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Phase-field crystal model for materials with anomalous expansion during solidification
and its application to the cavitation of supercooled water droplets
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Unlike most pure materials, liquid water and silicon exhibit a decrease in density upon solidification, a
behavior with important implications for natural and industrial processes. In this work, we propose a modification
to previous vapor-liquid-solid phase-field crystal (PFC) models that allows the simulation of such anomalous
density changes upon solidification. We describe the differences between the original and modified PFC models’
phase diagrams and energy landscapes, specifically highlighting the equilibrium properties of the anomalous
density model. The model is used to simulate a deeply quenched liquid droplet undergoing solidification under
the assumption of two-time dynamics to allow for rapid elastic relaxation. Overpressurization-induced cavitation
and damped oscillator behavior are observed within the simulated droplet, in agreement with recent experiments
on supercooled water droplets.
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I. INTRODUCTION

The majority of crystalline materials undergo a density in-
crease during a transition from a liquid to solid state. However,
the few materials that exhibit the opposite behavior include
hexagonal ice—the most common form of solid water on
Earth—as well as crystalline silicon, ubiquitous in modern
electronics. This anomalous density change has important
implications for both natural and industrial processes. For
example, the expansion of ice plays a role in freeze-induced
damage to porous construction and geological materials [1–3],
affects meteorological phenomena due to the explosive frag-
mentation of supercooled microscopic water droplets in the
upper atmosphere [4,5], and imposes challenges to techno-
logical innovations ranging from hydrogen fuel cells [6] to
spacecraft thermal control systems [7]. As for silicon, the
anomalous expansion modifies the electronic band structure in
silicon microspheres due to compressive stresses [8], provides
the shear stresses that drive dislocation generation during
directional solidification [9,10], and otherwise affects the
microstructure in additively manufactured samples [11] and
laser-melted thin films [12].

The wide variety of phenomena tied to anomalous expan-
sion during solidification, coupled with the range of length
and time scales involved, complicates the choice of modeling
technique one would use in their study. Molecular dynamics
(MD) is useful in examining the very early stages of ice
nucleation where the complex behavior of hydrogen bonds
dominates [13], and can in general simulate the crystalline
structures typical in materials that undergo anomalous expan-
sion including silicon and hexagonal ice [14]. However, MD
is typically constrained to nanosecond timescales, limiting
the solidification speeds and sizes possible to study. On the
opposite end of the scale, phase-field (PF) models are widely
used for mesoscale solidification simulation [15], including
for silicon [16], but have difficulty in naturally accounting

for crucial microscopic information such as lattice orienta-
tion, deformation, and defects. In this work, we choose to
focus on phase-field crystal (PFC) methodology, an offshoot
of traditional PF models that retains crystalline structure in-
formation typically seen in atomic-resolution models, while
concomitantly allowing the simulation of solidification at dif-
fusive timescales [17,18]. We additionally take advantage of
recent advances in three-phase PFC models capable of sim-
ulating vapor-liquid-solid coexistence [19,20], as the vapor
phase plays a crucial role in microstructure formation dur-
ing processes such as chemical/physical vapor deposition, ice
formation on surfaces through desublimation [21], and rapid
solidification resulting in void-rich solidified material [22].

In what follows, we first adapt an existing vapor-liquid-
solid PFC model that exhibits the usual density change upon
solidification to describe anomalous density changes in ma-
terials such as water. The modified model could, in general,
be applied to any pure material undergoing anomalous density
change, and can be readily combined with other PFC literature
techniques that allow for a variety of crystalline lattice struc-
tures [18,23], temperature and pressure dependence [19,24],
and instantaneous elastic interactions [25]. The model is also
amenable to further coarse-graining in space using a complex
amplitude formulation [26,27], which we describe briefly.
We apply the new PFC model and a preliminary complex
amplitude formulation of said model to the solidification of
a deeply quenched liquid droplet to demonstrate the effect
of anomalous density change on the internal pressure and
evolving microstructure of the droplet, comparing the results
to recent experiments on cavitating water droplets [4].

II. MODEL

A. Vapor-liquid-solid PFC

A PFC model for a single material species is defined
by a free energy functional F [n] in terms of a spatially
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varying density field n(x). For simplicity, we here use a re-
duced (dimensionless) density field, which can be related to
a real density by n = (ρ − ρ̄)/ρ̄ where ρ is the dimension-
ful density and ρ̄ is a reference density. The free energy
is constructed to have local minima that correspond to the
equilibrium phases of the physical system under considera-
tion. Specifically, ordered phases, such as crystalline solids,
are represented by a periodic oscillating density field, where
the peaks of the oscillations are related to the time-averaged
position of individual atoms, while disordered phases, such as
fluids, have a constant density field.

For a vapor-liquid-solid coexistence system with regular
density change on solidification (i.e., the solid phase exists at
a higher density than the two fluid phases), previous work has
used a free energy of the form [19,22]

F [n] =
∫

dx

(
4∑

l=2

1

l
pln(x)l +

4∑
l=2

1

l
qln(x)nm f (x)l−1

)

− 1

2

∫∫
dx1dx2C

(2)(x1 − x2)n(x1)n(x2), (1)

where nm f (x) is the mean-field density obtained by applying
a Gaussian smoothing operator to the microscopic density
n(x), the parameters pl and ql set the relative energies of
the three accessible phases in thermodynamic equilibrium and
are generally temperature dependent, and C(2) is a two-point
correlation function that determines the lattice structure of the
ordered solid phase. This functional form can be understood
as inspired by classical density functional theory [17], where
we approximate the full theory by truncating the correlation
series up to the two-point correlation while keeping some in-
formation of the higher-order correlations through the choice
of parameters pl and ql as well as through the nonlinear
powers of mean-field density nm f .

In this work, we will assume the simplest possible two-
point correlation function, written in Fourier space as

Ĉ(2)(k) = Bx(2k2 − k4), (2)

where k is the wave number and Bx is a possibly temperature-
dependent parameter. This single-peak polynomial form of the
correlation leads to a triangular lattice structure for the solid
phase in two dimensions, or a bcc lattice in three dimensions.
The width of the peak affects the surface energy of inter-
faces between thermodynamic bulk phases. More complex
two-point correlation functions, as well as higher-order cor-
relations, can be substituted into the model when other lattice
structures or more fine-tuned control over interface energies is
required [18,22,23].

The choice of parameters pl , ql , and Bx determines the
model’s phase diagram, which can be obtained by calculat-
ing the free energy density of all accessible thermodynamic
phases. For the purpose of this calculation, we employ the
so-called “one-mode approximation,” which is the lowest-
order periodic approximation for the density field of the solid
phase [28]. In the case of a two-dimensional (2D) triangular
lattice phase, this approximation is

n(x) = no + A

(
3∑

j=1

eiG j ·x + c.c.

)
, (3)

TABLE I. Chosen sets of parameters that lead to the vapor-
liquid-solid PFC model exhibiting standard or anomalous density
change upon solidification. Some of the parameters depend on the
reduced temperature r.

Standard density Anomalous density
change change

p2 r + 0.3 r + 0.3
p3 −0.5 −0.5
p4 0.333 0.333
q2 0 0
q3 35.0r − 12.01 51.8r − 11.8
q4 33.5 12.5
Bx 0.3 0.3
a20 N/A 0.085
a21 N/A 3.0
a22 N/A 0.144
a23 N/A 5.0

where no is the phase’s average density, A is the amplitude of
the oscillations, and G j are the three lowest-order reciprocal
lattice vectors. We also assume that, under this approximation,
nm f (x) = no since the mean-field density would not retain any
lattice-scale information. Inserting this approximation into the
free-energy functional in Eq. (1) and integrating over the
lattice unit cell gives the mean-field free energy density

f (no, A) = 1
2 (p2 + q2)n2

o + 1
3 (p3 + q3)n3

o + 1
4 (p4 + q4)n4

o

+ 3(−Bx + p2 + 2p3no + 3p4n2
o)A2

+ 4(p3 + 3p4no)A3 + 45
2 p4A4. (4)

By minimizing Eq. (4) with respect to the amplitude A, we
obtain the free-energy densities for the fluid phases (corre-
sponding to setting A = 0) and for the solid phase (A > 0).
After making the parameters dependent on a reduced (dimen-
sionless) temperature r and repeating this calculation over a
range of temperatures, a common tangent construction pro-
vides the phase diagram for the system. Figures 1(a) and 1(b)
show typical free-energy densities for fixed r as a function
of average density no when assuming a two-dimensional (2D)
triangular lattice, using the temperature-dependent parameters
given in the left column of Table I. These parameters yield the
temperature-density phase diagram shown in Fig. 1(c), which
displays a higher density for the solid phase than the liquid
phase as is typical in most pure crystalline materials.

Note that PFC models can also access noncrystalline or-
dered phases, such as stripe phases in two dimensions and
triangular rod phases in three dimensions. To obtain a physi-
cally valid phase diagram, the above one-mode approximation
calculation must be repeated for each such phase [28] and
parameters must be adjusted to ensure the undesired phases
do not lie within the temperature-density ranges of interest.

B. Adding anomalous density change

To obtain a model with a phase diagram corresponding
to a material that exhibits anomalous density change, it is
necessary to “shift” the free-energy density minimum of the
ordered solid phase to be between those of the two disordered
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FIG. 1. Sample plots of mean-field free-energy densities f (no) for the vapor-liquid-solid PFC model with standard and anomalous density
change at solidification, along with the corresponding full phase diagrams. (a)–(c) correspond to a material with standard density change,
while (d)–(f) for one with anomalous density change. The top two rows show the free-energy density of the fluid phase in blue and the solid
in red, with the black dashed lines sketching the common tangents used to determine coexistence density ranges. These plots are calculated at
temperatures (a) r = 0.1450, (b) r = 0.1490, (d) r = 0.1370, and (e) r = 0.1415. The bottom row of subfigures are the resulting temperature-
density phase diagrams, where blue (red) denotes fluid (solid) coexistence density lines. The labeled dotted black lines show the temperatures
at which the aforementioned free-energy density plots are calculated.

fluid phases. We do so here by adding an additional term
Fs[n] to the free-energy functional of Eq. (1). As such a term
should only affect the energy of the solid phase, we assume
it is proportional to a power of the one-mode approximation’s
amplitude A, ensuring the term vanishes in the fluid phases

where A = 0 and its magnitude increases as the solid ordering
emerges. We construct the simplest such term based on terms
already present in Eq. (1),

Fs[n] =
∫

dx
a2

2
[n(x)2 − n(x)nm f (x)], (5)
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FIG. 2. Contour plot of the free-energy density f (no, A) at tem-
perature r = 0.1370, for the parameters in Table I corresponding to
the anomalous density material. The location of the three phases’
local minima are also shown. Note that minimizing this function with
respect to A yields the free-energy density shown in Fig. 1(d).

where we have introduced a new parameter a2 that controls the
strength of this term. When the one-mode approximation is
inserted into Eq. (5) and integrated as before, the free-energy
density contribution of this new term is seen to be 3a2A2. To
control the solid phase’s position on the phase diagram, we
define a2 to be dependent on both the reduced temperature r
and the mean-field density nm f (x) according to

a2 = a21[nm f (x) − a20]2 + a23(r − a22), (6)

where a2 j are constant subparameters. Figures 1(d) and 1(e)
show some resulting free-energy densities using the parame-
ters given in the right column of Table I, and Fig. 1(f) shows
the corresponding phase diagram. The quadratic dependence
of a2 on nm f (x) helps constrain the solid phase’s free-energy
minimum along the density axis, enabling the desired shift
of the solid phase’s density, while the linear dependence on
r ensures that the solid phase’s region on the phase diagram
does not extend past the fluid critical temperature. It is noted
that expanding a2 in Eq. (5) and comparing terms to those
already present in Eq. (1) reveals that part of the added terms
can also be accounted for by changing the values of q2 and
p2. However, fully expanding Eq. (5) also reveals terms of the
form n2nm f and n2n2

m f , which do not correspond to existing
terms in the original model of Eq. (1). The shape of the
obtained phase diagram can be further tuned (e.g., to have a
smaller density gap between liquid and solid, and a smaller
pure-solid region), but doing so comes at the cost of increased
numerical stiffness of the model; in what follows we will thus
work with the parametrization shown in the right column of
Table I, which leads to the phase diagram of Fig. 1(f).

One caveat in using solely the term Fs[n] of the form given
in Eq. (6) to shift the solid phase’s energy minimum is a lack
of control over the energy barriers between the three phases’
minima in the resulting energy landscape. Figure 2 plots the
contours of the free-energy density f (no, A), including the
effects of the shift term Fs[n], before the minimization with
respect to amplitude A is applied. We see that, for the chosen
parameters, the minima corresponding to the solid and liquid

phases occupy relatively shallow basins. This has implications
for the dynamical (meta)stability of the respective phases as
well as for the interfacial energies between bulks. While this
limitation will not be an issue for the numerical experiment we
present in Sec. III, further work is currently underway to allow
finer control over the energy landscape, including through
an investigation of the complex amplitude formulation of the
model described in Sec. II D.

C. Dynamics

The free-energy function of Eq. (1) [including the added
term of Eq. (5)] can be used to drive the dynamical evolution
of the density field n(x). As the next section of this work will
examine a system in which rapid elastic effects dominate the
dynamics, we assume two-time dynamics that relax elastic
modes much faster than diffusion processes. This is done by
adopting the damped PFC wave equation of motion developed
by Stefanovich et al. [25],

τ
∂2n

∂t2
+ ∂n

∂t
= ∇2 δF

δn
, (7)

where the parameter τ determines the wave propagation dis-
tance. For τ → 0 one recovers the more commonly used
PFC equation of motion describing purely diffusive dynamics,
while large τ approaches the limit of instantaneous elas-
tic relaxation of the system (which comes at the cost of
requiring increasingly small time steps for numerical simu-
lations). Sufficiently large τ ensures that wavelike excitations
propagate at length scales commensurate with the simulated
system [25,29]. The value of τ does not affect the thermody-
namics of coexisting phases predicted by the phase diagram
calculation. The dynamics provided by Eq. (7) are known to
be sufficient for reproducing elastic and plastic phenomena
including, e.g., the reverse Hall-Petch effect [30] and complex
defect evolution [31].

To validate our phase diagram, we use Eq. (7) with τ = 0
to simulate systems consisting of 2D slabs of the various co-
existing phases in the phase diagram of Fig. 1(f) at appropriate
temperature and average density values. Periodic boundary
conditions are used. Figure 3 shows the equilibrium density
field n(x) in each slab system, and the corresponding local
average density field nm f (x) along the long axis, for different
coexistence scenarios achievable with the model. We find
that the dynamically obtained values for coexistence densities
are within 5% difference from those predicted by the phase
diagram based on the one-mode approximation, as is typical
for such calculations applied to PFC models.

D. Complex amplitude formulation

The presented PFC model can be coarse-grained by re-
formulating the free-energy functional of Eq. (1) in terms of
complex amplitude fields [26,27,32,33]. Such coarse-graining
allows the simulation of larger systems, possibly bridging the
gap between PFC models and more traditional PF models.
Further, the reformulated free-energy functional allows finer
control over its energy landscape, a focus of future work
with the anomalous density PFC model that will require more
flexibility in interfacial energies.
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FIG. 3. Dynamical simulation of equilibrium phase coexistence for the system corresponding to the phase diagram in Fig. 1(f). (a)–(c) show
the density field n(x) for liquid-solid, vapor-solid, and vapor-liquid coexistence, respectively. Reduced temperatures used: (a),(b) r = 0.1370
(below triple point) and (c) r = 0.1430 (above triple point). (d)–(f) show the corresponding plots of nm f (x) along the x axis. Distances are in
simulation grid units.

Here, we summarize the process for obtaining an amplitude formulation for our model. We expand the PFC density field in a
manner similar to Eq. (3),

n(x) = n̄(x) +
3∑

j=1

Aj (x)eiG j ·x + c.c., (8)

where n̄(x) is the long-wavelength density and Aj (x) are the complex amplitudes corresponding to each G j . Unlike in Eq. (3),
n̄(x) and Aj (x) are proper fields varying on length scales significantly larger than atomic spacings. Applying this expansion to
Eq. (1) including the anomalous density term of Eq. (5) and following volume-averaging techniques [27], we obtain an amplitude
model defined by a free-energy functional,

FA[Aj, n̄] =
∫

dx

{
4∑

l=2

1

l
(pl + ql )n̄

l + �2

(
1

2
p2 + p3n̄ + 3

2
p4n̄2 + 1

2
[a21(n̄ − a20)2 + a23(r − a22)]

)

+
(

3∏
j=1

Aj + c.c.

)
(2p3 + 6p4n̄) + 3

4
p4

(
�4 − 2

3∑
j=1

|Aj |4
)

− 1

2
n̄F−1[Ĉ(2)(|k|) ˆ̄n(k)]

−1

2

3∑
j=1

(
A∗

jF−1
[
Ĉ(2)(|k + G j |)Â j (k)

] + c.c.
)}

, (9)

where F−1[· · · ] indicates the application of the inverse
Fourier transform; Ĉ(2), ˆ̄n, and Â j are the Fourier transforms
of their respective function and fields; and we introduced the
shorthand �2 = 2

∑3
j=1 |Aj |2. We additionally apply a low-

pass filter to the term F−1[Ĉ(2)(|k|) ˆ̄n(k)] to avoid periodic
instabilities possibly emerging in the long-wavelength density

field [27,33]. In this work, the evolution equations for the
reformulated fields are obtained by assuming nonconserved
damped wave dynamics for Aj (x) and conserved damped
wave dynamics for n̄(x), of the form

τ
∂2Aj

∂t2
+ ∂Aj

∂t
= − δFA

δA∗
j

; τ
∂2n̄

∂t2
+ ∂ n̄

∂t
= ∇2 δFA

δn̄
. (10)
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FIG. 4. Mean-field density nm f (x) of a solidifying icelike droplet at different snapshots of simulation time: (a) t = 2×105, (b) t = 9×105,
(c) t = 1×106, (d) t = 1.1×106, (e) t = 2×106, and (f) t = 4×106. Insets in (b) and (c) show the zoomed-in density field n(x) within the
denoted red rectangles in the main images. The color bar corresponds to the average density axis of Fig. 1(f).

III. APPLICATION OF PFC MODEL
TO FREEZING DROPLET

The anomalous density change PFC model described in
Sec. II B is used to study defect formation and cavitation
during rapid solidification in a deeply quenched liquid droplet,
a process inspired by the recent experimental work of Wilde-
man et al. [4]. In the cited study, these authors examined
supercooled water droplets freezing from the outside inward
and building up a high internal pressure that eventually re-
sults in the frozen droplets developing vapor cavities and
subsequently exploding. While it is presently numerically
infeasible to use PFC modeling to simulate droplets at the
millimeter length scales required for both cavitation and ex-
plosive effects, density effects leading to cavitation can be
observed at much smaller system sizes attainable by PFC.
Furthermore, although it is feasible to construct quantitative
phase diagrams for a PFC model (see, for example, work on a
quantitative aluminum phase diagram [22]) and include ice’s
hexagonal structure by an appropriate choice of correlation
functions [23], we choose here to focus on the qualitative
role of anomalous density change on the freezing process.
As such, we use the model parameters and correlation func-
tion corresponding to the dimensionless phase diagram of
Fig. 1(f) and consider a 2D triangular lattice to model the solid
phase.

The dynamics of a solidifying droplet are simulated in two
spatial dimensions via Eq. (7) using a semi-implicit spec-
tral method. Our simulation system contains 2048×2048 grid
points, with a dimensionless grid size of �x = 0.79 for each

mesh element. This grid size corresponds to approximately
1/9 the lattice constant of our crystalline lattice. The numeri-
cal time step of our simulations is �t = 0.2. Solidification is
examined at a reduced model temperature of r = 0.1370. The
initial state of our system is a near-circular liquid bulk seeded
by a surrounding thin solid layer, with the rest of the system
being vapor. The liquid and vapor densities are set to their
coexistence values as per the phase diagram, while the solid
density is set to its higher coexistence value (corresponding to
coexistence with liquid). As rapid elastic relaxation is neces-
sary to emulate the physical process observed by Wildeman
et al. in their experiments, we set τ = 1×106. However, care
must be taken to minimize initial transient behavior in the dy-
namics when using the second-order time dynamics inherent
in Eq. (7). We thus gradually increase the parameter τ from 0
to 1×106 over a dimensionless simulation time ranging from
t = 0 to 1400, which is a small enough fraction of the total
simulation time to ensure that negligible solidification has yet
taken place.

Figure 4 shows snapshots of the mean-field density nm f (x)
of a solidifying drop of liquid simulated with our PFC model.
We observe the initial thin solid shell expanding both in-
wards and outwards as the higher-density liquid solidifies and
the excess density diffuses outwards. As the droplet nears
complete solidification at simulation time t ≈ 1×106, defects
form near the remaining liquid pool at the center. These nu-
cleate vapor pockets coalesce into a cavity that subsequently
“tears” into the center of the solidified droplet. The insets
in Figs. 4(b) and 4(c) show the atomic-scale structure of
the microscopic density field n(x), which include topological
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FIG. 5. Top: Plot of the estimated dimensionless pressure P at the center of the solidifying droplet as a function of dimensionless simulation
time. The red arrow denotes a pressure fluctuation that is due to a transient shock wave, rather than due to the overdensification of the liquid
(the latter of which occurs more gradually up to t ≈ 1×106). Bottom: Plot of the radially averaged outward displacement of atomic peaks of
n(x) at different radial shells of the solidifying droplet. Distances are in lattice constants. The top-left inset of the bottom frame shows a sketch
of the droplet, with each shell colored as the corresponding displacement curve in the main plot. Top and bottom: the vertical dotted lines
denote reference times corresponding to Fig. 4(c) (left line) where cavitation begins and Fig. 4(e) (right line) where the cavity approaches its
maximum size.

defects and emerging nanocavities that appear towards the end
of solidification and the start of the cavitation process. The
nucleated cavity continues to expand for some time, reaching
its maximum radius at time t ≈ 2×106 [Fig. 4(e)]. Eventually,
the solidified droplet approaches its final equilibrium size,
and the cavity begins to shrink (i.e., heal), ultimately fully
recrystallizing.

To understand the source of the cavitation during solidifi-
cation exemplified by Fig. 4, we track the effective pressure
in our model following the approach of Refs. [19,20]. We
compute the (dimensionless) functional generalization of the
grand potential of the system,

� = F [n] −
∫

dx
(

(n + 1)
δF

δn

)
, (11)

where F [n] is the free-energy functional given by Eq. (1).
We use the fact that thermodynamic pressure is given by
P = −�

V over a volume V of a homogeneous phase to obtain
an estimate for position-based pressure on length scales on
the order of a few lattice constants. This estimated value of
pressure reduces to the “true” thermodynamic pressure when

at equilibrium and far from interfaces. The top plot of Fig. 5
shows the estimated pressure at the center of the freezing
droplet, which is the last part of the droplet to solidify. The
first peak of the pressure, indicated by a red arrow, was ob-
served to be due to a transient shock wave that traveled from
the solid-liquid interface at simulation start, and occurs at a
point in time where the liquid is still far from fully vanishing.
This shock-wave-induced peak would be more significant, to
the point of drowning out the rest of the pressure signal, if we
had not applied the previously described method to minimize
initial transient behavior. Following this first peak, we observe
the average pressure increases gradually (i.e., averaging over
the occasional reflections of the initial shock wave) until t ≈
1×106, corresponding to Fig. 4(c). The pressure then abruptly
dips as cavitation begins at the center, and eventually rises
back to a constant value as the pressure equilibrates through-
out the system.

In their experiments, Wildeman et al. also observe va-
por cavities appearing during rapid solidification of water
droplets, and later healing in the freezing droplets [4]. So-
lidifying droplets are described in their work to behave
as oscillators. Namely, the interior liquid overpressurizes
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initially, due to the lower-density solid expanding inward
and pushing into incompressible liquid in the center, which
then leads to the solid shell being pushed outwards (i.e.,
overshooting the shell’s equilibrium position set in at solidifi-
cation), eventually causing the pressure in the center to drop
low enough to cause cavitation. Whether the solid shell then
proceeds to move back inwards or instead breaks free and ex-
plodes depends on the competition between the surface energy
cost of forming a crack versus the elastic energy released by
flying apart. The experimental droplets are estimated to re-
quire a radius greater than 50 μm in order to explode through
this process. Based on the parameters of our PFC model, we
expect our droplet, which has a radius on the order of 20 nm,
would require highly unphysical surface energies to explode.
In general, PFC models, including their derived amplitude
formulations, are not yet capable of attaining the droplet sizes
required to observe fully explosive behavior. Nevertheless,
the observed cavitation in our simulated PFC droplet and the
internal damped pressure oscillation it exhibits qualitatively
agree with the behavior observed in the experimental droplets
up to the time before they explode. Wildeman et al. also note
that other experiments involving smaller physical droplets
observe sharp drops in explosion probability with decreasing
radius [34,35], which is also consistent with our simulated
droplet’s behavior.

We further explore the comparison between our PFC sim-
ulation and the experimental freezing droplets by tracking
the movement of the atomic peaks of our density field n(x).
We divide the volume of the droplet into shells of equal
radial thickness. Within each shell, we calculate the average
radially outward displacement of all atomic peaks relative
to their equilibrium position at solidification as a function
of time. Atomic peaks solidifying beyond the initial droplet
radius (due to density diffusion through the solid bulk) are not
considered. The bottom plot of Fig. 5 shows the average dis-
placement of each of the shells, measured in lattice constants.
We observe that during solidification and for some time after
the start of cavitation, the atomic peaks in all the shells are
moving outwards on average. Eventually, the displacements
plateau, and then reverse their direction soon after the cavity
reaches its maximum size, the atomic peaks now moving
inwards on average. At late times the displacements appear
to slightly reverse their directions again. This expansion and
contraction is likely the result of highly damped oscillation,
analogous to that discussed in Ref. [4] in relation to the cavi-
tation and cracking of freezing water droplets.

We remark that similar simulations conducted with τ = 0
in Eq. (7) (i.e., diffusive dynamics alone) do not display
any cavitation behavior, nor does atomic peak movement
in such simulations indicate possibly oscillatory movement.
This again indicates that such behavior is intrinsically tied
to rapid elastic relaxation effects, rather than diffusive or
thermodynamic effects, which is also consistent with the
experimental hypothesis about the mechanism driving this
process [4].

Finally, we briefly examine the behavior of the coarse-
grained amplitude formulation of our PFC model, described
in Sec. II D, when applied to the cavitating droplet system. A
simulation system containing 512×512 grid points is used,
with a dimensionless grid size of �x = 1.5 for each mesh

FIG. 6. The amplitude formulation’s long-wavelength density
field n̄(x) for a solidifying icelike droplet at different snapshots of
simulation time: (a) t = 5×104, (b) t = 1×105, (c) t = 2×105, and
(d) t = 3×105.

element and a numerical time step �t = 1.0. A reduced model
temperature of r = 0.1370 is used as before. The reduced
size of the system compared to the previously described re-
sults allows the use of a smaller value for τ , thus we set
τ = 1×105. Figure 6 shows snapshots of the long-wavelength
density field n̄(x), displaying similar cavitation behavior as
in the snapshots of Fig. 4. The solid-vapor interfaces display
less faceting than in the previous PFC simulation, likely due
to the coarse-graining process affecting the interface energy
anisotropy.

IV. CONCLUSION

We have introduced a PFC model for the solidification of
materials exhibiting anomalous density change upon freezing.
This was done by adapting a generic vapor-liquid-solid PFC
model with a term that modifies the energy minimum of the
ordered solid phase to lie at a lower density than the disor-
dered liquid phase. The resulting temperature-density phase
diagram is reminiscent of that of materials displaying anoma-
lous density change on freezing, which include hexagonal ice
and silicon. Using two-time relaxation-diffusion dynamics,
we used the model to investigate and help elucidate the pro-
cess of cavitation in supercooled water droplets observed in
recent experiments.

Future work on this PFC model and its amplitude for-
mulation will turn its attention towards better control of the
free-energy density landscape, which would allow the study
of systems with larger interfacial energies and higher relative
stability between phases. An example of such systems in-
cludes frost spreading on hydrophobic surfaces [21,36], where
ice spreads between supercooled droplets through compet-
ing mechanisms, including diffusive density flux through the
vapor, ice bridges forming between droplets, and exploding
droplet fragments nucleating new ice patches. Another path
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of interest would be to examine larger scale microstructure
formation in ice systems, including comparisons with known
theoretical results on dendritic growth [37,38]. Finally, the
amplitude formulation also opens the door to combining this
work with the hydrodynamic PFC treatment of Heinonen
et al. [39], which may better elucidate the oscillator behavior
of freezing droplets.
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