface of cubic HfO2 as a function of the phonon
modes responsible for the tetragonal oxygen shuffle of t-HfO2.

Figure 9(c) shows the calculated energy surface of cubic
HfO2 as a function of the oxygen shuffle amplitude and ori-
entation in the space spanned by the ŷ and ẑ shuffle phonon
modes. The origin in Fig. 9(c) corresponds to the cubic phase
with oxygen residing at the centers of their tetrahedral inter-
stitial sites (a shuffle amplitude of zero). The energy of the
cubic phase is a maximum in this space. The local minima
correspond to finite ŷ and ẑ shuffles. As is clear in Fig. 9(c),
these minima are separated by low barriers at finite shuffle
amplitude along the dotted-orange lines. While all the shuffle
orientations are degenerate in c-HfO2, a tetragonal distortion
along the ẑ axis, for example, will favor the +ẑ and −ẑ shuf-
fles over the ±ŷ and ±x̂ shuffles. Figure 9(c) also makes it
clear that a transition from a +ẑ-shuffle to a −ẑ-shuffle will
occur not by passing through a cubic state with a zero shuffle
amplitude, but instead through a rotation of the oxygen shuffle
through either a ±ŷ or a ±x̂ shuffle. Similar behavior has been
predicted for ZrO2 [78,79].

D. Pathways between different orthorhombic variants

Due to the technological importance of being able to switch
the polarization of an orthorhombic variant, we next focus on
pathways between different variants of o-HfO2. We restrict the
analysis to pathways between different shuffle variants that
all belong to the same orientational variant. There are eight
variants for a given orientational variant of the orthorhombic
unit cell, leading to seven pathways between unique pairs
of translational variants. We explored pathways between the
variants of Fig. 4, which are all derived from a ẑ t-HfO2

upon application of an orthorhombic strain with a negative e2.
Table I summarizes the results. For most pairs, the minimum
energy path passes through one or more tetragonal variants.
One exception is the path connecting variants 1 and 5 of Fig. 4,
which passes through an intermediate orthorhombic phase.

As already noted by Qi et al. [49], the complexity of
the path between translational variants of o-HfO2 is sensitive
to the particular ±ẑ t-HfO2 shuffle that the two end-state
orthorhombic variants have been derived from. If the end
states derive from the same ẑ shuffle (i.e., they have the
same amplitude of the X −

2 phonon mode of c-HfO2), then
the path connecting the two orthorhombic shuffles passes
through a single tetragonal variant with the same ẑ shuffle.
Figure 10(a) shows the energy for these paths as calculated
with the solid-state nudged elastic band method. A shallow

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Reaction coordinate

0

10

20

30

40

E
n
er

gy
/f

.u
.

(m
eV

)

(b)

(c)

FIG. 9. (a) Energy along the minimum-energy path between two
orientational variants of t-HfO2. (b) Strain in e2 − e3 space along
the minimum energy path connecting ±ẑ and ±ŷ tetragonal variants.
The minimum energy path connecting a +ẑ variant with a −ẑ variant
passes through a ±ŷ or ±x̂ variant. (c) Energy landscape of c-HfO2

as a function of ẑ and ŷ shuffle order parameters (in meV). The + and
– signs indicate translational variants for the same shuffle direction.
The orange dots trace the minimum energy path between ±ŷ/ẑ and
∓ŷ/ẑ shuffles.
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(a) (b) (c)

FIG. 10. Minimum energy paths as calculated with the ss-NEB method between different shuffle variants of o-HfO2. Energy along paths
connecting o-HfO2 variants having (a) the same ẑ shuffle, (b) different ẑ shuffle, and (c) variants 1 and 5, which have the same ẑ shuffle, but
are found to have the o1 intermediate state, shown as an inset.

barrier separates the intermediate tetragonal variant from the
more stable orthorhombic variants. This pathway is the same
as found by Qi et al., Wu et al., and Barabash et al. [49,56,59]
between translational variants of o-HfO2 that contain the same
t-HfO2 oxygen shuffle phonon mode. The polarization along
this path, for pairs of o-HfO2 variants that have opposite po-
larization vectors, varies almost linearly from +45.75 µC/cm2

to –45.75 µC/cm2, passing through 0 when the crystal adopts
the t-HfO2 structure at the midpoint of the path, as shown in
Fig. S1(d) within the Supplemental Material [80].

When the orthorhombic end states are derived from a dif-
ferent tetragonal shuffle (e.g., one with a +ẑ shuffle and the
other with a −ẑ shuffle), the path first takes the orthorhom-
bic variant to its nearest tetragonal shuffle, which then must
transform to the oppositely oriented tetragonal shuffle. As
described in the previous section, the minimum energy path
between translational variants of the same tetragonal shuffle
(e.g., between +ẑ and −ẑ) is through a differently oriented
tetragonal shuffle (i.e., a ŷ or an x̂ shuffle). An example of
the energy along such a path as calculate with ss-NEB is
shown in Fig. 10(b). A similar path was found by Huan et al.
and Wu et al. [38,56], while the path reported by Qi et al.
and Barabash et al. [49,59] does not pass through a differ-
ently oriented tetragonal variant, but instead passes through
the higher energy cubic state (i.e., c-HfO2). The polarization
along this path when the pair of o-HfO2 variants have opposite

TABLE I. Various intermediate states along the minimum energy
path between variant 1 and the 7 other orthorhombic variants hav-
ing the same unit cell orientation. t indicates the tetragonal phase
whereas o1 refers to a metastable orthorhombic structure. ±x̂, ŷ, or ẑ
shows the direction of oxygen shuffle in the tetragonal phase.

Transformation paths Intermediate states

1 → 2 +ẑ t → ±x̂/ŷ t → −ẑ t
1 → 3 +ẑ t → ±x̂/ŷ t → −ẑ t
1 → 4 +ẑ t
1 → 5 o1

1 → 6 +ẑ t → ±x̂/ŷ t → −ẑ t
1 → 7 +ẑ t → ±x̂/ŷ t → −ẑ t
1 → 8 +ẑ t

polarization vectors varies linearly from +45.75 µC/cm2 to 0
upon adopting the +ẑ shuffle of t-HfO2, then remains zero as
the +ẑ shuffle transforms to the −ẑ shuffle by passing through
a ŷ shuffle, and again varies linearly from 0 to –45.75 µC/cm2.
This is shown in Fig. S1(e) within the Supplemental Material
[80].

There is only one path that did not pass through one or
more t-HfO2 intermediate states. The path connects variants 1
and 5 of Fig. 4. Both shuffle variants, which have an opposite
polarization, are derived from the same ẑ shuffle, but the path
connecting the two variants nevertheless passes through an
intermediate polymorph that is locally stable and has a lower
energy than the tetragonal polymorph. The energy along the
path connecting this pair as calculated with ss-NEB is shown
in Fig. 10(c). The intermediate state, shown as an inset in
Fig. 10(c), has an orthorhombic symmetry and consists of
exclusively threefold coordinated oxygen. It is nonpolar and
belongs to the Pbcn space group. Here we label the structure
o1-HfO2. The lattice parameters a, b, and c as predicted with
SCAN are 4.87 Å, 5.17 Å, and 5.70 Å respectively. The
coordinates of o1-HfO2 are collected in Table I within the
Supplemental Material [80]. Its lattice parameters are very
different from those of the other polymorphs as is evident
in e2-e3 space, shown in Fig. 11. The polarization along
this path varies almost linearly between +45.75 µC/cm2 and
-45.75 µC/cm2, passing through 0 halfway along the path
when the crystal adopts the o1-HfO2 structure, as shown in
Fig. S1(f) within the Supplemental Material [80].

The energy along the three distinct paths connecting trans-
lational variants of o-HfO2 in Fig. 10 represent a lower bound.
This is because both the lattice vectors and the internal coor-
dinates were allowed to relax during the ss-NEB calculations.
In reality, epitaxial and/or coherency constraints will limit
the degree with which the lattice vectors can relax. As is
clear in the strain maps of Figs. 9(b) and 11, the lattice
vectors of the crystal vary substantially along the minimum
energy pathways between different translational variants. To
assess the degree with which the pathways between trans-
lation variants of o-HfO2 may change qualitatively when
lattice vectors are not free to relax due to external mechanical
constraints, we also calculated the minimum energy paths
keeping the unit cell vectors fixed at their values in the o-HfO2
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FIG. 11. Strain path in e2 − e3 space traversed upon going from
variant 1 to variant 5. The end point of the path corresponds to the
strain of o1 (relative to c-HfO2).

crystal structure. The results are summarized in Fig. S1 within
the Supplemental Material [80]. The paths that pass through
t-HfO2 in the fully relaxed case were found to also pass
through the same t-HfO2 variants when the lattice vectors
were constrained. Nevertheless, the energy along the con-
strained path is higher than that along the fully relaxed path.
The path connecting variants 1 and 5, which passes through
the o1-HfO2 structure in the fully relaxed case, does change
qualitatively when the lattice vectors are fixed to those of
o-HfO2. Instead of passing through the o1-HfO2, the midpoint
adopts a ẑ-shuffled t-HfO2 structure. Even when the midpoint
between variants 1 and 5 were initialized in o1-HfO2 the
structure spontaneously relaxed to t-HfO2 when the o-HfO2

lattice vectors were imposed on each image along the path.

E. Antiphase boundaries

A large grain of HfO2 can consist of multiple orientational
and shuffle variants of o-HfO2. The interfaces separating one
variant from another are usually only several atomic layers
thick. Those separating different orientational variants are
referred to as twin boundaries, while those separating a pair of
shuffle variants of the same orientational variant are referred
to as antiphase boundaries (APB). Here we explore the atomic
structure within planar antiphase boundaries. The results of
the previous section provide guidance in the determination of
the atomic structure within an APB.

In studying an APB thermodynamically, we follow a Gibb-
sian approach that relies on thermodynamic excess quantities
[81,82]. The excess energy of an APB, for example, is the
energy of a crystal with an APB minus the energy of a crystal
without an APB, where both crystals have the same number of
atoms and are subjected to identical thermodynamic boundary
conditions. Care must be exercised in precisely specifying
mechanical boundary conditions.

Since the antiphase boundary is only at most several atomic
layers thick, it will adjust its dimensions to match the equilib-

���

���

���

���

�

�

�

Variant 1

Variant 2

APB

���

���

FIG. 12. Mechanical boundary conditions on an antiphase
boundary (APB).

rium lattice parameters of the adjacent orthorhombic domains
in a plane parallel to the APB. No such epitaxial constraints
exist perpendicular to the antiphase boundary plane, however,
as the atoms are free to relax until a uniform stress is achieved
perpendicular to the APB. The thermodynamic boundary con-
ditions are, therefore, constant strain parallel to the plane of
the APB and constant stress perpendicular to the plane of the
APB. Using an orthonormal coordinate system in which axes
1 and 2 are in the plane of the APB and axis 3 is perpendicular
to the APB, as illustrated in Fig. 12, these boundary conditions
correspond to constant strain ε11, ε22 and constant stress σ33.
Here we only consider high symmetry orientations of the APB
relative to the coexisting polymorph crystal structures such
that we can neglect shear strains and stresses. To streamline
notation we also set σ33 = σ .

The appropriate characteristic potential (i.e., free energy)
for the mechanical boundary conditions of an APB is obtained
upon application of a Legendre transform to the energy, e,
with respect to the normal stress, σ , according to

λ = e − Lσ, (2)

where L is the length of the crystal perpendicular to the APB.
The characteristic potential λ is known as the grand-force po-
tential [81,82]. All three quantities, λ, e, and σ , are normalized
by the area of the APB in a fixed reference state (e.g., the
equilibrium dimensions of the orthorhombic phase).

The excess grand-force potential measures the difference
in the free energy between a crystal with an APB and one
without an APB and is defined as

�λ(σ ) = λAPB(σ ) − λ(σ ) (3)

where λAPB and λ are the free energies of the crystal with
and without an APB, respectively. All potentials in the above
equation are also functions of the strains parallel to the APB
(i.e., ε11 and ε22), but the explicit dependence on strain is
dropped to simplify notation. The excess grand-force potential
�λ constitutes the free energy cost of an APB as a function
of the stress σ normal to the APB and the strains ε11 and ε22,
parallel to the APB.

Other thermodynamic excess quantities associated with an
APB can be considered. For example, an APB may swell or
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contract perpendicular to the APB plane relative to a perfect
crystal without an APB. This is measured with the APB excess
thickness, defined as

�L(σ ) = LAPB(σ ) − L(σ ) (4)

where LAPB and L are the lengths of the crystal perpendicular
to the APB of a crystal with and without an APB, respectively.
It can be shown that the excess thickness of the APB is related
to the excess grand-force potential according to

∂�λ

∂σ
= −�L. (5)

If �L is greater (less) than zero, then tensile stresses will
decrease (increase) the excess free energy of the APB.

The excess free energy of an APB can be obtained by
calculating the energy of large super cells with and without
APBs. Because of periodic boundary conditions, a super cell
containing two different variants of o-HfO2 will necessarily
have two APBs. The super cell should be long in a direction
perpendicular to the APB to maximize the distance between
APBs and their periodic images. To minimize k-point errors of
the DFT calculations, a similar super cell is used to calculate
the energy of o-HfO2 without APBs. Depending on the ori-
entation of the APB, we used a super cell consisting of either
1 × 1 × 8 or 9 × 1 × 1 unit cells of o-HfO2.

The first step to obtain the excess grand-force potential �λ

is to calculate the energy E of the super cell as a function
of L, the super cell length perpendicular to the APB, while
allowing for internal atomic relaxations. This is shown in
Fig. 13(a) for an APB separating variants 1 and 5 of Fig. 4.
Variants 1 and 5 derive from the same translational shuffle of
t-HfO2 but have oppositely oriented polarizations. According
to Qi et al. [49], this makes it possible to move the boundary
separating the two variants with an electric field. As shown in
the previous section, a homogeneous transformation of variant
1 into variant 5 passes through the o1 structure. Since the o1

structure has a strain state that differs substantially from that
of o-HfO2, its stability within the APB will be very sensitive
to the local strain state.

The energy in Fig. 13(a) is for a planar APB that is
perpendicular to the ẑ axis (i.e., the c lattice vector of the
orthorhombic unit cell). The APB is therefore perpendicular
to the tetragonal axis and shuffle direction of the tetragonal
variant from which the o-HfO2 variants 1 and 5 are derived.
The blue curve in Fig. 13(a) is the energy of a 1 × 1 × 8
super cell of o-HfO2 without an APB as a function of the
long length L. The green curve is the energy of the same super
cell containing two symmetrically equivalent APBs separating
variants 1 and 5. The slope of the energy as a function of L
in Fig. 13(a), when normalized by the area of the APB, is
equal to the stress σ , which can then be used to calculate the
grand-force potential λ according to Eq. (2). The green curve
in Fig. 13(b) corresponds to the resulting excess grand-force
potential, Eq. (3), as a function of stress σ . At σ = 0, the
cost to create an APB is �λ = 0.378 J/m2, a high value for
a coherent interface. The grand-force potential has a negative
slope, signifying a positive excess length. At zero stress, the
excess length �L = 0.238 Å. Figure 14(a) shows the relaxed
structure within the APB separating variants 1 and 5. The
atoms within the APB were initialized as having either a local

(a)

(b)

FIG. 13. (a) Energy of 1 × 1 × 8 super cells of the unit cell of a
o-HfO2 variant derived from a ẑ tetragonal variant. The long direction
is parallel to the ẑ direction. The blue curve is for a super cell without
an APB while the green curve is for a super cell containing two
translational variants of o-HfO2 separated by two APBs. (b) The
free energy (grand-force potential) of different APBs as a function
of stress perpendicular to the APB.

tetragonal structure or an o1 structure. Both initializations,
however, relaxed to the same APB having a local o1 structure,
being approximately one unit cell thick.

It is instructive to also consider a different orientation of the
flat APB separating the same variants 1 and 5. We considered
an APB that is perpendicular to the x̂ direction for variants
1 and 5 of Fig. 4 (i.e., perpendicular to the a lattice vector
of the orthorhombic unit cell). For this orientation, we used
a 9 × 1 × 1 super cell to ensure that the two APBs within
the super cell are symmetrically equivalent to each other. As
before, the structure within the APB was initialized to that
of o1 in one set of calculations and to that of t-HfO2 having
a ẑ shuffle in another set of calculations. In contrast to the
APB that is perpendicular to the ẑ direction (i.e., c lattice
vector of the orthorhombic cell), the local structure of the APB
perpendicular to the x̂ direction (i.e., the a lattice vector of the
orthorhombic cell) was found to remain (meta) stable in both
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(a)

(b)

(c)

FIG. 14. Relaxed structures of APBs between variants 1 and 5
derived from a ẑ tetragonal variant. (a) An APB perpendicular to the
ẑ direction with a local o1 atomic structure; (b) an APB perpendicular
to the x̂ direction with a local tetragonal structure (shuffled along the
ẑ direction); and (c) an APB perpendicular to the x̂ direction with an
o1 structure.

the t-HfO2 and the o1-HfO2 structures. The relaxed structures
of the two APB models are shown in Figs. 14(b) and 14(c).

The calculated excess grand-force potentials �λ as a func-
tion of σ for the two APB structures are shown in Fig. 13(b)
and are compared to the excess grand-force potential of
the APB perpendicular to the ẑ direction. As is clear from
Fig. 13(b), the APB with the lowest �λ(σ ) has an atomic
shuffle that is similar to that of t-HfO2. When perpendicular to
the x̂ direction, the APB with a local t-HfO2 structure has an
excess free energy that is significantly lower than that of the
APB with a local o1 structure. Furthermore, the APB that is
perpendicular to the x̂ direction with a local t-HfO2 structure
is more stable than the APB that is perpendicular to the ẑ
direction, which has a local o1 structure.

The switch in the lowest energy local structure within the
APB upon a change in the orientation of the APB can be
attributed to a change in the epitaxial strain state imposed by
the adjacent orthorhombic variants on the APB. The epitaxial
constraints imposed upon the thin region that constitutes the
APB by the surrounding o-HfO2 domains is very different for
the two APB orientations. Since the t-HfO2 and the o1-HfO2

structures adopt very different equilibrium strains relative to
o-HfO2, their stability will be sensitive to the externally im-
posed strain constraints, which varies with the orientation of
the APB.

IV. DISCUSSION

Hafnia, and in particular its recently discovered ferroelec-
tric polymorph, is of tremendous interest for microelectronic

applications [28,29]. Thin films of HfO2 often consist of
mixtures of symmetrically equivalent variants of different
polymorphs that coexist coherently within the same grain
[42]. This can occur since important polymorphs such as
t-HfO2, m-HfO2, and o-HfO2 are all derived from a com-
mon high-symmetry c-HfO2 crystal through small symmetry
breaking structural distortions.

In this paper we have clarified the relationship between the
different polymorphs of HfO2 and their symmetrically equiv-
alent variants with the help of symmetry-adapted strain-order
parameters [75,83]. The subspace spanned by the e2 and e3

strain-order parameters (Fig. 1), which describes tetragonal
and orthorhombic distortions of the cubic reference crys-
tal, is especially informative in that it clearly displays the
relationship between different orientational variants of each
polymorph. The e2-e3 subspace reveals the key role played by
the three orientational variants of t-HfO2, with each tetragonal
variant serving as a hub from which multiple variants of the
lower symmetry m-HfO2 and o-HfO2 polymorphs can be de-
rived. Strain order-parameter maps, such as Fig. 1, which chart
the strains of symmetrically equivalent variants of different
polymorphs relative to c-HfO2, also give an indication of
the degree with which different variants must be distorted to
achieve coherent coexistence within the same grain.

Ferroelectric switching of o-HfO2 in an applied electric
field is realized by the growth of domains with favorably
oriented polarizations at the expense of domains with less
favorably aligned polarizations [44–48]. This is achieved
through the migration of the boundaries separating different
variants that coexist within the same grain. A distinction can
be made between twin boundaries, which separate different
orientational variants of o-HfO2, and antiphase boundaries,
which separate different translational variants that neverthe-
less have the same orientation of their unit cell. The local
atomic structure within a boundary plays an important role in
determining the energy cost of forming the boundary as well
as the mobility of the boundary.

The results of this paper show that the atomic structure
of an APB is often very similar to the intermediate structure
along pathways that homogeneously convert one variant into
another. In addition to confirming several pathways discov-
ered in previous papers [38,49–59], we have also found new
pathways having a lower energy. The tetragonal phase t-HfO2

plays an important role in many of the pathways connecting
different translational variants of o-HfO2. However, for one
pair of o-HfO2 variants we discovered a different intermediate
phase that is locally stable and has orthorhombic symmetry.

The actual structure and energy cost of an APB can be cal-
culated with a super cell consisting of two variants separated
by a pair of APBs. This approach has been applied in multiple
studies to investigate domain boundary structures and energies
between different variants of o-HfO2 [49–51]. In this paper
we have used a method to analyze the thermodynamic prop-
erties of a domain boundary that relies on Gibbsian excess
quantities [81]. When calculating excess quantities, such as
the free energy of an APB, it is crucial that identical thermo-
dynamic boundary conditions are imposed in the crystals with
and without the APB. A common practice is to calculate the
energy difference between a super cell with an APB and one
without an APB at constant L, the length of the super cell
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perpendicular to the APB. However, this difference in energy
is generally not a meaningful quantity since neither the stress
state nor the strain state within the orthorhombic variants in
the regions adjacent to the APB are the same as that of the
homogeneous reference state. If energies with and without the
APB are not calculated at the same stress perpendicular to the
APB, a spurious elastic energy within the adjacent domains
is included in the excess free energy of the APB that is not
related to the cost of creating the APB.

Our calculations show that the energy and atomic structure
of an APB can be very sensitive to the orientation of the APB,
even when the APB separates the same two variants. This is
in large part due to the different epitaxial strain constraints
imposed on the thin APB layer by the adjacent orthorhombic
domains when reorienting the plane of the APB. As revealed
by our calculations, variations in the epitaxial strain con-
straints can lead to a qualitative change in the atomic structure
within the APB, which in turn determines the energy of the
APB. Highly anisotropic APB energies will play a role in
determining the types of microstructures that appear in grains
of multiple translational variants of ferroelectric HfO2. We
expect that a change in the local atomic structure of an APB
as it reorients will also lead to a strong orientation dependence
of the APB mobility. This will be topic for a future study.

The thermodynamic properties calculated in this paper
are strictly only valid at zero Kelvin. While we expect that
the qualitative trends predicted here remain valid at room
temperature, the sequence of phase transitions with temper-
ature between different polymorphs of HfO2 clearly indicate
that entropic contributions to the free energies of each poly-
morph are of significant importance, especially at elevated
temperature. The primary source of entropy in HfO2 can be
attributed to vibrational excitations. The high temperature
stability of the cubic phase, c-HfO2, for example, must arise
from large-scale anharmonic vibrational excitations as this
polymorph is predicted to be dynamically unstable at zero
Kelvin. Similar to other high temperature phases that become
dynamically unstable at low temperatures, a statistical me-
chanics treatment of vibrational excitations must go beyond
the (quasi-) harmonic approximation and explicitly account
for anharmonicity to adequately describe the high temperature
thermodynamic properties of c-HfO2 [84–90]. Vibrational
excitations also play a crucial role in stabilizing the tetrago-
nal phase, t-HfO2, at intermediate temperatures as a sizable
entropic contribution is necessary to overcome the large dif-
ference in energy between t-HfO2 and the low temperature
m-HfO2 polymorph. The strong temperature dependence of
the free energies of each polymorph will have implications
for the structural pathways and free energy barriers between

polymorphs and for the thermodynamic properties and atomic
structures of APBs at elevated temperature. Due to the high
temperature stability of t-HfO2, an increase in temperature
will decrease the free energy of t-HfO2 more so than the free
energies of o-HfO2 and m-HfO2. The excess free energies
of APBs having a local t-HfO2 structure are therefore also
likely to decrease with increasing temperature. Furthermore,
APBs separating translational variants of o-HfO2 having a
local t-HfO2 structure may serve as heterogeneous nucleation
sites for the transformation to t-HfO2 at elevated temperature.
The temperature dependent properties of APBs having the
o1-HfO2 structure are at this point not clear and will require
an analysis of the vibrational properties of the o1-HfO2 poly-
morph relative to those of t-HfO2 and o-HfO2.

V. CONCLUSIONS

We have shown how symmetry-adapted strain-order pa-
rameters can clarify the relationship between different HfO2

polymorphs and their multiple translational and orientational
variants. First-principles calculations were performed to map
out minimum energy pathways between different polymorphs
and their variants in subspaces of the symmetry adapted
strain order parameters. The intermediate states along paths
that homogeneously convert one translational variant of fer-
roelectric HfO2 into another can guide the search for the
atomic structure within the domain boundaries separating
different variants. In studying the thermodynamic proper-
ties and equilibrium structure of antiphase boundaries, we
used an approach that relies on Gibbsian excess quantities.
Our first-principles analysis of domain boundaries separating
translational variants of ferroelectric HfO2 has shown that the
domain boundary energy can be highly anisotropic due to
changes in the epitaxial strain constraints with the orientation
of the boundary.
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