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Ab initio calculations for void swelling bias in α- and δ-plutonium
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Void swelling can develop in materials under persistent irradiation when nonequilibrium vacancy and self-
interstitial populations migrate under sufficiently asymmetric interaction biases. In conventional metals, the
propensity is determined to the first approximation by comparing point-defect relaxation strains. We thus present
DFT-based calculations of structures and formation energies and volumes of point defects in the α and the
δ phases of plutonium. We discuss the pros and cons of various levels of electronic structure theory: spin
polarization, spin-orbit coupling, and orbital polarization. Our results show that lattice defects in δ-Pu, in contrast
to most fcc metals, have surprisingly small formation volumes. Equally unexpected are the large defect formation
volumes found in the low-symmetry α-Pu phase. Both these unusual properties can be satisfactorily explained
from defect-induced spin/orbital moment formation and destruction in the Pu phases. Surprisingly, the point
defects in α-Pu are found to induce far larger transformation of the local electronic structure than in δ-Pu. When
we use the calculated defect properties to estimate the classic void swelling bias in each of the phases, we find
it to be unusually small in δ-Pu but likely much larger in α-Pu. Hence, swelling rates and mechanisms can
diverge dramatically between the different phases of Pu. Especially in the transient regime before the formation
of large defect clusters, the swelling rate of α-Pu can reliably be expected to be much larger than δ-Pu. However,
accurate forecasts over longer times will require the conventional void-swelling theory to be modified to handle
the complexities presented by the different Pu phases. As a case in point, we show the possible anomalous
temperature dependence of vacancy properties in δ-Pu, caused by entropic contributions from defect-induced
spin-lattice fluctuations. Such complications may affect defect-defect interactions and thus alter the void swelling
bias.
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I. INTRODUCTION

Pu-based materials are inherently subject to radiation dam-
age that can adversely affect their properties over time.
Spontaneous α-decay deposits both U and He impurities and
displaces host atoms from their lattice sites in collision cas-
cades. It leaves behind a nonequilibrium population of point
defects and clusters that feed compositional, microstructural,
and macroscopic changes over the long term. Given sufficient
time, the defect populations and microstructure co-evolve via
biased defect diffusion as well as defect collisions and reac-
tions at defect sinks in the lattice. For Pu metal in particular,
these long-term radiation aging effects may encompass: (i) He
bubble formation [1–17], (ii) metastability and possible phase
transformation [18–23], and (iii) void swelling [24–26]. The
possibility of void swelling caused by self-irradiation is the
focus of this paper.

Swelling behavior has been observed and studied in depth
in reactor materials. It arises from incomplete mutual annihi-
lation of the relict, post-collision-cascade lattice defects and
their subsequent net segregation to pre-existing sinks in the
microstructure. In the conventional theory of void swelling in
metals, the long-range interaction that drives segregation orig-
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inates from coupling of the (mobile) point defect relaxation
strains with the local elastic stress field. That stress field is
primarily induced by dislocations [25], and as a consequence,
the diffusing defects preferentially drift towards the disloca-
tions. The relaxation strain is also commonly much larger
for self-interstitials (SI) than for vacancies (V) and so in turn
the SI diffusion bias is stronger. Hence, even if V and SI are
generated at the same rate by the collision cascades, the SI are
absorbed by the dislocations at higher rate, resulting in climb.
This in turn leads to an imbalance in the populations of the
free V and SI. Void swelling comes about by accumulation
of the excess residual vacancies into cavities, typically via
inhomogeneous nucleation at helium bubbles [27–34].

In conventional metals, the phase diagrams are dominated
by one or two simple crystal structures such as fcc, bcc, or
hcp; their metallic bonding is well-described by Hohenberg-
Kohn-Sham density functional approximations. The relevant
defect formation energies and relaxation volumes can thus
readily be obtained from ab initio total energy calculations
within the density-functional theory (DFT). Plutonium metal,
however, is far from conventional and it was long not ob-
vious how to best model its electronic structure in order
to predict its complex phase diagram with reasonable ac-
curacy from first principles. The 5 f electrons in Pu are on
the knife’s edge between localized and delocalized character;
indeed, the material is often suspected of lying near a quantum
critical point. Crystalline plutonium undergoes six structural
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transformations as a function of temperature, which involve
large volume changes. Only two of these solid phases are of
interest here: the mechanically brittle low-symmetry mono-
clinic ground-state α phase and the ductile high-symmetry
face-centered cubic δ phase, which becomes thermodynami-
cally stable between 592–724 K. The specific volume of the
δ-Pu phase is 25% larger than α-Pu. The inclusion of just a
few atomic percent of Ga stabilizes the δ-Pu structure down to
room temperature. Due to slow kinetics, it took decades before
it was proven that Ga-stabilized δ-Pu phase is only metastable.
The true equilibrium consists of the two-phase coexistence of
α-Pu phase and the Pu3Ga line compound [35,36]. Questions
inevitably remain whether spontaneous self-irradiation in the
α- and δ-Pu phases may influence the kinetics towards equilib-
rium. This calls for a comparative study of radiation-induced
defects and possible swelling behaviors of these two phases.

In order to justify the approach to modeling of the elec-
tronic structure of plutonium that is undertaken in this paper,
we briefly review the history of modeling and explain our
current understanding of this extraordinary material. The first
realistic total-energy calculations for plutonium [37] assumed
delocalized 5 f electrons in the electronic structure, i.e., the
electrons are considered fully bonding itinerant (Bloch states)
and analogous to the d electrons in the d-transition metals.
The bonding electrons are identified by the parabolic decrease
of the atomic volume proceeding half-way through the d-
transition metal series and the following parabolic increase
due to the gradual filling of antibonding d states [38]. The
early part of the actinide series shows the same behavior with a
parabolic volume contraction up until plutonium. The ground-
state α-Pu phase only deviates slightly from the parabolic
trend. Yet at slightly elevated temperatures, the δ phase has
almost 25% larger volume, which appears completely incon-
sistent with the bonding (delocalized) 5 f -electron picture.
Early on it was thus concluded that the α phase can be mod-
eled adequately within DFT, while the δ phase cannot. In this
initial approach, the latter phase was predicted to have much
too small atomic volume and much too high energy [37].

As a contemporary solution to this dilemma, the concept
of partial localization of the 5 f electrons was introduced
in various ways [39–42]. The idea behind partial localiza-
tion is that the manifold of 5 f states in δ plutonium is
divided into localized and delocalized parts. These mod-
els could adequately reproduce the δ volume and even in
one case produce electronic density of states consistent
with experimental photoelectron spectroscopy [40]. The most
widespread approaches to modeling strong f -electron correla-
tions/localization in δ-Pu have been via Hubbard Hamiltonian
for the f electrons with strong intra-atomic screened Coulomb
repulsions on the order U ∼ 4 eV. These are combined with
DFT in self-consistent schemes either through the static
DFT+U approach [43] or the more advanced dynamical
mean-field theory (DMFT) approach [44]. Nonetheless, an
important drawback of all these approaches is their reliance
on an external parameter U , which in the partial-localization
picture must vary between the different phases of Pu, because
they may involve very different fractions of localized 5 f elec-
trons.

Concurrently, an alternative based on itinerant 5 f elec-
trons was proposed that could deal with both the α and δ

phases in a unified manner [45]. This approach consists of a
straightforward application of spin-density functional theory,
while in addition, the electrons are allowed to couple through
spin-orbit interaction and atomic Hund’s second rule coupling
(absent in conventional DFT) leading to formation of spin
and orbital moments. Within this approach, atomic volumes,
energies, and even simulated photoemission spectra [46] for
δ plutonium have been accurately reproduced. While these
results suggested a viable pathway to ab initio modeling of
the materials properties of Pu, their prediction of static mag-
netic moments in Pu [45] was criticized [47] because of their
apparent disagreement with experimental data at the time.
However, the existence of magnetic moments in plutonium,
albeit fluctuating, has since been verified in neutron-scattering
experiments [48]. The measured magnetic form factor from
these experiments is rather well reproduced by the accompa-
nying [48] DMFT calculations that assume strong electron
correlations (Hubbard U ∼ 4 eV). On the other hand, the
magnetic form factor was also correctly predicted years ear-
lier within the spin/orbital-DFT approach [49,50]. Therefore
the measured magnetism can be explained within two rather
different models.

At present, the validity of the partial-localization picture
and the exact nature of f -electron correlations in different
plutonium phases remain unsettled. Note that in heavy ac-
tinide metals, where localization-delocalization transitions of
5 f electrons do undeniably occur, they are associated with
large energy changes, induced by enormous (Mbar) pressures
[51,52]. In contrast, the α- and the δ-Pu phases must be very
close in energy because their equilibria are only separated by a
modest temperature at ambient pressure. Hence, there is clear
distinction between the behavior of the 5 f electrons in plu-
tonium metal and in the heavier actinide metals. Along these
lines in recent years, DMFT calculations with small Hubbard
U (less than 1 eV) [53], have shown significant success in
accounting for quantum fluctuations in the Pu system.

The DMFT approach attempts to take into account local
onsite quantum fluctuations by constructing effective Hubbard
Hamiltonians for the 5 f -electron subspace through projec-
tions onto each atomic site and solving approximately by
mapping each site onto an Anderson impurity problem. This
is computationally very demanding. In comparison, the spin-
density functional theory amended with orbital polarization,
the approach taken in this paper, is computationally far more
expedient. Even at this level of approximation, achieving
well-converged calculations for point defect properties, which
require periodic supercells containing more than 100 Pu atoms
is quite daunting, It is therefore currently the only technique
that is computationally feasible and at the same time reason-
ably accurate for the comprehensive study that is undertaken
in the present work.

Nevertheless, this approach remains a static mean-field
approximation to a more complete theory that can account for
quantum fluctuating moments. Existing DFT approximations
cannot account for this possibility. Hence a closer look at the
sources of error that can arise when applied to the different
phase of Pu metal is warranted. The most obvious discrepancy
is in the static ground-state magnetic configuration of the
δ-Pu phase. In the collinear spin/orbital-polarized limit, it is
found to be a layered antiferromagnetic (AF) configuration
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consisting of ferromagnetic fcc-(001) layers, with adjacent
layers having opposite spin orientations, so-called L10 pat-
tern. It has tetragonal symmetry, and thus breaks the fcc-cubic
symmetry of the δ-Pu phase and favors a face-centered tetrag-
onal (fct) crystal structure. The effect is weak: at the equilib-
rium lattice constant, the calculated c/a for the fct structure
is 0.99 in SP+SO+OP-GGA, very close to cubic. This poses
no difficulty for the description of the high-temperature δ-Pu
phase, where thermal fluctuations could stabilize the high-
symmetry phase. However, the discrepancy becomes conspic-
uous for the Ga-stabilized δ-Pu, which is presumably cubic
down to very low temperatures (although a small tetragonal
distortion has been inferred from neutron powder diffraction
experiments) [54,55]. This calculated 1% effect may reflect
the neglect of quantum spin and orbital fluctuations. Later in
this paper, we conduct a careful analysis of the anisotropy of
structural relaxations around the point defects in δ-Pu. This
helps to quantify the effect of this artifact on the point defect
properties, showing it to be finite but small. Regardless of
the bulk results, the point defect properties in both phases
of Pu in this study are found to be quite anomalous. Our
analysis of the origins of these anomalies, discussed below,
suggests that incorporation of quantum fluctuations will likely
not qualitatively change the conclusions reached in this paper.

To summarize, our preferred plutonium treatment, due to
its accuracy and relative computational efficiency, is that of
a spin-polarized DFT electronic structure perturbed by (for
plutonium) rather significant spin-orbit coupling (SO) and
orbital polarization (OP). The generalized gradient approxi-
mation (GGA) is made for the DFT electron exchange and
correlation; it is known to be the best choice to date for ac-
tinide metals, and especially plutonium metal (see discussions
in Ref. [56]). Addition of SO and OP corrections consistently
enhance the predictive capability of SP-GGA for the energet-
ics of all phases of Pu metal. As a matter fact, it has been
demonstrated that the SP+SO+OP-GGA functional can re-
produce the energy ordering and structural properties of all the
experimentally observed Pu polymorphs in the phase diagram
quantitatively [57]. Similarly good agreement has been found
for phonon properties [50,58].

It should be noted that even without spin-orbit and orbital
polarization, relativistic spin-polarized DFT (SP-GGA) is able
to predict fairly reasonable structural energetics for Pu metal,
with a prediction for the equilibrium lattice constant of δ-Pu
within 2.5% of experiment [56]. This is reasonably good and
constitutes a significant improvement upon nonmagnetic DFT.
Of course, the predicted spin moments are nearly 5 μB and
antiferromagnetically ordered. The advantage of this approxi-
mation is in its computational expediency,

Accordingly in this paper, we compare three different ap-
proaches to the calculation of formation energies and volumes
of intrinsic defects in α- and δ-Pu: (i) collinear SP-GGA
within the generalized gradient approximation at the the-
oretical equilibrium density, (ii) SP-GGA with an applied
hydrostatic tension to approximate the experimental bulk
density, and (iii) noncollinear SP+SO+OP-GGA at the the-
oretical density. We consider SP+SO+OP-GGA to be the
benchmark of the three approximations considered here.

While inclusion of SO and OP greatly improves accuracy,
they dramatically increase the computational cost (still far

less than a corresponding DMFT calculation). Therefore we
characterize the corrections obtained from SO and OP and
explore less expensive ways to obtain reliable point defect
properties. We argue that a rough correction to the bulk SP-
GGA overbinding is simply to add a uniform external stress
(in effect a PV correction to the functional), thereby dilating
the system to the approximate experimental density. We find
that this approximation works well so long as the lattice de-
fects do not cause changes in the local magnetic ordering.

In Sec. IV, we examine point defects in α- and δ-Pu, and
compare formation energies and volumes to those in regular
transition metals. The most important finding is the stark
contrast in defect properties in α- and δ-Pu. Our results show
opposite to α-Pu as well as most close-packed metals: (i) the
equilibrium concentration of vacancies in δ-Pu is smaller than
that of self-interstitials and (ii) the magnitude of the lattice
strain caused by the vacancies is nearly equal to that of self-
interstitials. As a result, we estimate in Sec. V, a small void
swelling bias in δ-Pu according to the conventional theory. In
contrast, α-Pu is argued to exhibit a swelling bias comparable
to normal transition metals.

At first glance, δ-Pu appears characteristically as the outlier
with unusual point defect properties, while they seem normal
in α-Pu. However, α-Pu is a low-symmetry phase with many
inequivalent sites, not unlike metallic glasses. Why then do
its point defects have relaxation volumes so similar to, e.g.,
close-packed copper? It turns out that point defects in Pu
crystals induce changes in sizes of the spin/orbital moments
of nearby lattice sites. The magnitudes of these induced mo-
ments strongly correlate with the defect formation volumes.
Hence, the large formation volumes in α-Pu stem from defect-
induced increases in sizes of the spin/orbital moments of the
neighboring lattice sites, while introduction of point defects
in δ-Pu reduces spin-polarization in their vicinity, which in
turn strengthens the effective interatomic bonding and causes
vanishing defect formation volumes. Quantitative analyses of
the effect of point defects on the local electronic structure of
α- and δ-Pu phases are conducted throughout Sec. IV, using
a novel thermodynamic variable, the so-called formation spin
moment, introduced in Sec. III.

We should emphasize in particular the value of this new
analysis. The newly introduced formation spin measure high-
lights the changes to the local electronic structure (at this
level of DFT) that correlate with defect-induced lattice strains.
The spatial distribution of the latter can be quantified and
categorized as elastic or beyond by studying changes in the
Voronoi volumes of the nearby atoms. Note that changes
in local electronic structure offer low energy pathways to
altering the effective atomic bonding and in turn the defect
formation volumes. Simplifying the situation by introducing
a hypothetical electronic excitation cost, �E , an associated
volume change �V , and a local pressure, P, such accommo-
dations are favored if −P�V/�E > 1. The accommodation is
not symmetric: local moments in δ-Pu are near the maximum
achievable, while they are among the lowest possible in α-
Pu. This asymmetry can account for the strikingly different
defect properties in the two phases. There are likely to be
additional electronic degrees of freedom that contribute, e.g.,
changes in the local spin order from antiferromagnetic to
ferromagnetic can affect the local atomic volumes and thereby
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defect-induced lattice strains. Nevertheless, the two Pu phases
are in some sense at opposite extremes, and that basic differ-
ence is what underpins their distinct point defect properties.
This suggests that successive levels of DFT (e.g., static SP,
SP+SO+OP, up to and including full quantum fluctuations)
should broadly agree as to these defect properties for the two
phases.

To reiterate, our ab initio results suggest that the clas-
sic void-swelling bias is far larger in α-Pu than in δ-Pu
[59,60], thus swelling is more likely in the α-Pu phase. This
illustrates a broader lesson: different crystal phases of the
same material can behave very different under irradiation.
However, conventional void swelling theory may not be re-
liable for predicting plutonium aging over long times. In
δ-Pu, defect interactions likely have magnetic contributions
with anomalous dependencies on temperature and internal
stress-field, resulting from significant entropic contributions
due to magnetic fluctuations. A few examples of low-lying
magnetic excitations of the vacancy in δ-Pu are discussed in
Sec. IV B 2. In α-Pu, the low symmetry and the quasi-two-
dimensional diffusion of point defects in this system pose
challenges to the classic mean-field theory of void swelling.
The strongly anisotropic diffusion of point defects in α-Pu
is discussed in Sec. IV B 4, where the distribution of defect
formation energies among the eight different crystallographic
sites are studied. The lowest-energy sites are arranged in
two-dimensional layers, separated by energetically unfavor-
able regions. This anisotropy/inhomogeneity could also have
implications for vacancy-mediated transport of substitutional
He and Ga and thus bubble formation and phase metastability.

Nevertheless, in the short-time transient regime, our ab
initio predictions of the density changes of α-Pu being much
larger than δ-Pu should be reliable and observable in experi-
ments.

The paper is organized as follows. In Sec. II, we out-
line the details of our calculations, as well as a variational
formulation of the orbital polarization method within non-
collinear spin-density functional theory, implemented in the
framework of the projector augmented wave (PAW) method.
It allows for accurate and efficient computations of atomic
forces and stresses, with application to structural relaxations
induced by point defects in Pu lattices. In Sec. III, we review
defect thermodynamics and introduce novel thermodynamic
variables for analyzing defect-induced electronic transitions
in Pu phases. In Sec. IV, we present extensive calculations and
analyses of α- and δ-Pu phases as well as a thorough study of
point defect structures and energies in these phases. In Sec. V,
the classic void swelling theory is recapitulated, whereupon
the swelling biases for the two Pu phases are discussed.

II. METHODOLOGY

The aim of this paper is to study from first principles the
structures and energies of point defects in α and δ phases of
Pu. The present work relies on static mean-field treatment of
magnetism in Pu through two exchange-correlation function-
als: SP-GGA and SP+SO+OP-GGA. The latter requires an
order of magnitude more computational resources than the
former. In this study, SP-GGA calculations are carried out for
point defects in both α and δ-Pu phases, while SP+SO+OP-

GGA is only applied to point defects in δ-Pu. The PBE [61]
parametrization of the GGA exchange-correlation functional
is used throughout this work.

The defect calculations presented in the following are per-
formed using periodic supercells containing 128 atoms for
α-Pu and 108 atoms for δ-Pu. For accurate representation of
the Fermi surfaces, the Brillouin zones of the 108/128-atom
supercells are sampled with 27/8 k points. The Kohn-Sham
wave functions are represented in a projector-augmented wave
(PAW) basis, as implemented in the Vienna ab initio simu-
lation package (VASP) [62]. A plane-wave cutoff of 450 eV
is employed. The relativistic effects are taken into account
by addition of a spin-orbit (SO) coupling term to the Hamil-
tonian. Structural relaxations induced by point defects are
extensively studied following atomic forces derived within the
PAW scheme.

The treatments of spin-orbit coupling and orbital polariza-
tion in this paper are unconventional and need explanation.
First, let us discuss our treatment of spin-orbit coupling in Pu.
A comparative study of standard PAW [63] and all-electron
full-potential linear muffin-tin orbital (FPLMTO) [64] meth-
ods for calculations of equilibrium structural properties of
the light actinide metals (Th-Pu) [65] found that while for
collinear spin-polarized calculations, the two techniques are
in good agreement, the results differ when SO coupling is
included in the calculations. It was found that due to the in-
completeness of the scalar-relativistic PAW basis used in, e.g.,
the VASP code, the p1/2 orbital is not explicitly incorporated
into the calculations, which can lead to inaccurate treatment of
the SO coupling. This situation can be mitigated in actinides
by discarding the coupling of the spin degrees of freedom to
the p-angular momentum [65]. In all calculations presented
below, we follow this strategy for incorporation of the SO
coupling.

Next, we discuss the implementation of the LDA+U
method and the orbital polarization technique within the
PAW scheme in VASP. As a result of the relatively strong
correlations in Pu metal, atomic orbital degeneracies in the
f -electron subspace may be broken, This cannot be accounted
for within standard spin-density functional theory derived
from the homogeneous electron gas. However, DFT can be
generalized to treat orbital ordering in strongly correlated sys-
tems by incorporating on-site screened Coloumb interactions.
The LDA+U formalism [66–69] is the simplest realization
of this idea. It is a static mean-field approach that leads to
addition of renormalized Hartree-Fock-like terms to the DFT
Hamiltonian. The two main disadvantages of the LDA+U
theory are (i) the results are sensitive to parametrization of
the screened local Coloumb interactions and (ii) it is difficult
to exactly account for double-counting of interactions.

For treatment of orbital magnetism in itinerant systems,
Brooks and coworkers [70] proposed a simplified theory,
which in the presence of spin-orbit coupling accounts for
orbital ordering originating from atomic Hund’s second rule
coupling. They proposed to augment the standard spin-density
functional theory (SP-DFT) total-energy functional with a
quadratic term, which in the context of collinear magnetism
and f -electron orbital ordering can be written as

ESP+SO+OP = ESP+SO − 1

2

∑
I

E3
I

[〈
L f

I,z

〉]2
, (1)
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where 〈L f
I 〉 is the expectation value of the total orbital moment

of the f electrons at site I . It can be formally written as

〈L̂ f 〉 = Tr(L̂n̂ f ), (2)

where L̂ is the angular-momentum operator and n̂ f is the site-
diagonal single-particle density matrix, expressed in the basis
|3, m, s〉 of atomic f orbitals

n̂ f =
∑

m,s,m′,s′
n f

ms,m′s′ |3, m′, s′〉〈3, m, s|, (3)

n f
ms,m′s′ = 〈3, m′, s′|n(r, r′)|3, m, s〉.

Additionally, E3
I in Eq. (1) is the so-called Racah param-

eter, which in the case of f orbitals can be expressed as a
linear combination of the F2, F4, and F6 Slater integrals of the
f orbitals within the atomic sphere around the Ith nucleus.
Equation (1) was originally designed for collinear magnetic
systems treated within the second variation method [71]. In
this formulation E3

I can be calculated self-consistently but
that leads to complications in a fully variational treatment for
calculations of the atomic forces, see below.

The advantage of the SP+SO+OP-DFT formalism is that
the Racah parameter E3 is quite insensitive to environment
and does not change significantly between the atom and the
solid. Hence it can be calculated once and treated as a con-
stant. In this way, a major drawback of the LDA+U formalism
is resolved. However, a consequence of this amendment to
the SP-DFT functional is that in nearly all systems, it is too
weak to have any significant effect on structural energies. It
has received most attention for its application to ab initio cal-
culations of magnetocrystalline anisotropies [72]. In a recent
study of the structural energies of light actinides [65], it was
found that the addition of OP to the SP+SO-GGA functional
has a small effect on the structural energies of all the light
actinide elements except for Pu. In this system, addition of
OP remarkably improves upon the SP+SO-GGA predictions
of the equilibrium volumes of both the α-Pu as well as the
δ-Pu phases, while yielding correct energy ordering of the
phases. In the same paper, a comparative study with the popu-
lar GGA+U scheme devised by Dudarev and coworkers [73]
was conducted for the α- and the δ-Pu phases allowing for
spin polarization. It led to the conclusion that for the α-Pu
phase to remain the ground state phase of Pu metal, the U
parameter may not exceed 0.2 eV, whereupon it underesti-
mates the equilibrium volumes of the α- and the δ-Pu phases
by 3%–4%, compared to 1% within the SP+SO+OP-GGA
formalism. It should be mentioned that if calculations are
constrained to be nonmagnetic, then GGA+U with larger U
values (U = 1.2 eV) has been found to generate satisfactory
structural energetics for different phases of Pu [74].

The SP+SO+OP functional, Eq. (1) can be easily imple-
mented within the PAW formalism following Bengone et al.
[75]. However, in order for the Hellmann-Feynman theorem to
be applicable to derivation of the atomic forces in the presence
of SO and OP, a fully variational implementation using spinor
wave functions and noncollinear magnetism [73] is required.
Furthermore the Racah parameter E3 must be treated as a
constant. Such a formulation has been developed and tested
in a previous paper [65]. In this scheme, the quadratic term in

Eq. (1) is generalized for arbitrary spin orientations, leading
to the following total-energy expression:

ESP+SO+OP = ESP+SO − 1

2

∑
I

E3

(〈
L̂

f
I

〉 · 〈
Ŝ

f
I

〉)2

〈
Ŝ

f
I

〉 · 〈
Ŝ

f
I

〉 , (4)

where 〈L̂ f
I 〉 and 〈Ŝ f

I 〉 are site-projected spin and orbital mo-
ments calculated following Eq. (2). Details of implementation
within the PAW method can be found in Ref. [65].

In this paper, we use the variational total-energy functional
Eq. (4) implemented within the PAW scheme in the VASP code
for SP+SO+OP-GGA calculations of Pu. The calculations
are parametrized by the value E3 = 0.0621 eV, obtained as an
average of spin-decomposed Slater integrals of site-projected
f -electron wave functions in δ-Pu at equilibrium lattice con-
stant, using the all-electron full-potential linear muffin-tin
orbital (FPLMTO) technique [64]. This parameter is kept
fixed throughout the calculations in this paper.

Below, we further validate the PAW approach to the
SP+SO+OP-GGA functional, by comparing its predictions
for properties of δ-Pu with all-electron calculations within
the FPLMTO scheme [64], using the second variation method
[71] to SO and OP. The details of these calculations are quite
similar to those applied previously to investigations of the Pu
phase diagram [57]. The present FPLMTO implementation
does not make any assumptions beyond the GGA. Basis func-
tions, electron densities, and potentials are calculated without
any geometrical approximation, and these are expanded in
spherical harmonics inside nonoverlapping (muffin-tin, MT)
spheres surrounding each atom and in Fourier series in the
region between these muffin-tin spheres. One has to define
an MT sphere with a radius sMT and here it is chosen so
that sMT/sWS ∼0.8, where sWS is the Wigner-Seitz (atomic
sphere) radius. The radial parts of the basis functions inside
the MT spheres are calculated from a wave equation for the
L = 0 component of the potential that includes all relativistic
corrections including spin-orbit coupling for d and f states,
but not for the p states, which has been previously shown to
be an appropriate and accurate procedure [65].

Finally, it has been found in the past GGA+U studies
of actinide compounds such as UO2 [76] and Pu2O3 [77]
that these systems contain multitude of metastable local en-
ergy minima corresponding to different f -shell occupancies
for the same atomic coordinates. In these compounds, the f
orbitals are localized and are either fully occupied or com-
pletely empty. This is quite different from the Pu metal phases
with partially occupied narrow f bands that form through
f -electron hybridization. While convergence to electronic
self-consistency is clearly more difficult when SO and OP
are included, we believe we have been able to converge our
calculations with respect to orbital occupancies. One hallmark
of metastable occupancies is that addition of point defects
into such a lattice can drive the f -orbital configuration of
the actinide ions far away from the point defect to lower-
energy occupancies, causing unacceptably large errors in the
calculated formation energies, which consequently can even
have the wrong sign [76]. As is discussed and analyzed in
detail in Sec. IV below, we find no such inconsistencies in our
point defect calculations within SP+SO+OP-GGA in Pu. In
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fact, it is found that for the point defects in δ-Pu, results are
quite consistent with SP-GGA calculations in appropriately
expanded lattice.

III. POINT DEFECT THERMODYNAMICS

A. Formation enthalpy and volume

The most basic thermodynamic property of a point defect
in a crystal at pressure P is its Gibbs free-energy of formation
�GF (P, T ). It is the free energy change of the crystalline
solid per every point defect introduced in it. The equilibrium
concentration of point defects at finite temperatures can thus
be easily derived to be

ceq(P, T ) ∝ exp

(
− �GF (P, T )

kBT

)
, (5)

with the Gibbs free energy defined in terms of formation
enthalpy �HF and formation entropy �SF as

�GF (P, T ) = �HF (P, T ) − T �S(P, T ). (6)

In what follows, we will be deriving expressions for me-
chanical properties of point defects in lattices at uniform
equilibrium temperature. Hence, temperature only appears
as a parameter in the equations. In this paper, we are only
concerned with ab initio ground state calculations. General-
ization to finite temperatures is straightforward, but here we
specialize to T = 0 and drop the formation entropy term in
Eq. (6).

The ab initio calculations of point defect properties in
α- and δ-Pu presented below are performed using the stan-
dard periodic supercell technique. Hence, consider an N-atom
supercell of the perfect crystal lattice at pressure P, with
supercell volume VL(P) and enthalpy HL(P). A vacancy (inter-
stitial) can be introduced by removing (adding) an atom from
(to) this system. Denote by ND the number of atoms in the
defect supercell with N = ND ± 1 (vacancy and interstitial,
respectively). Similarly, denote by VD(P) the defect supercell
volume and by HD(P) its enthalpy. The formation enthalpy of
the point defect can be written as

�HF (P) = HD(P) − ND
HL(P)

N
. (7)

= HD(P) − HL(P) + (N − ND)
HL(P)

N
. (8)

The significance of reordering of terms to obtain Eq. (8)
is that if a generalized specific enthalpy H̃ (P, c) as a function
of both pressure P and defect concentration c is defined such
that H̃ (P, 0) = HL(P)/N and H̃ (P, 1/N ) = HD(P)/N , then in
the limit N → ∞, we have

�HF (P) = ∂H̃ (P, 0)

∂c
± H̃ (P, 0). (9)

for vacancy and interstitial, respectively.
This transformation allows for a more transparent defini-

tion of the formation enthalpy and thereby a simpler derivation
of other thermomechanical properties of point defects. As an

example, let us consider the first pressure-derivative of the for-
mation enthalpy. Using the thermodynamic relation ∂H

∂P = V ,
we obtain an expression for the formation volume

�VF (P) = ∂2H̃

∂P∂c
= ∂Ṽ (P, 0)

∂c
± Ṽ (P, 0), (10)

where Ṽ (P, c) is a generalized specific volume that is de-
fined in such a way as Ṽ (P, 0) = VL(P)/N and Ṽ (P, 1/N ) =
VD(P)/N . Of course, in practice, the partial derivative is re-
placed by the finite difference formula

�VR(P) ≡ ∂Ṽ (P, 0)

∂c
= VD(P) − VL(P). (11)

Above we have defined the relaxation volume �VR(P),
which is obviously related to the formation volume �VF , but
is more relevant to materials mechanics and is not directly
observable in macroscopic experiments. The formation vol-
ume on the other hand can be measured experimentally via,
e.g., dilatometry. It quantifies the change in size of a solid
when point defects are incorporated in it through damage ac-
cumulation. Of course, point-defect induced volume changes
are most relevant at the earliest stages of damage before any
substantial defect clustering, such as, e.g., void nucleation has
occurred.

B. Elasticity of point defects

The formation volume provides a measure for how well
a crystal lattice can macroscopically accommodate point
defects. When �VF ≈ 0, the host crystal is maximally ac-
commodative, and thus does not show any macroscopic size
change upon damage accumulation. However, the macro-
scopic accommodation is accompanied by internal micro-
scopic strain fields in the solid. This is because, e.g., a
vacancy/interstitial with zero formation volume, induces in-
ward/outward displacements of the nearest neighbor shell,
which propagates through the lattice as a long-range compres-
sive/tensile strain field. This long-range displacement field
is responsible for the elastic interaction with other lattice
defects, e.g., other point defects, dislocations and grain bound-
aries. The strength of the strain field induced by a point defect
is quantified by the relaxation volume �VR. The latter is large
in magnitude whenever |�VF | is small.

In order to rigorously model a point defect or impurity in
a lattice as an elastic inclusion, its effective size and elastic
properties must be specified from atomistic first principles.
As an example of the effective elastic properties of the point
defect, we discuss here the effective point-defect compress-
ibility, which we define as

�β = − 1

�L

∂�VR(P)

∂P
= −∂�VR/�L

∂P
+ �VR

�L

1

KL
, (12)

where �L = Ṽ (P, 0) is the atomic volume and KL is the bulk
modulus of the perfect crystal. The right-hand side expands
�β into two terms. This is useful, since the relaxation volume
is most conveniently expressed in units of atomic volume. In
practice, the two contributions to the compressibility can be
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calculated in finite periodic supercells as follows:

�β = �β0 + �βL, (13)

�β0 =
(

�VR

�L
+ N

)(
1

KD
− 1

KL

)
, (14)

�βL = �VR

�L

1

KL
, (15)

where N is the number of lattice sites in defect supercells,
i.e., the inverse of the defect concentration, and KD is the
bulk modulus of the supercell containing one point defect.
It is worth noting that β0 represents the contribution to the
compressibility of point defects derived from their effect on
the lattice stiffness, i.e., �β0 vanishes whenever KD = KL,
while �βL remains nonzero so long as �VR �= 0.

C. Formation spin moments

The unusual electronic structure of Pu metal is responsible
for its polymorphic phase diagram, as well as a slew of other
anomalous thermophysical properties. In particular, the α- and
the δ-Pu phases distinguish themselves from each other by
having low crystal symmetry/high density, and high crystal
symmetry/low density, respectively. The structural chemistry
within our DFT approach is largely determined by a competi-
tion of two symmetry-breaking mechanisms enabled because
the delocalized or itinerant 5 f -electron density of states is (i)
very narrow and (ii) positioned close to the Fermi level. On
the one hand, degenerate energy states can be lifted due to
a Jahn-Teller or Peierls like crystal distortion that lowers the
total energy for lower-symmetry crystal structures [78]. On
the other hand, the high-energy degenerate states can spin po-
larize and form magnetic moments. The exchange interaction
shifts states away from the Fermi level to a lower energy while
occupying orbitals with greater antibonding characteristics
leading to volume expansion [79]. The former mechanism
favors the α phase while the latter favors the δ phase. In
the real material both these effects, with contributions from
spin-orbit coupling and orbital polarization, favor one phase
over another in a delicate shifting balance (plutonium has
six ambient phases with varying degrees of crystal symmetry,
atomic density, and magnetic moments).

This competition between crystal distortion and magnetic-
moment formation can be quantified in the different Pu phases
as well as at different atomic sites [57]. The magnitudes of
site-projected spin moments, calculated within spin/orbital-
polarized DFT, offers one such measure. Of course, the static
spin/orbital-polarized DFT potential is derived for weakly
interacting itinerant electrons, and thus fails to capture any
physical properties that may involve multi-configuration cor-
related electronic states. Nevertheless, it has been quite
successful in describing the structural chemistry of plutonium
[57], by allowing for formation of static spin moments.

Accordingly here, we define the average magnitude of spin
moments per atom in a system with N Pu sites

� = 1

N

N∑
i=1

|〈Ŝi〉|, (16)

where 〈Si〉 are site-projected spin moments at each site i,
obtained from projection of the spin-density matrix onto
the respective muffin-tin sphere. Si are scalar quantities
for collinear SP-GGA, and they become 3-vectors for
noncollinear SP+SO-GGA as well as SP+SO+OP-GGA
schemes. It can also be defined within more elaborate and
realistic approximations beyond DFT.

We will discuss in the next section the values of � in α-
and δ-Pu within different levels of theory. It turns out that
it is, e.g., more than twice larger in δ-Pu (�δ = 4.4) than in
α-Pu (�α = 2.1), when calculated within the SP+SO+OP-
GGA. This then naturally explains why the δ phase has far
larger atomic volume than the α phase. Significantly, it also
implies that α-Pu is far from a simple metal with meaningful
f -electron correlation, although less than δ-Pu.

Later in this paper we show the power of � to provide
understanding of the electronic structure as well as the ther-
modynamic properties of point defects in α- and δ-Pu. For
this purpose, we consider the same N-atom supercell as above
representing a perfect crystal lattice of Pu metal at pressure
P, with average moment per site �L(P). Introducing a point
defect in this supercell results in ND Pu atoms and an average
moment per site of �D(P). The formation moment of the point
defect ��F can now be written as

��F = ND(�D(P) − �L(P)). (17)

It will be shown below that ��F can be a powerful measure
of the effect of point defects on f -electron hybridization in
different phases of Pu. Furthermore, it will become clear that
this contribution is of crucial importance to the point defect
properties in both α- and δ-Pu, and consequently to their
resistance to self-irradiation-induced swelling.

IV. RESULTS

A. Pure Pu

Before embarking on a discussion of point defects in Pu,
we first compare the situation for the two bulk phases of
interest. By now, there is considerable experience with first
principles results on these phases [23,45,57,65,74,80–82].
They are quite close in energy at ambient pressure despite very
different crystal structure and density.

Nonmagnetic (NM) scalar-relativistic DFT calculations
obtain an equilibrium volume of 16.5 Å3 for the δ-Pu phase,
which is a drastic underestimation of the experimental value
∼25 Å3. The situation is better for the α phase, for which
NM-GGA predicts an equilibrium volume of 17.6 Å3. This
still corresponds to an overbinding of ∼10% as compared with
the measured value at low temperatures ∼19.3 Å3.

The inclusion of spin polarization and magnetism in the
SP-GGA calculations corrects to a large extent the equilibrium
volume of the δ-Pu phase (to 23.0 Å3) and also brings the
calculated α-Pu volume to 18.2 Å3, in closer agreement with
experiments. However, very large spin moments (∼5μB) are
predicted to form on each Pu atom in δ-Pu. Surprisingly, even
in α-Pu, several Pu sites have large spin moments ∼3.5μB,
and all Pu atoms possess some spin polarization. Hence, mo-
ment formation is ubiquitous in all phases of Pu within DFT.

Incorporation of SOC generally reduces the calculated spin
moments by a small amount, e.g., in δ-Pu, they are reduced to
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TABLE I. Properties of pure δ-Pu using VASP PAW: SP denotes collinear spin polarized calculations with AF order; the −3 GPa external
pressure approximates the experimental volume. SO refers to inclusion of spin-orbit coupling in a noncollinear spinor representation, while
neglecting the contribution from the p orbitals, and OP to the addition of orbital polarization correction.

SP SP SP+SO+OP SP+SO+OP
Property NM (0 GPa) (−3 GPa) SP+SO (001) polarization (110) polarization Experiment

Eq. volume (Å3) 16.5 23.0 24.75 23.6 24.8 24.7 25.2 [83]
Bulk modulus (GPA) 208 44.7 36.0 45.0 44.6 39.1 30-35 [84]
c/a 0.706 0.942 0.991 0.963 0.993 0.982 1.0
spin mom. (μB) – 4.78 4.95 4.39 4.4 4.4 –
magnetic mom. (μB) – – – 2.34 0.78 0.74 –

∼4.4μB. Furthermore, SOC induces orbital moments opposite
to the spin moments on each Pu site, which further reduces the
total magnetic moment per Pu site in δ-Pu to ∼2.3μB.

Finally, inclusion of OP in the Hamiltonian increases the
magnitude of the orbital moment per Pu site and consequently
reduces the total magnetization of each δ-Pu atom to 0.74,
in excellent agreement with recent DMFT calculations [48].
Furthermore, predicted densities are in good agreement with
experiment at 24.7 and 19.25 Å3 for δ and α, respectively.

In the following, we separately discuss calculations and
measurements of some common physical properties of (pure)
α-Pu and δ-Pu at ambient conditions. We include analyses
at both theoretical and experimental ambient conditions for
SP-GGA since the two limits differ greatly.

1. δ-Pu

The properties of δ-Pu phase as calculated within different
levels of theory are listed in Table I and are compared with
experiments. The drastic underestimation of the equilibrium
volume by the NM-GGA theory, largely corrected by inclu-
sion of spin and orbital polarization is clearly documented.

The SP-GGA calculations are constrained to have collinear
spins. This limitation is relaxed upon the inclusion of rela-
tivistic effects via noncollinear SO coupling, but even then the
local spin moments do not appreciably deviate from collinear
AF ordering. This implies that this spin configuration is near
a local minimum of the potential-energy landscape when gen-
eralized to noncollinear magnetism.

Since the SO-treatment implemented within the VASP code
does not explicitly account for the p1/2 states, a non-negligible
error is introduced, which can be mostly eliminated by simply
removing the spin-orbit (L · S) matrix elements corresponding
to the L = 1 angular momentum [65]. A comparison between
results obtained with and without the p-channel SO coupling
is shown in Table II. Hence, proper inclusion of SO expands
the lattice by ∼3%, in better agreement with experiments, but
still about ∼6% too small.

Following established literature, we represent in this paper
the magnetic structure of the δ-Pu phase by the collinear anti-
ferromagnetic L10 order, known to be the lowest energy bulk
magnetic order in the SP-GGA approximation. The layered
structure breaks the cubic symmetry of δ-Pu and results in
a tetragonal distortion of the fcc lattice. Figure 1 shows that
the degree of tetragonality, as quantified by c/a ratio of the
resulting face-centered tetragonal lattice, is strongly density
dependent. The distortion is substantial (∼6%) at the SP-GGA

equilibrium volume of 23 Å3, whence as atomic volume is
increased, so does also the c/a ratio almost proportionally
and approaches unity (cubic symmetry) near the experimental
equilibrium volume of 25 Å3.

Spin-orbit coupling introduces additionally a spin quanti-
zation axis, which causes the energy to also depend on the
direction of spin polarization; this is inherited by the OP ap-
proximation as well. This magnetic anisotropy is expected to
have a small effect on structural chemistry. However, as shown
in Fig. 1, it does noticeably change the volume dependence of
the degree of tetragonality. It can be seen that the c/a ratios
for (110) polarization, calculated within both SP+SO-GGA
and SP+SO+OP-GGa, are about 1% shifted away from cubic
symmetry compared to SP-GGA values for the same Pu den-
sity. However, the effect of the (001) polarization on the c/a
ratios is a bit more complicated. When calculated within the
SP+SO-GGA approximation, this polarization induces quite
similar c/a ratios to the SP-GGA calculations. In contrast,
when the OP is included, the c/a ratios become nearly in-
sensitive to the Pu density, and vary within a narrow interval
(0.99,1). This emphasizes the role of orbital polarization in
determining the structural energetics of Pu metal.

To understand the observed behavior in Fig. 1, one needs to
note that spin-orbit coupling at a site with a finite spin moment
induces an orbital polarization opposite in direction. Addition
of explict OP in the Hamiltonian Eq. (4), increases the mag-
nitude of the orbital polarization. Hence, when AF ordering
is along (001) but spin/orbital polarization is along (110), the
degree of symmetry breaking resulting from the AF symmetry
is maximal and insensitive to the magnitude of E3 in Eq. (4).
In contrast when the spin/orbital polarization is parallel to the
AF stacking along the (001) direction, the density-dependence
of the degree of tetragonality is reduced with increasing E3.
This implies a subtle but very real and important interplay

TABLE II. Properties of pure δ-Pu calculated by FPLMTO. SOall

denotes SO-coupling including all angular momentum channels, and
SOnop refers to SO-coupling excluding the p channel.

Eq. volume Bulk modulus
Method (Å3) GPa c/a

SP+SOall 22.9 40. 0.92
SP+SOno p 23.7 42 0.96
SP+SOall+OP 24.6 45 0.992
SP+SOno p+OP 24.8 45 0.993
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FIG. 1. Predicted c/a ratios vs volume for bulk δ-Pu in SP-GGA
(open black circles), SO-GGA (open red diamonds), and OP-GGA
(open blue squares for spin polarized on (001) and filled green circles
for (110) polarization). The arrows mark the theoretical equilibrium
volume for the four cases (SP-GGA in solid black, SP+SO-GGA in
dashed red, (110)-polarized SP+SO+OP-GGA in solid green, and
(001)-polarized SP+SO+OP-GGA in downward-pointing, dashed
blue).

between spin ordering and orbital polarization. At current
level of theory, the static (001) spin/orbital polarization par-
allel to the AF stacking, in spite of its slightly higher energy
(≈18 meV/atom) compared to the perpendicular (110) po-
larization, should be considered the better representative for
the real spin-fluctuating system, as it stabilizes the crystal
structure that comes closest to the high-symmetry cubic δ

phase.
In contrast to the degree of tetragonality, the effect of SO

and SO+OP corrections on equilibrium volume of the δ-Pu
phase is quite insensitive to the polarization direction, as seen
in Table I. Addition of SO alone, only slightly expands the SP-
GGA equilibrium volume towards the experiment. However, a
much more substantial correction is obtained upon incorpora-
tion of OP, which approaches the equilibrium volume of δ-Pu
to within 2%. It is easy to suppose that proper inclusion of
magnetic fluctuations can restore full cubic symmetry [56].

2. α-Pu

The α-Pu phase is a monoclinic crystal of P21/m sym-
metry [86] with a primitive cell containing 16 atoms. The
space group includes inversion symmetry, which reduces the
number of crystallographically inequivalent sites in the primi-
tive cell to 8. This is depicted schematically in Fig. 2. Four
parameters are necessary to specify the Bravais lattice: the
length of the lattice vectors, denoted below by a, b, c, and
the monoclinic angle θ .

The experimental atomic volume of α-Pu is 20.0 Å3 at
21 ◦C [87]. However, α-Pu exhibits an unusually large ther-
mal expansion at low temperatures, and it is estimated to
have an equilibrium volume at 0 K of about 19.5 Å3 [65].
Nevertheless, the SP-GGA approximation still overbinds this
phase by about ∼7%. The equilibrium properties of α-Pu,
as calculated within different levels of theory compared to

FIG. 2. An image of α-Pu structure with its eight inequivalent
sites.

experiments are listed in Table III. It is observed that the
addition of OP expands the equilibrium volume to within
∼1% of the experimental value.

An important property of the α-Pu phase, relevant to its
alloying as well as lattice defect properties [18], is the signif-
icant difference in atomic volume and electronic properties of
the eight inequivalent sites of this lattice. Table IV details the
variation in the sizes of the Voronoi volumes of these eight
sites, which are enumerated (see also Fig. 2) in accord with
past literature [87]. It is found that the smallest site (1) is
nearly 20% smaller than the largest site (8). It is notewor-
thy that the local electronic structure does also vary strongly
between the different sites. Table V lists the magnitudes of
the local spin, as well as the magnetic moment at each of
the eight sites. The dramatic difference between sites 1 and
8 is evident. The site-projected electronic densities-of-states
for these sites have also been shown to be very different
[56]. While site 1 has the highest density (smallest Voronoi
volume) and minimal spin polarization, site 8 is δ-like with
low density and large local spin moment. This heterogeneity
plays an important role for the energies and volumes of point
defects introduced into this phase.

TABLE III. Properties of pure α-Pu calculated by PAW.

Eq. volume Bulk modulus
Method (Å3) GPa b/a c/a θ

NM 17.6 187.5 1.85 0.754 102.2
SP 18.2 103.6 1.83 0.757 101.7
SP+SO 18.35 141.6 1.82 0.76 101.9
SP+SO+OP 19.25 57.4 1.79 0.75 101.5
experiment (0 K) 19.5 70.9 [85] 1.77 0.755 101.8
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TABLE IV. The table lists the percentage deviations of Voronoi
volumes of all inequivalent sites of the α-Pu phase from the average
atomic volume. Comparison is made between room temperature
experimental structure and equilibrium structures obtained from dif-
ferent levels of zero-temperature theory with static magnetism.

Experiment
Site (room temp.) SP SP+SO SP+SO+OP

1 −7.21% −6.35% −5.98% −7.80%
2 −0.61% −1.49% −1.23% −0.87%
3 −2.25% −2.13% −1.79% −1.89%
4 −1.87% −3.47% −3.34% −3.33%
5 −0.66% −1.83% −1.76% −0.67%
6 0.67% 2.19% 1.66% 1.68%
7 0.32% 1.92% 1.53% 0.99%
8 11.63% 11.16% 10.91% 11.89%

In summary, in contrast to the wide-spread expectation
that ordinary nonmagnetic DFT should be quite reasonable
for describing the energetics of α-Pu, it was found many
years ago that quite sizable spin and orbital moments form
on several atoms in α-Pu [18,81]. Accordingly, quite large
errors arise in predictions of the equilibrium volume of the
α-Pu phase, when neglecting spin and orbital polarization as
well as spin-orbit coupling.

While the SO and OP approximations allow for non-
collinear spins, we find that the lowest energy collinear
configurations constitute local potential-energy minima. Our
search for the lowest-energy collinear magnetic configuration
in α-Pu has led us to the ferrimagnetic order, with sites 1,
3, 4, 7 antiparallel to 2, 5, 6, and 8, and the magnitudes of
the local spin and orbital moments listed in Table V. Because
of the complexity of the α-Pu structure and the diversity of
possible point defect configurations in this phase, we have
limited the scope of this work to comprehensive point defect
calculations in 128-atom α-Pu supercells using the SP-GGA
approximation only. Encouraged by the reasonable success
of SP-GGA for the swelling parameters in δ-Pu, we perform
these calculations at negative stress of -5 GPa, corresponding

TABLE V. The table lists the magnitudes of the local spin mo-
ments (|Si|), as well as the local magnetic moments (|Si + Li| at each
inequivalent site of the α-Pu phase, with i index enumerating the
eight inequivalent sites. The calculations have been performed within
the SP+SO and SP+SO+OP approximations at the equilibrium
structure and density of α-Pu within SP+SO+OP.

SP+SO SP+SO+OP

Site |Si| |Si + Li| |Si| |Si + Li|
i (μB) (μB) (μB) (μB)

1 0.47 0.35 0.55 0.14
2 1.3 0.73 2.0 0.18
3 1.3 0.7 2.0 0.19
4 1.4 0.76 1.9 0.31
5 1.3 0.59 2.1 0.41
6 1.9 0.94 2.5 0.31
7 2.3 1.2 2.6 0.03
8 3.5 1.6 3.4 0.03

to an equilibrium volume near the experimental value. In this
way, we correct for the overbinding of this approximation.

B. Point defects in Pu lattices

In this section, we explore the energetics and the structures
of the intrinsic point defects in the δ- and α-Pu phases. The
quasicubic high-symmetry of the δ phase greatly simplifies the
search for favorable defect geometries, while monoclinic α-Pu
offers a multitude of crystallographically distinct defect sites
each with low-symmetry local environments to relax. Accord-
ingly, the defect study for the δ phase is more comprehensive,
including for the first time a limited survey of changes in local
magnetic order. As with the bulk calculations described above,
we explore different levels of DFT approximation to examine
defect properties in δ-Pu, including SP-GGA at the theoreti-
cal equilibrium, strained-SP-GGA under hydrostatic stress to
approach the experimental density, and SP+SO+OP-GGA.

When strained-SP-GGA and SP+SO+OP-GGA calcula-
tions of point defects in δ-Pu are initialized with the same
magnetic order, their formation energies and volumes are
found to be in reasonable quantitative agreement notwith-
standing subtle differences in predicted defect structures.
However, a sampling of magnetic structures in δ-Pu reveals
further complexity that will be discussed in detail in the next
subsection,

Because the (inexpensive) strained-SP-GGA approxima-
tion seems adequate for a first look at swelling behavior in
δ-Pu, we use only this method to study intrinsic point defects
in α-Pu. No comparison with SP+SO+OP-GGA is made for
defects in α-Pu at this time, and more detailed studies are
left for future work. Instead, we focus below on exploring
the energetics and structures of the multitude of point defect
configurations that are made possible by the low symmetry of
the α-Pu phase.

Based on the strained-SP-GGA results for α- and δ-Pu, the
point defect properties of the two phases stand in stark con-
trast to one another. The vacancy in δ-Pu has a relatively high
formation enthalpy and a large negative relaxation volume, but
the vacancy in α-Pu is energetically much more favored with a
small relaxation volume there. The opposite is the case for the
self-interstitial defects, i.e. formation energies and volumes
are smaller in the δ-Pu phase than in α-Pu.

Point defects in both phases have quite unexpected prop-
erties and cannot easily be placed in categories with known
materials of similar crystal structures. In the case of δ-Pu,
comparison with close-packed transition metals such as, e.g.,
Cu, reveals sharp contrast. Cu has a small negative vacancy re-
laxation volume �V Cu

R ≈ −0.3 at. vol., and a relatively large
and positive self-interstitial relaxation volume �V Cu

R ≈ 1.9
at. vol. Quite surprisingly, these properties resemble those of
the point defects in the far-from close-packed α-Pu phase.
Consequently, the α-Pu phase is expected to have a relatively
high swelling bias within the conventional theory, compara-
ble to that of Cu or Al, while δ-Pu is predicted to have a
greatly reduced swelling bias. We will discuss the prospect
of radiation-induced aging in more detail in Sec. V.

These properties can be rationalized within the spin/orbital
DFT picture by the degree the f -electron manifold is influ-
enced by bonding or antibonding states. We use the concept
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of formation spin moments Eq. (17), introduced in Sec. III,
to quantify the role of f -electron character in determining
the unusual point defect properties found in α- and δ-Pu. It
will be shown in the following sections that point defects in
δ-Pu reduce the magnitude of spin/orbital polarization in their
vicinity. Hence in contrast to regular close-packed metals, the
vacancy and the interstitial in this Pu phase can be accommo-
dated with very small formation volumes. In contrast, point
defects in α-Pu are found to strongly increase the magnitudes
of spin/orbital moments in their neighborhoods, which leads
to large formation volumes.

1. Modified SP-GGA for improved predictions of defect properties

Before embarking on a detailed discussion of point defect
properties in α- and δ-Pu, we make a brief digression in
this section on how collinear SP-GGA calculations can be
improved upon to better reproduce the SP+SO+OP-GGA
results. This is important because accurate predictions of
point defect energies and structures require relatively large
supercells containing more than 100 atoms, and noncollinear
SP+SO+OP-GGA calculations can become computationally
challenging to converge to the levels needed for adequate
determination of relaxation volumes. In contrast, collinear
SP-GGA calculations are computationally expedient and
straightforward to converge to high accuracy using state-of-
the art computer resources and algorithms. However, SP-GGA
underestimates the equilibrium volume by nearly 8% for the α

as well as the δ-Pu phases. While this is not an unreasonably
large error, one should bear in mind that bonding in Pu metal is
quite sensitive to atomic density, as it undergoes six structural
phase transformations involving large volume changes within
a temperature range of no more than 900 K. More importantly,
as discussed in Sec. IV A 1, collinear spin-polarized calcula-
tions predict a layered antiferromagnetic order with tetragonal
symmetry to be the lowest-energy spin configuration for δ-Pu.
This breaks the cubic symmetry of the fcc phase. Coinciden-
tally, at the SP+SO+OP-GGA equilibrium volume, which
is within 1% of experiment, the degree of tetragonality is
quite small, less than 1%. It increases with increasing density,
so that at the SP-GGA zero-pressure volume, it becomes as
large as ≈6%, whereupon non-negligible errors are observed
in predictions of defect structures and energies, as will be
discussed in Sec. IV B 2.

Hence one may expect that the predictions made by SP-
GGA for the formation energies/volumes of point defects
in, e.g., δ-Pu can be brought to reasonable agreement with
SP+SO+OP-GGA if they are performed at the SP+SO+OP-
GGA equilibrium density. In practice, it turns out that the best
way to conduct these modified SP-GGA calculations is to per-
form them at negative hydrostatic pressure P. This amounts
to augmenting the SP-GGA exchange-correlation functional
with a PV term, where V is the supercell volume that is
allowed to relax variationally. This term can be thought of as
mimicking the increased antibonding character of the occu-
pied states due to additional symmetry breaking by spin-orbit
coupling and orbital polarization. Of course, it is only a homo-
geneous term, and cannot account for local interactions that
explicitly originate from orbital ordering. These interactions
lead to the minor differences found in the predictions of the

structural energetics of δ-Pu predicted by the (001) and (110)
spin/orbital polarizations, see Table I. The external pressure P
is expected to depend (weakly) on the overall structure. It is
found to be P = −3 GPa in the δ-Pu phase, and P = −5 GPa
in α-Pu. These pressures are obtained within SP-GGA for the
α- and δ-Pu structures at their respective SP+SO+OP-GGA
equilibrium densities, with the spin and orbital moment vec-
tors pointing in the (001) direction.

To our knowledge, the modified SP-GGA method dis-
cussed above has not been generally used to handle the
relatively large tetragonal distortion predicted by SP-GGA
at the theoretical equilibrium. The most commonly adopted
way to handle this problem has been through imposition of
a cubic shape constraint on the defect supercells [88–90].
It is shown in the Appendix that in the dilute limit, such
defect calculations yield identical results to supercell calcu-
lations, in which a nonhydrostatic (tetragonal) external stress
is imposed. The magnitude of the stress σ is chosen such
that the perfect bulk fcc-Pu lattice becomes a stable equilib-
rium configuration. This amounts to augmenting the SP-GGA
exchange-correlation functional with a ση term, where η is the
degree of tetragonality (e.g., c/a ratio of an fct lattice), and is
allowed to relax variationally. The generality of such a cor-
rection to the exchange-correlation functional is questionable,
since it is directly dependent on the particular antiferromag-
netic spin order chosen for the calculations. It does not have
any direct relation with the SO and OP contributions that are
missing in the SP-GGA calculations.

Finally, it should be noted that structural relaxations in-
duced by point defects in lattices can contain substantial
long-range components, which can lead to spurious inter-
actions between periodic images. They can lead to slow
convergence of calculated defect properties with supercell
size. In Appendix, we show that finite supercell-size errors
can be reduced when the supercell calculations are conducted
in an external stress field, i.e., the free-energy functional is
augmented with a PV or a ση term. This gain in accuracy is
relative to defect calculations in which supercell volumes or
shapes are kept fix.

2. Vacancies in δ-Pu

Vacancy formation enthalpies and compressibilities as well
as relaxation volumes in δ-Pu are given for SP-GGA and
SP+SO+OP-GGA approximations in Table VI. All calcula-
tions were performed in 108-atom supercells with a 3 × 3 × 3
k-point grid. All SP-GGA calculations are considered con-
verged when atomic forces are reduced to <0.002 eV/Å
and elements of the stress tensor are converged to within
0.01–0.02 kBar. The corresponding convergence criteria for
SP+SO+OP-GGA is typically 0.004 eV/Å and 0.04 kBar.
Structural parameters (including cell shapes) are always re-
laxed without constraint using the standard VASP procedure.
For comparison, point defect properties in fcc Cu were also
calculated in 108-site supercells and are listed in Table VI.
The VASP-PAW scheme and the PBE exchange-correlation
functional with a plane-wave energy cutoff of 600 eV and a k-
point grid of 4 × 4 × 4 have been used for these calculations.

As was mentioned in Sec. II, a variational formulation of
SP+SO+OP-GGA is necessary for accurate calculations of
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TABLE VI. Formation energies, relaxation volumes, and the two
contributions to formation compressibility [see Eqs. (13)–(15)] of
point defects, in 108-site supercells of δ-Pu, calculated within dif-
ferent levels of theory. In each of the examples, the magnetic order
is initialized in the usual L10 layered AF configuration and allowed
to relax during the approach to electronic self-consistency as well
as ionic relaxation. The final spin order in each case is found to
be largely unchanged, in particular beyond and in the immediate
vicinity of the point defects, and thus the AF-L10 can be consid-
ered metastable. Note that the monoclinic vacancy is not stable in
dilated (−3 GPa) SP-GGA calculations. For comparison, the table
also contains defect formation energies, relaxation volumes and com-
pressibilities of the vacancy and the (001)-dumbbell self-interstitial
in fcc copper at 0 GPa, calculated within PBE-GGA in 108-site
supercells.

SP-GGA Formation Relaxation vol/ �β0 �βL

(0 GPa) energy (eV) atomic vol. (GPa)−1 (GPa)−1

vac mono 1.24 −2.33 0.14 −0.052
vac tetr 1.42 −1.32 0.022 −0.03
int oct 0.6 1.00 0.4 0.022

SP−GGA
(−3 GPa)
vac tetr 1.47 −0.85 0.25 −0.024
int (111) 1.35 1.32 – –
int oct 0.50 1.32 0.11 0.037

SP+SO+OP+GGA
(001)-polarization
vac tetr 1.5 −0.94 0.11 −0.022
int oct 0.67 0.85 0.046 0.02

SP+SO+OP-GGA
(110) polarization
vac tetr 1.56 −1.0 0.19 −0.026
int oct 0.98 1.2 −0.034 0.03

fcc-Cu
GGA (0 GPa)
vac 1.1 −0.33 −0.006 −0.0024
int (001) dumbbell 3.0 1.87 0.007 0.0014

atomic forces, and requires noncollinear magnetism derived
from spinor wave functions. To our knowledge, fully varia-
tional SP+SO+OP-GGA calculations have in the past been
only applied to perfect crystalline phases of Pu. No issues
have arisen, because these systems stay collinear when ini-
tialized in a collinear state. This is not necessarily true for
point defects, which may induce explicit noncollinearities in
their local neighborhoods. In the present work, we choose to
limit the scope to collinear spin configurations, while the cal-
culations are fully variational using spinor wave functions. In
order to maintain collinearity a quadratic penalty functional is
added to the total-energy functional, which constrains the spin
orientations along prescribed directions. In this way, vacancy
energies, structures and compressibilities are studied in δ-Pu
with collinear AF-L10 spin order, polarized in two different
spatial directions: (001) and (110). Certainly, much remains to
be studied regarding coupling of noncollinear magnetic order
to structural relaxations, which we defer to future works.
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FIG. 3. Vacancy formation energies in δ-Pu vs volume for dif-
ferent spin configurations, as described in the text and Table VIII.
A quadratic least squares fit to all configurations versus volume has
been subtracted to highlight the differences between the curves. The
curves all terminate at their lower ends near zero pressure (theoretical
equilibrium) and at −30 kbar at the upper end (the stress conditions
that match the experimental bulk volume), the two limits where DFT
results are commonly reported for Pu. The character of bonding,
structural relaxation, and magnetic order of the defect changes sig-
nificantly over the different densities.

In the past, most reported calculations of the vacancy in
δ-Pu were performed using collinear SP-GGA theory, with
the spin density initialized in a layered L10 AF spin order, and
the atomic density constrained to the theoretical zero-pressure
equilibrium. Under these conditions, SP-GGA predicts large
static moments on each Pu site, which in turn induces the bulk
δ-Pu to have substantial tetragonal distortion, see Table I. In
order to correct for this error, cubic shape constraints were
then imposed on the defect supercells. The most elaborate
calculations have been conducted by Hernandez et al. [91],
who found the lowest-energy vacancy to have a distorted
monoclinic structure, which we denote by “vac mono” in
Table VI. The calculations that we report in this paper how-
ever, differ from that previous work [91] in that they do
include full relaxations of supercell shapes. This reduces finite
supercell-size errors on the calculated properties, but does
not include any correction for the erroneous tetragonal dis-
tortion predicted by SP-GGA. Nevertheless, the “vac mono”
remains the ground-state vacancy structure at the theoretical
equilibrium density even when full supercell shape relaxations
are employed. Table VI records the resulting thermodynamic
properties of “vac mono” defect. We find a very large re-
laxation volume, corresponding to a lattice contraction of
more than two atomic volumes per vacant site. However, this
vacancy configuration becomes energetically less favorable
relative to other vacancy species as the lattice is expanded,
see Fig. 3. It is dynamically unstable near the experimental
ambient-pressure density. Therefore it cannot exist at these
densities. Instead, a different vacancy configuration denoted
by “vac tetr” in Table VI, becomes the ground-state vacancy
structure in δ-Pu, see Fig. 3. It can be obtained by simply
removing an atom from a 108-atom supercell of perfect bulk
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δ-Pu, with the spin density initialized in the L10-AF spin
configuration, whereupon electronic degrees of freedom are
brought to self-consistency, followed by relaxations of the
ionic degrees of freedom as well as the supercell shape. The
resulting formation energies and relaxation volumes within
both SP- and SP+SO+OP-GGA are listed in Table VI. As
has been argued earlier in this paper, we expect the most
reliable collinear theory for point defect properties in δ-Pu to
be the (001)-polarized SP+SO+OP-GGA, which comes at a
relatively high computational cost. Nevertheless, the overall
agreement with the simpler SP-GGA strained to −3 GPa is
reasonable. Furthermore, for bulk δ-Pu, both theories predict
rather small tetragonal distortions, less than 1%, in contrast to
SP-GGA at theoretical zero-pressure density, which predicts
six times larger distortion, see Table I.

The relaxation volumes recorded in Table VI for “vac tetr”
reveal that even this vacancy induces a large contraction in
the δ-Pu lattice on the order of one bulk-Pu atomic volume.
This is several times larger than vacancy relaxation volumes in
typical close-packed transition metals, such as fcc-Cu, where
each vacancy contracts the lattice by no more than 1/3 of an
atomic volume. Likewise, the vacancy formation enthalpy is
substantially larger ≈1.5 eV in δ-Pu as compared to 1.1 eV in
fcc-Cu, calculated within GGA. This implies a much smaller
equilibrium vacancy concentration in δ-Pu than in a typical
fcc metal.

It should be noted that in spite of the relatively small
tetragonality error of the dilated SP-GGA as well as
SP+SO+OP-GGA theories for bulk δ-Pu, the predicted struc-
tural relaxations about the vacancy contain non-negligible
anisotropy. This is a result of the symmetry of the underlying
static L10 AF spin order, which consists of ferromagnetic
(001) layers, with adjacent planes having opposite spin di-
rections. As a result, in the fcc lattice, each Pu atom
is surrounded by eight nearest neighbors (NN) with an-
tiparallel spin orientations, and four NN-sites with parallel
spins. When a Pu atom is removed from a lattice site,
both (001)-polarized SP+SP+OP-GGA and SP-GGA pre-
dict the eight NNs with antiparallel spins to relax inward by
about 4%, while (110)-polarized SP+SO+OP-GGA predicts
a larger inward relaxation of 6.2%. On the other hand, the
four parallel-spin NNs relax inward within (001)-polarized
SP+SO+OP-GGA by 1.8%, do not relax measurably within
SP-GGA, and relax outward by more than 1.5% according
to (110)-polarized SP+SO+OP-GGA. This should be com-
pared with the vacancy relaxation pattern in fcc Cu, where all
12 NNs move inward by about 1.4%. It is evident that the
(001)-polarized SP+SO+OP-GGA exhibits the least relax-
ation anisotropy, followed by SP-GGA. This is quite expected
when comparing the predicted anisotropies by the different
theories for the perfect δ-Pu lattice, see Table I. In particular,
it can be seen that the (110)-polarized SP+SO+OP-GGA
exhibits twice the anisotropy for the perfect δ-Pu lattice com-
pared to the other two approximations, resulting in similarly
larger anisotropy of the local relaxations around the vacancy.

Further examination of local relaxations around the va-
cancy reveals a fundamental and novel feature of interactions
in plutonium metal. In crystalline solids, lattice defects cause
structural relaxations that within the so-called core regions
around the defects depend on the detail of atomic positions

and interatomic interactions, while outside can be described
by continuum elasticity in order to account for the response of
the host lattice to the deformation from the core regions. The
former are often expected to be confined to a few neighbor
shells around the defects, while generating long-range elastic
strain fields in the solid. The assumption that the nonlinear
core region can be contained to within several tens of atoms
underlies the supercell technique for calculation of energies
and structures of lattice defects from first principles.

In order to understand the nature of volume relaxations and
the extent of the nonlinear core region around the vacancy
in δ-Pu, we examine the spatial distribution of its dilatational
strain field. This can be done by Voronoi decomposition of the
defect supercells. The cumulative formation volume �V C

F (d )
as a function of distance d from the vacancy in a defect
supercell containing (N − 1) atoms can be defined as

�V C
F (d ) =

N−1∑
i=1

(
ωd

i − �L
)

H (d − di ), (18)

where ωd
i is the Voronoi volume of atom i in the defect super-

cell, �L is the atomic volume in the perfect lattice, and H (x)
is the Heavyside function, with H (x) = 0 for x < 0, and oth-
erwise H (x) = 1. Hence �V C

F (d ) represents the contribution
to the formation volume from a spherical region of radius d
around the vacancy. At large distances, the cumulative forma-
tion volume �V C

F approaches the thermodynamic formation
volume, �VF , defined in Eq. (10). The radial extent dc of
the nonlinear core region can thus be defined as the distance,
beyond which |�V C

F (dc) − �VF | < ε, with ε  1. This is
because in an isotropic continuum linear elastic medium, the
dilatational strain field due to a misfit inclusion can be shown
to be a harmonic function, decaying with distance as 1/d2;
thus the cumulative volume change in a region around the de-
fect approaches a constant as d → ∞. As a result, reasonably
well-converged estimations of formation volumes require only
supercell sizes in which the nearest point-defect images are
only about 2dc apart.

Assuming that the core regions are contained within a few
neighbor shells of the point defects, supercells containing on
the order of 100 atoms should be adequate for calculation of
their properties. Figure 4 shows the distribution of �V C

F (d )
as a function of distance d from the vacancy, for the three
levels of theory studied here. The reader should be reminded
here that Fig. 4 depicts formation volumes �VF , while Ta-
ble VI lists relaxations volumes �VR. For the vacancy, �VR =
�VF − 1, see Eqs. (10) and (11). It is thus apparent from
Fig. 4 that if the volume relaxations were confined to the
first-neighbor shell, as they usually are around the vacancy
in standard metallic systems, the relaxation volume in δ-Pu
would be no less than −0.5. However, volume relaxations
beyond the first neighbor shell nearly double the magnitude
of �VR. The three theories applied to δ-Pu vacancy agree on
the extent of the nonlinear core region being larger than can be
comfortably contained within 107-atom supercells used in this
study. For comparison, we also show in Fig. 4. the distribution
of �V C

F (d ) for the vacancy in fcc Cu. It is apparent that
in this system, the nonlinear core region can be considered
confined to within a few neighbor shells of the vacancy, and
the 107-atom supercell is thus expected to make an adequate
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FIG. 4. Cumulative formation volume �V C
F (d ) as a function

of distance d from a vacant site in Cu (green dashed-dotted
line) and in δ-Pu calculated within SP-GGA (black solid line),
SP+SO+OP-GGA polarized along (001) (dashed red line), and
SP+SO+OP-GGA polarized along (110) (blue dashed-dotted line).
The plots depict the accumulated volume change as a function of
distance from the vacancy in the defect supercells. The cumulative
formation volumes are given in units of per-atom equilibrium volume
of the respective perfect crystal.

representation of the volume relaxations in this system. On
the other hand, for the δ-Pu vacancy, it is reasonable to expect
based on the nearly monotonous drop in �V C

F at large dis-
tances in Fig. 4, that vacancy calculations in larger supercells
will yield further increase in the magnitudes of the calculated
relaxation volumes.

The origin of the unusual properties of the vacancy in δ-Pu
can be traced to the bonding characteristics of the f electrons
in this phase. In the simplest band picture, such as nonmag-
netic DFT, there is a high density of narrow f -electron bands
at the Fermi level for high-symmetry phases such as δ-Pu.
Broken-symmetry phases (e.g., structural ones like α-Pu) can
lift this degeneracy and lower the overall energy of the system.
When instead allowing for symmetry-breaking spin/orbital
polarization, sizable spin/orbital moments form in, e.g., δ-Pu,
that are largely concentrated within the atomic spheres due
to increased occupation of antibonding states. They split the
degenerate bands at the Fermi level and thereby lower the
total-energy of the high-symmetry phases and stabilize them
at expanded volumes.

In order to conduct a more quantitative study of this mech-
anism, we introduced in Sec. III a measure of f -electron
bonding in Pu in terms of average magnitude of spin moments
per atom (AMSM), see Eq. (16). For example, the AMSM
in δ-Pu at zero pressure, calculated within SP+SO+OP-
GGA is 4.4 μB. Furthermore, for point defects in lattices,
the formation spin moment (FSM) defined in Eq. (17) can
provide a quantitative measure of the effect of lattice defects
on f -electron bonding in their neighborhoods. The FSM for
vacancies in δ-Pu in units of AMSM of δ-Pu are listed in
Table VII. We see that introduction of a vacant site in the δ-Pu
lattice reduces the spin moment magnitudes of the surround-
ing f electrons. While this effect is not very large, it can be

TABLE VII. Formation spin moments of intrinsic point defects
in 108-site supercells of δ-Pu, initialized in the L10-AF spin configu-
ration, and calculated within different levels of theory. The formation
moments are listed in fractions of spin-moment-per-atom in the per-
fect lattice.

SP SP+SO+OP SP+SO+OP
−3 GPa (001)-polarization (110)-polarization

vac tetr −0.17 −0.22 −0.36
int oct −0.65 −1.15 −0.83

shown that in combination with the weak bonding in δ-Pu, it is
the leading cause of the large and negative relaxation volume
of the vacancy in δ-Pu, see Table VI. It is also responsible
for the unusual structural relaxations around the vacancy in
δ-Pu with a wide nonlinear core region, discussed above in
conjunction with Fig. 4.

In order to study the coupling of vacancy-induced spin
polarization to the structural relaxations around the defect,
we define in analogy with �V C

F (d ) above. see Eq. (18), the
cumulative FSM ��C

F (d ) as a function of distance d from the
vacancy

��C
F (d ) =

N−1∑
i=1

(
σ d

i − �L
)

H (d − di ). (19)

Above σ d
i is the local spin moment magnitude of the ith atom

in the defect supercell, and �L is the AMSM of the perfect
lattice, and H (x) is the Heavyside function. Note that at large
distances, ��C

F approaches the thermodynamic FSM value.
Figure 5 shows the spatial distribution of ��C

F (d ) for the
three levels of theory in this study. It can be seen that the
Pu atoms in the first neighbor shell of the vacancy slightly
increase their spin polarization, leading to a positive ��C

F at
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FIG. 5. Cumulative formation spin moment ��C
F (d ) as a func-

tion of distance d from a vacant site in δ-Pu. It is the accumulated
induced spin moment within a distance d from the vacant site. It is
given in the units of the average magnitude of per-atom spin moments
(AMSM) in δ-Pu, calculated within SP-GGA in black, SP+SO+OP-
GGA polarized along (001) in dashed red, and SP+SO+OP-GGA
polarized along (110) in dashed-dotted blue.
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small distances. This is reasonable considering that f -electron
spin/orbital polarization is already saturated in δ-Pu. However,
the relatively weak bonding in δ-Pu allows the atoms in the
first neighbor shell around the vacancy to move substantially
closer, whereupon the increased atomic disorder reduces the
overall spin/orbital polarization leading to increased bonding
and further contraction. As a result, beyond the first neighbor
shell, ��F

C (d ) turns negative and drops nearly monotonously
away from the vacancy, see Fig. 5. The similarity of the
��C

F (d ) and �V C
F (d ) distributions is apparent by inspection

of Figs. 4 and 5. Hence, the combination of weak bonding in
δ-Pu and negative FSM values causes an anomalously large
negative relaxation volume �VR for the vacancy in δ-Pu. In
other words, the formation volume �VF of the vacancy in δ-Pu
(note, �VF = �VR + 1) is nearly zero, which means injection
of vacancies into a δ-Pu metal bar leads to little measurable
change of its dimensions.

Table VI also records the formation compressibilities of va-
cancies calculated within different levels of theory, as defined
in Sec. III B. The total compressibility �β of the vacancy is
composed of two contributions: (i) �β0, see Eq. (14), which
except for the outlier “vac tetr” calculated within SP-GGA
at theoretical equilibrium, attains quite large values ranging
from 0.11 to 0.25 (GPa)−1, and measures the explicit effect of
lattice softening by the vacancy; and (ii) �βL, see Eq. (15),
which is about 5 to 10 times smaller than �β0 and measures
the vacancy compressibility in the absence of any defect-
induced change in the crystal’s elasticity. It should be noted
that these calculations are numerically quite difficult to con-
verge, in particular in the presence of spin/orbital polarization.
Nevertheless, we find the different theories to be consistent
with strong lattice softening caused by the vacancies in δ-Pu
leading to relatively large compressibility of this defect.

It is instructive to study the defect formation compressibili-
ties in a typical transition metal in order to provide context for
the calculations presented above for δ-Pu. For this purpose,
we have conducted detailed calculations of β0 and βL for the
point defects in fcc Cu, listed in Table VI. It can be seen that
the vacancy formation compressibilities in Cu are more than
an order of magnitude smaller than in δ-Pu. This is partly due
to the much stiffer lattice as reflected in the calculated bulk
modulus of 136.4 GPa for Cu, which is more than three times
larger than the value for δ-Pu. Nevertheless, the largest contri-
bution does clearly originate from vacancy-induced changes
to the local f -electron correlations and bonding causing soft-
ening of the δ-Pu lattice bulk modulus.

We conclude this section by a discussion of alternate spin
arrangements and their effect on the properties of the vacancy
in δ-Pu. To our knowledge, all studies of point defects in δ-Pu
in the past have assumed that the spin configuration of the
defect lattice does resemble the perfect lattice and therefore
is initialized with the usual L10 layered AF order. Above,
we have denoted this particular vacancy state by “vac tetr.”
In addition to this default spin order, we also have exam-
ined SP-GGA calculations initialized with four other spin
configurations, where the spin order in the neighborhood of
the vacant site is altered. They are (i) the ”one in” case,
which reverses a single, in-plane nearest neighbor spin mo-
ment in the same (001) plane as the vacancy; (ii) the ”two
in” case, which reverses a pair of in-plane moments lying on

TABLE VIII. Effect of low-energy spin flips in the vicinity of
the vacancy in δ-Pu on its properties. Calculations are performed in
108-site supercells of δ-Pu, within SP-GGA. In each of the exam-
ples, the magnetic order is initialized in the L10-AF configuration
with additional spin flips imposed on the Pu atoms neighboring the
vacancy. Each case is found to be metastable during the iteration
to self-consistency. The symmetry-related magnetic degeneracy is
given for each case along with defect volume and energy. Details of
the initial spin orders are given in the text. The reference, undefected
bulk state is the usual L10 layered antiferromagnet. The associated
SP-GGA bulk modulus in the perfect crystal is 44.7 GPa at zero
pressure and 36.0 GPa at −3GPa.

0 GPa Formation Relaxation vol/
SP-GGA Degen. energy (eV) atomic vol.

vac one in 4 1.57 −0.95
vac one out 8 1.42 −2.00
vac two in 2 1.70 −0.44
vac two out 4 1.72 −1.56

−3 GPa Formation Relaxation vol/
SP-GGA Degen. energy (eV) atomic vol.

vac one in 4 1.44 −0.57
vac one out 8 1.60 −0.73
vac two in 2 1.41 −0.19
vac two out 4 1.74 −0.52

opposite sides of the vacancy; (iii) the “one out” case, which
reverses a single, out-of-plane nearest neighbor moment in
an adjacent (001) plane to the vacancy; (iv) the ”two out”
case reverses the moments of two neighbor spins on different
(001) planes on opposite sides of the vacancy. In practice,
subsequent iterations to full self-consistency preserve these
magnetic structures, indicating metastability. The resulting
vacancy energies are given in Table VIII and their relative
order displayed in Fig. 3 at a range of volumes. It can be
seen that at −3 GPa tension, SP-GGA predicts both “vac one
in” and “vac two in” vacancies to be slightly lower in energy
than “vac tetr.” The magnitudes of their relaxation volumes,
in particular that of “vac two in,” are significantly smaller
than “vac tetr,” i.e., they lead to much less contraction of
the surrounding lattice. This difference can be understood by
noting that the spin flips that constitute the excited vacancy
configurations “vac one in” and “vac two in” increase the local
ferromagnetic order around the vacant site, i.e., the number of
nearest neighbors with parallel instead of antiparallel spins.
The ferromagnetic order expands the lattice relative to the AF
order, but it is energetically less favorable in bulk δ-Pu.

We thus conclude that low-energy variations in the local
magnetic order around the vacancy within SP-GGA can re-
duce the defect relaxation volumes substantially. However,
while spin flip excitations such as in “vac one in” and “vac
two in” actually lower the vacancy energy in SP-GGA relative
to the default L10 configuration “vac tetr,” they are ener-
getically unfavorable in SP+SO+OP-GGA. This is observed
in comparative SP-GGA and SP+SO+OP-GGA calculations
in smaller 31-atom supercells containing a vacancy, where
the spin reversals that lower the total energy within SP-
GGA, raise the total energy according to SP+SO+OP-GGA.
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This discrepancy can be attributed to increased magnetic ex-
change coupling within the SP+SO+OP-GGA, which raises
the energy of spin-parallel nearest neighbors relative to spin-
antiparallel ones. Thus the evidence at this time is that the
lowest energy vacancy configuration within SP+SO+OP-
GGA retains the unaltered L10-AF structure from the perfect
bulk crystal.

The above discussion suggests the importance of spin fluc-
tuations in determining finite-temperature properties of point
defects in δ-Pu, potentially leading to non-Arrhenius behavior.
In fact, electronic excitations are known to cause the anoma-
lous Invar-like effect observed in bulk δ-Pu [92,93]. They may
also alter the kinetics of void swelling by affecting the point
defect interactions. This occurs when spin fluctuations adjust
the relaxation volumes, as described above for spin-excited
vacancies, and thereby change the associated strain energies.
As a proof of principle, in Sec. V, we model the possible
effects of spin fluctuations on radiation aging behavior, albeit
somewhat crudely, by computing the thermal equilibrium for-
mation energy and volume of the vacancy in δ-Pu in SP-GGA
under −3 GPa pressure. For this purpose, we recognize that
by symmetry, there are multiple equivalent sites for each of
the spin flips described above, which results in degeneracies
listed in Table VIII.

In summary, the vacancy in δ-Pu differs markedly in its
structure and energy from standard close-packed metals. Its
equilibrium concentration is anomalously low, and it induces
strong lattice contraction in its neighborhood. This is a result
of the weak bonding in δ-Pu combined with the vacancy hav-
ing an overall negative influence on the f -electron spin/orbital
polarization in the δ-Pu lattice. Consequently, large local
contraction around the vacancy can occur at relatively low
energy cost. In the final analysis, it is found that the dilated
SP-GGA approximation can produce results in qualitative
agreement with the SP+SO+OP-GGA calculations. How-
ever, when studying more subtle issues, such as the precise
relative order of low-energy spin excitation, the two approxi-
mations can differ significantly. Nevertheless, it is shown that
low-energy localized moment excitations can cause anoma-
lous temperature-dependent properties of point defects in Pu.
At this point, our knowledge of the nature of these fluctua-
tions is wanting, and most research and development in this
direction still remains to be done.

3. Self-interstitials in δ-Pu

Typical fcc materials have distinct interstitial defect con-
figurations commonly known as split dumbbell and the
octahedral site defects. In the split dumbbell configuration,
the interstitial atom forms a dimer with a lattice atom. The
dimer bond is usually directed along either (111) or (001)
directions. In δ-Pu, the (111)-dumbbell is high energy, while
the (001)-dumbbell is unstable within both SP-GGA and
SP+SO+OP-GGA, and relaxes into the octahedral config-
uration. The interstitial energies in δ-Pu, calculated using
109-atom supercells using a 3 × 3 × 3 k-point grid are re-
ported in Table VI [90,94]. The octahedral interstitial is
an extra atom in the fcc lattice residing half-way along a
cube side between two next nearest-neighbor sites. It has
six nearest neighbors. In the AF-L10 spin configuration, the

cubic symmetry of the perfect δ-Pu lattice is broken, and
the six degenerate NN distances break up into two groups
of four and two. Within dilated (−3 GPa) SP-GGA as well
as 001-polarized SP+SO+OP-GGA, the empty octahedral
site in the perfect δ-Pu lattice is surrounded by four NNs at
d1 = 2.30 Å and two NNs at d2 = 2.32 Å distance, while
within (110)-polarized SP+SO+OP-GGA d1 = 2.29 Å and
d2 = 2.33 Å. Upon incorporation of an interstitial atom in
the octahedral site, the nearest neighbor sites move outwards
with d1(d2) = 2.46(2.61) Å within dilated SP-GGA, d1(d2) =
2.48(2.58) Å within (001)-polarized SP+SO+OP-GGA and
d1(d2) = 2.48(2.59) Å within (110)-polarized SP+SO+OP-
GGA. Hence the nearest-neighbor relaxations around the
octahedral self-interstitial in δ-Pu are predicted to be very
similar within the different levels of theory, with moderate
signature of anisotropy inherited from the L10-AF spin con-
figuration.

In typical closed-packed metals, such as Cu, the self-
interstitial is a very high-energy defect. We have calculated the
properties of the (001)-dumbbell self-interstitial in Cu, using
109-site supercells and a 4 × 4 × 4 k-point grid. The results
are listed in Table VI. The self-interstitial formation enthalpy
is indeed very high ∼3.0 eV, and the relaxation volume of 1.9
atomic volumes is quite sizable. The story is quite the opposite
for δ-Pu. Table VI reports the formation enthalpies and the
relaxation volumes of the octahedral self-interstitial in δ-Pu,
calculated within SP-GGA as well as SP+SO+OP-GGA.
These approximations predict a surprisingly low formation
energy, clearly less than 1 eV, and a formation volume that
is close to only 1 atomic volume. More precisely, the forma-
tion volume calculated within dilated SP-GGA is 1.32, and
reduces to 0.94 when SO+OP corrections are included in the
(001) polarization.

It is interesting to compare the cumulative formation vol-
umes �V C

F (d ), see Eq. (18), for the octahedral interstitial in
δ-Pu and the (001)-dumbbell interstitial in fcc Cu. Figure 6
shows the dependence of �V C

F on distance away from the
respective self-interstitial centers in Cu and in δ-Pu calculated
within three levels of theory. It should be noted that for the
octahedral site in δ-Pu, the interstitial center is the octahedral
site itself, while for the dumbbell interstitial in fcc Cu, it is the
midpoint of the dumbbell. Furthermore, the reader should be
reminded that Table VI reports relaxation volumes �VR, while
the asymptotic value of �V C

F (d � 1) is the formation volume
�VF . For interstitials, �VF = �VR − 1, see Eqs. (10) and
(11). The inspection of the �V C

F distributions in Fig. 6 reveals
that in Cu, the two interstitial atoms are compressed by about
10% each. It can thus be argued that the dumbbell generates
a deformation corresponding to addition of 0.8 fraction of a
Cu atom in the lattice. In response, the neighboring shells
expand since they cannot pack as efficiently as in the pristine
fcc lattice. The nonlinear tensile strain field emanating from
the dumbbell is quite long-range and as a result, the nonlinear
structural relaxations induced by the self-interstitial in Cu are
not fully contained within a 109-atom supercell, see Fig. 6.
This can be deduced because, as explained in Sec. IV B 2,
in the far-field linear-elastic relaxation regime, the integrals
of the displacement field from a point defect over spherical
shells are independent of the sphere radii. In other words,
in the linear-elastic regime, �V C

F (d ) becomes independent of
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FIG. 6. Cumulative formation volume �V C
F (d ) as a function of

distance d from a self-interstitial center in Cu (green dashed-dotted
line) and in δ-Pu calculated within SP-GGA (black solid line),
SP+SO+OP-GGA polarized along (001) (dashed red line), and
SP+SO+OP-GGA polarized along (110) (blue dashed-dotted line).
The plots depict the accumulated volume change as a function of dis-
tance from the center of the self-interstitial in the defect supercells.
The cumulative formation volumes are given in units of per-atom
equilibrium volume of the respective perfect crystal. Note that the
interstitial center in δ-Pu is the octahedral site, while in fcc-Cu it is
at the midpoint of the 001 dumbbell.

distance d . In contrast to Cu, not only the octahedral inter-
stitial but also its six nearest neighbors become compressed,
which sums up to a total of 50% compression. Hence the
octahedral interstitial and its six nearest neighbors generate
a deformation corresponding to addition of half a Pu atom
in the δ-Pu lattice. It can thus be observed in Fig. 6 that the
structural relaxations induced by the self-interstitial in δ-Pu
are clearly more short-range and better contained within a
109-atom supercell than is the case for the (001)-dumbbell
interstitial in Cu. Note that the three theories completely agree
on the size of the octahedral interstitial atom. The deviation in
the calculated interstitial relaxation volume within SP-GGA
(�VR = 1.32) from, e.g., (001)-polarized SP+SO+OP-GGA
(�VR = 0.94) is manifestly due to lattice relaxations away
from the octahedral site. Below, we will relate this discrep-
ancy to the differential predictions of the different theories
for the distribution of f -electron correlations induced by the
octahedral interstitial in δ-Pu lattice,

The high formation energy of self-interstitials in Cu im-
plies extremely low equilibrium concentrations, and the large
relaxation volume implies very strong coupling to the stress
field from vacancies, dislocations and other defects. This
imposes a persistent driving force towards recombination or
absorption at sinks. As a result, when modeling radiation
bombardment of close-packed metals, it suffices to neglect
the thermal equilibrium bulk self-interstitial concentration.
There are effectively no interstitials present in the absence of
irradiation. Similarly, dislocations in Cu will absorb any in-
terstitials irreversibly and climb strongly. In contrast, the low
self-interstitial formation enthalpies and volumes for δ-Pu im-
ply that the bulk equilibrium concentration of self-interstitials

in δ-Pu is by far larger than vacancies, and furthermore,
the fairly weak strain fields induced by interstitial-induced
relaxation volumes interact no more strongly than the vacan-
cies with sinks like dislocations and grain boundaries. Here,
as compared to standard fcc metals, the self-interstitials are
not preferentially absorbed (versus vacancies) at dislocations,
there is little to no net dislocation climb expected, and excess
interstitials will remain to efficiently annihilate excess vacan-
cies. Hence, excess vacancies and voids generated as a result
of radiation damage recombine much more effectively with
self-interstitials in δ-Pu than typically occurs in close-packed
metals. This implies that swelling rates in δ-Pu are signifi-
cantly lower and incubation times much longer than expected
for standard metals.

The calculations for self-interstitial formation enthalpies
and volumes in δ-Pu discussed hitherto, see Table VI, assume
static SP- and SP+SO+OP-GGA approximations. They may
change when allowing for spin fluctuations. Nevertheless, the
self-interstitial remains most likely a far more favorable lattice
defect in δ-Pu than the vacancy. This can be rationalized by
noting that the δ-Pu phase, while close-packed in structure
and symmetry, is in fact low-density relative to α-Pu. Con-
sequently, considering self-interstitials as local densifications
in the lattice, it is not surprising that they may induce α-like
regions that are energetically more accessible than removal of
an atom from the lattice.

As a matter of fact, the electronic structure of the self-
interstitial in δ-Pu is quite reminiscent of the α-Pu phase
in that it induces large variations in spin polarization in
its neighborhood. For the octahedral interstitial specie, the
self-interstitial atom itself does possess a rather small spin
moment of only 1.4 μB within SP-GGA, and even a lower
value of 1 μB within SP+SO+OP-GGA. Its nearest-neighbor
Pu atoms snap back to being δ-like with large spin/orbital
moments albeit with slightly reduced magnitudes. As was
shown in Table V, large variations in magnitudes of localized
spin/orbital moments between neighboring sites is a hallmark
of the electronic structure of the α-Pu phase.

Hence the interstitial atom increases f -electron bonding in
its immediate neighborhood in δ-Pu. The spin polarization of
the f shell, which increases the occupation of the antibond-
ing f orbitals can be quantified by the FSM measure ��F ,
defined in Eq. (17). For the self-interstitial, ��I

F = 0, if it
were to have NO effect on the f -electron bonding character of
the host lattice. However, as is shown in Table VII, ��I

F are
significantly less than 0, which is indicative of the increased
bonding induced by the self-interstitial in δ-Pu. They range
from −1.15 calculated within (001)-polarized-SP+SO+OP-
GGA to −0.65 within SP-GGA. These values correlated well
with the self-interstitial relaxation volumes ranging from 0.85
within (001)-polarized SP+SO+OP-GGA to 1.32 within SP-
GGA. Examining the cumulative FSM distributions ��C

F (d ),
see Eq. (19), as exhibited in Fig. 7 reveals that the three theo-
ries fully agree on the induced spin moment on the octahedral
interstitial atom, but that the SP+SO+OP-GGA approxima-
tions relative to SP-GGA predict larger reductions of the
spin moments on the first-neighbor shell but yield smaller
effect on f -electron correlations beyond. Further comparison
of Fig. 7 with the cumulative formation volume distribution
�V C

F in Fig. 6 unravels a strong similarity between the two
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FIG. 7. Cumulative formation spin moment ��C
F (d ) as a func-

tion of distance d from the octahedral self-interstitial in δ-Pu. It is the
accumulated induced spin moment within a distance d from the octa-
hedral interstitial site. It is given in units of the average magnitude of
per-atom spin moments (AMSM) in δ-Pu, calculated within SP-GGA
in black, SP+SO+OP-GGA polarized along (001) in dashed red, and
SP+SO+OP-GGA polarized along (110) in dashed-dotted blue.

distributions, as also was found in the case of the vacancy in
Sec. IV B 2, We thus conclude that self-interstitials in δ-Pu
do cause local changes in f -electron bonding, which strongly
couple to the lattice deformations and result in much better
accommodation of the interstitial defect in the δ-Pu lattice
compared to standard metallic systems such as Cu.

Finally we discuss the formation compressibilities of the
octahedral self-interstitial in δ-Pu, as well as the (001)-
dumbbell in fcc Cu. It can be seen that for the self-interstitials
in δ-Pu the two contributions to the formation compress-
ibilities β0 defined in Eq. (14), and βL defined in Eq. (15)
are comparable in size. This is in contrast to the case of
the vacancy in δ-Pu, in which β0 � βL. As a result, the
self-interstitial in δ-Pu is much less compressible than the
vacancy. Nevertheless, β0 and βL for the (001)-dumbbell self-
interstitial in Cu are much smaller in magnitude than the
corresponding values for the octahedral interstitial in δ-Pu.
This is mostly due to the Cu bulk modulus being more than
three times larger than that of δ-Pu.

4. Vacancies in α-Pu

There are eight crystallographically distinct lattice sites for
vacancy and interstitial defects in α-Pu. Table IX gives the
vacancy formation enthalpies and relaxation volumes versus
crystallographic site. These calculations were conducted in
127-atom supercells with 2 × 2 × 2 k-point grid, and full
structural as well as supercell-shape relaxations were pursued.
Furthermore, a correction for the 7% overbinding error of the
SP-GGA approximation is employed by applying an external
mechanical tension at −5 GPa. The Bravais lattice vectors of
the supercell aS

i are obtained from the primitive 16-atom α-Pu

TABLE IX. Vacancy properties in 128-atom supercells of α-Pu,
calculated within SP-GGA under dilational stress conditions, p0 =
−50.0 kbar; �at = 19.3 Å3 is the atomic volume for the bulk. The
average magnitude of the atomic spin moment in the bulk is 2.66 μB.

Formation Relaxation vol./ Formation mom./
Site enthalpy (eV) atomic vol. atomic mom.

1 1.02 −0.02 0.9
2 0.64 −0.05 2.2
3 0.87 0.06 2.2
4 0.31 −0.14 2.3
5 0.47 −0.07 2.1
6 0.89 0.05 1.9
7 0.98 −0.01 1.4
8 1.33 −0.63 −3.3

Bravais lattice vectors aP
i as follows:

aS
1 = aP

1 + 2aP
2 ,

aS
2 = aP

1 + 2aP
3 ,

aS
3 = aP

1 − 2aP
3 . (20)

In Table IX, the vacancy formation enthalpies vary strongly
between values as low as 0.31 eV (site 4) to as high as
1.33 eV (site 8). This is a typical feature of the α-Pu structure,
with its different inequivalent sites having vastly different
Voronoi volumes, see Table IV, as well as different degrees of
f -electron correlation represented by formation of localized
spin/orbital moments, see Table V. It has been shown in the
past [18] that Ga impurities in α-Pu prefer to substitute the Pu
atom on site 8, which was shown to have important ramifica-
tions for the kinetics of δ-to-α martensitic transformations in
Pu. Note that site 8 has the largest Voronoi volume, see Ta-
ble IV, and within SP-GGA is energetically the least favored
site for the vacancy, see Table IX.

Based on said variations in the local atomic volumes of
α-Pu, one might have guessed that site 1, with the smallest
Voronoi volume would be the most preferable vacancy site
in this phase. However, as can be seen in Table IX, sites
4 and 5 are by far the most favorable energetically. This
implies that there are other interactions in α-Pu than purely
steric ones. For instance, using the FSM measure introduced
in Eq. (17), it can be shown that vacancies induce increased
spin polarization in α-Pu. Table IX reports the FSM values
for each inequivalent vacancy in α-Pu. It is noteworthy that
except for site 8, all other vacancies possess FSM values that
are positive and that are an order of magnitude larger than in
δ-Pu. Hence introduction of vacancies in α-Pu induces spin
polarization in this system, which in turn expands the lattice
and thus compensates for the contraction that is convention-
ally expected to be induced by the vacant site. As a result,
the relaxation volumes of all but the site-8 vacancy are nearly
zero in α-Pu. The anomalous behavior of this vacancy can
be understood by noting the strongly negative FSM value of
−3.3 associated with removal of an atom from site 8, which
in turn indicates increased occupation of bonding orbitals,
leading to contraction and thus a relaxation volume of −0.63.
It is worth reminding the reader that this result should have
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FIG. 8. Cumulative formation spin moment ��C
F (d ) as a func-

tion of distance d from a vacant site in α-Pu. It is the induced spin
moment accumulated within a distance d from a vacancy in a defect
supercell. It is given in units of the average magnitude of per-atom
spin moments (AMSM) in α-Pu, calculated using the dilated SP-
GGA (at −5 GPa) method applied to the eight inequivalent vacancies
in α-Pu.

been expected based on the large size of the Voronoi volume
associated with site 8 in pure α-Pu, which not surprisingly
leads to formation of a large localized spin moment there, see
Tables IV and V.

It is interesting to examine the cumulative FSM distribu-
tions ��C

F (d ) for the different vacant sites in α-Pu. Due to
the presence of eight inequivalent sites in this lattice, we have
adopted the following definition for all distances d > 0

��C
F (d ) =

N−1∑
i=1

(
σ d

i − �
κ (i)
L

)
H (d − di ). (21)

Above σ d
i is the local spin moment magnitude of the ith atom

in the defect supercell, and �
κ (i)
L is the spin moment of site

κ (i) in the perfect lattice, and H (x) is the Heavyside function.
Hence κ (i) is a mapping of atom i in the defect supercell to
site κ (i) in the perfect lattice. This is a reasonable definition
for studying defect-induced spin moments in α-Pu since the
different sites in the perfect lattice are so dramatically dif-
ferent from each other. In order for ��C

F (d ) in Eq. (21) to
asymptotically approach the thermodynamic FSM value �F

at large distances d , we need to define

��C
F (0) = �̄L − �v

L, (22)

where �̄L is the average magnitude of the per-atom spin mo-
ments (AMSM) in α-Pu, and �v

L is the magnitude of the spin
moment of the vacant site in defect-free α-Pu. Figure 8 shows
the spatial distributions of ��C

F (d ) for all the eight inequiva-
lent vacancies within SP-GGA. It can be seen that except for
the eighth site, the Pu atoms within a 5 Å shell around the
vacancy increase their spin moment sizes, leading to a posi-
tive ��C

F at d < 5 Å. All FSM values, including that of the
eighth site converge within 7.5 Å. This is quite different from
the vacancy in δ-Pu. see Fig. 5, which exhibits a long-range

distribution of volume as well as spin moment relaxations.
We thus conclude that in α-Pu, coupling of the defect-induced
changes to the f -electron correlations are quite short range. In
order to clearly illustrate the relation between the formation
spin moments and volume relaxations, we calculate the prop-
erties of the point defects in α-Pu within nonmagnetic GGA
at 0 GPa, which corresponds to an average atomic volume of
17.6 Å 3. The results are listed in in Table XI. It is clear that
in the absence of spin polarization the relaxation volumes are
reduced and range from −0.2 to −0.5 atomic volumes.

One source of concern about the accuracy of the dilated
(−5 GPa) SP-GGA approximation that is used here to cal-
culate properties of point defects in α-Pu is the very low
formation enthalpy found for the site-4 vacancy in Table IX.
If correct, it implies a very high thermal equilibrium vacancy
concentration. While equilibrium point defect concentrations
do not enter calculations of void swelling bias within the
classic theory of damage-induced void growth in materials,
it is quite likely to significantly delay the incubation times for
void nucleation. However, it is not inconceivable that dilated
SP-GGA may appreciably underestimate vacancy formation
enthalpies for several of the sites in α-Pu. The reason for
this assessment mainly falls back on the strong heterogeneous
nature of the α-Pu structure. It is hard to see that the effect
of SO+OP in this system can be simply replaced by a ho-
mogenous PV term, as described in Sec. IV B 1, which has
been quite successfully applied to the study of point defects in
δ-Pu earlier in this paper. It is in fact quite easy to argue that
−5 GPa tension can cause large reduction of the vacancy en-
ergies in α-Pu without much effect on the formation volumes.
The reason for this is that the vanishing vacancy relaxation
volumes in α-Pu imply �VF ∼ 1 atomic volume, and the
latter is the pressure-derivative of the formation enthalpy, see
Eq. (10). which implies that vacancy formation enthalpies
should be about 0.6 eV higher, if calculated at 0 GPa. This
argument is supported by the nonmagnetic GGA defect re-
sults in Table XI, showing formation enthalpies ranging from
1.2 eV 2.1 eV. It is interesting to note that at the nonmagnetic
equilibrium volume of 17.6 Å3, site 8 and site 1 are the lowest
energy vacancy sites. Curiously, site 8 is the least energeti-
cally favored site for the vacancy at 19.3 Å3. see Table IX.
However, it has by far the smallest formation volume, which
leads to its relative stabilization compared to the other vacancy
species as pressure is increased from -5 GPa to 0 GPa. On
the other hand, pressure-derivative of the relaxation volume
measured in units of atomic volume is determined by β0, see
Eq. (14). Due to the relatively stiff α-Pu lattice, compared
to δ-Pu, one may reasonably expect that β0 does not exceed
0.01 (GPa)−1 in α-Pu. This implies that the maximum change
expected for �VR measured in units of atomic volume over
5 GPa is less than 0.05. Hence, while the formation enthalpies
can be strongly dependent on dilatation pressure in α-Pu, the
formation volumes are quite insensitive to it. As a result, the
SP+SO+OP-GGA approximation may be necessary for ob-
taining accurate estimates of enthalpies of formation of point
defects in α-Pu. We defer this study to future works.

Nevertheless, the three qualitative results found in this
section with the collinear SP-GGA theory will stand: (i) the
magnitudes of the vacancy relaxation volumes in α-Pu are
an order of magnitude smaller than those of δ-Pu and their
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TABLE X. Interstitial properties in 128-atom supercells of α-Pu,
calculated within SP-GGA under dilational stress conditions, p0 =
−50.0 kbar; �at = 19.3 Å3 is the atomic volume for the bulk. The
average magnitude of the atomic spin moment in the bulk is 2.66 μB.

Formation Relaxation vol./ Formation mom./
Site enthalpy (eV) atomic vol. atomic mom.

1 1.66 2.47 5.3
2 2.07 2.22 4.9
3 1.19 2.24 3.5
4 1.70 2.16 2.7
5 2.10 2.42 3.0
6 2.12 2.33 3.9

distribution is much more short range, (ii) the equilibrium
vacancy concentrations in α-Pu at finite temperatures are
higher than in δ-Pu, and (iii) the two sites with the lowest
vacancy enthalpies are 4 and 5, which together with their
periodic replicas inscribe two-dimensional planes spaced over
9 Å apart. This heterogeneous spatial distribution can have
important implications for vacancy diffusion in the material,
although activation barrier heights will have to be calculated
before conclusive predictions can be made.

5. Self-interstitials in α-Pu

The self-interstitial calculations in α-Pu have been per-
formed using the same electronic and supercell structure
parameters as for the vacancies in this phase. However, the
positions of low-energy self-interstitials in this low-symmetry
phase were unknown. Hence we chose starting guesses for
candidate self-interstitial defect positions by searching for
centers of the largest empty holes in the lattice. They corre-
spond to Voronoi vertices belonging to the largest Voronoi
cells in the lattice. For this purpose, we have followed a
sequential process for finding new candidate positions.

(1) Find the Voronoi vertex in the lattice, about which the
largest sphere can be drawn that contain no lattice points.

(2) Add this center and all its symmetry-equivalent points
to the lattice.

(3) Repeat.
In this way, we have identified six distinct self-interstitial

positions in the α-Pu structure. Table X reports their formation
enthalpies and relaxation volumes after complete structural re-
laxations including cell-shape changes have been conducted.
The calculated formation enthalpies span values from 1.19
to 2.12 eV. While these values are much higher than the
self-interstitial formation enthalpies in δ-Pu, they are quite
small relative to normal close-packed metals. For example,
the calculated value for Cu within DFT-PBE is 3.0 eV, see
Table VI. In spite of the rather small formation enthalpies in
α-Pu, the corresponding relaxation volumes are quite large,
spanning values from 2.16 at. vol. to 2.47 at. vol., which
should be compared to 1.9 at. vol. for Cu. This is at first sight
a surprising result. In normal materials, a clear positive corre-
lation exists between formation energies of lattice defects and
magnitudes of deformation they introduce in their hosts. The
apparent disconnect in α-Pu between formation energy and
relaxation volume can be traced to f -electron spin moments
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FIG. 9. Cumulative formation spin moment ��C
F (d ) as a func-

tion of distance d from a self-interstitial site in α-Pu. It is the induced
spin moment accumulated within a distance d from a self-interstitial
in a defect supercell. It is given in units of the average magnitude
of per-atom spin moments (AMSM) in α-Pu, calculated using the
dilated SP-GGA (at -5 GPa) method applied to the six distinct self-
interstitial defects found in α-Pu.

induced by addition of a self-interstitial atom in the lattice. For
this purpose, the FSM values for the different self-interstitial
species in α-Pu are listed in Table X. The values span a range
from 2.7 to 5.3 AMSM, by far largest than any other defects
encountered in this paper. Hence, promotion of f -electron
spin polarization by the self-interstitials in α-Pu leads to large
relaxation volumes. It should be noted that for the purpose of
calculation of void swelling bias, the relaxation strain is of
primary interest.

In order to better understand the coupling of f -electron
correlations to self-interstitials in α-Pu, we study the distri-
butions of cumulative FSM ��C

F (d ), as defined in Eq. (21)
for d > 0, and as follows for d = 0

��C
F (0) = σ d

int − �̄L. (23)

In the above equation, σ d
int is the spin moment magnitude of

the interstitial atom, and �̄L is the average magnitude of the
per-atom spin moments (AMSM) of α-Pu. Figure 9 depicts
the distributions of ��C

F (d ) for the six self-interstitial species
found in α-Pu. It appears that the interstitial atom and its
immediate neighbors undergo compression and reduction of
their spin moment magnitudes, while beyond a radius that
can be either ∼3 or ∼5 Å, depending on the self-interstitial
site, dramatic increase in spin moments followed by volume
expansion takes place. It is clear that both the spin-density
response as well as the tensile strain field emanating from
self-interstitials in α-Pu are quite long-range and likely re-
quire larger supercells than 129-atom ones used in this study
to reach convergence. In order to verify the effect of induced
spin moments on lattice expansion due to self-interstitials, we
compare with relaxation volumes calculated within nonmag-
netic GGA at 0 GPa, see Table XI. Under these conditions, the
relaxation volumes are much reduced, quite as expected. They
range from 1.1 to 1.5 atomic volumes. Hence, the coupling
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TABLE XI. The table lists the formation energies and relaxation
volumes of all the inequivalent vacancies and distinct self-interstitial
defects found in this study in α-Pu. The calculations are conducted
within within nonmagnetic GGA at 0 GPa. In this approximation, the
calculated atomic volume of the bulk α-Pu lattice is �at = 17.6 Å3.

Site Vacancy Self-interstitial

Form. Energy Rel. Vol. Form. Energy Rel. Vol.
i (eV) (at. vol.) (eV) (at. vol.)

1 1.2 −0.23 1.2 1.1
2 1.8 −0.42 1.6 1.2
3 1.6 −0.35 1.7 1.4
4 1.4 −0.45 2.5 1.5
5 1.6 −0.35 1.1 1.3
6 2.1 −0.21 2.0 1.5
7 2.1 −0.24
8 1.2 −0.23

of the self-interstitials to f -electron correlations in α-Pu is
crucial to the large relaxation volumes predicted for these
defects in this system.

Finally, examining the two lowest-energy self-interstitial
sites in Table X, i.e., 3 and 4, it is found that they com-
prise layers of atoms spaced over 7 Å apart. The next most
favored interstitial site lies significantly (0.5 eV) higher. This
suggests that self-interstitial diffusion may also be quasi-two-
dimensional, although again the transition state barriers need
to be calculated. In particular, transport in two-dimensions is
not well-described by mean field approximations. This sug-
gests that the conventional rate theory of void swelling may
be complicated in α-Pu. Both vacancies and interstitials favor
site 4; this may increase the cross section for annihilation over
conventional expectations based on uniform distributions and
isotropic diffusion.

V. DISCUSSION

A. Aging and void swelling

To date, comparatively little research has been reported on
radiation-induced aging in α-Pu, even though it is the thermo-
dynamic equilibrium phase at ambient conditions. In contrast,
many aspects of the problem have been studied in metastable,
alloy-stabilized δ-Pu including compositional changes due to
decay/transmutation, changes in density [1,4,4,15], collision
cascades [7,95,96], evolution of damage and defect pop-
ulations [6,90,94,97–102], including He bubbles[3,8,10,12–
14,16], changes in bulk properties [2,9,11,17,20,22,103], and
the prospect of void swelling [59,60].

So far, there have been no experimental reports of void
swelling in δ-Pu, despite having samples irradiated over
decades and despite calibrated attempts at accelerated aging
in more recent years. It has been proposed that the so-called
net bias factor may be negligible in δ in which case void
swelling should be insignificant [59]. The bias is the crux of
the phenomenon [32,33,104]: there would be no void growth
and no swelling in the absence of biased diffusion and de-
fect segregation. However, this expectation is predicated on
models of elastic coupling between stress fields from the

microstructure and mobile defects using parameters taken
from ab initio DFT calculations. It is unclear if this con-
ventional approach can be directly extended to as complex
a metal as Pu. Such uncertainty makes the behavior of other
phases of Pu of interest. The conventional theory (including
the DFT-derived parameters) would gain support if it can suc-
cessfully explain swelling behavior in a diversity of Pu phases.
Arguably, finding discrepancies with experiment would be
even more informative.

In practice, the conventional theory explains both peak
rates and trends in void swelling in ordinary metals, but
the approximations made in the analysis and the uncertain-
ties in the underlying parameters make the results as much
explanatory or extrapolative as predictive. Environmental pa-
rameters like temperature, pressure, and radiation flux (or
self-decay rates in Pu) may be well-known for a given system.
However, the microscopic response that immediately follows
radiation bombardment (effectively the average number of
atoms displaced and the average number of point defects
ultimately left behind by a single Pu decay) is uncertain.
Typically, reasonable parameter choices can be made that
quantitatively reproduce experimental swelling behavior in,
e.g., reactor structural materials. Theory-based modeling can
then explain a range of key swelling properties [25]. (1)
There is an incubation period and transient initial delay during
which swelling and void growth is absent or greatly reduced.
(2) Once the peak swelling rate (measured against the rate of
radiation-driven atomic displacements) is achieved it can con-
tinue fairly steady-state even as the relative volume changes
exceed 100%. (3) The peak swelling rate for a given material
is also fairly independent of temperatures and radiation fluxes
over a wide range, as well as initial microstructure. (4) In
contrast, the incubation delay can vary greatly depending on
the starting microstructure, temperature, and radiation dose
rate.

That final point is understood from classical nucleation
theory: under a vacancy supersaturation, voids typically nu-
cleate heterogeneously at pre-existing helium bubbles, thus
void swelling cannot commence until bubbles have grown to
the critical size [105]. A high concentration of defect traps
like small precipitates can delay the onset of void swelling by
absorbing or binding mobile defects like helium, vacancies,
and interstitials. This leads to many, smaller bubbles (delay-
ing the first bubbles from reaching critical-size), and it also
facilitates the annihilation of intrinsic defects by trapping both
vacancies and interstitials together. However, such extrinsic,
microstructure-dependent delays mean that a null swelling
result from a given experiment does not preclude its appear-
ance at later times. Indeed, the microstructure is expected to
change substantially during prolonged irradiation. Under long
exposures, each atom in a material can be displaced from its
lattice site on average 10 or 100 times, usually settling at a
completely new lattice site and only occasionally forming a
point defect or defect cluster. In light of this prospect, the
theoretical intrinsic net bias towards swelling may provide
valuable insight into possible long-term void swelling behav-
ior [104].

In the theory, steady radiation bombardment generates
quasistationary vacancy and interstitial populations such that
defect creation balances loss by mutual annihilation or by
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absorption at microstructural sinks in the system. The rele-
vant microstructure includes network dislocations, dislocation
loops, cavities (high gas-density helium bubbles and low
density voids), precipitates, grain boundaries, etc. In many
analyses, stochastic defect production and spatially depen-
dent fluxes within a real microstructure are approximated
by mean field, steady-state diffusion calculations in idealized
geometries. The microstructure evolution may be comparably
simplified: cavities evolve according to mean field reaction
rates while dislocations multiply and annihilate according to
simple rate equations for the aggregate density [105]. Often
the mean field problem is simplified further by assuming
isotropic diffusivity and by taking the biasing interactions to
be the product of relaxation volumes of mobile defects and
hydrostatic stress fields of microstructure sinks.

The computed average flux of vacancies and interstitials
to each type of sink is then summarized by separate bias
factors, each a single dimensionless number comparing the
diffusive flux in the presence of the mutual interaction and
in the absence (i.e., unbiased diffusion). Their relative values
determine the overall tendency to vacancy-interstitial segrega-
tion and swelling. Network dislocations contribute the most
significant long-range elastic stresses, so their bias factors
dominate the situation. For example, dislocations of density
ρ (m−2) are modeled as an infinite straight edge dislocation
in a cylindrically symmetric region with a 2-D Wigner-Seitz
radius, where πR2

dis = 1/ρ. Solving for the diffusion with and
without an elastic coupling that decays with distance as 1/r,
the dislocation bias factor is approximated by

Zdis(T,�VR) = ln

(
Rdis

rcor
dis

)

×
[

K0
(
rcap

dis /Rdis
)

I0
(
rcap

dis /Rdis
) − K0

(
rcap

dis /rcor
dis

)
I0

(
rcap

dis /rcor
dis

)
]−1

(24)

in terms of modified Bessel functions, where �VR is the re-
laxation volume (Eq. (11)) of the mobile point defect, Rdis

is the 2D Wigner-Seitz radius, rcor
dis = 2b is the dislocation

core radius (taken to be twice the burgers vector, b), and
rcap

dis = (1+ν)2

36π (1−ν)
μ|�VR|

kBT is the capture radius at which the point
defect is absorbed by the sink in terms of shear modulus, μ,
and Poisson ratio, ν. Voids, the other important class of sinks
in this problem, have comparatively weak stress fields and
become increasingly unbiased sinks, Zcav � 1, in the limit of
large sizes.

The net difference at which interstitials and vacancies are
absorbed then determines whether dislocations climb and lat-
tice sites are added while cavity volume increases; this is
expressed by the net bias factor. If the predicted value is small,
there should be little impetus for void swelling, incubation
periods can be prolonged, and any eventual swelling will
be gradual. Assuming that the overall total sink strength is
dominated by the dislocation contribution [104], the net bias
factor becomes:

B � Z int
dis

Zvac
dis

− Z int
cav(x)

Zvac
cav (x)

(25)

as a function of cavity size, x. The most favorable conditions
for void growth are obtained when Zcav → 1, which will be

assumed here. The resulting material property, B, can be esti-
mated from first principles calculations.

However because of the assumed isotropy in the derivation
of Eq. (25), the result is only applicable to materials like
cubic δ-Pu. The site-dependent defect energies for α-Pu in
Tables IX and X already suggest that diffusion will be highly
anisotropic, potentially affecting the calculations for net bias.
The low crystal symmetry in α also implies anisotropic lattice
relaxation around defects, which requires coupling to the full
elastic stress tensor. Nevertheless, the relative V and SI re-
laxation volumes are still primary quantities of interest here,
and so we simply compare relaxation volumes between α- and
δ-Pu as surrogates for the relative tendency to void swelling.
Based on Eq. (25) and the computed defect relaxation vol-
umes, swelling would be weak or nonexistent in δ-Pu but
based on the defect volumes in α-Pu it is significantly likelier
to be seen there.

1. δ-Pu

Despite the simple crystal structure, there are significant
uncertainties for void swelling properties in δ-Pu. Given the
well-known errors for equilibrium volumes of Pu phases, stan-
dard approaches like SP-GGA could have difficulty with the
defect relaxation volumes. Besides the usual elastic interac-
tions, recent calculations in (static mean field) SP-GGA also
find a magnetic component to Pu defects [91,94,106], which
would contribute to the total interactions and bias factors.
There may furthermore be low energy electronic/magnetic
excitations of the defects with significant effects on the relax-
ation volume, as considered in this work. Table VIII includes
the SP-GGA results for a number of metastable magnetic ex-
citations in the 108-site δ-Pu vacancy supercell. The tabulated
configurations represent a fraction of all possible nearest-
neighbor site combinations, but they are enough to show that
magnetism may be significantly coupled to lattice degrees of
freedom. However as yet, there is no evidence of a similar
magnetoelastic effect for the interstitial in δ-Pu near the exper-
imental density. This asymmetry may be intrinsic or it may be
an artifact of the external tension applied in the SP-GGA cal-
culations to approximate the experimental density. The simple
vacancy spin-flips in Table VIII are all disfavored in the more
accurate SP+SO+OP-GGA approximation. Noncollinear ex-
citations may occur instead.

Independently of any particular DFT approximation, elec-
tronic fluctuations can influence the defect volume whenever
the energy for an atom to adjust its electronic state (and f-shell
size) is less than the energy stored in elastic strain. That is,
such a localized excitation, �E , could become favorable if
it alters an atomic volume by �V , where the local pressure
gives −P�V /�E > 1. Some similar dimensionless parame-
ter argument may relate to the unusual bulk polymorphism
and thermal expansion properties as well. For example, ther-
mally accessible electronic excitations have been suggested to
explain the anomalous thermal expansion or Invar effect of
δ-Pu.

It is notable that all of the vacancy energies listed in Ta-
ble VIII are thermally accessible. A partition function for
this limited state space can provide expectation values for
classical thermal fluctuations: the thermal average vacancy
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relaxation volume ranges from −0.25 atomic volumes at
300 K to −0.29 at 600 K. The results suggest that the net
bias factor could be temperature-dependent in δ-Pu. However,
the variation is only of order 10%, probably not enough to
affect accelerated aging experiments. Some temperature de-
pendence is not unprecedented in void swelling; here it is
a magnetostructural version of the paraelastic effect already
seen in some other materials.

The large volume range for the δ-Pu vacancy also im-
plies that the thermal-average relaxation volume will further
depend on the local hydrostatic stress. Similar so-called ‘di-
aelastic’ defect effects (also called modulus interactions) are
also seen in some systems. It means that the expected va-
cancy relaxation volume will be weakly position dependent,
affecting the mean field diffusion analysis for the bias fac-
tors. For completeness, Table VI includes estimates for the
effective compressibilities of the ground-state vacancy and
self-interstitial species. In particular, the large effective com-
pressibility found for the vacancy implies that the modulus
effects can be quite significant in plutonium.

The different DFT approximations predict a considerable
range of defect parameters, but all of them imply that void
swelling is weak or nonexistent in δ-Pu. The most extreme
case is for the SP-GGA results at the theoretical equilibrium;
here the distorted monoclinic vacancy has a larger absolute
relaxation volume than the interstitial. In that case, the net
bias, �B is actually negative; no swelling is then expected as
the vacancies would be preferentially drawn to dislocations. If
the SP+SO+OP-GGA results are used, v = −0.9, i = 0.85,
and the net bias is effectively zero. The SP-GGA results at
−3 GPa external stress depend on which distribution of mag-
netic vacancy states is considered. For the putative vacancy
ground state (with the smallest relaxation volume), �B < 0.2;
this net bias is comparable to that for ferritic steels, which do
not swell much [104]. Thus, essentially no DFT parameter set
for δ-Pu predicts much void swelling (i.e., DFT predicts long
incubation times and slow steady swelling, if any at all).

2. α-Pu

We also examine defect formation energies and relaxation
volumes in α-Pu, a more complicated structure with eight
crystallographically distinct sites. SP-GGA vacancy and in-
terstitial calculations have been performed under −5 GPa
hydrostatic tensile stress for all of the sites. This is sufficient
for a preliminary comparison of void swelling tendencies with
δ-Pu. Interstitial formation energies are consistently lower
than vacancies. While the lowest vacancy formation energy
suggests an extremely high thermal equilibrium density, the
other striking result is that the relaxation volumes are close
to zero for almost all of the lattice sites, with large or small
formation energies alike. In contrast, the interstitial relaxation
volumes are all quite large. This would imply that α-Pu is
as prone to void swelling as aluminum (one of the faster
swelling materials known), although the low symmetry and
potentially anisotropic diffusion may affect this prediction.
The incubation delay will also depend on impurities and the
starting microstructure.

Remarkably, the two lowest energy sites are located in
a layer-like arrangement for both interstitials and vacan-

cies. Intrinsically anisotropic bulk diffusion in low-symmetry
crystal structures may influence the mean field diffusion
fields to voids versus dislocations and so affect the bias
[107,108]. Furthermore, if the diffusion approaches quasi
two-dimensionality it could invalidate the mean field ap-
proximations for the bias factors. Conceivably, the spatial
arrangement of surrounding sinks (bubbles or voids and dis-
locations) could then become important.

The lower energy defect sites also coincide for vacancies
and interstitials, which may substantially increase their an-
nihilation rates. In contrast, the lowest energy sites for Ga
are well-separated from the preferred vacancy positions [18].
This may inhibit Ga diffusion and prolong the metastability of
alloy-stabilized Pu. Substitutional He may conceivably show
similar behavior. In this light, a SP-GGA study of He defects
is already planned.

VI. CONCLUSION

In this paper, we report extensive first-principles calcula-
tions of point defect energies and structures in the α- and
δ-Pu phases. Two broad surveys of point defect properties are
reported in the SP-GGA approximation along with a separate
study using the SP+SO+OP-GGA approximation, a method
that predicts accurate bulk phase behavior. We discuss the
likelihood of void swelling for these two materials in light of
the calculated defect parameters. As might be expected from
the equilibrium phase diagram, defect behaviors are complex
in this material, and this naturally complicates any analysis
of swelling behavior. However, conventional elastic interac-
tions will remain relevant to the theory even if other, more
novel mechanisms may contribute. The calculated material
properties suggest that void swelling is a greater possibility
in α-Pu. Void swelling is expected to be weak or nonexistent
in δ-Pu, and indeed no void swelling has been reported from
experiment.
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APPENDIX: FINITE SUPERCELL-SIZE ERRORS

Our goal in this Appendix is to study size-convergence of
defect energies under supercell volume/shape constraint as
compared to under applied external stress. For this purpose,
consider a perfect crystal structure at pressure P0, temperature
T0, and nonhydrostatic stress state σ0. For brevity, we only
consider here a single stress component, but generalization
to a full stress tensor is straightforward. As an example of a
crystal under a nonhydrostatic stress, let us consider an anti-
ferromagnetic fcc crystal, composed of ferromagnetic (001)
layers, with the adjacent (001) layers having opposite spin
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moments, i.e., L10 spin ordering. This is the lowest-energy
spin configuration for δ-Pu within the SP-GGA approxima-
tion, and happens to break the cubic symmetry. Hence, in
general the cubic fcc structure will be under a nonzero stress
state that couples to tetragonal shear distortion of the crystal
leading to c/a ratio that deviates from unity. Let us denote by
ηL the tetragonal strain state of the perfect crystal correspond-
ing to the stress σ0, and by VL its volume at pressure P0.

We now define the canonical energy as a function of vol-
ume and strain E (V, η), with the properties

∂E (V, η)

∂η
= σ, (A1)

∂E (V, η)

∂V
= −P. (A2)

These equations state the relevant stress-strain relationships.
Before proceeding, we define two relevant elastic constants

∂2E (V, η)

∂η2
= Cη, (A3)

∂2E (V, η)

∂V 2
= −K

V
. (A4)

Note that K is the bulk modulus, and in the current example,
Cη is the elastic constant for tetragonal shear.

We now proceed to define the enthalpy by a Legendre
transformation of the canonical energy

H (P, σ ) = E (V (P, σ ), η(P, σ )) + P V (P, σ ) − σ η(P, σ ),

(A5)

where η(P, σ ) are V (P, σ ) are obtained by solving Eqs. (A1)
and (A2). For the example of the perfect crystal described
above, the different variables in Eq. (A5) can be defined as
follows: P ≡ P0, σ ≡ σ0, V (P0, σ0) ≡ VL, and η(P0, σ0) ≡ ηL.

Now consider the energetics of this crystal upon introduc-
tion of a concentration c0 of point defects. The energy and
the enthalpy functions can now be generalized to incorporate
a finite point-defect concentration, denoted by Ẽ (VL, ηL, c0),
whenever system’s density and strain are constrained, and
H̃ (P0, σ0, c0), whenever the external pressure and stress are
controlled. Of course in practice, the defect properties are
calculated in periodic supercells at finite defect concentration.
Hence finite difference formulas are used to approximate par-
tial derivatives.

In the following, we consider two different procedures:
(i) calculating formation energy ∂Ẽ

∂c |VL,ηL,c0 of point defects
allowing for no relaxation of either cell shape or volume, and

(ii) calculating formation enthalpy ∂H̃
∂c |P0,σ0,c0 of point defects

allowing for relaxations of both supercell shape and volume.
In this case, we can also define a relaxation volume as in
Eq. (10), and analogously a relaxation strain

�ηR = ∂H̃

∂c
. (A6)

Let us then start with case (i). In this case, the defect
supercell volume VD as well as its strain state ηD are kept
fixed and equal to the perfect lattice VL and ηL, i.e. VD = VL,
and ηD = ηL. The finite-size error of the formation energy
calculated in a defect supercell containing N sites can be
expanded in a Taylor serier, whose first term is

Ẽ (VL, ηL, 1/N ) − Ẽ (VL, ηL, 0) − �EF = c0

2

∂2Ẽ

∂c2
+ . . .

(A7)
Note that �EF = ∂Ẽ/∂c.

Now let us consider case (ii). In this case, the defect super-
cell volume VD and the tetragonality parameter ηD are allowed
to relax in order to maintain the pressure P0 and the stress σ0.
Hence, the finite-size error of the formation enthalpy, calcu-
lated in a defect supercell containing N sites can be expanded
in a Taylor serier, whose first term is

H̃ (P0, σ0, 1/N ) − H̃ (P0, σ0, 0) − �HF

= c0

2

∂2Ẽ

∂c2
− KL

VL
�V 2

R − Cη
L �η2

R + · · · , (A8)

where KL and Cη
L are the bulk modulus and elastic constant

of the perfect crystal. The above result is easily obtained by
Taylor expansion of the generalized enthalpy H̃ (P0, σ0, 1/N )
about zero defect concentration, using the stress-strain rela-
tions Eqs. (A1) and (A2), as well as the definitions of the
elastic constants Eqs. (A3) and (A4). In this way, it can also
be shown that �HF = �EF .

Equation (A8) confirms that finite supercell-size errors in-
troduced in calculated defect properties can often be reduced
significantly whenever supecell shape and volume relaxations
are allowed. The above derivation relies on the defect con-
centration be small enough, or supercell sizes large enough,
such that corrections due to periodic image interactions can
be expanded in low-order perturbation theory. This condition
is usually satisfied in defect supercells exceeding 100 atoms.
However, it should be noted that even in large supercells,
shape and volume relaxations cannot fully account for all the
periodic image interactions. They can be considered the low-
est order terms in a multipole expansion of these interactions.
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