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Order parameters for antiferromagnetic structures: A first-principles study of iridium manganese
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We use density-functional theory to study the ordered states of iridium manganese, demonstrating a simple but
powerful method for describing magnetic structures and the transitions among them. As an illustrative example,
the coupling of magnetism and crystal structure in IrMn is examined through a rigorous exploration of strain
space. We then generate order parameters for the ground-state magnetic structures, providing a comprehensive
framework for understanding antiferromagnetic variants and their magnetic anisotropy. In particular, we show
how the most direct path between two variant structures can be analytically determined; this technique is used to
equate two seemingly contradictory prior studies.
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I. INTRODUCTION

The net-zero, ordered local moments of antiferromagnets
are both scientifically interesting and technologically excit-
ing. Traditionally used to exchange bias ferromagnetic (FM)
layers in thin films [1], antiferromagnetic (AFM) components
are increasingly performing active roles in spintronic devices
for qualities including significantly faster domain switching
and the absence of stray magnetic fields [2,3]. Many of these
applications are fundamentally concerned with the bound-
aries, or walls, of AFM domains, the orientationally distinct
but symmetrically equivalent arrangements of moments that
independently nucleate within a single grain below a crystal’s
Néel temperature. The magnetic anisotropy of a material—the
energetics of the collective orientation of its moments—is
of particular interest, although the anisotropy of noncollinear
AFM structures is somewhat more complicated than that of
FM materials, in which all spins align along a single axis.

The iridium manganese system has received significant
attention for this reason, with notable anisotropy attributable
to large Mn moments interacting with the 5d orbitals of non-
magnetic Ir. Equiatomic IrMn adopts an L10 structure, which
can be understood as a nearly fcc lattice containing alternate
layers of Ir and Mn in a slightly compressed [001] direction.
The Mn layers favor an in-plane checkerboard AFM order-
ing. The system’s other ordered compound is L12 IrMn3, in
which Ir and Mn atoms, respectively, occupy the corners and
faces of the conventional fcc unit cell [4,5]; Mn sites form
kagomé lattices in {111} planes, leading to a noncollinear
simple triangular magnetic structure [5,6]. This compound is
of particular interest for its ability to exchange bias thin-film
heterostructures and spin-valve devices [7–9]. It additionally
exhibits remarkable Hall conductivity under the application
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of spin-orbit torque [10,11] and is predicted to display the
anomalous Hall effect [12]. Largely amorphous thin films of
high Mn compositions are also commonly used in experi-
ments, however those are presumably metastable and rarely
well characterized [13]. Okamoto [4] additionally notes the
potential existence of an unquenchable B2 β-IrMn phase at
temperatures above 1213 K, very close to its experimentally
observed Néel temperature of approximately 1150 K [4].

The collinear magnetic anisotropy of IrMn is relatively
well understood, but theoretical predictions of giant mag-
netic anisotropy energy (MAE) in IrMn3, obtained by rotating
all moments around a common direction [14–16], are much
larger than values measured in chemically disordered samples
[17,18]. While Szunyogh et al. [16] believed that the discrep-
ancy originates from the condition of experimental material,
Jenkins et al. [19] recently argued that large MAE is not
realized on account of the existence of lower-energy paths
connecting magnetic domains. We find that the calculations of
these two studies are basically equivalent and that the apparent
disagreement is primarily one of semantics and experimental
interpretation. This example—and the general lack of rigorous
methods for studying AFM anisotropy—motivates a more
complete approach to exploring the configuration space of
AFM structures.

Specifically, we seek a framework for describing ordered
arrangements of moments that is more concise than simply
defining mi = (mx

i , my
i , mz

i ) at every atomic site i in a tiling
unit cell. Experimental literature commonly uses ad hoc order
parameters (OPs) such as net moment, spin chirality, and
sublattice magnetization to express experimental results (e.g.,
[10,20,21]), but these are typically motivated by interest in
specific quantities rather than a comprehensive description
of structures. Several general, group-theoretically motivated
frameworks for OP generation also exist [22–25]. Because
AFM order is typically associated with one irreducible rep-
resentation of a crystal’s space group (by Landau’s theory
of phase transitions), that irreducible representation’s basis
functions make natural order parameters for describing and
identifying atomic structures, as often used in scattering ex-
periments [26,27]. However, this approach requires the use
of tabulated databases, in which basis functions are typically
expressed for optimally describing phase transitions rather
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than distinguishing among symmetrically equivalent struc-
tures, as is essential for studying domain walls and magnetic
anisotropy.

Drawing from several of these approaches, Sec. II outlines
a simple procedure for determining useful OPs for AFM struc-
tures and the pathways among them, in principle similar to the
theory applied to scalar occupational order in Ref. [25]. Pro-
viding a didactic example, we first use strain OPs to describe
the deformation of IrMn, offering a comparison of magnetic
states in Sec. IV A. These results reveal how the compound’s
stability is closely linked to its magnetic structure, and they
highlight the remarkable energy reduction associated with
IrMn’s optimal AFM ordering. Sections IV B and IV C then
generate OPs for the AFM ground states of IrMn and IrMn3,
which are used to study magnetic anisotropy and the energies
of magnetic structures representing domain walls in a manner
applicable to a wide range of AFM materials.

II. ORDER PARAMETERS

A. A simple example

Order parameters (OPs) are used to concisely describe
portions of a higher-dimensional space, which can be de-
noted generally as σ. While we are ultimately interested in
representing magnetic structure, a simpler example is the
three-dimensional space of normal strain. Assuming no shear,
σ� = (εxx, εyy, εzz ) measures the strain of a crystal relative to
a high-symmetry reference state. Every vector in σ describes
a specific crystal deformation, for instance a Bain transforma-
tion that tetragonally distorts a bcc lattice to an fcc one.

For a conventional bcc unit cell under Hencky (true) strain,
one such Bain transformation is the vector

v�
1 = ln 2

6
(−1,−1, 2), (1)

which corresponds to elongation along the z-axis and volume-
conserving compression in x and y. Due to the cubic symmetry
of the bcc reference state, symmetrically equivalent fcc struc-
tures can be found at

v�
2 = ln 2

6
(−1, 2,−1) (2)

and

v�
3 = ln 2

6
(2,−1,−1). (3)

Figure 1 plots these three fcc variants within the space of
σ. As illustrated, the variants lie in a two-dimensional plane
that (under Hencky strain) includes the bcc reference state.
The Bain paths can therefore be described using only two
parameters, which are conventionally chosen as [23]

η2 = (εxx − εyy)/
√

2, (4)

η3 = (2εzz − εxx − εyy)/
√

6. (5)

In Fig. 1, η2 and η3 are drawn as a new pair of axes. This
subspace possesses an important symmetry with respect to the
point group of the reference bcc structure; vectors in the η2-η3

plane may only be rotated in-plane by the application of any
point group operation of bcc. The space spanned by η2 and

FIG. 1. An illustration of dimensionality reduction through OPs
in the normal (Hencky) strain space of a bcc crystal (origin, pictured
upper right). In this case, the three equivalent Bain pathways—
tetragonal distortions to the three plotted points, which correspond
to fcc lattices—lie in a plane that is fully spanned by η2 and η3,
which are defined by Eqs. (4) and (5). A representative structure is
illustrated for each point.

η3 will remain unchanged and is therefore referred to as an
invariant subspace.

Completing the space of σ, the magnitude of the vector
orthogonal to η2 and η3 can be represented as

η1 = (εxx + εyy + εzz )/
√

3, (6)

which measures symmetry-preserving volumetric dilation
[23]; as the most basic type of deformation, it is typically
denoted as η1. The utility of these OPs is shown in Sec. IV A,
which explores the η2-η3 surfaces of IrMn.

B. A more complete method

The approach of the previous section can be generalized
to parametrize many other crystal properties. To take one
example, it is often of interest to describe long-range mag-
netic order that forms as a supercell of an underlying parent
lattice. A given magnetic structure typically has several sym-
metrically equivalent variants, which give rise to coexisting
magnetic domains. In the walls between domains, local mo-
ments spatially vary such that the ordering state gradually
transitions from one variant to another. For a particular mag-
netic structure, well chosen OPs should concisely distinguish
between all symmetrically equivalent variants and reasonably
describe the domain-wall structures, as well as average to zero
in the fully disordered (paramagnetic) state.

A periodic magnetic structure composed of n sites per unit
cell is completely described in the 3n-dimensional space σ,
where

σ� = (
mx

1, my
1, mz

1, . . . , mx
n, my

n, mz
n

)
. (7)
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We seek to redefine σ in terms of a new coordinate system
with orthogonal basis vectors corresponding to useful OPs.
As seen in the example of Sec. II A, the variants of a structure
may lie in a lower-dimensional subspace of σ; this is gen-
erally the case for order associated with a phase transition,
including antiferromagnetism. Thus, to minimally describe
sets of variants, OPs should be grouped into subspaces that
are unchanged under the parent crystal’s space group op-
erations {s1, s2, . . . , sM} ∈ S; while individual basis vectors
may change, the space spanned by each invariant subspace
must be constant under the application of any s. (Each fully
decomposed invariant subspace corresponds to an irreducible
representation of S .)

It is in practice quite simple to identify such OPs. All
symmetrically equivalent variants of a particular ordered state
collectively span a subspace of σ that is described by pro-
jection P. As P is unchanged by the application of any s ∈
S , its eigenvectors are grouped into invariant subspaces by
eigenvalue [28] and provide a starting point for determining
magnetic OPs. The remainder of the section elaborates on this
procedure.

For any magnetic state, v, in the 3n-dimensional space of
magnetic orderings σ [Eq. (7)], the application of the rotation,
translation, and possible time inversion that compose every
s ∈ S can be represented as a 3n × 3n matrix, S, that trans-
forms v as Sv. As for the strain example, the variants of a
magnetic structure can be related in this manner—the simplest
example is spin-up and -down ferromagnetism, which are
connected through time inversion. Often manually identifi-
able, the variants of some initial magnetic configuration v1

(known from experiment or theory) can be rigorously gener-
ated as vk = Sv1. All S applied to v1 collectively generate K
unique variants, which can be indexed arbitrarily as vk , with
k = 1, . . . , K , where K is typically a fraction of the number
of symmetry operations.

All vk collectively span a subspace described by the pro-
jection P, which can be represented as a 3n × 3n matrix

P =
K∑

k=1

vk · v�
k . (8)

P is invariant under the symmetry operations of the parent
crystal. While individual elements in the sum are altered by
the application of some S, their total is not. There will always
be K terms, and the application of symmetry can merely per-
mute them per the rearrangement theorem [26]—otherwise,
the magnetic structure would have additional symmetrically
equivalent variants.

Each unique eigenvalue of P represents an invariant sub-
space spanned by its associated eigenvectors. Given the
invariance of P, these subspaces are constant in any basis
and minimally describe the considered variants. In our ex-
perience, common orthogonalization algorithms tend to yield
surprisingly intuitive, high-symmetry eigenvalues for standard
crystal structures. When this fails, a technique for rotating
subspaces to maximally symmetrize their basis vectors is de-
scribed in Appendix A of Ref. [23].

Scalar OPs ηi can be constructed from the high-symmetry
eigenvectors, ei, of P as simply

ηi = e�
i · σ. (9)

The “primary” OPs, corresponding to nonzero eigenvalues,
fully span P and its constituent variants (if little else), whereas
the remaining eigenvectors (with zero eigenvalues) orthogo-
nalize unspanned space without physical motivation.

The projection can be extended to include the variants of
additional ordered structures, possibly providing additional
meaningful OPs. For example, in a cubic crystal, the six
variants of FM order will be orthogonal to all AFM structures
and form a distinct invariant subspace. The eigenvectors of
this subspace yield OPs representing net magnetization in
each direction, which are both intuitive and useful. When
considering the variants of J unique structures, labeled as v j ,
the mathematical form of P becomes

P =
J∑

j=1

Kj∑
k j=1

v
j
k j

· v
j�
k j

, (10)

where k j indexes the Kj variants of v j . All structures must
be described in the same initial space σ, requiring a common
supercell commensurate with each ordering. A general proce-
dure to identify such supercells is described in Ref. [25].

Within a single irreducible subspace, the variants of
any configuration are equidistant from the origin, collec-
tively lying on a hypersphere in the subspace. The radii
of these hyperspheres typically vary among irreducible sub-
spaces, ranging from zero in irreducible subspaces that are
not required to distinguish between variants to some finite
value in subspaces that capture the symmetry-breaking phase
transformation. In general, hypersphere radii differ across
symmetrically distinct irreducible subspaces. The eigende-
composition of P naturally distinguishes among subspaces
by providing the radii of the hyperspheres in a particular
irreducible subspace (corresponding to the eigenvalues) and
a set of spanning vectors (the eigenvectors with the same
eigenvalue). In most material systems, such a decomposition
will identify all unique irreducible subspaces, but this algo-
rithm may fail if the hyperspheres formed by the variants
have identical radii in multiple irreducible subspaces. Though
such a scenario is extremely unlikely in real materials, it is
easily solved by constructing order parameters following the
algorithms outlined in Refs. [23–25].

Ultimately, OPs obtained in the above manner enable iden-
tification of direct pathways among variants and, in principle,
magnetic domains. This task can often be simplified by noting
how the energy scale of a moment’s magnitude is generally
larger than that of its orientation [15], motivating an initial
assumption of constant local moment magnitudes. The ap-
plication of magnetic OPs is demonstrated in Secs. IV B and
IV C for IrMn and IrMn3, respectively.

III. METHODS

In Sec. IV A, we explore the relationship between strain
and magnetism for FM, AFM, and paramagnetic (PM) IrMn.
PM structures were approximated using a 16-atom spe-
cial quasirandom structure [29,30]. For each magnetic state,

044402-3



WALSH, NATARAJAN, AND VAN DER VEN PHYSICAL REVIEW MATERIALS 6, 044402 (2022)

collinearly spin-polarized DFT calculations (spin-orbit cou-
pling is negligible at these energy scales) were performed
for an evenly spaced triangular grid of 666 η2 and η3 pairs,
while volume (corresponding to η1) was allowed to relax.
Simulations were performed using the Vienna Ab initio Sim-
ulation Package (VASP) [31,32], employing the generalized
gradient approximation as parameterized by Perdew, Burke,
and Ernzerhof [33] and projector-augmented wave potentials
[34]. Calculations used a 520 eV plane-wave cutoff and a
�-centered k-point mesh with a linear density of 33 Å.

In Secs. IV B and IV C, the method of Sec. II is ap-
plied to generate OPs describing the AFM structures of L10

IrMn and L12 IrMn3. These are used to study MAE and
domain walls in both materials, requiring the consideration
of noncollinear magnetism and spin-orbit coupling, which
is considered scalar-relativistically in VASP. To map IrMn
MAE, magnetic structures corresponding to 78 points in one
quadrant of OP space were statically simulated. The same
simulation parameters were used to compute the energy along
pathways that connect symmetrically equivalent magnetic or-
derings in suitably defined order-parameter spaces. IrMn3 was
modeled using a 10 × 10 × 10 Monkhorst-Pack grid, as de-
termined from the convergence of the d. → g. energy barrier
in Sec. IV C. Given the energy scales of these calculations,
(relatively minor) magnetic dipolar corrections were applied
according to the classical Hamiltonian [35]

Hdip = 1

2

∑
i, j

μ0

4πr3
i j

(
mi · m j − 3

r2
i j

(mi · ri j )(m j · ri j )

)
,

(11)
where i and j index sites separated by ri j for up to third-nearest
neighbors.

IV. RESULTS

A. Coupling of strain and magnetic order in IrMn

Figure 2 shows formation energy, volume, and average Mn
moment as a function of the strain OPs η2 and η3 [Eqs. (4)
and (5)] for AFM, PM, and FM IrMn. The center of each plot
represents a B2 structure, i.e., a bcc lattice constructed from
interlocking cubic sublattices of Ir and Mn. B2 is the simplest
decoration of a bcc lattice and can be strained along the Bain
path into three equivalent fcc variants, which are shown at the
corners of each plot. Each fcc structure is associated with a
variant of the experimentally realized L10 ordering, which lie
between fcc and bcc in the η2-η3 plane [36].

Regardless of the magnetic state, these L10 structures form
energetic minima, although the optimal degree of tetragonal-
ity (c/a ratio) varies significantly, as does the overall shape
and scale of the energy landscape. The AFM L10 variants
are depicted in Fig. 3. Most striking is the AFM structure’s
−350 meV/at formation energy, which is remarkably large
for an intermetallic. This value is 192 meV/at lower than
the minimum of the FM energy surface, indicating that a
large portion of the structure’s stability originates from AFM
exchange interactions.

The importance of magnetism can also be seen in the en-
ergy difference among AFM fcc variants. AFM decoration of
the bcc lattice breaks the symmetry of the Bain paths, resulting
in fcc variants with fundamentally different magnetic states.

FIG. 2. Mn moment, formation energy, and relaxed volume cal-
culated for three different magnetic orderings across η2-η3 strain
space, which is defined by Eqs. (4) and (5) and illustrated as a plane
in Fig. 1. The center of each plot corresponds to a high-symmetry,
B2 (bcc) lattice. All minima are L10 structures of varying tetrago-
nality. The η3 axis is vertical and perpendicular to η2; the triangular
boundary simply reflects the explored space.

In contrast, the PM (SQS) energy landscape in Fig. 2 displays
threefold symmetry, which confirms its effective representa-
tion of magnetic disorder. For both AFM and PM orderings,
volume correlates very closely with energy—the most com-
pact configurations are also the most favored. These states
also trend similarly in terms of moment magnitudes, which are
maximized in the least efficiently packed (and high volume)
bcc structure, although moment is not otherwise correlated to
energy or volume. Indeed, the difference between the AFM
and PM landscapes is largely the scale of energy and volume
change, with the latter less extreme in both respects.

The FM plots, however, display an abrupt drop in vol-
ume and moment magnitude for lattices resembling fcc,
corresponding to a subtle cusp in the energy landscape. Addi-
tionally, FM bcc IrMn is a local minimum while the absolute
FM minimum is found around (η2, η3) = (0, 0.267) and its
variants, closer to fcc (η3 ≈ 0.302) than the optimal AFM
L10 structure (η3 ≈ 0.24). Conversely, the most favorable PM
structures lie midway between fcc and bcc lattices in the
vicinity of (0,0.15), etc. The bcc-fcc energy difference also
varies tremendously among magnetic states, ranging from
approximately −130 meV/at for AFM IrMn to −70 meV/at
for PM to a positive ∼30 meV/at in the FM case.

B. IrMn magnetic structure

While the possibility of coupling magnetism and strain
is intriguing, equiatomic IrMn clearly has an extremely sta-
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FIG. 3. The four symmetrically equivalent AFM variants of
IrMn’s L10 ground state plotted in OP-space alongside schematics.
Mn atoms are represented by purple dots (dark); Ir are gold (light).
The path between two variants in OP-space is shown, both directly
(solid line) and with normalized atomic moment magnitudes (dashed
line).

ble AFM L10 ground state. This structure provides a simple
example for parametrizing magnetic order, with four checker-
board AFM variants, illustrated in Fig. 3, existing in the
six-dimensional space defined by the components of the two
Mn moments; Ir is effectively nonmagnetic and can be disre-
garded. This space can be divided into three two-dimensional
invariant subspaces, only one of which is required to describe
the considered variants. Following Sec. II, the primary OPs
for AFM IrMn are

η1 = (
mx

1 − mx
2

)
/
√

2, (12)

η2 = (
my

1 − my
2

)
/
√

2, (13)

which form the axes of Fig. 3. The most direct path be-
tween neighboring variants is a Néel-type rotation of Mn
moments—while somewhat trivial, this can be determined
by interpolating in OP-space and normalizing moments, as
shown by the dashed line in Fig. 3. Conservation of moment
magnitude also suggests that the path between (η1, η2) =
(4, 0) and (η1, η2) = (−4, 0) will pass through (0,±4).

Filling out the x-y plane, two additional OPs form an in-
variant subspace describing in-plane FM ordering:

η3 = (
mx

1 + mx
2

)
/
√

2, (14)

η4 = (
my

1 + my
2

)
/
√

2, (15)

which are naturally orthogonal to the AFM subspace. Because
the variants considered so far lie entirely in the x-y plane, η5

and η6 will be unguided orthogonalizations of the z-dimension
without further input. While it is generally accepted that the
most favorable magnetic ordering of IrMn is indeed in-plane
[15], the lowest energy path between two variants could in
principle include out-of-plane components as in a Bloch-type
domain wall.

FIG. 4. The magnetic anisotropy energy of the IrMn configura-
tions depicted in Fig. 3, with additional consideration of out-of-plane
(z-aligned) orientations by inclusion of η5. The sphere’s equator cor-
responds to the constant-magnitude circumscription of the variants
in Fig. 3 (dashed line).

Accounting for this possibility, the remaining space can be
easily parametrized through the addition of otherwise iden-
tical [001]-aligned variants to a modified P per Eq. (10). Its
eigenvectors offer the additional primary OP,

η5 = (
mz

1 − mz
2

)
/
√

2, (16)

and its FM orthogonalization,

η6 = (
mz

1 + mz
2

)
/
√

2. (17)

Alongside η1 and η2, η5 enables exploration of the magnetic
structure’s full three-dimensional orientation space, which in
this simple example is analogous to the alignment of mMn

1
(and −mMn

2 ) in the x, y, and z directions for η1, η2, and η5,
respectively. This space is explored using DFT (see Sec. III)
in Fig. 4, which effectively depicts the structure’s MAE.
With minima near (±2, 0, 0) and (0,±2, 0), this surface con-
firms the stability of the x-y plane variants initially presented
in Fig. 3 (as well as standard expressions of MAE [15]).
While formal OPs are probably unnecessary to understand this
simple structure, the parametrization of more complicated,
noncollinear AFM orderings is less immediately obvious.

C. IrMn3 magnetic structure

The simple triangular AFM structure of L12 IrMn3 has
eight variants, which are depicted in Fig. 5. They collectively
span a three-dimensional subspace of a nine-dimensional con-
figuration space, which can be described by the primary OPs,

η1 = (
2mx

1 − mx
2 − mx

3

)
/
√

6, (18)

η2 = ( − my
1 + 2my

2 − my
3

)
/
√

6, (19)

η3 = ( − mz
1 − mz

2 + 2mz
3

)
/
√

6. (20)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 5. The eight distinct but symmetrically equivalent variants
of L12 IrMn3’s simple triangular magnetic ordering. The alphabetical
labels correspond to points plotted in Fig. 6, and they are used to
describe the pathways analyzed in Figs. 7 and 8.

Given IrMn3’s cubic symmetry, inclusion of an FM variant in
Eq. (10) introduces the additional OPs,

η4 = (
mx

1 + mx
2 + mx

3

)
/
√

3, (21)

η5 = (
my

1 + my
2 + my

3

)
/
√

3, (22)

η6 = (
mz

1 + mz
2 + mz

3

)
/
√

3. (23)

The remaining space can be orthogonalized by η7 = (mx
2 −

mx
3)/

√
2, η8 = (my

3 − my
1)/

√
2, and η9 = (mz

1 − mz
2)/

√
2.

For a given variant, (η1, η2, η3) is equivalent to the mag-
nitude of Mn moment times the Miller index of the plane
containing the (inward facing) moments, e.g., (111) for the
variant depicted in Fig. 5(a). While not necessarily expected,
this result in quite elegant. Altogether, the eight variants
shown in Fig. 5 form a cube in the subspace of (η1, η2, η3),
as plotted in Fig. 6.

This space enables a comparison of the moment rotations
performed in Ref. [16] and the energy surface calculated by
Ref. [19], both of which were considered measures of mag-
netic anisotropy. The four minima shown in Fig. 2 of Ref. [19]
correspond to the variants a., b., d., and g., as illustrated in

FIG. 6. Analogous to Fig. 3, the variants of IrMn3’s L12 ground
state plotted in three-dimensional OP-space. Paths corresponding
to several variant-connecting rotations are drawn, as is a directly
interpolated path. Variant labels refer to the structures illustrated in
Fig. 5.

Fig. 5 and plotted in Fig. 6. Paths representing the [111] and
[011̄] rotations of Ref. [16] (the latter [110] in their conven-
tion) are also drawn in Fig. 6, as is a [100] rotation connecting
face-diagonal variants a. and f .. Reference [19] describes
the lowest energy path between variants as a “bobbing mo-
tion,” but their 0.14 meV/at barrier appears equivalent to
the cos−1(− 1

3 ) ≈ 109.47◦ rotation around [011̄] reported by
Ref. [16], which has a maximum energy of 0.16 meV/at.

More simply than either of the previously employed meth-
ods, pathways among adjacent variants can be determined by
interpolating in OP-space and relaxing moments. The direct
connection between variants d. and g. is drawn in Fig. 6
and explored in Fig. 7. While nonprimary OPs must activate
to conserve moment magnitudes, the transition is primarily
described by η1−3 even after relaxation of moments, demon-
strating the utility of the approach. The only other nonzero
OPs are η8 and η9; ferromagnetic OPs remain zero, indicating
that no net moment arises in the transition. Spin-orbit cou-
pling leads to a computed barrier of 0.12 meV/atom, which
is comparable to, if slightly lower than, previous calcula-
tions [13,16].

Although not explicitly stated, the energy surface in
Ref. [19] seems to suggest that a similarly low-energy path
connects face-diagonal variants such as a. and f .—however,
to the best of our knowledge, no such continuous transition
is possible. While all four variants connect to a structure
corresponding to an identical single-moment constraint, the
approached configurations are fundamentally distinct, demon-
strating the need to more completely parametrize an energy
surface, e.g., through OPs. While direct interpolation from a.

to f . in OP-space has an extremely high energy barrier, Fig. 6
indicates that a (100)-type rotation connects face-diagonal
variants—as a rotation, its energy barrier should originate
from spin-orbit interactions.
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FIG. 7. The interpolated path from variant d. to g., as drawn in
Fig. 6. At 21 points, the local moment is relaxed using DFT, and the
corresponding OPs and energy are above and below, respectively.
A complete transition is equivalent to a rotation around [011̄] by
cos−1(− 1

3 ) ≈ 109.47◦. The intermediate magnetic structure is also
drawn in the lower panel.

This path is explored in Fig. 8. Not all intermediate struc-
tures are stable, so the directions of moments are constrained
at each point. Interestingly, η8 and η9 remain the only nonzero,
nonprimary OPs throughout the path, although their values
are much larger than seen in Fig. 7. The rotation has a

FIG. 8. The rotation of variant a. around [100], in OP-space
above with computed energy below. A 180◦ rotation (rotation coordi-
nate 1) corresponds to variant f ., across the face of the cube formed
in Fig. 6. An intermediate magnetic structure corresponding to a 90◦

rotation is also drawn in the lower panel.

1.0 meV/atom barrier, but given the possibility of transition-
ing through another corner variant (e.g., a. → c. → f .), it is
unclear if the path will ever be realized in real domain walls.
A similar question exists for (111) rotations connecting cube-
diagonal (time-inverted) variants, which provide the “giant
MAE” reported by Ref. [16].

V. ADDITIONAL DISCUSSION

While the consideration of a midtransition structure as a
periodic unit cell is fictitious—a physical domain wall con-
sists of a continuous gradient of moment rotation—snapshots
of OP-space can nonetheless approximate a pathway’s energy
barrier, particularly for longer-range transitions where every
locality deviates little from its neighbor. More completely,
the free energy of a magnet with inhomogeneously varying
magnetic OPs can be expressed as

F =
∫

V

[
f (T, η(r)) +

∑
i, j

∑
α,β

Ki, j
α,β

∂ηi

∂rα

∂η j

∂rβ

]
dr. (24)

The homogeneous free energy f (T, η) is a function of tem-
perature and local magnetic OPs η(r), which can serve as
field variables tracking the spatial variation of local magnetic
order as a function of position r. (The homogeneous free
energy f could also be made a function of strain [37].) The
second integrand term accounts for energy penalties arising
from gradients in magnetic OPs, which are determined by
gradient energy coefficients Ki, j

α,β that couple gradients in ηi

and η j along Cartesian directions α and β.
Section II introduced a simple method to identify mini-

mal magnetic OPs for arbitrary periodic magnetic orderings.
We have also explored how the energy of two magnetic
intermetallic compounds varies as a function of η, which
can provide a first-order estimate for domain-wall energy
barriers—future work can determine the gradient energy co-
efficients Ki, j

α,β by calculating excess energies for supercells
containing spatial variations in magnetic OPs, which could
be determined from Heisenberg exchange interactions. A
first-principles-parametrized phenomenological free-energy
description such as Eq. (24) will then not only enable a calcu-
lation of the excess free energies of magnetic domain walls,
but also the minimal free-energy microstructure of multiple
coexisting domains through a variational minimization of F
with respect to η(r).

While the use of OPs does not inherently simplify the free-
energy integrand of Eq. (24), we have shown how pathways
connecting symmetrically equivalent variants can be largely
described by primary OPs corresponding to a single subspace
(see Fig. 7). Indeed, the nonzero secondary OPs serve primar-
ily to conserve local moment magnitude and directly follow
from primary OP values. The homogeneous free energy in
Eq. (24), for example, can be expressed exclusively in terms of
primary OPs by coarse graining out the secondary OPs using
standard techniques from statistical mechanics [38], reducing
the dimensionality of the free-energy model.

Although the investigation of strain serves primarily as
an example, it suggests a possible connection, if not di-
rect coupling, between a high-temperature β-IrMn phase and
magnetic disordering at the Néel temperature. While IrMn
adopts a nearly fcc L10 structure at low temperatures, a bcc
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B2 ordering at elevated temperature has been hypothesized
on the basis of “metallographic observation of solidification
deposits” [4]. Figure 2 illustrates how the η2-η3 energy sur-
face of PM IrMn is much shallower than that of the AFM
state, making it easier for anharmonic vibrational excitations
to stabilize a B2 phase. Indeed, the PM energy landscape
is similar to that of other compounds that undergo phonon-
driven tetragonal-cubic phase transitions [36,39]. While the
temperature (1223 K) of this transition is prohibitive to any
practical application, further study could elucidate interesting
physics and provide insight for identifying more accessible
magnetically coupled phase transitions.

VI. SUMMARY AND CONCLUSION

We have proposed a general method for parametrizing
antiferromagnetic structures, applying the technique to study
L10 IrMn and L12 IrMn3. In IrMn, we first characterized the
interplay of crystalline (fcc, bcc, and the Bain paths that con-
nect them) and magnetic (AFM, FM, PM) structure, noting the
enormous energy reduction associated with its preferred AFM
ordering and influence of magnetism on the strain dependence
of energy.

The consideration of strain demonstrated a method for
generating order parameters, which for magnetic structures
can be summarized as follows:

(i) Identify the minimal unit cell describing magnetic struc-
tures of interest, which establishes the magnetic space of σ in
Eq. (7).

(ii) Determine all variants vk of an initial structure,
typically through application of symmetry operation represen-
tations.

(iii) Calculate P = ∑
k vk · v�

k per Eq. (8).
(iv) OPs correspond to eigenvectors of P by Eq. (9).
(v) If desired, expand P with additional magnetic orderings

to expand the OP-space per Eq. (10), repeating the previous
steps.

We used this framework to perform a first-principles study
of the magnetic properties of IrMn and IrMn3, assessing their
magnetic anisotropy and determining paths between symmet-
rically equivalent variants.
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