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Influence of static correlation on the magnon dynamics of an itinerant ferromagnet with
competing exchange interactions: First-principles study of MnBi
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We present first-principles calculations of the dynamic susceptibility in strained and doped ferromagnetic
MnBi using time-dependent density functional theory. In spite of being a metal, MnBi exhibits signatures of
strong correlation and a proper description in the framework of density functional theory requires Hubbard
corrections to the Mn d orbitals. To permit calculations of the dynamic susceptibility with Hubbard corrections
applied to the ground-state electronic structure, we use a consistent rescaling of the exchange-correlation
kernel maintaining the delicate balance between the magnon dispersion and the Stoner continuum. We find
excellent agreement with the experimentally observed magnon dispersion for pristine MnBi and show that the
material undergoes a phase transition to helical order under application of either doping or strain. The presented
methodology paves the way for future linear response time-dependent density functional theory studies of
magnetic phase transitions, also for the wide range of materials with pronounced static correlation effects that
are not accounted for at the local density approximation level.
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I. INTRODUCTION

MnBi has been proposed as a promising alternative to
permanent magnets based on rare-earth elements [1–3]. This
is primarily due to the large spontaneous magnetization at
room temperature [4], strong uniaxial magnetic anisotropy
[5], and the abundance of its constituent elements [6]. More-
over, it exhibits an extraordinarily large Kerr rotation [7],
which makes it an ideal candidate for magneto-optical data
storage applications [8,9]. From a fundamental point of view,
MnBi is an intriguing material since it can be regarded
as a member of the transition metal pnictides AX (A =
V/Cr/Mn/Fe/Co/Ni, X = P/As/Sb), which realize a wide
variety of spiral magnetic orders depending on the composi-
tion, pressure, and temperature [10–12]. In particular, MnP
and CrAs have recently been demonstrated to exhibit un-
conventional superconductivity below 1 [13] and 2 K [14],
respectively. The superconducting state emerges at the critical
pressure for magnetic order and has been argued to imply
an unconventional mechanism for Cooper pairing associated
with magnetic quantum fluctuations [14]. Thus, the micro-
scopic origin of different spiral orders in transition metal
pnictides is of high interest along with the influence of doping
and strain. For example, at low temperatures MnP exhibits
helical order at ambient pressure, becomes ferromagnetic
at ∼1 GPa, makes a transition to a second helical phase
at ∼1.5 GPa, and finally becomes paramagnetic at 6.7 GPa
with a superconducting window at pressures 6.7 < P < 8 GPa
[10]. While MnBi has not been reported to exhibit phase
transitions involving helical order, a phase transition from
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ferromagnetic to helical order has has been observed for the
isostructural MnAs upon doping with Cr [15] and it is not
unlikely that a similar transition may occur for MnBi.

At room temperature, MnBi crystallizes in the hexagonal
NiAs structure with space group P63/mmc. Upon cooling,
MnBi undergoes a structural phase transition at 90 K, where
the in-plane hexagonal symmetry is slightly broken and the
crystal structure becomes orthorhombic (space group Cmcm)
[16]. It is ferromagnetic up to 630 K where is segregates into
Mn1.08Bi and Bi [17], which are both paramagnetic. The true
Curie temperature is thus unknown, but the lower bound of
630 K indicates strong magnetic interactions in the material.
At room temperature, MnBi exhibits a large uniaxial magnetic
anisotropy along the c axis of the NiAs crystal structure. The
anisotropy decreases with decreasing temperature and aligns
with the ab plane of the orthorhombic phase below 90 K
[16]. For thin film [18,19] and nanocrystalline [20] MnBi, it
has been shown that Cr doping lowers the Curie temperature
below the segregation temperature for Mn1−xCrxBi doping
levels down to at least x = 0.03. For Cr doping in the range
of 3%–15%, Curie temperatures have been recorded to lie
in the 520–560 K range. Moreover, the coercivity has been
shown to increase significantly by Cr doping [20], while
the beneficial magneto-optical properties are retained. To our
knowledge there have so far not been attempts to study the
low-temperature magnetic structure of Cr-doped MnBi.

The magnon spectrum of MnBi was been measured at 5 K
by Williams et al. using inelastic neutron scattering (INS)
[21]. The hexagonal phase was assumed in the analysis of
results, which is likely to be a good approximation due to
the strong similarity with the orthorhombic phase expected
at low temperatures [21]. The magnon bandwidth is on the
order of 100 meV and the spectrum was found to be gapless as
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expected from the easy-plane anisotropy at low temperatures.
It was shown that the spectrum is well reproduced by fitting to
an isotropic Heisenberg model with six exchange parameters.
While such a fit may not be unique, the nearest-neighbor
interaction was unambiguously shown to be antiferromag-
netic having the largest magnitude of all interactions. The
inherent magnetic frustration thus makes it highly plausible
that a magnetic phase transition may be induced by external
strain or doping, which will inevitably influence the individual
exchange parameters differently.

From a computational perspective, the magnon spectrum of
magnetic materials can be accessed at various levels of theory.
Typically, a theoretical treatment will take one of the follow-
ing three starting points: a mapping to a model Hamiltonian,
an adiabatic approximation separating the transverse magnetic
fluctuations from the faster electronic (longitudinal) degrees
of freedom, or an ab initio treatment of the full dynamic trans-
verse magnetic susceptibility. In the following, these three
starting points will be referred to as model-based approaches,
adiabatic approaches, and theoretical magnon spectroscopy,
respectively. However, this classification is not unique and
approaches with different starting points may in practice end
up in equivalent overall treatments.

The simplest model-based approach is to assume a Heisen-
berg model and extract exchange parameters in a total energy
mapping analysis within the framework of density functional
theory (DFT) [22–24]. This will directly yield the spin-wave
energy dispersion in the noninteracting magnon approxima-
tion to the model, but will not elucidate itinerant electron
effects such as the line-shape broadening (Landau damping)
from the spectral overlap with the single-particle excitation
continuum in metals (Stoner continuum). For materials with a
collinear ground state it is possible to calculate the nearest-
neighbor exchange interaction of the quantum mechanical
Heisenberg model using an energy mapping without spin-
orbit effects [24]. In the general case, however, there may
not necessarily exist a meaningful energy mapping from a
set of collinear magnetic configurations within DFT to the
quantum mechanical Heisenberg model and one has to resort
to a classical model of the magnetic interactions. Furthermore,
any approach based on the Heisenberg model relies on the
magnons being well described in terms of localized spins.
This assumption becomes somewhat dubious for metallic sys-
tems, although it is often still possible to fit spin-wave spectra
to a Heisenberg model if enough exchange parameters are
included in the fit [25]. For this reason, it is usually preferable
to compute the Heisenberg exchange parameters directly from
the magnetic force theorem (MFT) [26–28] in the case of met-
als. Within the MFT framework, the Heisenberg exchange can
be calculated in reciprocal space, allowing access to interac-
tions on all length scales without any fundamental additional
computational complexity.

In the adiabatic approach, it is assumed that the
time-dependent magnetization m(r, t ), which describes the
magnon dynamics, can be treated as a classical variable on
the timescale of the transverse magnetic fluctuations. This
assumption implies that the underlying electronic degrees of
freedom always should minimize the system energy given
m(r, t ) on this timescale. Within such an approximation, the
magnon dynamics is governed by a classical equation of

motion (EOM) for m(r, t ), from which the magnon dispersion
may be extracted [29–31]. The material-dependent parameters
in the EOM can be computed based on a number of frozen
magnon configurations generated within constrained DFT.
However, it is not trivial to treat an arbitrary noncollinear mag-
netic structure consistently, and the frozen magnons have to be
generated with care in order to reliably compute the magnon
dispersion [32,33]. Although the adiabatic magnon EOM can
be diagonalized in reciprocal space without any constraints on
the spatial dependence of the magnetization [29,32], it is often
assumed that the magnetization can be represented in terms
of localized (atomic) sites of volumes Vi within which the
direction of the magnetization is constant [30,33,34]. Within
such a truncation of the spatial representation, the adiabatic
approximation essentially reduces the magnon dynamics to
those of the classical Heisenberg model [34,35]. Thus, when
relying on the atomic sphere approximation or any similar
spirited spatial partitioning of the magnetization, the adiabatic
(frozen magnon) approach is essentially equivalent in nature
to the energy mapping and MFT approaches, despite that
the theoretical starting points and computational details may
differ quite substantially. For this reason, all of the above
approaches may be viewed as adiabatic, and they all share
the characteristic that the magnon interaction with the Stoner
continuum is neglected and that only the spin-wave stiffness
of itinerant ferromagnets can be treated exactly [36,37].

In order to appropriately capture the effects of the Stoner
continuum on the magnon dispersion of itinerant ferromag-
nets, one needs either to map the problem onto a model
accounting for the electronic degrees of freedom (e.g., a Hub-
bard model) or move on to the third approach, theoretical
magnon spectroscopy. This approach relies on many-body
perturbation theory (MBPT) or time-dependent density func-
tional theory (TDDFT) to compute the full spectral function
for the transverse magnetic excitations, which directly fa-
cilitates comparison and analysis of experimental results.
In this work, we apply the linear response TDDFT (LR-
TDDFT) method to compute the magnon dispersion of MnBi.
Our methodology includes the renormalization effects of the
Stoner continuum on the magnon dispersion, but does not
aim to provide the reduced magnon lifetimes due to Landau
damping as the lifetimes are above the current numerical
resolution of our computational implementation. The frame-
work of TDDFT in general [38] and LR-TDDFT [39] in
particular have previously been successfully applied to extract
magnon dispersion relations for several simple itinerant fer-
romagnets [40–47], just as it is the case for MBPT [48–52].
While the framework itself is formally exact, LR-TDDFT in
practice relies on approximations to the exchange-correlation
kernel, such as the adiabatic local density approximation
(ALDA). The accuracy of the approximation is strongly
dependent on the system at hand. For example, ALDA LR-
TDDFT captures the magnon spectrum of bcc Fe and hcp Co
rather accurately, whereas the bandwidth of the magnon spec-
trum of fcc Ni is overestimated by a factor of 2 [41,43,44,47].
The main reason for the inaccuracy is likely related to the
inability of ALDA to correct for the Kohn-Sham exchange
splitting, which is overestimated in LDA [50].

In the context of ground-state DFT, the disagreement
between the Kohn-Sham spectrum and the quasiparticle
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spectrum may often be alleviated by the DFT + U approach
[53–55] where an onsite Hubbard repulsion is added, which
tends to localize orbitals as well as increase band gaps and
exchange splittings. In particular, Antropov et al. [56] have
shown that a Hubbard correction is crucial in order to describe
the ground-state magnetic moments and the temperature-
dependent magnetic anisotropy correctly in MnBi. Similarly,
a Hubbard correction is also needed to reach an appropriate
description of the structural properties of MnBi [57]. How-
ever, in the context of LR-TDDFT it is not obvious how to
include the Hubbard correction at the level of the exchange-
correlation kernel, which introduces a mismatch between the
kernel and the orbitals. This has severe consequences for the
calculations since the delicate balance between the magnon
spectrum and single-particle excitations is lost, leading to a
gross violation of the Goldstone theorem in the combination
of DFT + U and ALDA LR-TDDFT.

To remedy this violation, we apply a scalar rescaling of
the exchange-correlation kernel, eliminating the mismatch
between single-particle Stoner spectrum and magnon spec-
trum. The rescaling is fixed by the requirement of a gapless
acoustic magnon mode and does not introduce any new free
parameters apart from the ground-state Hubbard correction.
A scalar rescaling of the effective (screened) Coulomb in-
teraction has also previously been adopted for theoretical
magnon spectroscopy within MBPT [50,51], where it is pro-
hibitively difficult to treat the effective interaction at full
self-consistency with the single-particle Stoner continuum
[58]. In this context, it has also been investigated whether a
Hubbard correction (with rescaling of the effective interac-
tion) could improve the faulty LDA magnon dispersion of fcc
Ni, with mixed success [50]. In this work, it is shown that the
experimentally measured magnon spectrum of MnBi is ac-
curately captured within λALDA + U LR-TDDFT, whereas
the neglect of Hubbard corrections leads to an overestimation
of the optical magnon frequencies by at least a factor of 2.
In this way, it is demonstrated that static correlation effects
beyond the LDA are essential to include in order to correctly
capture the inherent magnetic frustration in MnBi, and that a
ground-state Hubbard correction is a viable method in this re-
gard. In particular, the correction strengthens the out-of-plane
antiferromagnetic exchange interaction, and when artificially
increasing the Hubbard correction beyond the experimental
match, MnBi is imposed a phase transition to helical order. In
addition, we demonstrate that MnBi undergoes a similar phase
transition upon the introduction of either hole doping (as one
would expect in a Cr alloy) or uniaxial compressive strain in
the out-of-plane direction.

The paper is organized as follows. In Sec. II we outline the
theoretical concepts underlying the LR-TDDFT framework
for theoretical magnon spectroscopy. In Sec. III we show how
the Hubbard correction is included and how we determine
the rescaling of the exchange-correlation kernel, which is re-
quired when combing LDA + U with ALDA LR-TDDFT. In
addition, we also supply the computational details. In Sec. IV
we present the results of our study, including the effect of
static correlations on ground- and excited-state properties of
pristine MnBi as well as the effect of hole doping and uni-
axial compressive strain on the magnon dynamics. Finally, in
Sec. V we discuss how the results fit in as another piece in

the puzzle of complex magnetic phases in the transition metal
pnictide family and in Sec. VI we summarize our conclusions.

II. THEORY

A. Transverse magnetic susceptibility

As exploited experimentally in inelastic neutron scattering
and similar spectroscopic techniques, one may probe the fun-
damental excitations of a material by studying its response to
external perturbations. In a nonrelativistic treatment, the linear
order response in the transverse magnetic degrees of free-
dom can be fully characterized by a single response function,
namely, the transverse magnetic susceptibility. The suscepti-
bility is given by the Kubo formula

χ+−(r, r′, t − t ′) = − i

h̄
θ (t − t ′)〈 [n̂+

0 (r, t ), n̂−
0 (r′, t ′)] 〉0,

(1)
where 〈·〉0 is the expectation value with respect to the ground
state, θ (t − t ′) is the step function, and n̂± are the spin-raising
and spin-lowering density operators, respectively:

n̂+(r) = ψ̂
†
↑(r)ψ̂↓(r), n̂−(r) = ψ̂

†
↓(r)ψ̂↑(r). (2)

In Eq. (1), the operators carry the time dependence of the
interaction picture n̂±

0 (r, t ) ≡ eiĤ0t/h̄ n̂±(r) e−iĤ0t/h̄, where Ĥ0

is the Hamiltonian of the unperturbed system, which in the
case of MnBi has a ferromagnetic ground state. Further-
more, one may interchange the + and − indices in Eq. (1)
to define the susceptibility χ−+, but thanks to the relation
χ−+(r, r′,−ω) = χ+−∗(r, r′, ω), it is sufficient to consider
only χ+−. Beyond the nonrelativistic limit, one in general
needs to consider the full four-component susceptibility tensor
in order to characterize the magnetic modes of excitation
[47]. However, down to the experimental resolution of 6 meV,
the available INS spectrum of MnBi does not exhibit any
effects of the magnetic anisotropy [21], why such effects are
neglected in this study as well.

From the dissipative (antisymmetric) part of the transverse
magnetic susceptibility, one may extract the spectrum of in-
duced excitations [47]:

S+−(r, r′, ω) = − 1

2π i
[χ+−(r, r′, ω) − χ−+(r′, r,−ω)].

(3)
For a ferromagnet (assumed spin-polarized along the z direc-
tion), this spectrum determines the energy dissipation from
weak perturbations in the transverse magnetic field Bx/y

ext (r, t ).
Furthermore, S+−(r, r′, ω) constitutes a spectral function for
the excited states which differ by a single unit of spin an-
gular momentum compared to the ground state. In this way,
one may use various spectroscopic techniques to extract
S+−(r, r′, ω), permitting direct access to the transverse mag-
netic excitations of the system. Alternatively, S+−(r, r′, ω)
can be computed by theoretical spectroscopy techniques, pro-
viding significant aid to the interpretation of measurements.
More importantly, calculations of the transverse susceptibility
allow one to rapidly scrutinize the effect of material modifica-
tions such as strain and doping, which may be time consuming
and costly to investigate experimentally.
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B. Computing the transverse magnetic susceptibility within
LR-TDDFT

As a consequence of the Runge-Gross theorem [38], the
time-dependent electronic structure of any material may be
characterized in terms of an auxiliary Kohn-Sham system of
noninteracting electrons where the electronic Coulomb repul-
sion is replaced by an effective (electromagnetic) potential.
The susceptibility of the Kohn-Sham system can be evaluated
using only quantities from a routine ground-state DFT calcu-
lation [59–62]

χ+−
KS (r, r′, ω) = lim

η→0+

1

N2
k

∑
nk

∑
mk′

( fnk↑ − fmk′↓)

× ψ∗
nk↑(r)ψmk′↓(r) ψ∗

mk′↓(r′)ψnk↑(r′)

h̄ω − (εmk′↓ − εnk↑) + ih̄η
, (4)

where Nk is the number of k points, ψnks(r) the Kohn-Sham
orbital of band index n, k point k, and spin s, fnks the
ground-state occupancy, and εnks the single-particle energy.
In the adiabatic local density approximation (ALDA), the
transverse magnetic susceptibility is directly related to the cor-
responding Kohn-Sham susceptibility through a single Dyson
equation [39]

χ+−(r, r′, ω) = χ+−
KS (r, r′, ω) +

∫
dr1

× χ+−
KS (r, r1, ω) f −+

LDA(r1)χ+−(r1, r′, ω),
(5)

where f −+
LDA(r1) = 2W z

xc,LDA(r)/nz(r) is the transverse LDA
kernel. Similar to the Kohn-Sham susceptibility, the kernel is
given solely in terms of ground-state quantities, namely, the
magnetic contribution to the LDA exchange-correlation po-
tential W z

xc,LDA(r) (equal to the effective magnetic field up to
a factor of μB), and the spin-polarization density nz(r). In this
way, one can compute the many-body susceptibility of a given
material within LR-TDDFT by computing χ+−

KS (r, r′, ω) and
f −+
LDA(r) for the LDA ground state and inverting the Dyson

equation (5) within a suitable basis.

C. Magnons and the plane-wave susceptibility

For periodic crystals (where Ĥ0 is invariant under lattice
transformations T̂R), one may characterize the transverse mag-
netic response in terms of the plane-wave susceptibility

χ+−
GG′ (q, ω) =

∫∫
dr dr′



e−i(G+q)·rχ+−(r, r′, ω)ei(G′+q)·r′

,

(6)
where 
 is the crystal volume, G and G′ are reciprocal lattice
vectors, and q is a wave vector within the first Brillouin zone
(BZ). The plane-wave susceptibility determines the coeffi-
cients for the linear order plane-wave response ∝ei([G+q]·r−ωt )

to an external plane-wave perturbation ∝ei([G′+q]·r−ωt ), a re-
sponse which is diagonal in the reduced wave vector q, thanks
to the periodicity of the crystal.

In full analogy with Eq. (3), one can compute the plane-
wave spectrum of induced excitations [47]:

S+−
GG′ (q, ω) = − 1

2π i
[χ+−

GG′ (q, ω) − χ−+
−G′−G(−q,−ω)]. (7)

This spectrum can be decomposed into contributions from
spin-lowering and spin-raising excitations encoded in the
spectral functions A+−

GG′ (q, ω) and A−+
GG′ (q, ω), respectively:

S+−
GG′ (q, ω) = A+−

GG′ (q, ω) − A−+
−G′−G(−q,−ω). (8)

Both of these spectral functions have peaks at frequencies
h̄ω = Eα − E0 corresponding to the transition energies be-
tween the excited states |α〉 and the ground state |α0〉. The
contribution from each excited state is weighted by the recip-
rocal space pair densities n j

αα′ (G + q):

Ajk
GG′ (q, ω) = 1




∑
α �=α0

n j
0α (G + q)nk

α0(−G′ − q)

× δ(h̄ω − (Eα − E0)), (9)

where δ(h̄ω − 
E ) denotes the Dirac delta function. The
reciprocal space pair densities are Fourier transforms of the
real-space pair densities n j

αα′ (r) = 〈α|n̂ j (r)|α′〉. As the effect
of the spin-lowering and spin-raising operators is to remove a
spin-up or a spin-down electron at the position r, respectively,
and replace it with an electron of the opposite spin, the A+−
and A−+ spectral functions include only excited states for
which the spin angular momentum has been either lowered
or raised by a single unit compared to the ground state. Fur-
thermore, the reciprocal space pair densities are only nonzero
for excited states which differ in crystal momentum by h̄q
compared to the ground state. In this way, A+−

GG′ (q, ω) and
A−+

GG′ (q, ω) encode quasiparticle excitations of energy h̄ω and
crystal momentum h̄q, excitations that carry a single unit of
spin angular momentum. In turn, the plane-wave spectrum
S+−

GG′ (q, ω) of a ferromagnet assumed spin polarized in the
z direction encodes majority-to-minority magnons at positive
frequencies and minority-to-majority magnons at negative fre-
quencies. Concerning the reciprocal lattice vectors, it is useful
to focus on the diagonal S+−

G (q, ω) = S+−
GG (q, ω). As the re-

ciprocal lattice vector G represents the local field component
of the spin-flipping pair densities, it also represents the local
spin texture of the excitations within the unit cell. Accord-
ingly, the acoustic magnon mode will appear in the spectrum
S+−

G (q, ω) for values of G for which the magnetic atoms of
the unit cell are in phase. Likewise, the optical mode of MnBi
will be visible in S+−

G (q, ω) for values of G, for which the two
Mn atoms in the unit cell are out of phase.

III. METHODOLOGY

A. Ground-state Hubbard correction

Although one would not normally expect strong correla-
tion effects in metals, previous ab initio studies of MnBi
have shown that the LDA provides an insufficient description
of properties ranging from lattice constants and equilibrium
magnetic moments to the temperature-dependent magnetic
anisotropy and magneto-optical effects [56,57]. For these
properties, a significant improvement is obtained when in-
cluding a Hubbard-type onsite correction to the 3d electronic
orbitals of Mn. In this study, we apply the rotationally in-
variant Dudarev LDA + U scheme [55], where the Coulomb
interaction amongst the 3d electrons is corrected with a sin-
gle effective Hubbard parameter Ueff = U − J . The Hubbard
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correction favors idempotency and splits the localized major-
ity and minority 3d bands by a value similar to Ueff .

B. Hubbard correction and LR-TDDFT

In order to relate the Kohn-Sham susceptibility to the
many-body susceptibility by means of the Dyson equation (5),
the exchange-correlation (xc) kernel needs to be derived from
a time-dependent xc potential that reproduces the correct
ground-state spin densities and effective potentials in the static
limit (in the absence of an external perturbation). This im-
plies that the ALDA xc kernel cannot be used to calculate
the transverse magnetic susceptibility based on a LDA + U
ground-state calculation.

1. Collective enhancement

To elaborate on how the Dyson equation (5) breaks down
in practice, we invert it in the plane-wave basis,

χ+−
[G] (q, ω) = (1 − χ+−

KS (q, ω) f −+
LDA)−1

[G]χ
+−
KS,[G](q, ω), (10)

and compare it to the Dyson equation for a homoge-
neous electron gas (HEG), for which the susceptibility in
reciprocal space is a scalar function of the wave number q
[52,63]:

χ+−(q, ω) = χ+−
KS (q, ω)

1 − χ+−
KS (q, ω) f −+

LDA

. (11)

For χ+−(q, ω), χ+−
KS (q, ω) and the diagonal elements of

χ+−
GG′ (q, ω), the spectrum of induced excitations is pro-

portional to the imaginary part of the susceptibility [47]:
S+−

G (q, ω) = −Im[χ+−
GG (q, ω)]/π . The Kohn-Sham spectrum

S+−
KS (q, ω) forms a continuum of Stoner pair excitations, that

is, single-particle electron-hole pairs involving a single spin
flip. Through Eq. (11), the Stoner excitations are carried over
to the many-body spectrum S+−(q, ω) at a renormalized spec-
tral intensity determined by the real part of the denominator.
Apart from the Stoner excitations, Eq. (11) also permits a
new type of excitation at the roots of the real part of the
denominator. Inspired by this fact, we introduce the inverse
enhancement function (IEF):

κ+−(q, ω) ≡ Re

[
χ+−

KS (q, ω)

χ+−(q, ω)

]
= 1 − Re[χ+−

KS (q, ω)] f −+
LDA.

(12)
This function determines the collective enhancement of the
many-body spectrum due to the electron-electron interaction
described by f −+

LDA. Outside the Stoner continuum, where
Im[χ+−

KS (q, ω)] = 0, collective magnon excitations appear at
roots of the IEF. Furthermore, if the IEF vanishes (or nearly
vanishes) inside the Stoner continuum, the Stoner pair ex-
citations in the vicinity are enhanced. Whereas the Stoner
continuum for the spin-polarized HEG is gapped at q = 0 by
the exchange splitting energy 
x, the many-body spectrum
exhibits a so-called Goldstone magnon mode with ωq=0 = 0.
As the IEF defines the magnon dispersion exactly outside the
Stoner continuum, the Goldstone theorem thus dictates that
κ+−(0, 0) = 0 for the spin-polarized HEG. In a similar spirit,
we may introduce the following expression as the inverse

enhancement function for periodic crystals:

κ+−
G (q, ω) ≡ Re

[
χ+−

KS,GG(q, ω)

χ+−
GG (q, ω)

]
. (13)

Whereas the IEF for the HEG determines the collective en-
hancement in the Dyson equation (11), κ+−

G (q, ω) provides a
post hoc characterization of the enhancement. Nevertheless,
we find that the magnon condition κ+−

G (q, ω) = 0 provides a
good approximation for the peak position of magnon excita-
tions away from dense parts of the Stoner continuum for MnBi
as well as for the simpler itinerant ferromagnets Fe, Ni, and
Co. More generally, it is the matrix (1 − χ+−

KS (q, ω) f −+
LDA)−1

[G]
that determines the enhancement in the Dyson equation (10).
Thus, it is somewhat surprising that the collective enhance-
ment can be effectively characterized using a scalar function
for each local field component. We attribute this success to the
fact that the definition in Eq. (13) involves the fully enhanced
χ+−

GG (q, ω), thus implicitly accounting for the contribution of
all plane-wave components.

2. Gap error and rescaling of the ALDA kernel

In Fig. 1(a) the collective enhancement is illustrated for
the Goldstone mode of MnBi at q = 0, calculated using the
ALDA kernel on the LDA ground state. The Kohn-Sham
spectrum has a well-defined peak at 2.9 eV, corresponding to
the LDA exchange splitting. At the Kohn-Sham peak position,
the IEF exhibits a polelike feature with a shape that closely
resembles Re[χ+−

KS,GG(q, ω)], which in turn forms a Kramers-
Kronig pair with the Kohn-Sham spectrum. In this way, the
plane-wave IEF behaves exactly as one would expect from
the HEG, where Re[χ+−

KS (q, ω)] carries all the frequency de-
pendence in κ+−(q, ω), as seen from Eq. (12). Far away from
the Stoner continuum, the Kohn-Sham susceptibility vanishes
and the IEF goes to unity. Because the IEF takes negative
values for frequencies just below the exchange splitting en-
ergy, it also obtains a root below the Kohn-Sham peak, which
in the macroscopic case (G = 0) gives rise to the acoustic
(Goldstone) magnon mode. For the ALDA kernel applied to
the the LDA ground state shown in Fig. 1(a), the acoustic
magnon frequency goes to zero in the long-range limit, thus
fulfilling the Goldstone theorem (at least within some tenths
of meV using the applied computational parameters).

When applying the ALDA kernel to the LDA + U ground
state, however, the Goldstone theorem is violated. As shown
in Fig. 1(b), including a Hubbard correction of Ueff = 3 eV
increases the Kohn-Sham peak position to 6.2 eV, i.e., the
effective exchange splitting increases by a value 
Ueff .
However, the ALDA kernel does not change sufficiently to
accommodate the increased exchange splitting, resulting in
a gap error of ω� = 2.6 eV. In the HEG limit, the ALDA
kernel amounts to a scalar entity giving the effective inter-
action strength amongst the single-particle Stoner excitations.
Furthermore, the HEG magnon spectrum consists of a single
mode, i.e., only a unique root in κ+−(q, ω) corresponds to
a collective excitation. Consequently, the Goldstone condi-
tion κ+−(0, 0) = 0 fixes the scalar ALDA kernel f −+

LDA in
Eq. (11). Conversely, if the Goldstone condition is violated,
it is consistent with the ALDA to simply scale the value of
f −+
LDA to satisfy κ+−(0, 0) = 0. In a similar spirit, we rescale
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FIG. 1. Collective enhancement of the Goldstone mode in MnBi at q = 0. The macroscopic Stoner spectrum S+−
KS (q, ω) = S+−
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0 (0, 0) = 0.

the plane-wave kernel f −+
LDA,[G] → λ f −+

LDA,[G] such as to satisfy
the approximate Goldstone condition κ+−

G=0(q = 0, ω = 0) =
0 whenever a Hubbard correction has been applied. Hence-
forward, we will refer to the kernel calculated in this way as
the λALDA + U kernel. As seen in Fig. 1(b), this rescaling
increases the intensity of the polelike feature in κ+−

G (q, ω)
stemming from the Stoner continuum and thus effectively
moves the root as well as the magnon peak position to zero
frequency. Since the Hubbard correction mainly affects the
3d electrons, it is a somewhat naive approach to rescale the
entire ALDA kernel, but as we will show in Sec. IV B, the in-
clusion of a Hubbard correction in the λALDA + U approach
leads to significant improvements of the magnon dispersion
when compared to experiment. As a result, it seems that the
λALDA + U approach can be a valuable tool for including
correlation effects within LR-TDDFT in a simple and trans-
parent way. In the literature, more advanced approaches have
been developed to reclaim the self-consistency between the
exchange-correlation kernel and Kohn-Sham susceptibility in
order to strictly satisfy the Goldstone theorem, also when it is
violated due to numerical limitations [41–43]. For a broader
application of the LR-TDDFT methodology within, e.g., the
transition metal pnictide family, it would be of high interest to
make a comparative study of different strategies to satisfy the
Goldstone condition in calculations with Hubbard corrections
in the ground state.

Analogously to the λALDA + U approach, a global rescal-
ing of the effective interaction has also previously been
applied to satisfy the Goldstone theorem in MBPT calcula-
tions of the magnon dispersion [50,51]. Based on the GW
approximation for the self-energy and a static limit of the
random phase approximation for the screened Coulomb po-
tential W , one may rescale W → λW to satisfy the Goldstone
theorem when using the LDA + U Green’s function G0. This
approach leads to an improved magnon stiffness for fcc Ni as
compared to a LDA-based calculation [50]. However, for fcc
Ni the exchange splitting is overestimated already in the LDA
and inclusion of the Hubbard correction worsens the overall
magnon bandwidth (and thus the short-range transverse spin

correlations), contrary to the present case for MnBi. In MBPT,
the justification for using a global rescaling of the effective
interaction rests on similar grounds as in the λALDA + U
approach (see, e.g., the comparison to the one-band Hub-
bard model presented in Ref. [58]). There is an important
distinction, however: Even when using the LDA Kohn-Sham
susceptibility as a starting point, a gap error is obtained in
MBPT, due to the inconsistency with the GW self-energy
approximation [58].

C. Computational details

All calculations in this study have been carried out using
the open-souce GPAW code [64,65], with which the plane-wave
susceptibility χ+−

GG′ (q, ω) can be computed within LR-TDDFT
[47]. In principle, the PAW implementation yields all-electron
accuracy, but in practice it is not possible to construct a
complete basis of projector functions. In the applied projector
augmented wave (PAW) setups, only the Mn 4s and 3d as
well as the Bi 6s, 6p, and 5d orbitals are included as valence
states in the band summation of Eq. (4). In addition to the
valence states, eight empty shell bands per atom are included
as well. Furthermore, a (30, 30, 18) �-centered Monkhorst-
Pack (MP) grid is used along with a plane-wave cutoff of
750 eV for the plane-wave basis in Eq. (10). These parameters
were chosen based on an extensive convergence study of the
magnon dispersion in the itinerant ferromagnets Fe, Ni, and
Co [47] and we have checked that these parameters lead to
well-converged results for MnBi as well.

Calculations have been carried out in the NiAs-type crys-
tal structure, using the experimental room-temperature lattice
constants (a = 4.287 Å, c = 6.117 Å) for LR-TDDFT calcu-
lations. It should be noted that the reference inelastic neutron
scattering data available are taken at 5 K [21] and that the
MnBi structure is contracting when cooling, all the way
from 293 K, through the structural phase transition at 90 K,
down to at least 20 K [16]. Nevertheless, we expect a fair
comparison between theory and experiment, when using the
room-temperature crystal structure for the simulations. Oc-
casional comparisons of magnon dispersion relations with
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FIG. 2. Extraction of the magnon stiffness from the λALDA + U transverse magnetic excitation spectrum with Ueff = 3 eV. (a) Magnon
spectrum along the � → M path calculated on a (30, 30, 18) �-centered MP grid using η = 100 meV (lower set of line shapes) and a
(60, 60, 36) �-centered MP grid using η = 40 meV (upper set of line shapes). Magnon energies (scatter points) are identified as peak positions
from a quadratic fit to the maximum of each Lorentzian line shape (colored lines). Vertical dotted lines indicate the magnon energies from
the sparse k-point grid for visual comparison. (b) Extracted magnon dispersion from the calculation using the sparse k-point grid along with a
biquadratic fit ωq = Dq2(1 − γ q2), to the dispersion.

calculations performed in the orthorhombic crystal structure
reported at 80 K [16] have been carried out, without any
noteworthy qualitative differences as a result.

In order to reliably extract the magnon dispersion, the
Kohn-Sham continuum, which is sampled on a finite k-point
mesh, needs to be broadened into a continuum. In practice
this is done by leaving η as a small, but finite, parameter in
Eq. (4). Through the average frequency displacement tech-
nique described in [47], it was found that the low-frequency
Kohn-Sham spectrum of MnBi is effectively broadened into
a continuum for values of η � 100 meV using the chosen
k-point grid. Unfortunately, the broadening parameter η not
only dictates the minimum width of features in the Kohn-
Sham spectrum, but in the many-body spectrum as well. Using
η = 100 meV, the spectral width of the magnons will be of
the same order of magnitude as the MnBi magnon band-
width. Consequently, it becomes difficult for the human eye
to discern the magnon dispersion directly from the spectrum,
as illustrated in Fig. 2(a), and it is not possible to extract a
physical line shape for the magnons. This means that the Lan-
dau damping of the MnBi magnon modes cannot be studied
with the present numerical resolution in GPAW. To elucidate
such effects in MnBi, additional methodology would need
to be implemented, such as the tetrahedron integration or
analytic continuation techniques, which both previously have
been proved effective for ab initio treatments of itinerant fer-
romagnets [41,52]. However, the available INS spectra do not
exhibit any clear itinerant electron effects within the instru-
ment resolution [21] and the study of such effects in MnBi
is left for future work. Using the present methodology, we
instead focus on the LR-TDDFT magnon dispersion, which
includes magnon renormalization effects from the Stoner con-
tinuum in contrast to a Heisenberg model approach. To extract
magnon energies, we sample the spectrum on a frequency grid
with a spacing δω � η/8 and compute the magnon frequency
as the maximum in a parabolic fit to the magnon spectral peak.
In Fig. 2(a), the magnon peak positions extracted from the
(30, 30, 18) k-point grid are compared to similarly extracted

peak positions on a (60, 60, 36) grid, where it was possible
to reduce η to a value of 40 meV without compromising
the Kohn-Sham continuum. Clearly, it is not necessary to go
beyond the (30, 30, 18) k-point grid in order to converge the
magnon dispersion and a value of η = 100 meV will be used
throughout the remainder of the paper.

As a final note, we extract the magnon stiffness D along
a given direction in reciprocal space by performing a bi-
quadratic fit to the magnon peak positions of the four shortest
q vectors along the path in question (excluding the � point).
This procedure is illustrated in Fig 2(b) for the � → M
direction.

IV. RESULTS

A. Correlation effects in the ground state

As argued in Refs. [56,57], it is necessary to include a
Hubbard correction in the DFT ground-state description of
MnBi in order to capture both structural and magnetic prop-
erties. In Fig. 3(a) we compare the lattice constants in the
NiAs-type crystal structure calculated with LDA(+U ) to the
experimental room-temperature crystal structure. Without a
Hubbard correction, we find the lattice constants a = 4.131 Å
and c = 5.519 Å, which are both underestimated compared
to the experimental lattice constants at room temperature,
differing by 
a = 0.156 Å and 
c = 0.598 Å, respectively.
The temperature effect only provides a minor contribution to
this difference. Experimentally, a and c are found to contract
<0.02 Å and <0.06 Å, respectively, when the material is
cooled from room temperature to 20 K [16]. Thus, the er-
ror mainly resides within the exchange-correlation functional,
which in the case of LDA significantly underestimates the
lattice constants, especially the out-of-plane lattice constant
c, which determines the nearest-neighbor distance between
the Mn atoms. In the case of LDA + U , however, reasonable
lattice constants are obtained for values of Ueff within the
range of 3–5 eV, with Ueff = 4 eV providing the best match to
experiment. In Fig. 3(b), we show the LDA(+U ) ground-state

054402-7



SKOVHUS, OLSEN, AND RØNNOW PHYSICAL REVIEW MATERIALS 6, 054402 (2022)

0 2 4 6
Hubbard correction Ueff [eV]

4.0

4.5

5.0

5.5

6.0

6.5

L
at

ti
ce

co
ns

ta
nt

[Å
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FIG. 3. Effects of Hubbard corrections on lattice parameters and magnetization. (a) LDA + U lattice constants as a function of Ueff ,
calculated using the atomic simulation recipes (ASR) [66]. Solid lines indicate the experimental lattice constants at room temperature [16].
(b) Magnetization per Mn atom as a function of Ueff using the experimental and LDA + U crystal structures, respectively. The experimental
magnetization at 5 K [16] is shown as a reference.

magnetization per Mn atom calculated for the experimental
and relaxed DFT crystal structures, respectively. In LDA, the
magnetization is significantly underestimated with a value
of 3.56 μB (to be compared with the experimental value of
4.1 μB [16]). If we instead use the LDA lattice constants, the
situation is even worse as the magnetization takes a value of
3.11 μB. Again, this deficiency is amended upon the inclusion
of a Hubbard correction and a reasonable agreement with
experiment is found for values of Ueff in the range of 2–5 eV.
As an alternative to Hubbard corrections, one can also obtain
consistent improvements of ground-state properties using a
generalized gradient approximation (GGA) functional [57].
However, whereas the GGA in-plane lattice constant matches
experiments well, Hubbard corrections are still needed in
order to capture the out-of-plane lattice constant and the mag-
netization. Similar to the lattice constant c in Fig. 3(a), the
magnetization in Fig. 3(b) increases monotonically with Ueff ,
but most rapidly so for values of Ueff up to 3 eV. This can be
understood based on the band structures and projected density
of states shown in Fig. 4. Generally speaking, the Hubbard
correction increases the exchange splitting, moving the minor-
ity bands up in energy and the majority bands down in energy
compared to the Fermi level, hence the monotonic increase
in magnetization. For the Kohn-Sham band structure in the
vicinity of the Fermi level, one may separate the bands into
two groups based on the orbital projections. There is a group
of narrow bands consisting mainly of Mn 3d orbitals as well
as a group of more dispersive bands of mixed orbital char-
acter. Due to the nature of the Hubbard correction, it mostly
affects the narrow Mn 3d bands. For Ueff = 3 eV, the Mn 3d
minority bands are moved ∼1 eV up and the Mn 3d majority
bands are moved ∼2 eV down in energy with respect to the
Fermi level. That is, the Mn 3d exchange splitting is increased
by a value ∼Ueff . For the Mn 3d majority bands, the energy
shift is not associated with a change in the occupancies, as the
bands are placed 2–4 eV below the Fermi level in the LDA
band structure. In contrast, there are Mn 3d minority states
situated around the Fermi level of the LDA band structure,
some of them partially occupied. Since the Hubbard correc-
tion increases the exchange splitting, the Mn 3d minority

bands are shifted away from the Fermi level and become fully
unoccupied at Ueff = 3 eV. Thus, for values of Ueff above
3 eV, the increasing magnetization is determined solely from
the more dispersive bands of mixed orbital character, which
are less affected by the correction. As a consequence, the
magnetization increases only slowly with Ueff above 3 eV.

B. Correlation effects in the magnon dynamics

While the effects of Hubbard corrections on the ground-
state properties have been discussed in Refs. [56,57], we
extend the discussion to include also the influence on the
dynamic susceptibility of MnBi. As shown above, the LDA
Kohn-Sham spectrum in Fig. 1(a) has a well-defined Stoner
peak at 2.9 eV. From the band structure and projected density
of states shown in Fig. 4(a), we see that the origin of this
peak is the narrow Mn 3d bands, which dominate the spin
dynamics of the system as expected. However, as reflected
in Fig. 4, the Fermi surface includes contributions from the
dispersive bands of mixed orbital character and these will
have an important influence on the fundamental spin excita-
tions as well. As the exchange splitting between the Mn 3d
bands grows, a non-negligible contribution from the disper-
sive bands becomes visible below the main Stoner peak [see
Fig. 1(b)]. For values of Ueff above 3 eV, it would be tempt-
ing to apply a localized (half-)integer spin model based on
the gapped Mn 3d bands, but this would largely neglect the
itinerant electronic effects introduced by the dispersive bands
crossing the Fermi level. For example, the magnon dispersion
is expected to exhibit Landau damping, which originates from
the coupling of the collective Mn d-band excitations to the
Stoner continuum originating from states in the vicinity of the
Fermi level. In contrast, LR-TDDFT includes contributions
from all bands on the same footing and is expected to capture
both the Landau damping as well as the associated renormal-
ization of the magnon dispersion.

In Fig. 5, we show the experimental magnon spectrum as
measured by inelastic neutron scattering on single-crystalline
MnBi [21] and compare it to the theoretical magnon dis-
persion relations computed within LR-TDDFT. The magnon
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dispersion is quite anisotropic, differing substantially between
the in-plane (� → M) direction and the out-of-plane (� →
A) direction. This difference arises, as the nearest-neighbor
exchange interaction (which is out of plane) is strongly an-
tiferromagnetic, while all other couplings are ferromagnetic.
In order to fit the magnon spectrum to a Heisenberg model,
it is necessary to include interactions up to the sixth-nearest
neighbors (such that each Mn site is directly coupled to 40
other Mn sites), and even in this case, the magnon stiff-
ness is underestimated in the model [21]. The long range of
the exchange interactions is attributed the itinerant nature of
MnBi and when calculating the magnon dispersion within

the ALDA (which is parameter free), we get a better match
of the magnon stiffnesses (long-range magnon dispersion)
to experiment than it is the case with the fitted Heisenberg
model. However, the ALDA completely fails to describe the
optical magnon mode both quantitatively and qualitatively. In
Fig. 5, the optical mode can be observed around the recip-
rocal lattice vectors (0, 0, 1) and (1, 0, 1), where the ALDA
magnon frequencies are more than double compared to ex-
periment. Furthermore, the experimental dispersion attains a
minimum at the � point for the optical mode, most clearly
seen at G = (1, 0, 1), whereas the ALDA dispersion attains
a maximum. This shortcoming of the ALDA is to a large
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extent amended by the inclusion of a Hubbard correction and
both the acoustic and optical magnon modes agree reasonably
well with the experimental spectrum within the λALDA + U
approach with Ueff = 3 eV. As the optical mode characterizes
magnon excitations where the magnetization at neighboring
Mn atoms (out of plane) precess out of phase, it seems that an
appropriate description of static correlation effects is essen-
tial for capturing the short-range antiferromagnetic exchange
interaction. At the same time, it is crucial to incorporate the
itinerant nature of MnBi in order to capture the long-range
ferromagnetic exchange interactions. This makes the inherent
magnetic frustation of MnBi a highly nontrivial problem to
treat theoretically. Therefore, it is a noteworthy achievement
that we are able to reproduce the experimental magnon dis-
persion using a simple Hubbard correctional scheme within
the framework of LR-TDDFT.

C. Correlation effects and the Hubbard parameter

So far, we have presented excited-state quantities cal-
culated using the effective Hubbard parameter Ueff = 3 eV.
However, the “correct” magnitude of the Hubbard correction
cannot be uniquely defined, and in Fig. 6(a) we show the
magnon stiffness as a function of Ueff . We have extracted the
experimental magnon stiffness from a biquadratic fit to the in-
elastic neutron scattering data available [21], obtaining values
DM = 683 ± 75 meV Å2 and DA = 426 ± 54 meV Å2 for the
in-plane and out-of-plane magnon stiffnesses, respectively.
Using the ALDA kernel, the magnon stiffnesses are slightly
overestimated to values of DM = 841 meV Å2 and DA =
526 meV Å2, clearly reproducing the stiffness anisotropy of
experiment. Adding an increasing amount of Hubbard correc-
tion, as shown in Fig. 6(a), the magnon stiffness decreases
along both directions, but more so in the out-of-plane di-
rection than it does in plane. For the � → A direction, the
magnon stiffness reaches negative values for Ueff � 4 eV,
implying that the ferromagnetic ground state becomes dy-
namically unstable beyond this point, a fact which will be
discussed in further detail below. Because the MnBi ground
state is indeed ferromagnetic, this sets an upper bound on

appropriate values for Ueff . Overall, it seems that values of
Ueff � 3 eV provide a reasonable agreement with experiment
for the magnon stiffnesses, with the best fit being somewhere
in the range of 2–3 eV. As mentioned previously, it is espe-
cially the optical magnon frequencies, for which ALDA falls
short. In Fig. 6(b) we show the magnon energy at the first BZ
M point and A point, (1/2, 0, 0) and (0, 0, 1/2) in relative
reciprocal coordinates, as well as the second BZ M point
and � point, (1/2, 0, 1) and (0, 0, 1), as a function of Ueff .
Using the ALDA kernel, the magnon frequencies at the three
high-symmetry points of the second BZ (this includes the
A point) are significantly overestimated. Generally speaking,
the three optical magnon frequencies decrease with increasing
Ueff , coinciding with the experimental reference for separate
values in the 3–5 eV range. However, it is not possible to
obtain a complete simultaneous match to experiment of both
magnon stiffnesses and optical magnon frequencies using the
λALDA + U approach. From the results in Fig. 6, it seems
that in order to reproduce the observed optical magnon fre-
quencies as well as possible, Ueff should be chosen as large as
the magnon stiffnesses permit.

Considering all the preceding results, ranging from lat-
tice constants and magnetization to the magnon dispersion
relation, it seems that a choice of Ueff ∼ 3 eV provides the
best compromise between various material properties. This
finding agrees quite well with the previous efforts of Antropov
et al. to determine U and J [56]. Using the constrained local
spin-density approximation (cLSDA) and constrained random
phase approximation (cRPA) methods, they obtain values
for U of 4.57 and 3.6 eV, respectively. As these methods
generally tend to overestimate and underestimate, respec-
tively, the value for U , the authors deem a value of U ∼ 4 eV
the most appropriate choice, which along with the cLSDA
value for J = 0.97 eV gives Ueff = U − J ∼ 3 eV.

Finally, we return to the dynamic instability of the fer-
romagnetic ground state, which occurs for Ueff � 4 eV. In
Fig. 7(a) we show the magnon dispersion close to the �

point for values of Ueff below, on, and above the onset of
the instability. At the onset itself (Ueff ∼ 4 eV), the magnon
stiffness vanishes and the dispersion becomes flat along the
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FIG. 7. (a) Magnon dispersion in the ferromagnetic state at different values for the Hubbard parameter Ueff . (b) q point (in the � → A
direction) where the ferromagnetic magnon dispersion has its minimum as a function of the Hubbard parameter.

� → A direction, meaning that the low-frequency magnons
disperse with some power larger than q2 in this direction.
Above the onset, however, the magnon stiffness is finite and
negative, such that the magnon dispersion attains its global
minimum away from the � point and at negative magnon
frequencies. This implies that a selection of magnon quasi-
particle excitations with finite wave vectors q ∝ qA place the
system in an energetically more favorable state than the ferro-
magnetic starting point, thus rendering the ferromagnetic state
dynamically unstable. There is no reason to believe that the
correlation effects included in the Hubbard correction quench
magnetic order as a whole, rather they seem to enhance the
nearest-neighbor exchange interaction, which is out of plane
and antiferromagnetic. This is supported by calculations of
the energy difference between the ferromagnetic state and the
antiferromagnetic state with ferromagnetic alignment in plane
and antiferromagnetic alignment out of plane. In Fig. 8 we
illustrate the effective interlayer exchange coupling associated
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PAW sphere of radius rc = 2.1 a0). As a classical Heisenberg model
picture of the interlayer coupling relies on the atomic spins being
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is shown on the right axis.

with this energy difference, a coupling which is ferromag-
netic, but of decreasing strength with increasing Hubbard
correction Ueff . It should be stressed that this effective cou-
pling strength is not a valid Heisenberg model parameter in its
own right, rather it contains contributions from the exchange
couplings at all length scales. Beyond the magnetic phase
transition Ueff � 4 eV, the (total) effective interlayer coupling
is still ferromagnetic, and it seems likely that the new (hy-
pothetical) ground state would be a helically ordered state.
As a first estimate of the helical wave vector, we give in
Fig. 7(b) the wave vector at which the ferromagnetic magnon
frequency attains its minimum along the � → A direction,
determined from a fit to the λALDA + U dispersion using
Gaussian process regression.

D. Hole doping and uniaxial compressive strain

Although the Hubbard parameter Ueff encodes real physical
correlations in MnBi, it is not an actual parameter, which
can be tuned in experiments. However, as previously hypoth-
esized, the main role of the Hubbard correction regarding
a possible phase transition to helical magnetic order seems
to be that it enhances the nearest-neighbor antiferromagnetic
exchange interaction to such an extent, that the ferromagnetic
state becomes dynamically unstable. Whereas we cannot tune
Ueff in real life, we can try to enhance the antiferromagnetic
exchange and possibly realize a magnetic phase transition
to helical order in this way. To this end, we investigate two
different approaches: hole doping and uniaxial compressive
strain. Investigating the effect of hole doping is motivated by
the fact that Mn sits to the right of Cr in the periodic table.
Cr is well known for exhibiting strong antiferromagnetic ex-
change interactions and by substituting a small amount of Mn
with Cr it may be possible to induce a phase transition into
a helically ordered ground state. Because large supercell LR-
TDDFT computations currently are out of scope, we simulate
this scenario by introducing holes into the electronic structure
of MnBi (moving the Fermi level down). We do this with Ueff

fixed to a value of 3 eV. The motivation for investigating strain
effects on the magnon dynamics is more straightforward.
If we can compress the nearest-neighbor bond length, the
antiferromagnetic exchange interaction should be enhanced.
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FIG. 9. Theoretical magnon stiffness along the � → M and � → A directions as (a) a function of removed electrons, (b) a function of
uniaxial compressive strain in the c direction. Calculated with the λALDA + U kernel and Ueff = 3 eV.

However, if we apply a hydrostatic pressure and reduce the
crystal volume from all directions, also the ferromagnetic
exchange interactions are expected to increase in strength.
Thus, to simplify the picture, we compress the crystal along
the c axis, while keeping the volume constant through an
expansion of the in-plane lattice constant. In experiment,
this would to some extent correspond to applying a uniax-
ial pressure. In Fig. 9, we show the magnon stiffness as a
function of hole doping and uniaxial compressive strain. In
both cases, the magnon stiffness decreases more or less lin-
early along the � → A direction and the ferromagnetic state
becomes unstable at 0.12 holes per formula unit and 4.4%
compressive strain along the c axis (determined from linear
interpolation). When hole doping the system, also the in-plane
magnon stiffness along the � → M direction decreases. This
fits well with the intention of simulating a substitution of
Mn with Cr, as one would also expect a weakening of the
long-range ferromagnetic exchange interactions in this case.
For the uniaxial compressive strain, it is less clear what to
expect for the in-plane magnon stiffness. With the expansion
of the in-plane lattice constant, the in-plane ferromagnetic
exchange interactions are expected to become weaker, leading
to a reduction in the frequency scale for DM. At the same
time, however, the length scale for DM increases with an
expanding a lattice constant. Seemingly, these opposite-sided
effects cancel out, as the in-plane magnon stiffness in Fig. 9(b)
is seen to be largely unaffected by the uniaxial compressive
strain, at least for strains below 10% (which are really 5%
strains in plane). The weakening of in-plane ferromagnetic
exchange interactions is more clear from the in-plane magnon
bandwidth (i.e., the magnon frequency at the first BZ M
point), for which there is a decrease with both hole doping
and uniaxial compressive strain, as seen in Fig. 10. In addition,
also the magnon frequency in the A point decreases with both
hole doping and uniaxial compressive strain. However, this
is not the case for the second BZ M point and � point for
which the magnon frequencies only decrease with strain. On
the contrary, the magnon frequency in the second BZ center
actually increases with hole doping. This is somewhat of a
surprise since the second BZ �-point magnons correspond
to spin-wave excitations where the nearest-neighbor Mn

atoms acquire opposite phases. Once again, this emphasizes
that the magnetic frustration in MnBi is a highly nontrivial
problem, due to the importance of static correlation effects
and the fact that the long-range ferromagnetic exchange
interactions cannot be boiled down to a simple set of short-
range couplings.

Experimental studies have shown that it is indeed possi-
ble to dope MnBi with Cr, at least for thin films [18,19]
and melt-spun ribbons [20]. It may even be an advantage
for the synthesis to add Cr, as it helps to stabilize the
formation of ferromagnetic MnBi as opposed to a decompo-
sition into paramagnetic Mn1.08Bi and Bi [20]. For both thin
films and ribbons, the Curie temperatures of the investigated
Mn1−xCrxBi alloys lie below the segregation temperature of
630 K. Based on these studies, it is not completely clear how
the Curie temperature depends on Cr doping levels since the
samples are rather inhomogeneous. As an example, the Cr
content of the thin films was shown to depend on depth, with
Cr concentrated at the surface [19]. With 10% Cr in the overall
composition [comparable to the critical doping level for the
helical phase transition according to the results of Fig. 9(a)],
the Curie temperature was decreased to 523 and 546 K for the
thin films and ribbons, respectively. The fact that Cr doping
lowers the Curie temperature is in good agreement with our re-
sults, but a confirmation of the calculated trends and existence
of a magnetic phase transition (possibly at low temperatures)
requires further experimental studies. To our knowledge, it
is an open question as to how MnBi behaves under uniaxial
pressure. From the present theoretical investigations, it does
not seem realistic to induce a phase transition to helical mag-
netic order in a uniaxial pressure cell, as one would expect
the crystal to break long before obtaining a 4.4% uniaxial
compressive strain. However, based on the fact that DA de-
creases linearly with both hole doping and strain, as seen in
Fig. 9, one could hope to combine the two effects, such that
the hypothetical helical phase transition of the Mn1−xCrxBi
alloys could be induced by pressure for Cr-doping levels close
to the phase transition. Indeed, it seems that both effects
produce similar trends for the minimal frequency magnon
wave vectors beyond the magnetic phase transition, as seen in
Fig. 11.
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FIG. 10. Theoretical magnon energies at a selected number of high-symmetry points as (a) a function of removed electrons, (b) a function
of uniaxial compressive strain in the c direction. Calculated with the λALDA + U kernel and Ueff = 3 eV.

V. DISCUSSION

In this paper, we have mainly discussed the magnon dy-
namics of pristine MnBi and Cr-doped alloys. However, the
results can be regarded as an initial step in a broader context
since many of the quantum magnetic phenomena studied here
are shared by the family of transition metal pnictides. Among
the Mn- and Cr-based compounds, helical magnetic order is
quite common and the helical wave vectors have also previ-
ously been shown to depend on the relative concentrations
of Mn and Cr [10]. As an example, the Mn1−xCrxAs phase
diagram includes a phase transition from ferromagnetic MnAs
to helically ordered CrAs [15]. In addition, MnP has been
shown to exhibit pressure-induced magnetic phase transitions
between ferromagnetic and helical order as well as pressure-
induced superconductivity [10,13], which is also found in
CrAs [14].

Also the inherent magnetic frustration in the transition
metal pnictide family has been the subject of several previous
studies. Based on analysis of the band structure and partial
occupation of orbitals in MnP, Goodeneough provided a qual-
itative explanation for the existence of both antiferromagnetic
and ferromagnetic order at different temperatures [11]. He
argued that the half-filling of the localized Mn t2g orbital
directed towards the nearest Mn neighbors calls for an anti-

ferromagnetic ordering while the three-fourths filling of the
collective, yet narrow, 3d bands representing the remaining
t2g orbitals calls for ferromagnetic ordering. Similar consid-
erations have also been explored for MnAs, where exchange
striction also plays a role in the competition between the NiAs
and MnP structural phases [12].

In this context, the theoretical prediction that magnetic
order in MnBi is characterized by a competition between
nearest-neighbor antiferromagnetic exchange and long-range
ferromagnetic exchange has some precedent, as similar effects
have been observed in closely related members of the transi-
tion metal pnictide family. Similarly, it seems likely that the
prediction of a phase transition to helical magnetic order in
Cr-doped MnBi could be correct and that the phase transition
would be strain sensitive.

The coupling between structural and magnetic degrees of
freedom may also help to explain why the Hubbard correction
has such a strong influence on the out-of-plane lattice constant
c, as shown in Fig. 3(a). As the appropriate correlation effects
are included with increasing Ueff and the antiferromagnetic
exchange interaction between nearest neighbors is increased,
it becomes favorable to increase the nearest-neighbor distance
as a compensation for the ground-state remaining ferromag-
netic. Similarly, a magnetic phase transition to helical order
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FIG. 11. q point where the ferromagnetic magnon dispersion has its minimum along the � → A path as (a) a function of removed electrons,
(b) a function of uniaxial compressive strain in the c direction. Calculated with the λALDA + U kernel and Ueff = 3 eV.
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could be accompanied by a structural compression in the c
direction, as the antiferromagnetic nearest-neighbor exchange
interaction does no longer need to be compensated to the same
extent. Another possibility is that MnBi undergoes a structural
phase transition from the hexagonal NiAs structure into the
orthorhombic MnP structure with Cr doping, as it is the case
in the Mn1−xCrxAs phase diagram.

Although the occurrence of similar phenomena in other
transition metal pnictides inspire confidence in the qualitative
predictions made on the basis of this study, the quantita-
tive predictions may depend somewhat on the details in the
theoretical representation of doping and strain. The by-hand
introduction of hole doping and uniaxial compressive strain
should be viewed as efforts to study the underlying physical
mechanisms and not to provide accurate estimates for, e.g.,
the critical Cr-doping level for the magnetic phase transition.
Actually, the critical doping levels and strains for the phase
transition are likely to be underestimated, as the Hubbard
parameter Ueff = 3 eV used here leads to an underestimate of
the out-of-plane magnon stiffness DA, as seen in Fig. 6(a). In
this sense, the undoped and unstrained MnBi is closer to a he-
lical phase transition in our simulations than the experiments
predict (based on the magnon stiffness).

VI. CONCLUSION

MnBi has a long history of experimental as well as
theoretical investigations based on its attractive properties
for technological applications. As we have shown in this
study, MnBi exhibits a nontrivial inherent magnetic frustra-
tion, which makes it an intriguing subject for theoretical
studies, but also implies a potential for future discovery
of new magnetic phases. The nearest-neighbor exchange
interactions between Mn 3d electrons are strongly antiferro-
magnetic and highly susceptible to correlation effects, but
despite the strength of these interactions, the ground-state
magnetic order is determined by the long-range ferromag-
netic exchange. Because the competing magnetic interactions
arise from electrons of localized and itinerant character, re-
spectively, it is a substantial theoretical challenge to provide
an appropriate description of the magnetic frustration in
MnBi.

In this study, we have shown that it is in fact possible
to capture the magnetic frustration from the perspective of
(LR-TD)DFT calculations, both for the ground-state proper-
ties of MnBi, but also for the magnon dynamics. The itinerant
and localized correlations in MnBi have been described at
the LDA + U level and for the LR-TDDFT calculations, we

utilize a scalar rescaling of the ALDA kernel based on con-
siderations of the Goldstone criterion for the homogeneous
electron gas. With the rescaled λALDA + U kernel, we are
able to reproduce the experimental magnon dispersion us-
ing a Hubbard correction of Ueff = 3 eV, which in turn also
provides ground-state properties that are in accordance with
experiment. In this way, this study may pave the way for
future theoretical studies of magnon dynamics in the transition
metal pnictide family. To this end, we hope that first-principles
calculations can provide a new angle of insight into the wide
range of phenomena driven by magnetic frustration and mag-
netic fluctuations.

With an ab initio description of the magnon dynamics of
MnBi in place, we have explored some of the phenomena
that arise from the magnetic frustration. We have shown that
an increase of the local electronic correlations gives rise to
a decrease in the magnon stiffness out of plane (DA) due
to an increased strength of the antiferromagnetic exchange
interactions between the nearest neighbors. At Ueff ∼ 4 eV,
the magnon stiffness changes sign, meaning that a phase
transition takes place, most likely in the favor of a phase of
helical order. Whereas the increase in electronic correlations
is an artificial one, we have shown that a similar increase in
antiferromagnetic interaction strength may be imposed using
hole doping or uniaxial compressive strain, in both cases
leading to a similar phase transition. In particular, it seems
realistic to realize this phase transition by substituting 10%–
20% of the Mn content with Cr. Similarly, it may be possible
to induce the transition by applying uniaxial pressure, but
only for compositions of Mn1−xCrxBi close to the critical
Cr-doping level. Furthermore, we predict the helical wave
vector q to be sensitive to the Cr-doping level and strain,
especially for doping levels and strains close to the phase
transition.

To further unravel the inherent magnetic frustration in
MnBi, additional experiments on single-crystalline MnBi are
highly desirable. Especially, investigations of the effect of Cr
doping and a possible phase transition to helical magnetic or-
der are of great interest. Such investigations could potentially
provide an improved understanding of the physical mecha-
nisms underlying a wide range of members in the family of
transition metal pnictides.
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