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Phonon-mediated superconductivity near the lattice instability in hole-doped hydrogenated
monolayer hexagonal boron nitride

Takat B. Rawal ,1,* Ling-Hua Chang,1 Hao-Dong Liu,2 Hong-Yan Lu ,2,† and C. S. Ting1

1Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204, USA
2School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China

(Received 28 September 2021; accepted 2 May 2022; published 19 May 2022)

Employing the density functional theory with local density approximation, we show that the fully hydro-
genated monolayer-hexagonal boron nitride (H2BN) has a direct band gap of 2.96 eV in the blue-light region,
while the pristine h-BN has a wider indirect band gap of 4.78 eV. The hole-doped H2BN is stable at low carrier
density (n) but becomes dynamically unstable at higher n. We predict that it is a phonon-mediated superconductor
with a transition temperature (Tc) which can reach ∼31 K at n of 1.5 × 1014 holes cm−2 near the lattice instability.
The Tc could be enhanced up to ∼82 K by applying a biaxial tensile strain at 6% along with doping at n of
3.4 × 1014 holes cm−2 close to a new lattice instability.
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I. INTRODUCTION

Two-dimensional (2D) electron system such as graphene
has attracted a lot of attention since its atomic structure in the
form of a single layer was realized experimentally [1]. Owing
to the exceptional electronic and other properties, it may be
used for a wide range of applications [2–8], including super-
conducting quantum circuits for quantum computing [8]. By
tuning its electronic properties, one may remarkably achieve
and adjust the superconductivity (SC). Very recently, robust
SC has been observed for the magic angle twisted trilayer
graphene [9] with Tc up to 2.1 K [10]. For twisted bilayer
graphene, the Tc up to 1.7 K has been reported [11,12]. The
SC may arise in twisted trilayer or bilayer graphene from
interlayer interactions which are missing in its monolayer
limit, albeit the full understanding of the mechanism behind
SC in a graphenelike, 2D system is not well developed.

The study of another 2D system like monolayer-hexagonal
boron nitride (h-BN) becomes popular. The pristine com-
pound has a honeycomb lattice structure similar to that of
graphene. It has been predicted [13] that the monolayer h-BN
is an insulator with an indirect band gap of 4.47 eV, but recent
experiments [14] demonstrate that it has a gap of ∼5 eV. By
employing the first-principles methods as in prior studies on
2D materials [15–19], the doped h-BN has been predicted
to be a phonon-mediated superconductor with Tc ∼ 41 K
under an applied biaxial tensile strain (BTS) together with
doped holes (5.3 × 1014 holes cm−2) [20]. The doped holes
may come from either gating or chemical doping. The gating
approach is similar to the case for biaxial-tensile-strained and
doped graphene (4.0 × 1014 holes cm−2) which shows the
SC with Tc ∼ 30 K [21]. By means of chemical doping of
Ca, Ba, and Sr atoms, one may theoretically obtain SC in
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monolayer h-BN with Tc ranging from ∼1 to 10 K [22]. The
bilayer h-BN with an intercalated Li atom has also been pre-
dicted to show SC with different Tc (<25 K) [23,24]. Despite
some efforts being devoted to developing the fundamental
understanding of phonon-mediated SC in doped h-BN, the
electronic structure, lattice stability, and SC in H2BN (fully
hydrogenated monolayer h-BN) have not been studied. The
focus of this paper is to investigate these properties in pristine
and hole-doped H2BN by adopting an approach similar to the
one implemented in previous studies on graphane [16] and
graphene [21].

In this paper, we apply methods based on the first-
principles density functional theory (DFT) with local density
approximation (LDA) [25] plus plane waves and pseu-
dopotential approaches [26–28] and the density functional
perturbation theory (DFPT) [29]. Firstly, we study the struc-
tural and electronic properties of pristine h-BN and H2BN.
We found that the undoped H2BN has a direct band gap of
2.96 eV in the blue-light region. The full hydrogenation of
h-BN gives rise to a transition from indirect [13] to direct band
gap. The subsequent modification in electronic properties by
hole doping gives the metallicity with the finite density of
states at Fermi level. We show that there exist no negative
phonon frequencies in k space for doped H2BN with n varying
from 0 up to 1.5 × 1014 holes cm−2, indicating the stability
of the lattice in this doping range. But as n >∼ 1.55 × 1014

holes cm−2, negative frequencies begin to appear near � point
suggesting the lattice instability. For stable lattice structures,
we evaluate the electron-phonon (e-ph) interaction strength λ

in hole-doped H2BN using DFPT [29].
Taking advantage of the high-phonon frequencies and the

soft phonon modes near the lattice instability (LI), we exam-
ine the existence of SC in hole-doped H2BN and estimate
its Tc. Our methods are based upon the Bardeen-Cooper-
Schrieffer (BCS) theory [30] and the Eliashberg approach plus
its extended versions [31–35]. The modified Eliashberg theory
[32,34] has been widely employed to understanding the BCS
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superconductivity in metallic materials. We show that with
hole doping at n of 1.5 × 1014 holes cm−2, the doped H2BN
exhibits phonon-mediated SC with Tc above the boiling point
of liquid hydrogen. The Tc can be enhanced further above
liquid nitrogen temperature when we apply BTS at 6% and
increase n up to 3.4 × 1014 holes cm−2.

II. COMPUTATIONAL DETAILS

A. Density functional theory

We perform first-principles DFT calculations using LDA
functional [25] plus plane waves and pseudopotentials ap-
proaches [28] implemented in Quantum Espresso (QE) code
[36]. The interaction between ions and electrons are treated
using norm-conserving pseudopotentials [26,27], which take
into account B 2s2, 2p1, N 2s2, 2p3, and H 1s1 as valence
electrons. We use the LDA for describing the exchange-
correlation of electrons since it reproduces very well the
geometrical structure of h-BN [37,38]. To achieve the con-
vergence of total energy below 0.07 mRy per atom, we use
an energy cutoff of 80 Ry for the plane waves expansion.
For the electronic integration during self-consistent cycles,
we describe the fractional occupations using the first-order
Methfessel-Paxton method [39]. To simulate the monolayer
h-BN, we use (1 × 1) unit cell containing 16 Å of vacuum
which is found sufficient to prevent the artificial electrostatic
interaction between layers along z direction. We initially place
hydrogen atoms alternatively on both sides of the h-BN plane.
We denote the corresponding geometry of the fully hydro-
genated monolayer h-BN as H2BN. For structural relaxations,
we use the 24 × 24 × 1 k-mesh with automatic generation
of k points according to the Monkhorst-Pack scheme [40].
The positions of atoms are optimized using the Broyden
Fletcher Goldfarb Shanno (BFGS) quasi-newton algorithm so
that forces on each atom reach below 10−7 Ry/a.u.

In the rigid-band approximation [41], we simulate the hole
doping into H2BN through replacing the total valence elec-
trons per N atom per unit cell (ZB + ZN + 2ZH = 3 + 5 + 2 =
10e) by (10 − y)e, where y represents the number of holes per
unit cell. The similar method has been adopted in prior studies
on p-doped graphane [16].

B. Lattice-dynamical and superconducting properties

To compute phonon modes and dispersions as well as e-ph
interaction, we use DFPT [29] implemented in QE [36]. The
total number of perturbations due to atomic displacements to
be treated amounts to 3N, where N=Number of atoms, i.e.,
12 for the (1 × 1) H2BN monolayer. We calculate the phonon
frequencies using the linear-response technique within DFPT.
For calculations of e-ph interaction, we adopt a scheme of
interpolation over the Brillouin zone (BZ). We compute the
e-ph coupling using the momentum k mesh of 192 × 192 × 1.
Such dense k-point mesh is found to sufficient for calculat-
ing the electronic density of states (DOS). For calculation of
phonon DOS, we use a dense 110 × 110 × 1 mesh of q points
with ndos value of 2500. We checked in detail the convergence
of λ for several values of smearing for both electrons and
phonons.

FIG. 1. DFT-optimized structure of an undoped H2BN mono-
layer: side (top panel) and top (bottom panel) views. The height (h)
of the H2BN monolayer is 2.74 Å. Here, the height is defined as
h = d(B-H) + d(N-H) + t(BN), where d(B-H ) is the bond length between B
and H atoms, and d(N-H) is the bond length between N and H atoms,
and t(BN) is the thickness of a reconstructed BN layer. Alternatively,
the height of the monolayer can be defined as the difference in
z-position of the two hydrogen atoms, HB and HN, i.e., Z (HB) Z (HN),
where Z (HB) and Z (HN) represent the z positions of hydrogen atoms
bonded to boron and nitrogen atom, respectively. The (1 × 1) unit
cell of the H2BN is shown by black lines (bottom).

We calculate the Tc using the modified McMillan equa-
tion [33–35] and Coulomb parameter μ∗=0.13 [34,42]. The
choice of other values of μ∗ do not affect qualitatively our
conclusions.

III. RESULTS AND DISCUSSION

A. Structural properties

Upon relaxation of monolayer h-BN with hydrogen atom
attached to each B and N atom on both sides of the mono-
layer plane, the planar h-BN layer is reconstructed and the
geometrical structure of fully hydrogenated monolayer h-BN,
which we call H2BN, becomes similar to that of graphane
[43]. We show the DFT-optimized structure of H2BN in Fig. 1.
The optimized lattice parameter of the fully hydrogenated
(1 × 1) h-BN is 2.56 Å, which is deviated by ∼2% from that
of crystalline h-BN (2.51 Å) [44]. The thickness of H2BN
monolayer is estimated to be 2.74 Å.

B. Electronic properties

Figure 2 shows the calculated electronic band structures
of monolayer h-BN (pristine) and undoped H2BN along the
high-symmetry directions in the first BZ. The hydrogenation
of h-BN modifies its electronic structure along with a band
gap [Fig. 2(b)] owing to the charge redistributions that trigger
electrons to be piled up at different potential regions from
those of monolayer pristine h-BN. The valence band (VB)
dispersion of H2BN is found different from that of monolayer
h-BN. The periodicity length of the Brillouin zone of this
system differs from that of h-BN, and it is due to the different
periodic potential of H2BN with only six symmetry operations
(i.e., 1/2 of 12 symmetry operations in the pristine mono-
layer h-BN. The details of the symmetry operations for both
model systems are provided in Table III in the Appendix).
The valence band (VB) maximum occurs at K point for h-
BN whereas it occurs at � point for H2BN. The calculated
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FIG. 2. Electronic band structures of monolayer (a) h-BN and
(b) H2BN (undoped) along the high-symmetry directions in the first
Brillouin zone. The chemical potential is set to zero. In inset, the Eg

represents the energy gap between the valence band maximum and
the conduction band minimum.

indirect band gap of h-BN monolayer at the level of DFT
generalized-gradient approximation is 4.47 eV [13], whereas
the most recent experiment reveals the gap of ∼5 eV [14]. Our
calculated indirect band gap of h-BN without hydrogenation
at the LDA level is, however, 4.78 eV [Fig. 2(a)]. Our result is
thus in better accord with the experiment. When monolayer
h-BN is fully hydrogenated, the LDA band gap reduces to
2.96 eV [Fig. 2(b)]. Both VB maximum and conduction band
minimum occur at the BZ center, and therefore there is a
crossover from indirect to direct band gap. Thus, we can tune
the gap of the h-BN from indirect to direct with a value
changed by 1.82 eV. Such electronic modification may be
useful for exploiting H2BN in optical quantum devices. The
projected electronic DOS for undoped h-BN and H2BN are
respectively shown in Figs. 8(a) and 8(b) in the Appendix.

Figure 3(a) shows the electronic band structure of hole-
doped H2BN with n of 1.0 × 1014 holes cm−2 and also its total
DOS (This hole concentration can be obtained by replacing
0.06% of N atoms with the same amount of B atoms, and such
hole-doped compound can be represented by H2B(1+x)N(1−x)

with x = 0.006). The chemical potential labeled by 0 eV
crosses the VB maximum near the BZ center. Thus, it cre-
ates two hole pockets: one with a lighter mass and the other
with a heavier mass. With the doping increased to 1.5 × 1014

holes cm−2, the chemical potential moves downward toward
the lower energy and crosses the VB maximum near the

FIG. 3. (a) Electronic band structure along high-symmetry di-
rections in the first Brillouin zone (left) and the electronic density
of states (right) of the hole-doped H2BN with the carrier density of
1.0 × 1014 holes cm−2. The Fermi level is set to zero. The color bar
represents the projections of H s states to bands. For clarity of the
effect of hole doping, the band structure for the small energy window
around the Fermi level is also shown in inset. [(b) and (c)] Fermi
surfaces in the first Brillouin zone of the doped H2BN with the carrier
density (n) of (b) 1.0 × 1014 and (c) 1.5 × 1014 holes cm−2. In (b),
the high-symmetry k-point directions (K-�-M-K) are also depicted
by arrow. The Fermi surfaces of strained H2BN with BTS of 6% are
shown for n of: (d) 2.0 × 1014 and (e) 3.4 × 1014 holes cm−2.

high-symmetry K point. The Fermi surfaces at these doping
levels are respectively shown in Figs. 3(b) and 3(c). For these
doping levels, Fermi surfaces are found to appear near the �

point. From the calculated projected density of states of hole-
doped H2BN (see Fig. 9 in the Appendix), it is seen that the
bands contribute strongly to the DOS at the Fermi level. The
occupied σ -bonding bands should promote remarkably the
e-ph coupling (EPC) in H2BN, as is the case for hydrogenated
MgB2 [45] and graphane (fully hydrogenated graphene) [16].

C. Lattice dynamical properties

We examine the dynamical stability of the undoped and
hole-doped H2BN systems without strain. In Fig. 4, we show
the phonon frequency dispersion of the doped H2BN with n of
1.0 × 1014 holes cm−2, and compare it with that of undoped
H2BN for the selected energy range. Several optical phonon
modes at the � point are shown in Fig. 10 in the Appendix.
The hole doped H2BN exhibits a smooth softening of optical
and acoustic branches around the zone center when compared
with those of undoped H2BN. The optical B-N stretching
mode is softened the most when H2BN is doped (indicated by
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FIG. 4. Comparison of phonon dispersion of the undoped H2BN
(green trace) and hole-doped H2BN with carrier density of 1.0 ×
1014 holes cm−2 (red) for the selected frequency range up to 1280
cm−1, showing the Kohn anomaly [46].

arrow in Fig. 4). The hole doped H2BN system with a suitable
density of hole carriers thus exhibits the Kohn anomaly [46]
in phonon dispersion. These results suggest that upon further
doping, these optical and acoustic modes may be further soft-
ened until the lattice becomes dynamically unstable. Several
doping dependent optical modes at the � point are shown in
Table IV in the Appendix.

Figure 5 shows the resulting phonon band structure and
phonon DOS of hole-doped H2BN with n of 1.0 × 1014

holes cm−2. The calculated phonon spectra without imaginary
frequencies substantiate the dynamical stability of the doped
H2BN. The phonon dispersion of the hole-doped H2BN ex-
hibits kinks at q = 2kF (Figs. 4 and 5) because of the Kohn
anomaly [46] and this anomaly has an effect on the e-p in-
teraction. As shown in Fig. 4, the phonon modes softening
occurs at and around � point, similar to the doped graphane
[16]. By increasing the hole density, the optical B-N stretching
mode softening can be increased. In the case of doped H2BN
with different hole carrier density, the optical B-N stretching
mode softening takes place with the frequency changing from
850 to 675 cm−1 for a carrier density 1.0 × 1014 holes cm−2,
and from 850 to 647 cm−1 for 1.5 × 1014 holes cm−2 (see
Table IV in the Appendix).

FIG. 5. Phonon frequency dispersion along high-symmetry di-
rections of the first Brillouin zone (left) and phonon density of states
(right) of the hole-doped H2BN with n of 1.0 × 1014 holes cm−2. The
modes with q < 2kF are shaded.

FIG. 6. Phonon frequency dispersion of the strained and doped
H2BN models under 6% BTS with the carrier densities of (a) 3.4 ×
1014 and (b) 3.5 × 1014 holes cm−2. For the latter carrier density, the
doped H2BN has negative frequencies around the � point, as shown
in inset.

The H-related in-plane motion gives rise to three different
frequencies with higher phonon DOS around 1000 cm−1 in
Fig. 5. The softer modes with frequencies near 1059 cm−1

give rise to the highest phonon DOS. In addition, there are
two other DOS peaks, one at ∼1205 cm−1 and the other at
∼864 cm−1. Although the phonon DOS is relatively small
near 965 cm−1, the optical frequencies are related to the
in-plane motion of H atoms (see Fig. 10 in the Appendix)
and thus should effectively contribute to the e-ph interaction.
The contribution of these modes to the e-ph interaction has
been theoretically studied previously [47]. With no strain, the
lattice is found to dynamically stable for the carrier density up
to 1.5 × 1014 holes cm−2 [see Fig. 11(a) in the Appendix]. At
n = 1.6 × 1014 holes cm−2, the lattice becomes unstable with
negative frequencies appearing in one of the acoustic branches
near the zone center [see Fig. 11(b) in the Appendix]. Here,
we study the phonon-mediated SC up to the hole density near
the LI.

The onset of the LI appears to occur at ∼1.55 × 1014

holes cm−2 under no BTS. It may arise from the fact that
the Fermi level is trying to cross the top of the VBs at K
points and to create the hole pockets. Near K points the hole
bands are dominantly originated from B-2pz and H-1s orbitals
which contribute a high electronic DOS peak (see Fig. 9 in
Appendix).
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TABLE I. Comparison of selected optical phonon frequencies
(given in unit of cm−1) at the BZ center of undoped and doped
H2BN systems under BTS of 6%. The hole carrier densities (in unit
of 1014 holes cm−2) are given in parenthesis. The normal modes are
provided, and numbers in parenthesis represent degree rotation. The
in-plane H, out-of-plane B-N, and B-N stretching modes have E, A1,
and E ′ symmetry, respectively.

H2BN H2BN H2BN
Normal modes (0.0) (2.0) (3.4)

In-plane H (0) 1052 997 985
In-plane H (90) 1052 997 985
In-plane H (30) 953 912 886
In-plane H (120) 953 912 886
Out-of-plane B-N 925 886 885
B-N stretching (0) 734 709 707
B-N stretching (90) 734 709 707

D. Effect of biaxial tensile strain

By applying BTS [20,21], defined by ε=(a − a0)/a0 ×
100% where a and a0 are the in-plane lattice constants for
strained and unstrained (a0=2.56 Å) cases respectively, we
can push the LI to the higher n. In Fig. 6, we compare the
phonon frequency dispersion of strained and doped H2BN
with n of 3.4 × 1014 and 3.5 × 1014 holes cm−2. If ε = 6%
is applied, the doped system with n of 3.4 × 1014 holes cm−2

that is unstable at ε = 0, now becomes stable [Fig. 6(a)]. As
shown, the H2BN lattice with a BTS up to 6% is found to
be dynamically stable up to this n. With further increasing of
the n up to 3.5 × 1014 holes cm−2, however, the doped H2BN
exhibits the negative frequencies near � [Fig. 6(b) and inset],
thus indicating the system to be dynamically unstable.

For the doping of 3.4 × 1014 holes cm−2, both the optical
phonon and acoustic branches related to the in-plane displace-
ments of B and N atoms and the in-plane motion of H atoms
may give rise to the strong e-ph coupling.

In Table I, we present the selected phonon modes calcu-
lated at the center of BZ of the hole-doped H2BN under BTS
of 6% up to n of 3.4 × 1014 holes cm−2. The optical modes
associated with H in-plane motion, are found to be softer
with frequencies of 985 cm−1 and 886 cm−1, respectively
as compared to those modes of undoped H2BN (1052 and
953 cm−1). Such softening may contribute to the strong e-ph
interaction.

We plot the Fermi surfaces of the strained H2BN with BTS
of 6% in Figs. 2(d) and 2(e), respectively, for 2.0 × 1014 and
3.4 × 1014 holes cm−2. As shown, the Fermi surfaces contain
hole pockets near both the high-symmetry � and K points.
The appearance of hole pockets at K points can be attributed
to the higher hole densities that can be accommodated for
strained H2BN.

E. Eliashberg function

Using Eq. (1), we compute phonon linewidths (γqν), which
we use later for evaluating the Eliashberg function.

γqν = 2πωqν

∑
mn

∫
BZ

dk
ABZ

|gν
mn(k, q)|2δ(Ek,m − EF )

× δ(Ek+q,n − EF ), (1)

FIG. 7. Eliashberg function of hole-doped H2BN with the carrier
density of (a) 1.0 × 1014, (b) 1.3 × 1014 (green trace), and 1.5 × 1014

holes cm−2 (magenta).

where gν
mn(k, q) is the e-ph matrix elements for an electron

with momentum k and band index m and n, and for a phonon
with wave vector q, branch index ν, and frequency ωqν , ABZ

the BZ area, δ the Dirac delta, and EF Fermi energy. Since
holes at the top of the zone-centered, σ -bonding VB cou-
ple strongly to the optical bond-stretching modes [48], the
phonons corresponding to soft B-N stretching modes may
strongly couple with charge carriers in the hole-doped H2BN.

The connection between the e-ph matrix elements and the
EPC is established by Eliashberg relation [42]:

α2F (ω) = 1

2πN (EF )

∑
qν

δ(ω − ωqν )
γqν

ωqν

, (2)

where N (EF ) is the electronic DOS at EF , γqν [see Eq. (1)]
is the phonon linewidth of mode ν with phonon momentum q
and frequency ωqν , and δ the Dirac delta. Figure 7 shows the
Eliashberg function of doped H2BN that measures the relative
contribution of its different modes to the superconducting
pairing [42]. For the doping with 1.0 × 1014 holes cm−2, the
Eliashberg functions possess a maximum peak at 756 cm−1

[see Fig. 7(a)], closer to the �-point frequency of 675 cm−1,
that originates from the in-plane B-N stretching modes. These
modes are similar to those in the p-doped graphane that has
the in-plane C-C stretching and H atoms moving in phase with
C atoms for both 1% and 4% dopings [16]. In the optical re-
gion, the other two peaks appear at 978 and 1079 cm−1, which
are associated with the H in-plane vibrations. On the circular
Fermi surface near � point, electrons are expected to strongly
couple with phonons corresponding to the B-N modes and
moderately with those corresponding to the in-plane vibra-
tions of H atoms. For the higher n at 1.5 × 1014 holes cm−2,
a maximum peak appears at 629 cm−1 [see Fig. 7(b)], closer
to �-point frequency of 647 cm−1, that is associated with B-N
stretching modes, and the other two peaks at 966 and 1076
cm−1, which are associated with in-plane optical modes of H
atoms.

F. Electron-phonon interaction and superconducting properties

We calculate the superconducting transition temperature
using the modified McMillan equation [33–35]:

Tc = 〈ωlog〉
1.2

exp

[ −1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
, (3)

where μ∗ is the Coulomb parameter (Morel-Anderson pseu-
dopotential), the λ is given by 2

∫
dωω−1α2F (ω) [42], and
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TABLE II. Hole carrier density (n in holes cm−2), BTS (ε in
percentage), electronic DOS at EF (EDOS in states/eV), e-ph in-
teraction parameter (λ), logarithmically averaged frequency (〈ωlog〉
in cm−1), superconducting transition temperature (Tc in Kelvin) for
hole-doped H2BN.

n (×1014) ε EDOS λ 〈ωlog〉 Tc

0.6 0 0.42 0.61 580 14.3
1.0 0 0.61 0.72 499 20.7
1.3 0 0.69 0.81 428 24.0
1.5 0 0.86 1.10 312 31.3
1.6 6 1.00 1.20 398 45.5
2.0 6 1.06 1.67 386 64.2
2.8 6 1.11 2.25 365 76.5
3.4 6 1.32 2.75 350 82.5

〈ωlog〉 is the logarithmically averaged phonon frequency and
is given by exp[2λ−1

∫
dωω−1α2F (ω) ln ω], with α2F (ω) be-

ing the Eliashberg spectral function, as given by Eq. (2). In
atomic units, the reduced Planck’s constant (h̄) and Boltzmann
constant (kB) can be set to unity.

In Table II , we present the calculated Tc and the EPC λ of
the doped H2BN for different densities of hole carriers. The
Tc appears to be increased from 14.3 K at n of 0.6 × 1014

holes cm−2 to 31.3 K at n of 1.5 × 1014 holes cm−2. Within
this range, both the electron DOS and λ get enhanced with
the increase of n. This result shows the correlation between
EPC, DOS, and robust SC [50]. In the literature, the μ∗ has
been taken as an empirical parameter. For metallic systems,
the values of μ∗ can be small (e.g., see Ref. [49]). For doped
layer systems, μ∗ has been chosen to be from 0.10 to 0.14
([20,22,23]). In our work, we choose μ∗ = 0.13, which can
be regarded as Coulomb repulsion with moderate strength.
It is important to notice that doping with higher n would
cause the lattice to become unstable at 1.6 × 1014 holes cm−2

[see Fig. 11(b) in Appendix]. The critical hole density for
creating the LI is nc ∼ 1.55 × 1014 holes cm−2. But we can
stabilize the LI by applying BTS. If we take ε = 6%, the n
that causes the LI is moved to higher density nc ∼ 3.45 × 1014

holes cm−2 (Fig. 6). In Table II, we also list the calculated Tc

for doped H2BN under BTS of 6% with several n ranged from
1.6 to 3.4 ×1014 holes cm−2. When n approaches the value
near the LI, the DOS, EPC, and Tc increase. For doped H2BN
with n of 3.4 × 1014 holes cm−2, we estimate the Tc at 82.5 K.
The detailed estimation of Tc is presented near the end of the
Appendix (see Figs. 12–14). The Tc might be further increased
by applying more BTS along with the higher doping, however,
the physics regarding the phonon-mediated SC in hole-doped
H2BN will not be changed.

IV. CONCLUSIONS

In summary, we have demonstrated using first-principles
DFT approaches that the p-doped H2BN can be an e-ph su-
perconductor. The chemical modification of monolayer h-BN
by hydrogen atoms results in not only high-energy phonons
but also the higher phonon DOS. The favorable doping of
H2BN by holes can form a stable lattice with strong e-ph
couplings. The synergy between hydrogenation and doping

plays a crucial role for SC in hole-doped H2BN. The phonon-
mediated SC with Tc of 31.3 K can be achieved for the doped
H2BN with n of 1.5 × 1014 holes cm−2 near the LI when
ε = 0. To understand the SC at higher n, we need to apply
a BTS for pushing a critical hole density toward the higher
n. At ε = 6%, we can dope the H2BN with higher n up to
3.4 × 1014 holes cm−2 near new LI, and thereby enhance Tc up
to 82.5 K. We can thus achieve the maximum Tc at hole densi-
ties near LIs. This is quite different from the case of doped
h-BN, where no SC is found at ε = 0, but Tc is estimated
to be 41 K at ε = 17.5% and n = 5.3 × 1014 holes cm−2

with μ∗ = 0.10 [20]. We applied weaker BTS and chose
smaller hole densities with the expectation that they may be
more accessible to experiments. Since the fully hydrogenated
graphene has been realized in Ref. [51], we expect that there
should be no obstacles to grow H2BN in laboratory. We hope
that phonon-mediated SC in doped H2BN will be realized
experimentally. When realized, one may exploit the doped
H2BN for nanosuperconducting quantum devices that may
have potential applications in quantum information technol-
ogy.
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APPENDIX

1. Electronic density of states and symmetry operations

Figure 8 shows the electronic DOS of pristine h-BN and
H2BN monolayers. While the highest occupied electronic
states are of dominantly of N 2pz characters for monolayer
h-BN [Fig. 8(a)], the most of the DOS of H2BN dominantly
come from B 2pz and H 1s orbitals and partly from N 2px and
2py [Fig. 8(b)] when summing contributions for all k points.
The B 2pz and H1 s states are strongly hybridized with almost
similar density peak in the projected DOS spectra [Fig. 8(b)].
The B 2pz state which dominantly appears just above the
chemical potential [Fig. 8(a)], now disappears when h-BN is
fully hydrogenated [Fig. 8(b)]. So, the hydrogenation results
in the significant modifications in the electronic properties of
h-BN. Since the hydrogen electronic states have energy closer
to the chemical potential. The suitable doping of H2BN by
holes may bring these hydrogen electronic states closer to the
chemical potential.

We discuss the electronic DOS of the hole-doped H2BN
with n of 1.0 × 1014 holes cm−2 obtained by projection onto
the atomic orbitals of B, N, and H atoms. In Fig. 9 , we show
the DOS projected on B and N 2p orbitals and H 1s orbitals.
The hole doping brings some electronic states at the Fermi
level. These states mainly include the B 2pz, H 1s, and N 2px

and 2py components. Note that the resulting DOS is obtained
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FIG. 8. Projected density of states (PDOS) of (a) monolayer h-
BN and (b) H2BN without doping. The chemical potential is set to
zero. In (a), the B 2pz state of monolayer h-BN is partly unfilled just
above the chemical potential (pink trace) where the density of B 2pz

is relatively higher than that below the chemical potential. In (b), for
the case of H2BN, both B 2pz and H 1s states dominantly contribute
to the DOS just below the chemical potential, while the N and B 2px,y

orbitals also contribute to the DOS. The contributions from 2px and
2py are added and shown as 2px,y. Here, H1 and H2 are bonded to B
and N atoms, respectively.

by considering all k points in the BZ. For the � point resolved
DOS (not shown), the major contributions arise from N 2px

and 2py orbitals.
Here we also show the symmetry operations in monolayer

pristine h-BN and H2BN in Table III. There are 12 symmetry
operations in h-BN and only 6 in H2BN.

2. Vibrational properties

In Fig. 10, we show the selected optical phonon modes with
corresponding frequencies that are calculated at the center of
BZ of the hole-doped H2BN with n of 1.0 × 1014 holes cm−2.
There exist six different optical modes. The optical modes
with frequencies at 3321, 2328, and 846 cm−1 have polariza-
tions nearly perpendicular to the lattice plane at the � point.
The high-frequency modes with frequencies of 3221 and 2328
cm−1 are associated with the H motion nearly perpendicular
to the lattice plane, but at other high symmetry points, the
polarization of H-atom vibrations may not be perpendicular

FIG. 9. Projected density of states (PDOS) of hole-doped H2BN
with a carrier density of 1.0 × 1014 holes cm−2. Here, the PDOS is
shown for the selected energy range from −3.0 to 5.6 eV. The Fermi
level is set to zero. Within from ∼−1.8 to 0.2 eV, B 2pz (magenta
trace) and H1 s (green) states are strongly hybridized. The N 2px,y

also have contributions to this hybridized state. The H1 atom which
is bonded to B atom has similar PDOS near and at Fermi level to that
coming from B 2pz orbital.

to the lattice plane. Our numerical results suggest that these
modes of H atoms are little renormalized or suppressed by the
hole doping. At the � point, the transverse optical mode with
phonon frequency of 864 cm−1 associated with the motion of
B and N atoms is also nearly perpendicular to the plane. At
�, the B-N stretching mode with 675 cm−1 should contribute
dominantly, followed by two modes with 1059 and 965 cm−1

associated with the in-plane motion of H atoms, to the e-ph
interaction.

We now examine the dynamical stability of doped H2BN
for higher hole carrier densities. In Fig. 11 , we present the
phonon frequency dispersion of doped H2BN with carrier
densities of 1.5 × 1014 and 1.6 × 1014 holes cm−2. The doped
H2BN system is found dynamically stable for n of 1.5 × 1014

holes cm−2 [Fig. 11(a)]. But if we increase the carrier density

TABLE III. Symmetry operations in monolayer h-BN and H2BN
model systems. The first six symmetry operations exist in both
systems, and the remaining operations only exist in the h-BN. The
crystal axes are given in brackets.

Model systems Symmetry operations

h-BN and H2BN Identity
h-BN and H2BN 120◦ rotation - [0,0, 1]
h-BN and H2BN 120◦ rotation - [0, 0, −1]
h-BN and H2BN 180◦ rotation-inversion - [1, 0, 0]
h-BN and H2BN 180◦ rotation-inversion - [0, 1, 0]
h-BN and H2BN 180◦ rotation-inversion - [1, 1, 0]
h-BN 180◦ rotation-inversion - [0, 0, 1]
h-BN 60◦ rotation-inversion - [0, 0, 1]
h-BN 60◦ rotation-inversion - [0, 0, −1]
h-BN 180◦ rotation - [0, 1, 0]
h-BN 180◦ rotation - [1, −1, 0]
h-BN 180◦ rotation - [2, 1, 0]
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FIG. 10. Schematic representations of the selected optical
phonon modes at the � point of Brillouin zone of the hole-doped
H2BN with a hole carrier density of 1.0 × 1014 holes cm−2. The
green, pink, and blue arrows indicate the motions of hydrogen, boron,
and nitrogen atom, respectively.

to 1.6 × 1014 holes cm−2, the lattice becomes unstable with
negative frequencies appearing in one of the acoustic branches
near the zone center [Fig. 11(b) and inset]. Therefore, the
carrier density such as 1.55 × 1014 holes cm−2 could be the

FIG. 11. Phonon frequency dispersion of the doped H2BN with
the carrier density of (a) 1.5 × 1014 and (b) 1.6 × 1014 holes cm−2.
For the latter hole carrier density, the doped H2BN system has nega-
tive frequencies shown in inset.

TABLE IV. Comparison of the selected optical phonon frequen-
cies (given in unit of cm−1) at the center of Brillouin zone of undoped
H2BN (without strain) and hole-doped H2BN systems. For the doped
H2BN, the carrier densities (in unit of 1014 holes cm−2) are given in
parenthesis. The normal modes are provided, and numbers in paren-
thesis represent degree rotation. The in-plane H, Out-of-plane B-N,
and B-N stretching modes have E, A1, and E′ symmetry, respectively.

H2BN H2BN H2BN
Normal modes (0.0) (1.0) (1.5)

In-plane H (0) 1089 1059 1056
In-plane H (90) 1089 1059 1056
In-plane H (30) 971 965 956
In-plane H (120) 971 965 956
Out-of-plane B-N 946 864 843
B-N stretching (0) 850 675 647
B-N stretching (90) 850 675 647

maximum n that can be utilized for doping holes to the un-
strained H2BN system.

In Table IV, we present the selected phonon frequencies
with degenerate and non-degenerate modes calculated at the
center of BZ of undoped and hole-doped H2BN systems,
and the corresponding normal modes of vibrations. The low-
frequency optical modes which are related to H motions and
the optical B-N modes are found to soften when H2BN system
is doped with n of 1.0 × 1014 holes cm−2. With further in-
crease of holes to 1.5 × 1014 holes cm−2, these modes become
more softer. The phonon modes thus become more softer
when we increase the carrier density. The softening of the in-
plane phonon modes may play an important role in enhancing
the phonon-mediated superconductivity.

3. Estimation of Tc

Figures 12 and 13 show the variations of Tc as functions
of the degauss parameter (Gaussian smearing for sum over
q points that is not the same as used in ph.x calculations)
for phonons and smearing/broadening parameter for e-ph

FIG. 12. Superconducting transition temperature for hole-doped
H2BN with BTS=6% and carrier density of 3.4 × 1014 holes cm−2

as a function of degauss for phonons.
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FIG. 13. Superconducting transition temperature for hole-doped
H2BN with BTS=6% and carrier density of 3.4 × 1014 holes cm−2

as a function of double delta smearing for e-ph interaction.

interaction. We firstly calculate Tc at different degauss values
until the results become convergent. The convergent result is
shown in Fig. 12. The values of degauss in the range from
0.03 to 0.1 THz (or equivalently 1.0 to 3.3 cm−1) may be
sufficient to do smearing for phonon DOS. The variation in
Tc as a function of the double delta smearing parameter is
shown in Fig. 13 with the choice of degauss of 0.1 THz. In the
mathematical expressions for the electron DOS, there exist the
δ functions. To simplify numerical calculations, the δ function
is usually replaced by a Lorentz distribution function with a
smearing parameter. The correct limit is to choose γs as small
as possible, and only in γs → 0 limit, the Lorentzian function
goes back to δ function.

FIG. 14. The variation of Tc with μ∗. In our work, we have
chosen μ∗ = 0.13, as indicated by the dashed line. The chosen μ∗

can be regarded as Coulomb repulsion with the moderate strength.

The relation for μ∗ is given by μ∗ = N (EF )Vc/(1 +
N (EF )Vc ln(EF /ωph)) [49], where EF = Fermi energy, ωph is
phonon frequency averaged over the BZ, N (EF ) is the electron
density of states at the Fermi level, and Vc is the Coulomb
repulsion between two electrons averaged over the Fermi
surface. To determine the effect of μ∗ on Tc, we studied the
Tc of doped H2BN under BTS of 6% with n = 3.4 × 1014

holes cm−2 for different values of μ∗ ranged from 0.05 to
0.17. We show the plot of Tc versus μ∗ in Fig. 14. The Tc

is found to decrease monotonically with increasing the value
of μ∗. The Tc is 94.4 K when μ∗ = 0.05, and it reduces
to Tc = 76.4 K when μ∗ = 0.17. In our work, we choose
μ∗ = 0.13, which can be regarded as Coulomb repulsion with
the moderate strength. At μ∗ = 0.13, the Tc is found to 82.5 K.
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