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Establishing the structure-property relationship for grain boundaries (GBs) is critical for developing next-
generation functional materials but has been severely hampered due to its extremely large configurational space.
Atomistic simulations with low computational cost and high predictive power are strongly desirable, but the
conventional simulations using empirical interatomic potentials and density functional theory suffer from the
lack of predictive power and high computational cost, respectively. A machine learning interatomic potential
(MLIP) recently emerged but often requires extensive size of the training dataset, making it a less feasible
approach. Here, we demonstrate that an MLIP trained with a rationally designed small training dataset can
predict thermal transport across GBs in graphene with ab initio accuracy at an affordable computational cost.
We employed a rational approach based on the structural unit model to find a small set of GBs that can represent
the entire configurational space and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs
were found to be enough to represent the entire configurational space of graphene GBs. Using the atomistic
Green’s function approach and the MLIP, we revealed that the structure-thermal resistance relation in graphene
does not follow the common understanding that large dislocation density causes larger thermal resistance. In
fact, thermal resistance is nearly independent of dislocation density at room temperature and is higher when
the dislocation density is small at sub-room temperature. We explain this intriguing behavior with the buckling
near a GB causing a strong scattering of flexural phonon modes. In this paper, we show that a machine learning
technique combined with conventional wisdom (e.g., structural unit model) can extend the recent success of ab
initio thermal transport simulation, which has been mostly limited to single crystals, to complex yet practically
important polycrystals with GBs.
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I. INTRODUCTION

Grain boundaries (GBs) are of interest in many ap-
plications because they are common defects and largely
affect electrical, mechanical, and thermal properties. For two-
dimensional (2D) materials such as graphene, experimental
studies showed that GBs commonly exist in graphene sheets
prepared by exfoliation [1–5], causing the fundamental phys-
ical properties of polycrystal samples to largely deviate from
those of single crystals. Therefore, engineering GBs is an
effective way to achieving desired electronic, thermal, and
mechanical properties in many applications [6–14].

The physical properties are largely dependent on the local
atomic structure of GB [5,6,15], and thus, it is important
to establish the structure-property relationship on how a
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GB structure affects the physical properties. However, es-
tablishing such a structure-property relationship has been
challenging mainly for two reasons. The first is that GBs have
extremely large configurational space. For example, three-
dimensional (3D) materials have five degrees of freedom
(misorientation angle noted as θM hereafter, line angle, and
three degrees of freedom of crystalline grain orientation in 3D
space) for GB structures, making the configurational space
extremely large. The second is that the experimental char-
acterization of an individual GB requires significant efforts,
particularly for preparing samples with a geometrically well-
defined GB. The samples with GBs have been prepared by
bonding two wafers with a twist angle, but it often leaves a
void at the interface [16]. Therefore, it is challenging to exper-
imentally study enough GBs to draw a statistically conclusive
finding on the structure-property relationship.

Atomistic simulation can be a useful tool for the study
of GBs if it has high predictive power, but it also has major
challenges. Atomistic simulations for thermal transport such
as molecular dynamics (MD) [7,8,10,17–19] and the atom-
istic Green’s function (AGF) [14,20] require an interatomic
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potential. A common approach for the interatomic potential
has been empirical potentials that have a rigid functional form
parametrized based on quantum mechanical calculation re-
sults and experimental data. Although the empirical potentials
have been useful for promoting the understanding of physical
phenomena from an atomistic level, they have clear limita-
tions. For the physical properties that were not considered
for the parametrization, empirical potentials do not provide an
accurate prediction. Also, because of its rigid functional form,
it is usually not flexible enough to describe a wide range of
atomic configurations. On the contrary, ab initio calculation
can be highly accurate and have a predictive power without
adjustable parameters, as demonstrated by the recent studies.
For example, the high thermal conductivity of boron arsenide
was experimentally confirmed [21–23] after the prediction
from ab initio simulation [24]. Also, the significant hydrody-
namic phonon transport in graphitic materials was predicted
using ab initio simulation first [25,26] and then experimentally
confirmed [27,28]. However, ab initio simulation for thermal
transport has been limited to the single-crystalline phase and
point defect cases. For the thermal transport across GBs,
ab initio simulation is not feasible due to its high computa-
tional cost, considering the size of GB atomic structures.

A recently emerging method is to use machine learning
schemes to predict the interatomic interactions based on the
dataset from ab initio simulations [29–40]. This so-called
machine learning interatomic potential (MLIP) was motivated
by the fact that the interatomic interaction is a function in
a high-dimensional space where machine learning outper-
forms conventional regression methods. Recently developed
MLIPs show that the MLIP can be as accurate as ab initio
calculations, while its computational cost is several orders
of magnitude cheaper than ab initio calculations [29–31,41].
The MLIP was proven for predicting the thermal transport
in the crystalline phase [29,31,34] and partially disordered
crystalline phase that has vacancies [29]. This confirms that
the MLIP is accurate enough to correctly capture subtle an-
harmonicity, which is critical for phonon-phonon scattering
and phonon-strain field scattering, and is also flexible enough
to describe various atomic configurations including vacancies.
However, extending the past success of MLIP to a spa-
tially extended disorder case (e.g., GBs) has some challenges.
Unlike vacancies, the GBs have extremely large atomic con-
figurational space. Therefore, the training dataset should be
carefully designed such that it can represent the entire con-
figurational space. In addition, the size of the training dataset
should be minimal since generating the training dataset from
ab initio calculation can be prohibitively expensive, consider-
ing the typical size of GB structures.

In this paper, we develop MLIPs using the Gaussian re-
gression, called the Gaussian approximation potential (GAP)
[41,42], for studying phonon transport across graphene GBs.
We use a systematic framework based on the structural
unit model to select the complete and orthogonal training
dataset. With the carefully chosen few GBs for the training
dataset, we show that the GAP can produce similar results as
ab initio calculations for a wide range of GBs, while its
computational cost is six orders of magnitude cheaper than ab
initio calculations. Using the GAP and AGF, we then report
several important features of phonon transport across GBs

in graphene with its high predictive power. We distinguish
the influence of the dislocation core and extended strain field
on phonon scattering and reveal an intriguing scattering of
flexural phonon modes by out-of-plane buckling in graphene
GBs. We also briefly evaluate an empirical Tersoff potential
(TSF) [43,44] that has been widely used in past studies by
comparing it with GAP.

II. METHODS

A. Identifying a small set of GBs representing the
entire configurational space of GBs

In this paper, we consider a total of 20 GBs that covers
the full span of θM (0° to 60°), which includes a variety of
disclination densities and different topological arrangements
of disclinations. We focus on symmetric GBs with zero line
angle because several parameters that are expected to affect
phonon scattering such as GB formation energy, dislocation
density, and out-of-plane roughness are nearly unchanged
with the line angle in graphene [4]. The θM and coincidence
site lattice � values of the 20 GBs are listed in Table I. The
supercells containing each of the GBs were generated using
an algorithm based on the centroidal Voronoi tessellation [4].
Then we appended the same supercell that is rotated by 180°,
resulting in two GBs along opposite directions in a supercell.
Such supercells are preferred for the subsequent relaxation
process using MD simulation since they have translational
symmetry along all directions including the direction perpen-
dicular to the GB line. An example supercell is shown in Fig.
S1 in the Supplemental Material [45]. We then relaxed the
obtained supercell by running MD simulations at 300 K in the
NVT ensemble over 100 ps using the LAMMPS package, with
a time step of 0.5 fs and TSF potential. Those supercells were
used for training a GAP based on TSF interatomic potential
(GAPTSF), which was used for the validation of our methods.
A separate set of 20 supercells was further relaxed by density
functional theory (DFT) calculation to develop another GAP
based on DFT (GAPDFT), which we used to study the phonon
transport across GBs in graphene. For the DFT calculations,
we used the energy minimization scheme in the VASP pack-
age using ultrasoft pseudopotentials with a plane-wave cutoff
energy of 286 eV. The convergence criteria for energy and
force were set to 10–8 eV and 10−6 eV/Å, respectively. The
resulting supercells relaxed by TSF and DFT slightly differ,
as shown in Table I.

A challenge in developing an MLIP for GBs is how to
prepare a complete set of training data. Considering the typ-
ical period length of GBs and the area strained by a GB, a
supercell that contains a GB can be often too large for ab initio
calculation. Thus, for the training dataset, it is critical to select
a small set of GBs that can represent the entire configurational
space of GBs. In early studies developing an MLIP for general
purpose, a fraction of the total database was chosen for the
training dataset without much rationale, with the remaining as
the testing dataset [29,41,42,46,47]. Recently, active learning
schemes have been proposed to reduce the size of training
dataset [48–50], making it possible to simulate the dynamic
evolution of systems such as phase change in a large scale
for a long time period. While the active learning scheme can
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TABLE I. List of the 20 GBs with their structural properties. The 5 representative GBs chosen by the SOAP dissimilarity analysis are
indicated with superscripts † and ‡ for the structures relaxed by TSF and DFT, respectively.

Coincidence site lattice Structures relaxed by TSF Structures relaxed by DFT

Index ϑM (deg) � GB period (Å) Disclination density (Å–1) GB period (Å) Disclination density (Å–1)

1 6.01† 91 23.7608 0.0842 23.3084 0.0858
2 7.34 61 19.4537 0.1028 19.0835 0.1048
3 9.43 37 15.1509 0.132 14.8627 0.1346
4 10.99 109 26.0123 0.1537 25.5172 0.1568
5 13.17‡ 19 10.8593 0.1842 10.6527 0.1877
6 16.43 49 17.4449 0.2293 17.1116 0.2337
7 17.9† 93 24.0326 0.2497 23.5727 0.2545
8 21.79‡ 7 6.6012 0.3029 6.4725 0.309
9 26.01‡ 79 22.1546 0.3611 21.7306 0.3681
10 27.8 39 15.5647 0.3855 15.2662 0.393
11 29.41 97 24.5397 0.4075 24.0737 0.4154
12 32.2 13 8.9919 0.4448 8.8178 0.4536
13 35.57 67 20.3977 0.3922 20.0072 0.3998
14 40.35†,‡ 103 25.2933 0.3163 24.8106 0.3224
15 42.1 31 13.8792 0.2882 13.6149 0.2938
16 44.82† 43 16.3393 0.2448 16.0284 0.2496
17 46.83 57 18.8093 0.2127 18.4503 0.2168
18 48.36†,‡ 73 21.2859 0.1879 20.8804 0.1916
19 49.58 91 23.7631 0.1683 23.3122 0.1716
20 50.57 111 26.2369 0.1524 25.7374 0.1554

be used for general cases, using preexisting knowledge on the
system of study, if it is available, can be more efficient. As an
example, the active learning schemes need to scan the large
configurational space of GBs until they find no additional GB
structures required for the training dataset. Additionally, the
active learning scheme is more suitable for MD simulation in
which a training dataset is added based on the measured un-
certainty at each time step. For phonon transport simulation,
the lattice dynamics-based method (e.g., AGF) has several
important advantages over MD simulations such as modal
analysis and no statistical error.

We use the fact that most GBs have hierarchical structures
with basic building blocks, as demonstrated in the previous
studies that analyzed the GB structures with the structural
unit model [51–53]. A basic idea is to identify those basic
building blocks or unique local atomic environments (LAEs)
from many GBs and find a small set of GBs that contain
the complete set of the unique LAEs [54]. Then an MLIP
trained with the data from the small set of GBs is expected
to accurately capture the interatomic interactions of GBs in
the entire configurational space.

We used the smooth overlap of atomic positions (SOAP)
[55] descriptor to find the smallest GB dataset that contains all
the representative LAEs in the 20 GBs. The SOAP descriptor
places a Gaussian function on each atom to construct the
density of neighbor atoms ρi, which is then expanded in a
basis set of radial functions gn(r) and spherical harmonics
Ylm(r) as

ρi(r) =
∑
nlm

c(i)
nlmgn(r)Ylm(r), (1)

where c(i)
nlm are the expansion coefficients for atom i. The

descriptor is formed from these coefficients by computing the
power spectrum elements:

p(i)
nn′l = 1√

2l + 1

∑
m

c(i)
nlm

[
c(i)

n′lm

]∗
. (2)

The resulting descriptor has invariance under transla-
tion, rotation, and the permutation of atoms. For each GB,
a SOAP descriptor for each atom i in the GB is calcu-
lated and represented as coefficients of basis functions pi =
{p1, p2, . . . , pN }. The length of the SOAP vector N is de-
termined by a radial basis cutoff nmax and an angular basis
(spherical harmonic) cutoff lmax. We evaluate the dissimilarity
of LAEs using SOAP descriptors which is defined as [54]

di j =
√

pi · pi + p j · p j − 2pi · p j, (3)

where pi and p j are the SOAP vectors for the two atoms i and
j. We introduce a parameter ε, serving as a criteria for the
unique LAE. If di j > ε, the pi and p j are different from each
other, indicating that the two atoms i and j are surrounded by
different LAEs. Otherwise, we determine pi and p j represent
the same LAE. In this paper, we used 0.04 for the value of ε.

The 20 GBs covering the full span of θM contain a total of
5544 LAEs, and the dissimilarity analysis shows that there ex-
ists significant overlap among the 5544 LAEs; the total 5544
LAEs can be reduced to only 12 and 13 unique LAEs for the
structures relaxed by TSF and DFT, respectively. The TSF and
DFT produce slightly different structures after relaxation, and
hence, the number of unique LAEs also differ. The analysis
shows that the total 20 GBs covering the full span of θM can
be composed using those 12 or 13 unique LAEs, confirming
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FIG. 1. Five representative grain boundaries (GBs) from (a) the Tersoff potential (TSF) and (b) density functional theory (DFT) showing
distinct features such as density of disclinations and their topological arrangements. The angle in each figure shows the misorientation angle.
The green circle shows the cutoff radius for defining the local atomic environment (LAE).

the idea that the extremely large configurational space of GBs
in fact have a very small number of basic building blocks.
We then identified five representative GBs, shown in Fig. 1,
that contain all 12 or 13 unique LAEs. The selected GBs
significantly differ from each other in terms of the topological
arrangements and the density of disclinations. We used the
5 GBs to generate a training dataset for our GAP and train
the GAP and performed the AGF simulation with the GAP to
simulate the phonon transport across GBs, as discussed in the
Methods sections.

B. Training the GAP

We trained two separate GAPs: GAPTSF for the valida-
tion of our methods using relatively cheap TSF potential and
GAPDFT for studying of phonon transport across GBs with
ab initio accuracy. For the training dataset, we performed MD
simulations of the five representative GBs and obtained the
snapshots of the atomic position, force, and energy. The MD
simulations were performed at 300 K in the NVT ensemble
with a time step of 0.5 fs. After initial time steps for thermal
equilibration, we took one snapshot every 50 time steps to re-
duce the correlation between snapshots. The training datasets
for both GAPTSF and GAPDFT include relaxed structures
of the five selected GB structures and 50 snapshots for each

GB at 300 K. After obtaining the training dataset, we used
the hyperparameters listed in Table II to train GAPTSF and
GAPDFT.

C. AGF simulation

For the AGF simulation, the supercell needs to be suffi-
ciently large so that the leads do not have strain from a GB.
The supercell we used for the AGF calculation is 10 times
longer in the direction perpendicular to GBs than those we
used for SOAP dissimilarity analysis and training the GAP.
Since the AGF simulation does not require translational sym-
metry along the heat flow direction, the supercells for the
AGF calculation contain only 1 GB for each, unlike those
for training the GAP that have 2 GBs. The comparison of
supercells for GAP training and AGF simulation in terms
of the size can be found in Table S1 in the Supplemental
Material [45]. The second-order force constants were calcu-
lated using PHONOPY [56] and LAMMPS [57] with GAPTSF
or GAPDFT. In the AGF simulation, we used a decimation
technique [58,59] to approximate surface Green’s functions,
and we used a frequency broadening factor of 1 cm−1 for the
continuous representation of discrete eigenfrequencies. We
observed a good convergence of transmission functions with
20 transverse wave vectors for the GB with the largest width

TABLE II. List of hyperparameters for GAPTSF and GAPDFT.

Hyperparameter Note 2-body 3-body SOAP

rcut (Å) Cutoff radius of the descriptor 4.0 4.0 4.0
d (Å) Transition width over which the magnitude of SOAP

descriptor monotonically decrease to 0
– – 1.0

δ (eV) Weight of different descriptors 10.0 3.7 0.07
Nt Number of representative atomic environments

selected using the corresponding sparse method
50 200 650

Sparse method Uniform Uniform CUR

nmax Radial basis cutoff – – 12
lmax Angular basis cutoff – – 12
σenergy (eV/atom) Expected error for atomic energy 0.001
σforce (eV/Å) Expected error for force 0.0005
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FIG. 2. Validation of the Gaussian approximation potential based
on the Tersoff potential (GAPTSF) against the Tersoff potential
(TSF) for (a) formation energy of grain boundaries (GBs) and (b)
transmission function. The solid symbols in (a) represent GBs used
for training GAPTSF. The solid lines and dots in (b) are from
GAPTSF and TSF, respectively. In (b), the two GBs with θM = 6.0◦

and 48.36° and the other two GBs with θM = 9.43◦ and 50.57° are
from the training and testing dataset, respectively.

(θM = 50.57◦). For the other GBs, the number of transverse
wave vectors was determined such that the product of the
number of transverse wave vectors and the width of the GB
are the same for all GBs.

III. RESULTS AND DISCUSSIONS

We use GAPTSF to validate our simulation framework
from selecting representative GBs to the AGF calculation.
Unlike ab initio calculation, the TSF potential is computa-
tionally cheap enough to generate the data of interatomic force
constants and transmission functions of all 20 GBs. Therefore,
GAPTSF can be directly validated against the results from
TSF for all 20 GBs. In Fig. 2, we compare GAPTSF and TSF
for the GB formation energy and spectral phonon transmission
function. GAPTSF and TSF agree well with each other for
the prediction of the GB energy for both the training and
testing GBs. The spectral phonon transmission functions, the
properties of interest in this paper, are similar for all GBs.
This confirms that the 5 GBs chosen from the LAE analysis
are enough to represent all 20 GBs, and thus, the resulting
GAP is highly accurate and reliable for a wide range of GBs.

With the success of GAPTSF, we proceeded to develop
GAPDFT using the training dataset from DFT calculation.
Like GAPTSF, GAPDFT also shows excellent accuracy. The
root-mean-square of errors (RMSE) of energy and force are
0.0011 eV and 0.052 eV/Å, respectively, for the training
set, and the RMSE of energy and force are 0.0019 eV and
0.066 eV/Å, respectively, for the testing set. In Fig. 3, we
examine GAPDFT compared with DFT for the relaxed atom-
istic structures. The structures relaxed by GAPDFT are like
those by DFT, particularly for the out-of-plane atomic dis-
placements.

Figure 4 presents the GB formation energy from GAPDFT
and DFT, showing good agreement between them for the
entire range of θM. The overall trend of GB formation energy
from GAPDFT follows the trend predicted by the Read-
Shockley model [60]; the GB formation energy is linear to θM

for low θM (<15◦) and high θM (>45◦), while the midrange
θM show nonmonotonic behavior of GB formation energy
with respect to θM.

FIG. 3. Validation of the Gaussian approximation potential based
on density functional theory (GAPDFT) against density functional
theory (DFT) for relaxed structures projected onto the a-b plane.
(a) θM = 48.36 ◦ from the training dataset and (b) θM = 9.43◦ from
the test dataset. The color represents out-of-plane displacement in
angstroms.

In Fig. 4(b) and 4(c), we separate the GB formation energy
into the contribution from local dislocation cores (core en-
ergy, Ecore) and surrounding strain field (strain energy, Estrain)
[61,62] to better understand the GB formation energy and its
effects on phonon transport. The core energy (Ecore) and strain
energy (Estrain) can be defined as

Ecore =
∑Ncore

i Ei − Ncore
Ntot

Ebulk

lunit
, (4)

Estrain =
∑Nstrain

i Ei − Nstrain
Ntot

Ebulk

lunit
, (5)

where Ncore and Nstrain are the number of atoms forming dislo-
cation cores (pentagons and heptagons) and hexagon lattices,
respectively. The Ntot is the total number of atoms. The Ebulk

and lunit are the energy per atom in the perfect crystalline
phase and the length of the GB. The core energy and strain
energy from GAPDFT in Figs. 4(b) and 4(c) seem physically
reasonable. The dislocation density linearly increases with θM,
has a maximum value at mid-θM, and linearly decreases with
θM (see Fig. S2 in the Supplemental Material [45]). There-
fore, the core energy in Fig. 4(b) is maximum in the mid-θM

range where the dislocation density is maximum. The strain
energy is minimum in the same θM range where the lattice
can open up to insert one additional lattice plane to form
an edge dislocation, and thus, the strain is minimized [63].
One of the noteworthy advantages of MLIPs over DFT is that
the MLIPs can predict the contribution of each atom to total
energy, while DFT cannot in principle. Although partitioning
the total energy into the contribution of each individual atom
is somewhat arbitrary in the MLIP scheme, it provides quali-
tatively reasonable results compared with the DFT simulation,
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FIG. 4. Comparison of density functional theory (DFT), the
Gaussian approximation potential based on density functional theory
(GAPDFT), and the Tersoff potential (TSF) for (a) grain boundary
(GB) formation energy, (b) core energy, and (c) strain energy. The
solid symbols in (a) represent the GBs that were used for training
GAPDFT.

as shown in the GB formation energy of the GBs that are not
included in the training process.

In Fig. 5, we present the thermal resistance as a function
of θM at various temperatures from the AGF and the Lan-
dauer formalism calculations. At high temperatures of 500
and 1500 K in Figs. 5(c) and 5(d), the thermal resistance
has a concave shape with respect to θM, having a maximum
resistance value at the mid-θM range. This behavior is like
the case of Si and diamond at 1000 K that a previous study
reports, using MD simulation with an empirical potential [8].
A common explanation for this behavior has been that the
dislocation density is the maximum in the mid-θM, and thus,
the phonon scattering by GBs is expected to be maximum
in the mid-θM range. However, we observe different behav-

iors at low temperatures at 300 and 100 K. At 300 K in
Fig. 5(b), the concave shape of thermal resistance becomes
negligible, and the resistance is nearly independent of the θM.
As temperature further decreases to 100 K in Fig. 5(a), the
thermal resistance shows a convex shape with respect to θM,
having the lowest thermal resistance at mid-θM. The behavior
of thermal resistance at 100 and 300 K is clearly opposite to
the current understanding that the higher dislocation density
leads to higher thermal resistance. For graphene GBs, the
higher dislocation density does not necessarily lead to higher
thermal resistance. At 100 K, the thermal resistance is even
higher when the dislocation density is smaller.

A possible explanation for this intriguing behavior of ther-
mal resistance as a function of θM at different temperatures
is that the dislocation core and nearby strain field affect the
phonon scattering by GBs to different extents at different
temperatures. At low temperatures, heat is mostly carried
by long-wavelength phonons which experience only weak
scattering by dislocation cores since the wavelength is much
longer than the characteristic size of the cores. The strain field
can be a major contributor to the phonon scattering at low
temperature due to its spatially extended characteristics. This
is supported by the fact that the strain energy distribution in
Fig. 4(c) and the thermal resistance at 100 K in Fig. 5(a) have
a similar trend with respect to θM; both thermal resistance and
strain energy are minimum in mid-θM. At high temperatures
where the short-wavelength phonons are the major heat car-
riers, the wavelengths become comparable with the size of
dislocation cores which thus cause strong scattering due to
their nature of large lattice distortion compared with the strain
field. The thermal resistance at 500 and 1500 K in Fig. 5
follow a similar trend as the core energy in Fig. 4(b).

Observing the important role of the strain field for phonon
scattering at low temperatures, we further investigate its de-
tailed mechanisms. Figures 6(a) and 6(b) show the thermal
conductance normalized by the ballistic thermal conduc-
tance of perfect graphene as a function of temperature. The
normalization eliminates the specific heat effects from the
conductance and thus shows how much the thermal conduc-
tance is suppressed by phonon scattering at a GB at various
temperatures. The total 20 GBs can be clearly separated into
two groups: one showing monotonously decreasing normal-
ized thermal conductance as a function of temperature, shown
in Fig. 6(a), and the other showing increasing at low tem-
perature and then decreasing normalized thermal conductance
with temperature, shown in Fig. 6(b). It is interesting to see
that most GBs of the first group are from mid-θM, while
the latter group is from small and large θM. To explain the
different behavior of the two GB groups, we consider spectral
transmissivity defined as the phonon transmission function
across a GB normalized by the ballistic phonon transmission
function across single-crystalline graphene. In Fig. 6(c), we
present the spectral transmissivity for the two GBs with θM

of 6.02° and 32.20° that represent each group. In the fre-
quency range <15 THz which dominates the thermal transport
below room temperature, the two GBs show a remarkable
difference. While the spectral transmissivity is high and nearly
constant for the GB with θM = 32.20 ◦, the transmissivity for
the GB with θM = 6.02◦ is low and increases rapidly with
frequency. It is noteworthy that the majority of phonon states
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FIG. 5. Thermal resistance with varying misorientation angles at (a) 100 K, (b) 300 K, (c) 500 K, and (d) 1500 K.
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FIG. 6. Role of out-of-plane buckling for scattering of flexural phonon modes. Thermal conductance normalized by that of perfect
crystalline graphene as a function of temperature for (a) grain boundaries (GBs) showing monotonously decreasing behavior and (b) GBs
showing increasing behavior at low temperatures. The values in the legends represent misorientation angle. (c) Phonon transmissivity for two
representative GBs showing a remarkable difference in low phonon frequency range <15 THz. (d) Comparison of the two representative GBs
in terms of out-of-plane buckling. The color represents out-of-plane displacement of atoms, and the pentagon and heptagon are marked in blue
and red, respectively.
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(a) and (b) Normalized error of self-interatomic force constants, defined as |	φii,TSF − 	φii,GAPDFT|/	φii,GAPDFT, where 	φii is the difference
of self-interaction force constants in the grain boundary (GB) and perfect graphene. (c) and (d) Suppressed transmission function from perfect
graphene for 20 GBs. The values in the legend are misorientation angles.

<15 THz are from the flexural acoustic phonon branch due to
the quadratic phonon dispersion and large density of states.

The remarkably different scattering of flexural modes in
the two GB groups originates from the structural difference,
particularly buckling induced by a GB. This is consistent
with the previous studies [64,65] that showed flexural modes
are strongly scattered by buckling of the GB structure. Fig-
ure 6(d) shows that the two groups of GBs are very different
in terms of out-of-plane buckling. The common disclinations
in graphene, pentagon and heptagon, create compression and
dilation stress at the tips of disclinations, respectively. When a
GB has low or high θM, the pentagon and heptagon discli-
nations are far from each other due to the low density of
dislocations, and thus, the out-of-plane buckling is induced to
reduce the compressive and dilation strain. On the contrary,
when a GB has mid-θM, the disclination cores are densely
packed along the GB line with the pentagon and heptagon
cores placed next to each other. In such a case, the com-
pressive and dilation strain are canceled, and the out-of-plane
buckling does not occur [60]. Therefore, at low temperatures
where the thermal phonon wavelength is comparable with the
characteristic length of buckling, the significant buckling in
GBs with low and high θM causes strong scattering of the
flexural phonon modes. As a result, the GBs with low and
high θM exhibit higher thermal resistance at 100 K than those
with mid-θM in Fig. 5(a), although they have lower dislocation
density.

Lastly, it would be interesting to present a brief comparison
of GAPDFT and TSF since the TSF has been widely used in
past studies, while its accuracy for phonon transport across
GBs has not been comprehensively examined. In Fig. 4, we
compare GAPDFT and TSF for the GB formation, core, and
strain energies. Figure 4(a) shows that the TSF overestimates
the GB formation energy compared with GAPDFT. This is
because the core energy from TSF is larger than that from
GAPDFT in the mid-θM range where the density of disloca-
tion core is maximum, as shown in Fig. 4(b). On the contrary,
for strain energy in Fig. 4(c), the TSF and GAPDFT show
similar predictions for the wide range of θM, although the
strain energy from TSF is slightly smaller. The comparison of
the core and strain energy from TSF and GAPDFT indicates
that TSF is reasonably accurate in predicting the energy of
strained hexagon structure, while it is poor in predicting the
energy of severely distorted structures such as pentagons and
heptagons.

The thermal resistances from TSF and GAPDFT in Fig. 5
are observed as similar, but the force constants and spec-
tral transmission functions behind the thermal resistance
values are noticeably different for TSF and GAPDFT. For
the self-interaction force constant in the crystalline phase,
the TSF overpredicts by 35% compared with GAPDFT (see
Fig. S3 in the Supplemental Material [45]). The force con-
stant prediction by TSF has a more pronounced error in the
core region of GBs. In Figs. 7(a) and 7(b), we present the
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error of TSF in predicting force constant change upon the
introduction of GBs. We define the normalized error as
|	�ii,TSF − 	�ii,GAPDFT|/	�ii,GAPDFT, where �ii is a self-
interaction force constant, and 	�ii is the difference of a
self-interatomic force constant from the perfect crystalline
case (i.e., �ii,GB − �ii,crystal). The figure shows that the error
in the core region is pronounced and reaches up to 50%,
while the error is small for the surrounding hexagons. This
agrees with the aforementioned observation that the TSF
has significant error for dislocations, while it is reasonably
accurate for strained hexagons. As a result, the spectral trans-
missions from GAPDFT and TSF in Fig. 7(c) and 7(d) show
substantial difference >20 THz where dislocation cores are
important for phonon scattering. Overall, the suppression of
transmission functions from the perfect crystalline phase is
noticeably larger in TSF than in GAPDFT, also supported
by the overprediction of core energy by TSF in Fig. 4(b).
However, <20 THz where the strain field is the dominant
cause for phonon scattering, GAPDFT and TSF show similar
suppression of the spectral transmission function.

IV. CONCLUSIONS

In summary, we demonstrated that MLIPs trained with
the rationally designed minimal dataset can predict phonon
transport across GBs with ab initio predictive power and
accuracy, while the computational cost is affordable. Special
attention was paid on reducing the required training dataset
by employing the idea of the structural unit model that GBs
have hierarchical structures and have only a few basic building
blocks. Our approach shows that only 5 GBs are enough
to represent the entire configurational space, and thus, the
small training dataset using those 5 GBs is sufficient for an
MLIP. Indeed, our test using TSF and GAPTSF shows that
force constants and spectral transmission functions from the
TSF and GAPTSF are similar for 20 GBs covering the entire
configurational space.

GAPDFT trained with the dataset from DFT reveals several
intriguing characteristics of phonon scattering by GBs with
ab initio accuracy. Previous studies for 3D bulk materials
suggested that thermal resistance increases with dislocation

density, but we showed that graphene does not follow the
same trend. The thermal resistance at room temperature does
not depend on the dislocation density and even decreases
with increasing dislocation density. We explained this with
the 2D structural characteristics of graphene: flexural phonon
modes carrying the majority of heat and out-of-plane buckling
induced by GBs. The heat-carrying flexural phonon modes
are strongly scattered by the out-of-plane buckling which is
pronounced for the GBs with low dislocation density. Thus,
dislocation density alone cannot determine the scattering of
phonons in polycrystalline graphene, but the surrounding
strain field plays an important role.

We also briefly examined the accuracy of TSF for thermal
transport across GBs by comparing it with GAPDFT. The
overall thermal resistance values from both TSF and GAPDFT
reasonably agree with each other, but the force constants and
spectral transmission functions show a noticeable difference.
TSF shows inaccuracy in predicting dislocation cores (pen-
tagons and heptagons), while it is reasonably accurate for the
strain field. As a result, the transmission functions from TSF
agree with those from GAPDFT at low frequency where the
strain field is important for phonon scattering, but they show
noticeable error in the mid- to high-frequency range.

In this paper, we provide deep insight into the atomic-level
mechanisms governing phonon transport across graphene
GBs, particularly for the buckling effects on phonon trans-
mission and thermal resistance. This understanding may help
to explain phonon transport across GBs in other 2D materi-
als and also to engineer their thermal properties using GBs.
The present method for developing MLIPs with a minimal
training dataset can be easily extended to 3D materials. It
would help to predict and understand thermal transport in
the polycrystalline phase of emerging materials for which a
reliable interatomic potential has not yet been developed.
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