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Shear strain alters the structure and migration mechanism of self-interstitial atoms in copper
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We use atomistic modeling to show that externally applied shear strain causes the lowest energy self-interstitial
atom (SIA) structure in copper (Cu) to change from a 〈100〉-type dumbbell to a 〈110〉-type dumbbell. Con-
currently, SIA migration switches from the three-dimensional (3D) random walk characteristic of 〈100〉-type
dumbbells to a 1D mechanism analogous to that of crowdion SIAs. Furthermore, the relative energies of these
two dumbbell structures as a function of strain are well predicted using elastic dipole tensors computed at
zero strain, indicating that examination of these tensors may be used to assess the likelihood of strain-induced
SIA structure transitions in other materials. Changes in lowest energy SIA structures and associated migration
mechanisms stand to impact predictions of SIA behavior in irradiated solids.
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I. INTRODUCTION

Vacancies are the most important point defects for
understanding mass transport in crystalline metals under
thermodynamic equilibrium [1]. However, under irradiation,
self-interstitial atoms (SIAs) play an equally significant role
[2]. Understanding SIA properties is therefore essential for
predicting the radiation response of metals.

Unlike vacancies, SIAs exhibit a variety of atomic struc-
tures. For example, there are six canonical SIA configurations
in face centered cubic (fcc) and body centered cubic (bcc)
metals: octahedral, tetrahedral, crowdion, and split dumbbell
with 〈100〉, 〈110〉, or 〈111〉 crystallographic orientations [3].
Split-dumbbell SIAs may be viewed as defects where two
atoms occupy a single lattice site. These atoms are offset
from each other, with the occupied lattice site at the midpoint
between them. The orientation of the defect is described by
the Miller index of the line segment passing between the two
atoms, giving the defect its name (e.g., in a 〈100〉 dumbbell,
the atom pair is oriented along a crystallographic 〈100〉-type
direction). SIA structure determines SIA properties [4,5], e.g.,
diaelasticity [6,7], paraelasticity [8], and migration behavior
[9–12].

The crystal structure and composition of the host lattice
are thought to determine the lowest energy SIA structure. In
most fcc metals, the 〈100〉 dumbbell has the lowest energy [9].
However, in Pt, Rh, and Th, the lowest energy SIA is octahe-
dral, while the lowest energy structure is uncertain in several
other fcc metals (Sr, Ir, Au, Pb) [9]. The lowest energy SIAs in
bcc metals are usually crowdions or 〈111〉 dumbbells [13,14].
The exception is α-Fe, whose magnetism causes the 〈110〉
dumbbell to have the lowest energy among the canonical SIA
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structures [15]. Moreover, the lowest energy SIAs in Cr, Mo,
and W take on symmetry-broken, noncanonical forms [10].

However, recent research demonstrates that the lowest en-
ergy SIA structures are not fixed for a given element and
crystal structure, but rather may depend on elastic strain.
Using classical potential calculations, Kang et al. show that,
at a critical value of externally applied strain, the lowest
energy SIA structure in α-Fe shifts from the 〈110〉 dumbbell
to a 〈111〉-oriented configuration [11]. Concurrently, the SIA
migration pattern changes from a three-dimenisonal (3D) ran-
dom walk characteristic of the conventional 〈110〉 dumbbell to
a 1D random walk reminiscent of that seen in other bcc metals
[12], albeit with higher activation energy. Similarly, Suzudo
and Tsuru find that strain may stabilize symmetry-broken SIA
structures in W [16].

The present work investigates the effect of externally ap-
plied shear strain on lowest energy SIA structures in fcc Cu.
Based on both density functional theory (DFT) and classical
potential calculations, we find that, up to a simple shear strain
of ∼3%, the lowest energy structure is the 〈100〉 dumbbell,
as expected [9]. However, at higher strains, the 〈110〉 dumb-
bell has the lowest energy. This change in the lowest energy
structure is accompanied by a transition from 3D migration
to 1D migration with significantly reduced activation energy.
Our results suggest that strain-induced changes in lowest en-
ergy SIA structures and associated modifications in migration
behavior may be common to many metals. Finally, we discuss
the potential implications of these findings for understanding
SIA behavior in irradiated metals.

II. MODELING METHODS

Defect formation and migration energies are determined
using DFT as well as classical potential calculations. In both
cases, we use a simulation cell consisting of a 4 × 4 × 4 grid
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of cubic unit cells of fcc Cu under periodic boundary condi-
tions. The initial dimensions of the model are set to ensure
zero pressure at zero temperature. Upon addition of one SIA,
the model contains 257 atoms. To impose a simple shear strain
εxy on the model, we change the shape of the simulation cell
by applying the deformation gradient

F =
⎡
⎣

1 εxy 0
0 1 0
0 0 1

⎤
⎦. (1)

We perform DFT simulations [17,18] using the Vienna
Ab initio Simulation Package (VASP) [19]. The calculations
apply the Perdew-Burke-Ernzerhof (PBE) [20] form of the
exchange-correlation functional within the generalized gradi-
ent approximation (GGA) [21] and a plane wave basis set with
a 400 eV energy cutoff. Structural optimization and electronic
relaxation are calculated using a Γ -centered Monkhorst-Pack
[22] k-point sampling grid of 3 × 3 × 3. The maximal resid-
ual force of each atom is 0.01 eV Å–1, and the convergence
threshold for electronic relaxation is 10–6 eV.

Classical potential calculations are carried out using the
LAMMPS code [23]. Atomic interactions are modeled using
an embedded atom method (EAM) [24] potential for Cu
developed by Mishin et al. [25]. Stable defect states are re-
laxed using the conjugate gradient (CG) method. Transition
states are found using the nudged elastic band (NEB) method
[26,27]. Atomic structures are visualized using the ATOMEYE

software [28].
Formation energies are computed as

�E f = Edefect (ε) − N

N − 1
Eperfect (ε), (2)

where Edefect (ε) is the energy of the model containing a SIA,
Eperfect (ε) is the energy of the perfect single crystal model
with no defect, and N is the total number of atoms in the
model containing a SIA (thus, N−1 is the number of atoms
in the single crystal model). Both Edefect (ε) and Eperfect (ε) are
computed at the same applied strain, ε. SIA elastic dipole
tensors, i.e., P tensors, are computed from the residual stress
〈σi j〉 generated by the defect [29]:

Pi j = −V σi j . (3)

Here, V is the model volume.
Defect diffusivity tensors are obtained using molecular dy-

namics (MD) simulations on a fcc Cu model with its lattice
rotated such that 〈110〉-type (face diagonal) directions are
aligned with the x and y coordinate axes, and a 〈100〉-type
direction is aligned with the z coordinate axis. The model is
under periodic boundary conditions and contains 4951 atoms
after a SIA is added. In this rotated lattice, strains equivalent to
the simple shear used in the smaller model discussed above are
obtained by imposing a biaxial shape change on the simulation
cell described by the deformation gradient,

F =

⎡
⎢⎢⎣

√
1 + εxy + 1

2ε2
xy 0 0

0
√

1 − εxy + 1
2ε2

xy 0

0 0 1

⎤
⎥⎥⎦. (4)

For every temperature of interest, the volume of the model
is adjusted to allow for thermal expansion. Atom trajectories

are subsequently generated under the NVE ensemble for a total
of time of 2 ns. The generalized mean square displacement
(MSD) per atom matrix,

GMSD = 1

N

⎡
⎢⎣

∑N
i=1 �x2

i

∑N
i=1 �xi�yi

∑N
i=1 �xi�zi

. . .
∑N

i=1 �y2
i

∑N
i=1 �yi�zi

. . . . . .
∑N

i=1 �z2
i

⎤
⎥⎦,

(5)
is computed periodically throughout the simulation and
recorded. (�xi,�yi,�zi ) denote displacements of individual
atoms from their initial positions. Ellipses indicate that the
matrix is symmetric about its diagonal. A sample script for
calculating GMSD is provided in the Supplemental Material
[30].

According to the Einstein relation, the diffusivity matrix D
is related to GMSD through 2Dt = GMSD in the limit of a long
time, t . We obtain the individual elements of D from linear
least-squares fits to the corresponding elements of GMSD over
time. The first 1 ps of the simulation is excluded from the
fit to allow for the ballistic stage of the MSD calculation.
The diffusivity thereby obtained is the SIA diffusivity, not
the self-diffusivity of Cu, because GMSD is computed on a
per-atom basis, and the SIA is the only significant source
of atom mobility in the model. Data sets that yield negative
diffusivities are excluded from further analysis.

Diffusivities are calculated for εxy values ranging from 0
to 0.08 in increments of 0.01 over temperatures from 200 to
700 K in increments of 100 K. For εxy of 0.03 and above,
diffusivities are additionally calculated for temperatures of
250, 350, and 450 K. Seven independent simulations with
different initial velocity distributions are conducted for each
strain/temperature combination to ensure acceptable statis-
tics. Effective activation energies for diffusion, �Ei j , along
with corresponding uncertainties are obtained by fitting the
Arrhenius form, Di j = D0

i je
−�Ei j/kBT , via linear regression of

the logarithm of individual diffusivity components against the
inverse of the thermal energy, 1/kBT . The analysis also returns
the logarithm of the diffusivity prefactor, D0

i j .

III. STRAIN-INDUCED STRUCTURE TRANSITION

Figure 1(a) shows a relaxed [100] dumbbell SIA in strain-
free fcc Cu, as modeled by DFT. We apply simple shear

FIG. 1. Relaxed SIA structures as modeled by DFT: (a) [100]
dumbbell zero strain and (b) [110] dumbbell at a strain of 0.05. The
two SIA core atoms are colored yellow.
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FIG. 2. SIA energies computed as a function of strain using (a) DFT and (b) the classical EAM potential of Mishin et al. [25]. The legend
shown in (a) applies to (b), as well. The inset in (b) shows a magnified view of the region where both [100] and [110] dumbbell structures are
stable.

strains to this initial structure in increments of 0.01, relaxing
the structure after each loading step. The [100] dumbbell
SIA remains stable up to a strain of 0.04. Upon reaching a
strain of 0.05, it relaxes spontaneously into the [110] dumbbell
configuration shown in Fig. 1(b) and remains in this structure
up to the maximum strain modeled here, namely 0.08. We
then gradually unload this structure, reducing the strain in
increments of 0.01 and relaxing after each increment. The
[110] dumbbell remains stable down to a strain of 0.03. Upon
reaching a strain of 0.02, it transforms spontaneously into the
[110] dumbbell configuration.

Figure 2(a) summarizes the formation energies of both
[100] and [110] dumbbells over their respective ranges of
stability, as determined by DFT. The energy of the transition
state for rotation of a [100] dumbbell into a [010] orientation
at zero strain is also shown. This transition state has the struc-
ture of a [110] dumbbell. When extrapolated to zero strain,
a line drawn through the formation energies of stable [110]
dumbbells at higher strains virtually intersects with the zero
strain [100]-[010] transition energy. The plot also shows the
energies of transition states from the [100] dumbbell to a [110]
dumbbell at strains of 0.03 (activation energy ≈4 meV) and
0.04 (activation energy ≈0.1 meV), where both configurations
are stable.

Figure 2(b) shows the same data as Fig. 2(a), but computed
using the classical potential of Mishin et al. [25]. Despite
some quantitative differences (most notably, all formation en-
ergies are approximately 0.1 eV lower than the corresponding
DFT values), the classical potential results are in excellent
qualitative agreement with DFT. The [100] dumbbell remains

the lowest energy structure up to a strain of 0.035 and relaxes
to a [110] dumbbell at strains of 0.04 and above. The [110]
dumbbell remains stable down to strains of 0.03 and relaxes
to the [100] dumbbell configuration at lower strains. The
transition state of the [100]-[010] rotation at zero strain has
the structure of a [110] dumbbell and an energy that lies on
the same trendline as the energies of stable [110] dumbbells at
higher strains. Activation energies for [100]-[110] transitions
at strains of 0.03 and 0.035 (where both SIA structures are
stable) are 2.5 and 1 meV, respectively.

The trends in defect formation energies shown in Fig. 2 are
reasonably well predicted from P tensors computed at zero
strain. The values of these tensors for both [100] and [110]
dumbbells are reported in Table I. The zero-strain P tensor for
the [110] dumbbell is calculated at the saddle point configura-
tion for rotation of a [100] dumbbell into a [010] orientation.
Given the formation energy of a defect at zero strain, �E f (0),
the formation energy at nonzero strain �E f (ε) is computed as

�E f (ε) = �E f (0) − Pi jεi j . (6)

Summation over repeated indices is implied. In our calcu-
lations, there is only one nonzero component of strain (ε), so
the expression above reduces to �E f (ε) = �E f (0) − P12ε12.

Figure 3 compares the formation energies of [100] and
[110] dumbbells calculated using VASP and LAMMPS with
those obtained from P tensors. In both cases, P tensors predict
that the formation energy of the [110] dumbbell drops below
that of the [100] dumbbell at a strain of approximately 0.03,
in good agreement with atomistic calculations. Because all
the off-diagonal elements of the [100] dumbbell P tensor are

TABLE I. Elastic dipole tensors (P tensors) computed at zero strain for both [100] and [110] dumbbells using DFT (VASP) and the classical
EAM potential of Mishin et al. [25] (LAMMPS). Tensor components have units of eV.

Dumbbell type DFT EAM

[100]

⎡
⎣

19.361 0 0
0 19.470 0
0 0 19.470

⎤
⎦

⎡
⎣

18.515 0 0
0 19.959 0
0 0 19.959

⎤
⎦

[110]

⎡
⎣

19.150 12.460 0.0220
12.460 19.150 0.0220
0.0220 0.0220 21.435

⎤
⎦

⎡
⎣

18.275 10.447 0
10.447 18.275 0

0 0 21.543

⎤
⎦
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FIG. 3. Comparison of formation energies of [100] and [110] dumbbells calculated using (a) DFT and (b) EAM with those obtained from
the corresponding P tensors (see Table I).

zero, Eq. (6) predicts that the formation energy of this SIA
structure has no first order (linear) dependence on shear strain.
However, the atomistic calculations suggest that there is a
second order (quadratic) dependence on shear strain, tending
to decrease the [100] dumbbell formation energy. Such a
dependence may be captured using the polarizability tensor
of the [100] dumbbell [29].

IV. EFFECT OF STRAIN ON DIFFUSIVITY

Figure 4 shows an example, taken from T = 700 K, of
the variation of all six independent components of the SIA
diffusivity tensor with strain. Plots made for other temper-
atures exhibit the same qualitative features. At all strains,
Dxy, Dxz, Dyz ≈ 0, meaning that the coordinate system used
in all these simulations is the principal coordinate system for
diffusivity. At zero strain Dxx ≈ Dyy ≈ Dzz, i.e., diffusivity is
isotropic. This finding is consistent with the known 3D dif-
fusion mechanism of 〈100〉-type dumbbells in Cu, the lowest
energy SIA structures at zero strain [31].

FIG. 4. The variation of all six independent SIA diffusivity ten-
sor components with strain at 700 K. When error bars are not visible,
it is because they are smaller than the symbols used for plotting.

With increasing strain, Dyy ≈ Dzz decrease monotonically
while Dxx increases up to a strain of 0.04. Thereafter, it grad-
ually decreases but remains substantially higher than Dyy and
Dzz. Thus, SIA diffusivity at nonzero strain is anisotropic. The
fastest diffusion direction is the x direction. In our model, this
direction corresponds to a [110] crystallographic axis. Un-
der the deformation gradient applied in our simulations (see
Sec. II), it is elongated for any positive value of applied strain.

For strains up to ∼0.03, the anisotropic diffusivity shown
in Fig. 4 may be attributed to the strain sensitivity of the
migration energy of 〈100〉-type dumbbells, as characterized
by Vattré et al. [31]. Thus, SIA migration remains 3D but is
biased by strain to occur preferentially along the x direction.
Above strains of ∼0.04, the stable SIA structure is the [110]
dumbbell aligned with the x direction. The fast diffusivity of
this defect arises from crowdionlike, 1D mobility along the x
direction and the relative difficulty of reorientations to other
directions. At strains between 0.03 and 0.04, both 〈100〉-type
and [110] dumbbells are stable and of comparable formation
energy. Thus, both may contribute to diffusivity.

The foregoing interpretation is supported by the effective
activation energies for SIA migration shown in Fig. 5(a). Up to
a strain of ∼0.03, the activation energies for migration in the
y and z directions (�Eyy and �Ezz) remain nearly unchanged
while that for migration along the x direction (�Exx) decreases
gradually. For strains of 0.04 and above, �Eyy and �Ezz are
about an order of magnitude higher than �Exx, signaling a
transition from 3D diffusion of 〈100〉-type dumbbells to 1D
diffusion of the [110] dumbbell. For completeness, Fig. 5(b)
shows the diffusivity prefactors obtained for each component
by fitting to the Arrhenius expression. The elevated values
of D0

yy and D0
zz for strains of 0.04–0.06 are accompanied by

markedly heightened uncertainties, suggesting that our sta-
tistical sample may be inadequate for inferring these two
quantities via regression analysis in this strain range.

The effective migration energy at zero strain shown in
Fig. 5(a) is consistent with previous NEB calculations of
〈100〉-type dumbbell migration in Cu [31]. To further inves-
tigate 1D diffusivity at strains of 0.03–0.05, we carried out
NEB calculations for [110] dumbbell migration using both
DFT and classical potential calculations. Figure 6(a) shows an
example minimum energy path computed at 0.04 strain using
DFT (paths computed at other strains are qualitatively simi-
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FIG. 5. (a) Effective activation energies and (b) diffusivity prefactors for SIA migration as a function of strain obtained from linear
regression of the Arrhenius form for diffusivity.

lar). The midpoint of the path is a shallow potential energy
minimum corresponding to a metastable crowdion structure.
The activation energy for migration is taken to be the highest
energy along this path. Figure 6(b) shows an example mini-
mum energy path obtained from the classical potential. In this
case, the crowdion structure at the midpoint is unstable and
corresponds to the highest energy along the path.

Table II reports the migration activation energies obtained
by DFT and the classical potential. There is a significant
disparity between them, with the DFT values being systemati-
cally higher. Overall, there is both qualitative and quantitative
disagreement between DFT and the classical potential for
1D [110] dumbbell migration. Finally, the activation energies
found from the classical potential using NEB are plotted in
Fig. 5(a). They are substantially lower than the activation
energies inferred by linear regression on diffusivity data. This
finding appears consistent with the observation of Derlet et al.
[12], who suggested that the temperature dependence of dif-
fusivity for 1D SIA migration does not arise from thermal
activation, as assumed by the Arrhenius relation, but rather
from interactions of the SIA with phonons.

V. DISCUSSION

We have demonstrated that the lowest energy self-
interstitial atom (SIA) structure in Cu changes from the [100]
dumbbell to the [110] dumbbell under an externally applied
shear strain. The strain dependence of the relative formation
energies of these two SIA structures are well predicted by
elastic dipole tensors (P tensors) computed at zero strain. The
transition in SIA structure is accompanied by a change in mi-
gration mechanism, from isotropic, 3D migration of the [100]
dumbbell at zero strain to anisotropic, 1D migration of the

TABLE II. Activation energies (in eV) for 1D [110] dumbbell
migration at a strain of 0.04 obtained by NEB using DFT (VASP) and
EAM classical potential calculations (LAMMPS).

Strain DFT EAM

0.03 0.0835 0.0017
0.04 0.0790 0.0022
0.05 0.0748 0.0027

[110] dumbbell. DFT calculations are in excellent agreement
with the EAM classical potential of Mishin et al. [25], except
for the 1D migration path of the [110] dumbbell, where the po-
tential fails to reproduce the metastability of the intermediate
crowdion structure and underpredicts the migration energy.

The configuration of strain-dependent equilibrium paths
(both stable and unstable) of the SIA structures summarized in
Fig. 2 may be illustrated schematically using a bifurcation dia-
gram, as shown in Fig. 7. The horizontal axis represents strain,
while the vertical axis stands for all the internal variables
(i.e., atomic positions) that describe changes in SIA structure.
Following the terminology of elastic stability theory [32], the
termination of the stable branch of the [100] dumbbell (as well
as that of the symmetry-related [010] dumbbell) is classified
as a saddle-node or fold instability. In it, the stable equilib-
rium path corresponding to the [100] dumbbell joins with the
unstable equilibrium path constituted by the saddle point con-
figurations along the [100]-[110] transition. The point where
the stable and unstable paths meet corresponds to the strain
at which the activation energy for the [100]-[110] transition
vanishes, marking the end of stability of the [100] dumbbell.

The unstable branch of the [110] dumbbell becomes stable
at its intersection with the two unstable branches of the [100]
and [010] dumbbells. This point is known as pitchfork insta-
bility. At strains below this point, the unstable [110] branch
is the saddle point configuration of the [100]-[010] transition.
Pitchfork instabilities are often destroyed by perturbations that
break an underlying symmetry, in this case, the structural
equivalence of the symmetry-related [100] and [010] dumb-
bells. For example, we may anticipate that the bifurcation
diagram in Fig. 7 will change its topology under a uniaxial
prestrain along the [100] direction.

The predicted transition between SIA structures occurs at
lattice shear strains of ∼0.04, corresponding to shear stresses
of ∼3 GPa in Cu. Such stresses far exceed the yield strength
of polycrystalline pure Cu, which is on the order of 0.03
GPa, as well as those of Cu alloys, such as brass or bronze,
which are usually lower than 0.2 GPa. Therefore, on the grain
scale, plastic flow prevents lattice strains from reaching levels
capable of causing a change in SIA structure. However, local
stresses in the vicinity of defects, such as dislocations [33],
voids [34], cracks [35], or interfaces [36], may easily exceed
3 GPa. Strain-induced changes in SIA structure are therefore
likeliest to occur in near such defects.
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FIG. 6. Minimum energy paths for 1D [110] dumbbell migration at a strain of 0.04 obtained by NEB using (a) DFT (VASP) and (b) classical
potential calculations (LAMMPS).

Local strains near defects are rarely ever single-component
pure shear. Rather, they take on general tensorial form with
all six independent strain components having nonzero val-
ues. In such cases, lowest energy SIA structures are most
conveniently predicted using P tensors. By way of example,
consider a helium (He) bubble: a spherical cavity of radius R
filled with He gas at pressure p. Nanoscale He bubbles are a
well-known form of radiation-induced damage in metals [37].
In a suitably chosen coordinate system, linear isotropic con-
tinuum elasticity theory predicts that the strain at a distance
r > R from the bubble center is [38]

ε = pR3

4μr3

⎡
⎣

0 1 1
1 0 1
1 1 0

⎤
⎦, (7)

where μ is the shear modulus of the metal. Thus, the strain
around the bubble is a superposition of three equal pure
shears. Provided that P tensors and strains are expressed in
the same coordinate system, the combined effect of all three
shears on the formation energies of all [100] and [110] dumb-

FIG. 7. Bifurcation diagram of strain-dependent equilibrium
paths for [100], [010], and [110] dumbbells in Cu. The horizontal
axis represents externally applied strain, while the vertical axis stands
for all the internal variables associated with changes in SIA structure.

bell variants may be computed directly using Eq. (6). The
variant with lowest formation energy may then be identified.

We followed this approach to determine lowest energy SIA
structures for a bubble with R = 5 nm and p = 5 GPa (He
bubbles may sustain internal pressures in excess of 15 GPa
[39]) in a Cu matrix with μ = 44 GPa. We used the P tensors
computed from classical potentials listed in Table I (rotated as
needed for the remaining two [100]-type and five [110]-type
SIA variants). We found that such a bubble is surrounded by
lobes of volume where a [110] dumbbell variant is the lowest
energy SIA structure, as shown in Fig. 8. Similar calculations
may easily be carried out for local strain distributions around
other types of defects.

FIG. 8. The opaque, black surface represents a He bubble with
R = 5 nm and p = 5 GPa. The semitransparent, red lobes indicate
regions within which local strains cause a [110]-type dumbbell vari-
ant to become the lowest energy SIA structure. The Cartesian axes
are aligned with 〈100〉-type Miller index directions. Two [110]-type
dumbbell variants have degenerate energies at surfaces where two
lobes meet. Three [110]-type dumbbell variants have degenerate
energies at lines where three lobes meet. Outside of the lobes, the
lowest energy SIAs are [100]-type dumbbell variants.
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Strain-induced transitions in the lowest energy SIA struc-
ture and associated changes in diffusivity have the potential
to impact models of radiation response. While virtually ab-
sent under thermal equilibrium, SIAs are created in high
concentrations under irradiation. Their fate affects technolog-
ically important material behaviors, such as swelling [40],
creep [41], and embrittlement [42]. These phenomena de-
pend on the interactions of SIAs with other defects (e.g.,
vacancies or dislocations) as well as sinks, such as voids or
interfaces. Strain-induced alterations of SIA formation and
migration energies have a significant impact on these interac-
tions [31,34,43]. For example, the changes in SIA structure
predicted in Fig. 8 are likely to modify SIA capture rates
at He bubbles by altering SIA migration paths near bubble
surfaces. However, to date, no models have accounted for
such strain-induced changes in SIA structure. P tensors may
provide a facile means to incorporate this additional physics
into object kinetic Monte Carlo (OKMC) models [44].

Strain-induced stabilization of the [110] dumbbell and con-
sequent 1D migration may also explain the occurrence of
long-range vacancy/SIA recombination along 〈110〉-type di-
rections. Such long-range recombination events are observed
in single crystal Cu [45,46] as well as near grain boundaries
[46,47] and heterophase interfaces [45]. In such cases, the
vacancy acts as a center of negative dilatation, generating a
shear strain field in its vicinity [48]. While this field’s intensity
dies down rapidly with distance from the vacancy, the strength
of its interaction with nearby SIAs may be sufficient to in-
duce a change from a 〈100〉-type to a 〈110〉-type structure. If
the 〈110〉-type dumbbell and the vacancy lie along the same
〈110〉-oriented atom column, the SIA may move towards the
vacancy via 1D migration, eventually recombining with it.

The effect of strain on vacancy/SIA reactions may be
predicted by computing vacancy/SIA interaction energies,
�Ev/SIA. To first order [49],

�Ev/SIA = Pv
liP

SIA
k j Gi j,kl (�r) (8)

where Pv
li and PSIA

k j are the P tensors of the vacancy and
SIA, respectively, and Gi j,kl (�r) is the second derivative of the
elastic Green’s function tensor as a function of the relative
position of the vacancy and SIA, �r. We use this relation to
compute the formation energy of vacancy/[100] dumbbell
and vacancy/[110] dumbbell pairs as a function of separation
along the [110] direction. For this calculation, we adopt the
SIA P tensors computed from classical potentials and listed
in Table I. For the vacancy, we calculate �E v

f = 1.27 eV and
Pv = −3.03I eV. We use the Green’s function for an isotropic,
linear elastic, continuum solid [50] with Cu represented by
ν = 0.34, μ = 44 GPa.

Figure 9 shows the outcome of this calculation. Despite the
0.3-eV difference between the formation energies of [100] and
[110] dumbbells at zero strain, the elastic interaction between
a vacancy and a SIA causes the [110] dumbbell to become

FIG. 9. The effect of elastic interaction on the energy of
vacancy/SIA pairs as a function of separation distance.

more stable when the vacancy and SIA are separated by
one nearest neighbor distance. This calculation demonstrates
that elastic interaction with a vacancy is capable in principle
of causing changes in SIA structure. However, it does not
account for the range of vacancy/SIA recombination along
〈110〉-type directions in single-crystal Cu, which occurs at
separation as high as three nearest neighbor distances [46].
Further investigation of this effect calls for more sophisticated
calculations that use an elastically anisotropic lattice Green’s
function, account for higher moments of the multipole expan-
sion [49], and include inhomogeneity interactions [48].

Our work is a further example (after Kang et al. [11] and
Suzudo and Tsuru [16]) of a strain-induced change of the
lowest energy SIA structure in a transition metal and the first
in an fcc metal. It stands to reason that such transitions also
occur in other metals and—in light of our findings—that their
incidence may be identified through an analysis of zero-strain
formation energies and P tensors. It may also be worth ex-
ploring whether other externally applied fields (besides strain)
induce changes in SIA structure. One example might be mag-
netic fields applied to ferromagnetic metals, such as α-Fe,
Ni, or Cr. Indeed, magnetism is believed to be a key factor
stabilizing the [110] dumbbell SIA structure in α-Fe [13].
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