
PHYSICAL REVIEW MATERIALS 6, 043806 (2022)

Generalized universal equation of states for magnetic materials: A novel formulation
for an interatomic potential in Fe

Isaac Toda-Caraballo ,1,* Jan S. Wróbel ,2 and Duc Nguyen-Manh 3,4

1Materalia Group/Physical Metallurgy Department, National Center for Metallurgical Research (CENIM-CSIC),
Avda. Gregorio del Amo 8, Madrid 28040, Spain

2Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland
3Culham Centre for Fusion Energy (CCFE), United Kingdom Atomic Energy Authority,

Abingdon, Oxfordshire OX14 3DB, United Kingdom
4Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom

(Received 20 September 2021; revised 10 March 2022; accepted 29 March 2022; published 28 April 2022)

The development of quantitative models for understanding physical properties of alloys requires a proper
treatment of magnetic interactions, which is of paramount importance for the microstructural stability, especially
in steels and high-entropy alloys containing magnetic elements. These magnetic interactions also control the
defects behavior which affects the mechanical properties and the response under irradiation. Current interatomic
potentials for molecular dynamics (MD) simulations still lack an adequate formulation to include magnetism
into the simulations. In this paper, the universal equation of states (UES) is revisited and generalized by
including ferromagnetic (FM) and antiferromagnetic (AFM) configurations with the aim of proposing a new
formulation to develop interatomic potentials with magnetic contribution. For the case of Fe, given a fixed
magnetic configuration and magnitude of the magnetic moment, the energy of the system is calculated by
means of three parameters, namely, the energy, volume, and corresponding scaling volume (directly related
to the bulk modulus) at the local ground state of the corresponding lattice. These parameters depend on three
terms: firstly, a distance-dependent function, which gathers the nonmagnetic influence of the surrounding atoms;
secondly, a magnetically dependent function, contributing to the energy by means of the magnetic nature of the
atom, irrespective of the magnetic moment magnitudes of its surrounding atoms; and finally, a term which is
magnetically and distance dependent simultaneously, which describes the influence of the magnetic state of the
surrounding atoms on the energy considering their interatomic distance. This latter term is built via two functions
which cannot be disconnected: one dependent on the distance between two atoms (a decreasing function with
the distance in absolute value) multiplied by another function which is dependent on the magnetic moment
of these two atoms. In this way, the magnetic influence of a distant atom scales with its distance. The new
formulation is tested for magnetic iron, where 18 240 spin polarized density functional theory (DFT) calculated
energies for different lattices, volumes, and magnetic moments in FM and AFM configurations showed that
the generalized UES (GUES) accurately describes the energy of the system. The root-mean-square error of the
GUES is in the range of 5.9 × 10−3 eV over all DFT calculated energies, showing good accuracy and allowing us
to propose a formulation for developing a magnetic interatomic potential (MIP) in Fe. The potential is developed
for FM configuration in iron, aiming at studying the stability of the ferritic and austenitic phases but also defects
and other configurations of special relevance as, for instance, in irradiation conditions for fusion or fission
applications. The distance and magnetic functions of the GUES are tabulated to obtain a MIP, which describes the
DFT calculated energies for different lattices, volumes, and magnetic moments in FM configuration. Further, the
MIP has been validated in other crystal lattices (A15 and C15), elastic constants, stresses in the lattice, vacancies,
interstitials, forces at different temperatures, transformation paths between body-centered cubic, face-centered
cubic, hexagonal close-packed, and simple cubic structures as well as γ surfaces. We conclude that the results in
this paper pave the way to develop MIPs with accuracy and predictability beyond the state of the art in MD.
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I. INTRODUCTION

During the early conception of the atomistic simulations,
different approaches were postulated to perform molecular
dynamics (MD) simulations in metals. Semiempirical poten-
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tials based on the embedded atom method (EAM) [1,2] or
many-body force potential [3,4] where developed to fit rele-
vant properties or were optimized [5] to fit density functional
theory (DFT) calculations. This allowed tremendous advances
in the analysis of atomic interactions, providing exceptional
tools to investigate key parameters [6–8]. Nevertheless, classi-
cal MD interatomic potentials frequently lacked the influence
of magnetism. This influence is generally embedded in the
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energy description and the ground state configurations as an
underlying property which cannot be evaluated [9–14]. For
the case of iron, it is nevertheless important to stress that most
of the developed potentials accurately describe body-centered
cubic (BCC) structures and their vicinities, including face-
centered cubic (FCC) structures, being potentials that predict
the energy in the ferromagnetic (FM) configuration, without
describing the magnetic contribution. In this way, potentials
were conceived describing α-Fe and its modifications, where
the energy, elastic constants, forces, or the behavior of the
lattice in the presence of defects are correctly approximated,
being under the influence of magnetism [15,16] but without
particular information about the possible magnetic fluctua-
tions that may occur. Other potentials in binary Fe systems
can describe precipitation and point defects [17], liquid and
crystalline iron, along with its elastic constants, point-defect
energies as well as BCC-FCC transformation energy [18] or C
diffusion in a low C-concentrated Fe system [19]. Therefore,
the lack of magnetism in these formulations does not discredit
the tremendous advances possible thanks to these interatomic
potentials which enabled many correct calculations, especially
if the magnetic fluctuations were small enough. Thus, these
potentials work nicely in the surroundings of the ground state,
but they cannot describe the atomic interactions in a general
way.

Previous ab initio studies based on spin-polarized DFT
calculations demonstrated clearly that the magnetic contribu-
tion plays a crucial role in determining not only structural
stability of ground states but also metastable phases and defect
properties for Fe as well as for iron-based alloys including
new high-entropy ones [20–32]. It is found from our DFT sys-
tematic study of group-specific trends for self-interstitial atom
(SIA) defects in BCC transition metals that, while the lowest-
energy SIA configuration for the nonmagnetic (NM) metals
in groups 5B and 6B of the periodic table is the crowdion
or 〈111〉 dumbbell, the predicted most stable SIA defect con-
figuration in FM Fe is the 〈110〉 dumbbell [21–23,26,27,33].
The magnetic origin of the relative stability between SIA
defect configurations can be explained from the quantum-
mechanical based tight-binding Stoner model [34–36], which
forms the theoretical background for the development of mag-
netic bond order potential (BOP) for Fe [37].

DFT calculations have shown that the behavior of 3d-series
transition metals in a crystal lattice depends deeply on the
magnetic configuration of its atoms. For instance, the value of
the magnetic moment of atoms along defects differs strongly
and depends on their position and atomic volume in the lattice
[38]. Additionally, and following the example of iron, the
modeling of a phase transformation to NM FCC or hexago-
nal close-packed (HCP) from magnetic BCC is challenging
from the physical point of view, as the factor responsible
for that transformation, the magnetic configuration, is not
described [20,29,39,40]. Some recent DFT calculations on the
FeCrNi [29] and CoCrNi [41,42] systems have displayed the
strong variation of the magnetic moment by means of the
composition and crystal structure considered, explaining the
experimentally observed ground state. As the compositional
complexity increases, for instance, in the high-entropy alloys
(HEAs), the variations in magnetic configurations are even
stronger [43], and the atoms can modify their magnetic config-

uration with small variations in composition. For example, in
Ref. [31], it is shown that, depending on alloy composition,
the FeCrMnNi alloys can have FM, ferrimagnetic, antifer-
romagnetic (AFM), or NM configurations. In other cases,
NM elements such as Pd became magnetic in the matrix,
as in the CoCrFeNi-Pd system [30], changing their behavior
dramatically. All these variations affect the entropy of the
system, which in turn influences the stability and the ground
state configurations [31,44]. The study of magnetism is also
of paramount importance in the development of materials for
nuclear plants, both fission and fusion, where the interatomic
interactions for modeling radiation damage depends strongly
on the magnetic behavior of the materials, especially in iron
alloys [45]. The need to investigate irradiation damage in col-
lision cascades and how vacancies, SIAs, and defect clusters
evolve is well documented and related to both magnetic and
atomic degrees of freedom [27].

Therefore, the exploration of approaches to investigate
magnetism in MD simulations has gained attention during
the last few years. Some works have managed to include
the magnetic influence using, for instance, BOP and angular-
dependent functional forms to reproduce the α-iron to γ -iron
transition at high temperature [37,46,47]. In those works,
BOP and analytical BOP (ABOP) showed clear improvements
with respect to empirical potentials, which do not include the
magnetism in their formulation, predicting an energy barrier
between the α-iron and γ -iron. Nevertheless, the predicted
energies displayed substantial differences when compared
with DFT results. Taking the EAM as a starting point, some
other achievements have been made introducing a physical
description of the magnetism into the potential [45,48,49] by
using a combination of the Stoner model of band magnetism
[50] and the approximation proposed by the Ginzburg-Landau
model [51]. The variations of magnetic moments are locally
well described, including different interstitial configurations
and dislocations loops, but it is not a formulation to cover
from NM to magnetic configurations in a wide spectrum
of crystal structures. The large-scale spin-lattice dynamics
(SLD) algorithm [52] has also been investigated with success,
allowing the magnetic moment to be studied as a function of
the temperature. Other works [40] developed the noncollinear
magnetic many-body potentials for BCC and FCC iron by
combining NM many-body potentials and Heisenberg-Landau
Hamiltonians for BCC and FCC iron. The potential was next
applied in SLD simulations to evaluate the difference between
the free energies of BCC and FCC phases. With the ad-
vent of novel machine learning interatomic potential models
[53], more recent approaches such as the magnetic moment
tensor potentials showed that this technique can be applied
to reproduce with accuracy DFT data as well as the local
magnetic moments, energies, and forces for various magnetic
states along with high computational efficiency [54]. This
technique nevertheless is always subjected to the machine
learning paradigm, where the method does not capture the
laws of physics, providing little understanding of the inter-
atomic interactions, even though high accuracy is obtained.

It is evident that the current MD potentials and approaches
have difficulties in capturing the magnetic interactions and
transferring such complexity into the calculation of the
energies. The previous examples of interatomic potentials
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correspond to different proposals for atom-atom interactions,
which are oriented to a certain structure or property, and are
less accurate for other situations where alternative potentials
succeed. Therefore, there is not yet a unique interatomic po-
tential formulation, while the actual underlying atom-atom
interactions are uniquely defined by the laws of physics.

In this paper, we have revisited the universal equation of
states (UES) formulation to evaluate the nature of the mag-
netic influence. With this, we ideally aim at starting a path
that could lead to a general formulation of the atomic inter-
actions for MD simulations. This paper corresponds indeed
to a theoretical one, where the calculations of the energy are
performed using the spin-polarized DFT approach. Starting
from the principle that the DFT calculations need to be con-
trasted with experiments, as any other model employed, this
approximation is considered correct and represents faithfully
the energy dependence of a certain crystal lattice, magnetic
moment, and magnetic configuration. Many previous works
using DFT validate this affirmation. On the other hand, DFT
calculations can provide information that cannot be obtained
by experiments such as nonequilibrium configurations. This is
an advantage extremely useful for the fitting of potentials.

The objective of this paper is to propose a novel formula-
tion that can be used for developing a magnetic potential for
MD simulations. The UES proposed by Rose et al. [55] and
Vinet et al. [56] is used as a base functional and employed
firstly to analyze the behavior of the energy at different crystal
lattices, volumes, and importantly, the magnetic moments at
different magnetic configurations, which generalizes the use
of the UES. This generalized universal equation of states
(GUES) is tested in pure iron with FM and AFM contribu-
tions, and it can reproduce the energy of a wide spectrum
of crystal lattices that have been calculated from first princi-
ples. Nevertheless, the incorporation of all possible magnetic
configurations into an interatomic potential is a task of large
complexity, making it unreasonable in the first stage to face
it. We attempt initially at understanding ferromagnetism and
antiferromagnetism, which play a central role in physical met-
allurgy and particularly in iron. Other forms of magnetism as
ferrimagnetic or paramagnetic configurations are still out of
the scope of this paper and deserve additional investigations.

Because of this approach, a novel magnetic interatomic po-
tential (MIP) is formulated based on the GUES. It is important
to note that the GUES predicts different magnetic functional
forms for each magnetic configuration, and correspondingly,
the MIP proposed in this paper is focused on ferromagnetism
for its great relevance in Fe and in other metals. The developed
MIP has been put to the test to describe the behavior of several
structures and properties which were not initially included in
the fitting procedure, showing good predictability.

The paper is structured as follows. Section II formulates
the equations of the MIP based on a generalization of the
UES. Section III describes the database employed and the
nature of DFT calculations used along the paper. Section IV
analyzes the behavior of the parameters by means of crystal
structure and magnetic moment and the fitting of the potential,
finishing with the proposed functional forms proposed to be
used for the MIP as well as the functions and equations for the
MIP with FM configuration. Section V validates the potential
in the original DFT calculated energies for a wide range of

crystal lattices, volumes, and magnetic moment magnitudes
and analyzes the predictability of the potential in different
parameters and structures, including elastic constants, stresses
in the lattice, forces for different temperatures, vacancies,
interstitials, and transformation paths as well as γ surfaces.
Finally, Sec. VI contains the conclusions.

II. MIP FORMULATION BASED ON THE GUES

The UES [55,56] determines that there is an unique func-
tion that describes the behavior of the energy for all solids
with respect to volume variations. The use of the UES
has been extensively validated in the literature and success-
fully applied to predict material properties related to volume
change [16,57–63]. Other works have proposed empirical
equations of states where the parameters are fitted to provide
the best fit to experiments [64–68] but without developing an
interatomic potential from the proposed equations.

That approach is originally expressed via the distance be-
tween atoms or the Wigner-Seitz radius. This interatomic
distance in turn scales with the atomic volume since the dis-
tance in the formulation is understood as the cell parameter,
and its variation induces a change in the atomic volume. The
atomic volume is in fact a more relevant parameter to ex-
plain relationships between atoms [69] and thermodynamics
[70] of metals and alloys. Additionally, it will be shown that
the formulation using the volume allows relating directly the
parameters obtained in the approach with measurable param-
eters, such as the bulk modulus (explained below), but also to
express the volume variations directly during the simulation.
More importantly, the magnetic moment is directly related to
the volume [29], and therefore, a formulation based on volume
rather than in interatomic distances provides clear advantages
for including magnetism. Both the Wigner-Seitz radius and
the atomic volume in the UES provides a very accurate fitting
to the energy after cell variations, and a short comparison
between both will be included in Sec. IV when the UES is
validated.

Therefore, in this paper, we have adopted the atomic vol-
ume V as the main parameter in the UES rather than the
distance between atoms. With this approach, the functions F
that define the UES read then

F (V ∗) = e−V ∗
(1 + V ∗), (1)

where V ∗ is the scaled volume, defined in the same fashion as
in [56]

V ∗ = V − Vg

Kg
, (2)

where Vg is the volume at the ground state and Kg the corre-
sponding volume scaling function. Thus, the Rose et al. [55]
and Vinet et al. [56] expression of the energy E as a function
of volume V is expressed as

E (V ) = EgF

(
V − Vg

Kg

)
= Egexp

(
−V − Vg

Kg

)(
1+ V − Vg

Kg

)
.

(3)
In this equation, Eg is the ground state energy, which is

like the equilibrium binding energy proposed in Ref. [56]
denoted originally �E . The Vg and Kg parameters correspond
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to rWSE (Wigner-Seitz equilibrium radius) and l (length scale)
as defined in Ref. [56], respectively.

The use of the term ground state to define Eg, Vg, and
Kg must be more general in this paper, as these parameters
correspond to the local ground state energy and corresponding
local ground state volume for each crystal lattice considered.
In other words, the ground states for BCC and FCC lattices are
logically different and provide different values of Eg, Vg, and
Kg. Therefore, the defined Eg, Vg, and Kg parameters vary for
each of the crystal lattices. Based on this approach and Eq. (3),
a formulation for a MIP is developed here, where the values of
Eg, Vg, and Kg must be predicted for the corresponding crystal
configuration. It is worth noting that these parameters depend
on the crystal lattice and the magnetic moment configuration,
but they must be independent of volume V to fulfill the UES.
A dedicated subsection is presented later in Sec. IV B devoted
to the description and understanding of the potential parame-
ters Eg, Vg, and Kg.

To adequately formulate the potential, a prior definition
of the variables involved must be presented. Firstly, the in-
teratomic distance between atoms ri j = √

xi j
2 + yi j

2 + zi j
2,

where xi j = xi − x j , yi j = yi − y j , and zi j = zi − z j are the
relative coordinates between two atoms, and (xi, yi, zi ) and
(x j, y j, z j ) are the corresponding spatial coordinates of atoms
i and j, respectively. Secondly, the magnetic moment of each
atom Mi represents the magnitude of the magnetic moment in
the FM and AFM configurations. Finally, the atomic volume
V must be understood as a bulk quantity and not the volume
per atom individually. This is itself a novelty in the present
scope of interaction between atoms since the volume is not
considered a variable in classical approaches for interatomic
potentials.

The variables, as they are presented, are not fully indepen-
dent of each other since the interatomic distance ri j and the
volume V are related. From the point of view of the UES
presented in Eq. (3), taking a certain lattice, a variation on
its volume (expansion or contraction) follows a change in the
atomic coordinates, which induces the corresponding alter-
ation in the interatomic distance between atoms. Therefore,
a variable of this nature cannot be used to describe Eg, Vg, and
Kg since the dependence of these functions cannot include the
volume, which would break the UES in Eq. (3). Therefore,
a variable related to the atomic coordinates but independent
of the volume must be considered. This is the variable ρi j ,
corresponding to the relative interatomic distances per unit
volume, which is defined as

ρi j = ri j
3

V
. (4)

In Eq. (4), the variable ρi j is unitless, and represents the
distances between atoms in a certain crystal lattice, no mat-
ter the volume of such lattice. In other words, two BCC
lattices with different lattice constants would have different
interatomic distances between atoms ri j , but they both will
have the same values of ρi j , no matter their cell parameter.
Additionally, other crystal lattices, such as FCC, will have
different ρi j with respect to the ones in BCC, but two lattices
with FCC will have the same ρi j irrespective of their cell pa-
rameter, although they will have obviously different ri j . This
applies to any other lattice for which its relative interatomic

distances per unit volume is the same under volume variations.
Therefore, the variable ρi j is independent of volume V in a
certain lattice.

To lighten the notation, we will denote ρ as a variable
that accounts for the interatomic distances and represents the
distance dependence on the parameters and functions that
will define the potential. Similarly, we will denote M as a
variable that accounts for the magnetic moment magnitudes
of the lattice and represents the magnetic dependence on the
parameters and functions that will define the potential. The
expressions of these parameters and functions with respect
to interatomic distances and magnetic moments will be de-
scribed in detail below.

Once the variables are introduced, the dependence of the
potential parameters Eg, Vg, and Kg must be considered. As
stated above, these functions cannot be dependent on volume
V since this would break the UES. The potential parame-
ters Eg, Vg, and Kg depend only on the relative interatomic
distances per unit volume ρi j and the magnetic moment of
each atom Mi. Therefore, we will denote Eg ≡ Ei

g(ρ, M), Vg ≡
V i

g (ρ, M), and Kg ≡ Ki
g(ρ, M) using the ρ and M notation to

account for the set of interatomic distances ρi j and magnetic
moments Mi of the different atoms surrounding atom i, where
the superscript i indicates the corresponding value of the po-
tential parameters for the atom i. The energy E of a lattice is
then calculated as the sum over all atoms i of all contributions
Ei to the energy of the system, where these contributions are

Ei(V,ρ, M) = Ei
g(ρ, M) exp

[
−V − V i

g (ρ, M)

Ki
g(ρ, M)

]

×
[

1 + V − V i
g (ρ, M)

Ki
g(ρ, M)

]
. (5)

In this equation, the expression ρ refers to the interatomic
distances per unit volume of atom i, while M involves the
magnetic moment of atom i and the magnetic moment of all
its neighbors in the lattice.

It is worth noting that this equation generalizes the previous
use of the UES for different crystal lattices and magnetic
configurations. In the classical approach of Rose et al. [55]
and Vinet et al. [56], the radius of the Wigner-Seitz sphere,
represented in this case by the atomic volume V , corresponds
to an average volume per atom, and it is the unique parameter
to calculate the energy. The rWSE (equilibrium radius) and l
(length scale) as defined in Ref. [56] were reported as single
values for each atom. This single value corresponds to the
ground state configuration of each atomic species and not
the local ground state for each lattice, as proposed here. The
ground state concept is extended here to account for each
lattice and magnetic configuration, which induces changes in
Eg, Vg, and Kg (respectively �E , rWSE, and l). To be consistent
with the classical nomenclature, we will keep the term ground
state to be used for the configuration corresponding to the
lowest energy for an atom, whereas the term local ground state
will be used to describe the minimum energy and volume once
a lattice and magnetic configuration is fixed.

To account for this generalization, we propose the fol-
lowing expressions for the potential parameters Ei

g(ρ, M),
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V i
g (ρ, M), and Ki

g(ρ, M):

Ei
g(ρ, M) = Ei

0(ρ) + �E (Mi ) +
∑
j �=i

ωM (ρi j )ψE (Mi, Mj )

V i
g (ρ, M) = V i

0 (ρ) + �V (Mi ) +
∑
j �=i

ωM (ρi j )ψV (Mi, Mj )

Ki
g(ρ, M) = Ki

0(ρ) + �K (Mi ) +
∑
j �=i

ωM (ρi j )ψK (Mi, Mj ),

(6)

where the subscript j �= i represents all neighbor atoms of
atom i.

In the expressions shown in Eq. (6), each potential pa-
rameter depends on one distance-dependent function, denoted
Ei

0(ρ), V i
0 (ρ), and Ki

0(ρ), respectively. These functions repre-
sent the NM behavior of the atom in different lattices, having
the expressions:

Ei
0(ρ) = ε0,0 + ε0,1

∑
j �=i

ω0(ρi j )

V i
0 (ρ) = ν0,0 + ν0,1

∑
j �=i

ω0(ρi j )

Ki
0(ρ) = κ0,0 + κ0,1

∑
j �=i

ω0(ρi j ). (7)

The function ω0(ρi j ) is understood as the classical in-
teratomic distance-dependent function in the EAM or other
classical approaches for interatomic potentials. Note that the
same function is used for the three potential parameters. The
justification for the use of a common function for the three
parameters will be introduced in Sec. IV B, where the DFT
energies calculated will be interpreted in the scope of the
GUES.

Additionally, the magnetic influence on the potential pa-
rameters is related to two different types of functions. The
functions �E (Mi ), �V (Mi ), and �K (Mi ) are only dependent
on the magnetic moment of the atom i and independent of
the magnetic configuration of the lattice. The influence of the
magnetic configuration of the lattice is introduced by means
of the functions

∑
j �=i ωM (ρi j )�(Mi, Mj ), where the function

� represents correspondingly �E , �V , and �K . The magnetic
influence of the lattice on an atom i is decoupled into pair
contributions between atoms j (in the lattice) and atom i,
in the form of ωM (ρi j )�(Mi, Mj ). In this way, the magnetic
influence of atom j on i decreases with the distance between
both, thanks to the distance-dependent function ωM (ρi j ). The
magnetically dependent functions �E (Mi, Mj ), �V (Mi, Mj ),
and �K (Mi, Mj ) are then defined by means of the magnetic
moments Mi and Mj of both atoms. Like in the case of
the ω0(ρi j ) function, a unique expression of the distance-
dependent function ωM (ρi j ) is used for the three parameters,
which will be justified in Sec. IV B. The analysis performed
in that section will pave the way to define and predict ω0, ωM

distance-dependent functions, and �, � magnetically depen-
dent functions. Note that all �, � functions equal 0 when the
magnetic moment is 0, leaving in this way the NM description
only to Ei

0(ρ), V i
0 (ρ), and Ki

0(ρ).

This proposed formulation is consistent with the
Heisenberg-Landau Hamiltonian used for magnetic cluster
expansion simulations [28], where the Ei

0(ρ), V i
0 (ρ), and

Ki
0(ρ) parameters are related to the NM cluster expansion

coefficients, the �E (Mi ), �V (Mi ), and �K (Mi ) magnetically
dependent functions correspond to the Landau coefficients
for the magnetic self-energy terms, while �E (Mi, Mj ),
�E (Mi, Mj ), and �E (Mi, Mj ), scaled by ωM (ρi j ), represent
the lattice magnetic configuration described by the
interlattice-site Heisenberg magnetic interaction parameters.
Because of the analysis performed below in Sec. IV B, these
functions are approximated using polynomial expressions of
the magnetic moments. This is also in line with the defined
magnetic dependence proposed in the Heisenberg-Landau
Hamiltonian.

For the proposed formulation, the derivation of the equa-
tions for molecular static simulations has been carried out.
To lighten the mathematical expressions and without loss
of generality, we will avoid the explicit expression of each
dependence in the functions, adopting the notation Ei

g ≡
Ei

g(ρ, M), V i
g ≡ V i

g (ρ, M), and Ki
g ≡ Ki

g(ρ, M) as well as
for the distance-dependent functions ω0 ≡ ω0(ρi j ) and ωM ≡
ωM (ρi j ) and the magnetically dependent functions � ≡
�(Mi ) and � ≡ �(Mi, Mj ). Additionally, let ξi j ≡ xi j , yi j , or
zi j . With this, the derivatives of the energy with respect to the
atomic coordinates, magnetic moment, and volume read

∂Ei

∂ξi j
= ∂Ei

∂ρi j

∂ρi j

∂ξi j
= exp

(
−V − V i

g

Ki
g

){
∂Ei

g

∂ρi j

(
1 + V − V i

g

Ki
g

)

+ ∂Ki
g

∂ρi j

[
Ei

g

Ki
g

(
V − V i

g

Ki
g

)2]
+ ∂V i

g

∂ρi j

E i
g

(
V − V i

g

)
Ki

g
2

}
3ξi j

ri j

V

∂Ei

∂Mi
= Ei

Eg

∂Ei
g

∂Mi
+

[
E − Ei

gexp

(
−V − V i

g

Ki
g

)]

×
(

∂V i
g

∂Mi
+ ∂Ki

g

∂Mi

V − V i
g

Ki
g

)
1

Ki
g

∂Ei

∂V
=

[
Ei

gexp

(
−V − V i

g

Ki
g

)
− E

]
1

Ki
g

, (8)

where the explicit expression of the variation of Ei
g, V i

g , and
Ki

g with respect to ρi j and Mi as well as the derivative ρi j

with respect to the atomic coordinates are needed. This can
be easily calculated from Eqs. (6) and (7) as

∂Ei
g

∂ρi j
= ε0,2

∑
j �=i

dω0

dρi j
+

∑
j �=i

dωM

dρi j
�E

∂V i
g

∂ρi j
= ν0,2

∑
j �=i

dω0

dρi j
+

∑
j �=i

dωM

dρi j
�V

∂Ki
g

∂ρi j
= κ0,2

∑
j �=i

dω0

dρi j
+

∑
j �=i

dωM

dρi j
�K

∂Ei
g

∂Mi
= d�E

dMi
+

∑
j �=i

ωM
∂�E

∂Mi
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∂V i
g

∂Mi
= d�V

dMi
+

∑
j �=i

ωM
∂�V

∂Mi

∂Ki
g

∂Mi
= d�K

dMi
+

∑
j �=i

ωM
∂�K

∂Mi

∂ρi j

∂ξi j
= 3ξi j

ri j

V
. (9)

Equation (5) together with Eqs. (6) and (7) represent the
MIP presented here. This formulation is drawn from the anal-
ysis performed in the numerically fitted functions Ei

g(ρ, M),
V i

g (ρ, M), and Ki
g(ρ, M) from the DFT simulations. After the

initial fitting, an analysis of the dependence of these functions
with respect to ρ and M allowed formulating Eqs. (6) and
(7). A detailed analysis of these parameters and how these
equations are proposed will be shown in Sec. IV. The study of
their behavior with respect to different lattices and different
magnetic moments has been crucial in the understanding of
the mathematical expressions needed to describe them. The
DFT calculations are presented in Sec. III, and the correspond-
ing analysis is shown in Sec. IV B.

Additionally, Eqs. (8) and (9) represent the equation of
motion of the MIP, where the motion is understood not only
in the atomic coordinates but also in the magnetic moments.
It is obvious that the speed at which the atomic coordinates
and the magnetic moments vary can be different since the
magnetic moment is related to the electrons of the moving
atoms, working in this way at different length and time scales.
Nevertheless, it is out of the scope of this paper to analyze
properly the variational speed and scale of each parameter.

III. DATABASE AND DFT CALCULATIONS

The interatomic potential for Fe was parametrized based
on the DFT calculations, which were performed using the
Vienna Ab initio Simulation Package (VASP) [71,72] using
the projector augmented-wave (PAW) method [73] and the
Perdew-Burke-Ernzerhof generalized gradient functional [74]
with collinear spin polarization. The core configuration for
the Fe PAW potential used in this paper was [Ar]3d74s1.
The plane-wave cutoff energy used in the calculations was
400 eV. Total energies were calculated using a �-centered
Monkhorst-Pack mesh [75] of k-points in the Brillouin zone,
with the k-mesh spacing of 0.16 Å−1, which corresponds to
14 × 14 × 14 k-point meshes for a two-atom BCC cell with
a lattice parameter equal to 2.831 Å. To analyze the conver-
gence of the DFT calculations, additional calculations have
been performed for the k-mesh spacing of 0.11 Å−1, which
corresponds to 20 × 20 × 20 k-point meshes for the same
two-atom BCC cell. These calculations, which are more time
consuming, do not offer substantial improvement of the accu-
racy with respect to those performed with the mesh spacing of
0.16 Å−1. The root-mean-square error (RMSE) between both
datasets is 6.8 × 10−4 eV, and the maximum error between
them is 4 × 10−3 eV. Additionally, no correlation has been
found between the magnetic moment nor the volume with
the energy differences. We conclude that the k-mesh spacing
that refers to 14 × 14 × 14 k-point mesh for a two-atom BCC

cell is accurate enough to represent the energies in the dataset
considered.

The database, which was used for the fitting of potential,
consisted of DFT results performed when deforming two-
atom structures with the positions of the atoms in a vertex
and in the center of a rectangular cuboid, which corresponds
to the relative positions (0,0,0) and (0.5,0.5,0.5) of the cubic
cell considered, and different c/a and b/a ratios and volumes,
where a, b, and c are the three lattice magnitudes of the cor-
responding body-centered orthorhombic structure. Each DFT
calculation was performed with a fixed shape and volume.
Eight different values of volume V were considered from 9.25
to 12.75 Å3/atom with an interval equal to 0.5 Å3/atom. For
each volume, 15 different values of c/a and b/a ratios were
considered, namely: 0.7, 0.8, 0.9, 0.95, 1, 1.05, 1.1, 1.207,
1.3140, 1.3640,

√
2, 1.4640, 1.5140, 1.6, and 1.7. To not

repeat calculations for structures, which are equal from the
symmetry point of view, we used an assumption that the b/a
ratio is bigger or equal to the c/a ratio. In total, 960 different
structures were considered. For each of them, the calculations
were performed for 10 different values of magnetic moment
magnitudes M of atoms for the FM configuration, namely: 0,
0.5, 1, 1.5, 1.75, 2, 2.25, 2.5, 2.75, and 3.25 μB as well as for
the magnetic moments optimized using self-consistent DFT
calculations. The DFT calculations for AFM configurations
with a constrained magnitude of magnetic moments were
performed by adding a penalty contribution to the Hamilto-
nian, which is constructed in such a way that the total energy
increases when there is a difference between the desired
magnetic moment and the computed one. This penalty con-
tribution could be avoided by using recent approaches based
on the PAW method [76], although these are not currently
implemented in VASP. The Wigner-Seitz radii in our calcula-
tions were chosen such that the overlap between the spheres
is minimized. Since the computed magnitudes of magnetic
moments in the AFM configurations were different to the
desired ones, the total energies for the desired magnitudes
of magnetic moments were interpolated from the computed
values and corresponded then to the same magnetic moment
magnitudes (0, 0.5, 1, 1.5, 1.75, 2, 2.25, 2.5, 2.75, and 3.25
μB) as in the FM configuration.

This has produced 18 240 different (〈c/a, b/a〉, V, M )
configurations, divided into 960 NM, 8640 FM, and 8640
AFM configurations. With this database structure, we cover
a wide range of possible deformations of the 〈a, b, c〉 cubic
lattice, where the two most relevant cubic structures are in-
cluded in the cases 〈c/a = 1, b/a = 1〉 for BCC and 〈c/a =
1, b/a = √

2〉 for FCC. A visualization of the calculations
performed can be seen in Fig. 1 for both FM [Figs. 1(a)–1(c)]
and AFM [in Figs. 1(d) and 1(e)] configurations, where the
local ground state behavior for each lattice is displayed as a
function of the c/a ratio (for the case b/a = 1) and the atomic
volume. Figure 1(c) shows some representatives cases, with
c/a = 0.8, 1, 1.2,

√
2, and 1.6, for the energy (blue lines) in

FM magnetic configuration, including the magnetic moment
magnitude (orange lines) at which the local ground state is
reached. Figure 1(f) shows the corresponding analysis in the
AFM configuration also for the cases with c/a = 0.8, 1, 1.2,√

2, and 1.6. In these figures, the configuration with minimum
energy corresponds to FM BCC (at b/a = 1). Additionally,
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FIG. 1. (a) Ground state energy calculated by density functional theory (DFT) for ferromagnetic (FM) configuration and (b) corresponding
magnetic moment, both as a function of atomic volume and c/a (with b/a = 1). The corresponding curves for the energy and magnetic
moments are displayed in (c) on representative cases of c/a ratio (c/a = 0.8, 1, 1.2,

√
2, and 1.6), where the blue lines represent the energy in

FM configuration and the orange lines the corresponding magnetic moment. (d) Ground state energy calculated by DFT for antiferromagnetic
(AFM) configuration and (e) corresponding magnetic moment, both as a function of atomic volume and c/a (with b/a = 1). The corresponding
curves for the energy and magnetic moments are displayed in (f) on representative cases of c/a ratio (c/a = 0.8, 1, 1.2,

√
2, and 1.6), where the

blue lines represent the energy in AFM configuration and the orange lines the corresponding magnetic moment. NM stands for nonmagnetic.
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the figure shows the regions where the NM configuration
provides the local ground state [indicated as NM in Figs. 1(b)
and 1(e)], which occurs for low atomic volumes and c/a
ratios in the range of 1.2–1.7 for the FM case (around the
FCC lattice), while the AFM case covers both BCC and FCC
(with c/a ratios between 0.9 and 1.5). Next to these regions,
low-spin (LS) magnetic configuration is observed covering a
reasonable large variation of c/a ratios and atomic volumes.
These can be observed in light and dark blue colors in both
Figs. 1(b) and 1(e) (corresponding to ∼0.25–1 μB). The FCC
crystal lattice shows therefore two minima in its ground state
when varying the volume in the FM configuration, one at
the LS state and another in the high-spin (HS) state. The
minimum of these two minima occurs nevertheless in the HS
state. It is worth noting that the magnetic moment of the LS
is ∼1 μB, while a dramatic increase occurs for the HS state,
where the values of the magnetic moment at the ground state
vary between 2 and 3 μB, as observed in Fig. 1(c). Similarly,
the AFM configuration shows also a LS state nearby the NM
regions [Fig. 1(e)] with values of the magnetic moment even
lower (∼0.5 μB). Nevertheless, this does not produce a two
minima profile in the ground state energy, as occurs in the FM
configuration. This can be seen in Sec. II of the Supplemental
Material [77] which contains deeper insight into the behavior
of the DFT calculations for other 〈c/a, b/a〉 ratios for both
magnetic configurations along with the corresponding mag-
netic behavior in some specific cases.

IV. DEVELOPMENT OF THE MIP FOR MAGNETIC Fe

A. Validation of the GUES

The proposed GUES in Eq. (5) must be examined be-
fore its use to describe the energy generated from DFT in
a more general way. From the DFT binding energy cal-
culated data (EDFT), the values of the potential parameters
Ei

g(ρ, M), V i
g (ρ, M), and Ki

g(ρ, M) from Eq.(5) are fitted for
each crystal structure and magnitude of the magnetic moment.
In the database employed, the atomic coordinates are fixed
for each structure, and these structures can be described via
the 〈b/a, c/a〉 ratios. Therefore, in this section, the variable
corresponding to the relative interatomic distances per unit
volume ρ will be expressed by means of 〈b/a, c/a〉.

As an initial illustrative case, the BCC and FCC crystal
lattices are first considered in their respective NM and local
ground state from the database. These correspond to M =
2.25 μB (for BCC) and M = 2.5 μB (for FCC) in the FM
configuration, and M = 1 μB (for BCC) and M = 1.5 μB (for
FCC) in the AFM configuration. The results can be seen in
Fig. 2(a), where the DFT calculated data for these cases is dis-
played. The GUES is plotted with a solid line using the fitted
values for Ei

g(ρ, M), V i
g (ρ, M), and Ki

g(ρ, M), and their values
are indicated in the figure legend. The GUES captures the
energy variation by means of the volume for each of the cases.
These DFT calculated energies have their counterpart values
on the function F (V ∗) of Eq. (1), at scaling by Ei

g(ρ, M) and
Eq. (2). Their behavior can be seen in Fig. 2(b) showing a
perfect fitting with F (V ∗).

This analysis can be extended to all DFT calculated ener-
gies and compare the results in a single plot using the scaled

energy value to F (V ∗) for each point. The 18 240 different en-
ergies calculated are displayed in Fig. 2(c). Without exception,
every (〈b/a, c/a〉, M ) configuration varies its energy as a
function of the volume, obeying the GUES in Eq. (5) for both
magnetic configurations. Note that, for each (〈b/a, c/a〉, M )
configuration, a different value for Ei

g(ρ, M), V i
g (ρ, M), and

Ki
g(ρ, M) is found. In this figure, we have added the GUES

corresponding calculation by using the Wigner-Seitz radius,
as proposed initially in the UES, to be compared with the
GUES prediction by using the volume. The GUES in Eq. (1)
is plotted (shifted to facilitate the visualization) along with
the calculated energies by the GUES (both with Wigner-Seitz
radius and volume). Finally, the prediction of the energy, by
using Eq. (5) and the corresponding fitted GUES parameters
values for each (〈b/a, c/a〉, M ) configuration, can be seen in
Fig. 2(d) compared with the DFT calculated energies, showing
an excellent fitting. For comparison purposes, the GUES using
the Wigner-Seitz radius instead of the volume is also added.
The results obtained show that both approaches provide a
similar energy calculation.

The RMSE considering the 18 240 computed energies (at
different crystal configurations, volumes, and magnetic con-
figurations and moments) is 3.9 × 10−3 eV if the volume is
used in the GUES, while the RMSE is 1.3 × 10−3 eV if the
Wigner-Seitz radius is employed. Even though the Wigner-
Seitz radius seems to provide a lower error, the difference is
not significant, while the advantages of using the volume in
the formulation incline the selection toward the volume. With
this choice, the bulk modulus (it is explained below) is directly
related to the GUES parameters, and the equation of motion
permits us to include volume variations easily. We conclude
that the proposed GUES can be used to describe the energy
variation with respect to the volume for the DFT data in FM
and AFM iron.

Based on these results, and as a concluding remark in this
section, it is worth noting that the bulk modulus at the local
ground state Bi

g(ρ, M) can be easily derived from the GUES
and related to the potential parameters Ei

g(ρ, M), V i
g (ρ, M),

and Ki
g(ρ, M). By using Eq. (5) in the definition of bulk

modulus as expressed in the following equation:

P(V ) = −dE (V )

dV
and B(V ) = −V

dP(V )

dV
, (10)

where P is the pressure, the evaluation of the expression
obtained at the local ground state volume provides the local
ground state bulk modulus:

Bi
g(ρ, M) = V

⎧⎨
⎩Ei(V,ρ, M)

Ki
g(ρ, M) 2

−2
Ei

g(ρ, M) exp
[
−V −V i

g (ρ,M)
Ki

g(ρ,M)

]
Ki

g(ρ, M) 2

⎫⎬
⎭

∣∣∣∣∣∣
V =V i

g (ρ)

= −Ei
g(ρ, M) V i

g (ρ, M)

Ki
g(ρ, M)2 . (11)

Therefore, the energy of a solid can be then calculated
at any volume by knowing the local ground state energy
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FIG. 2. (a) Energy variation with respect to the volume for the illustrative cases body-centered cubic (BCC) and face-centered cubic (FCC)
crystal structures at different magnetic moments for the ferromagnetic (FM) and antiferromagnetic (AFM) configurations and corresponding
energy function [Eq. (5)] at employing the fitted Ei

g(ρ, M) (in units of eV), V i
g (ρ, M) and Ki

g(ρ, M) (both in units of Å3) for each case. (b)
Corresponding scaled energy vs function F (V ∗) of Eq. (1). (c) Scaled energy vs function F (V ∗) of Eq. (1) for all 18 240 density functional
theory (DFT) calculated energies for FM and AFM cases. (d) Comparison between the 18 240 DFT calculated energies and the corresponding
predicted energy using Eq. (5).

Ei
0(ρ, M), its corresponding volume V i

0 (ρ, M), and bulk mod-
ulus Bi

g(ρ, M).

B. Analysis of the Ei
g(ρ, M), V i

g(ρ, M), and Ki
g(ρ, M)

parameters

Once the validity of the GUES has been checked, the
existence of a set of parameters Ei

g(ρ, M), V i
g (ρ, M), and

Ki
g(ρ, M) that describes the energy of the system for each

lattice and magnetic moment is proved. Now these parameters
must be examined and related to the expressions in Eqs. (6)
and (7) so that they are fully explained.

The calculations without magnetic contributions (M = 0)
are firstly analyzed. This allows the analysis of the Ei

0(ρ),
V i

0 (ρ), and Ki
0(ρ) in Eq. (7). In the scope of the crystal con-

figurations considered, all atoms are identical for a certain
〈b/a, c/a〉 lattice, and consequently, they will have the same
relative distances ρi j . Therefore, Ei

0(ρ), V i
0 (ρ), and Ki

0(ρ)
will have the same value for all atoms i in the lattice, and
they can be analyzed as a function of 〈b/a, c/a〉. In this
context, ρ represents 〈b/a, c/a〉 and allows considering the
energy Ei

0(b/a, c/a) ≡ Ei
0(ρ), volume V i

0 (b/a, c/a) ≡ V i
0 (ρ),

and scaled volume Ki
0(b/a, c/a) ≡ Ki

0(ρ) as functional forms
of 〈b/a, c/a〉. Nevertheless, for the sake of clarity and to keep

a homogeneous notation within this paper, we will keep the
notation ρ to describe the interatomic distance dependence of
the functions. Similarly, in the DFT database simulations, for
each simulation, all atoms have the same magnitude of the
magnetic moment. Therefore, in this section, we will denote
M = Mi = Mj ( j = 1, . . . , N with j �= i).

The fitted values of Ei
0(ρ), V i

0 (ρ), and Ki
0(ρ) from DFT

after numerical optimization at each lattice are displayed in
Fig. 3. This figure shows a surprising result since the be-
haviors of Ei

0(ρ), V i
0 (ρ), and Ki

0(ρ) are almost identical with
minor differences, which arise from the numerical fitting.
The ground state energy, its equilibrium volume, and corre-
sponding volume scale correlate linearly. When modifying the
crystal lattice, the change in local ground state energy follows
an equivalent change in equilibrium volume and scaling vol-
ume. This result is of paramount importance since it suggests
that there is a common and unique function generated by
the atomic positions and its coordinates from which a direct
behavior of the energy, volume, and scaling volume can be
derived. Importantly, this motivates the definition of the term
ω0(ρi j ) proposed in Eq. (7) which is now fully justified. The
evaluation of ω0(ρi j ) for different lattices will make possible
the calculation of Ei

0(ρ), V i
0 (ρ), and Ki

0(ρ) and, therefore, the
prediction of the energy variation with respect to the volume
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FIG. 3. Behavior of the parameters (a) Ei
0(ρ), (b) V i

0 (ρ), and (c)
Ki

0(ρ) as functions of c/a and b/a.

using Eq. (5) for NM configurations. The definition of this
function will be shown in Sec. IV C.

The behavior of the parameters Ei
g(ρ, M), V i

g (ρ, M),
and Ki

g(ρ, M) with M �= 0 is now considered for both
FM and AFM configurations. Like in the previous case

of Ei
0(ρ), V i

0 (ρ), and Ki
0(ρ), all atoms in a certain lattice

(〈b/a, c/a〉, M ) with the same magnetic configuration are
indistinguishable, which makes Mi = Mj , where the subscript
j �= i represents all neighbor atoms of atom i. This permits the
simplification of Eq. (6) into the following expression, which
is only valid if all atoms have the same magnetic configuration
and moment magnitude:

Ei
g(ρ, M) = Ei

0(ρ) + �E (Mi ) +
∑
j �=i

ωM (ρi j )
∑
j �=i

�E (Mi, Mi )

V i
g (ρ, M) = V i

0 (ρ) + �V (Mi ) +
∑
j �=i

ωM (ρi j )
∑
j �=i

�V (Mi, Mi )

Ki
g(ρ, M) = Ki

0(ρ)+ �K (Mi )+
∑
j �=i

ωM (ρi j )
∑
j �=i

�K (Mi, Mi ).

(12)

Note that the magnetically dependent functions � depend
in this expression only on Mi. This allows the analysis of the
ωM (ρi j ) function isolated from �, which will show a certain
value for each of the b/a and c/a ratios, irrespective of the
magnitude of the magnetic moment of the lattice. Similarly,
the magnetically dependent functions � can be analyzed irre-
spective of the lattice and the b/a and c/a ratios. The intention
of this simplification is to provide the tool for analyzing both
ωM and � functions separately, always with the focus on using
Eq. (6) for MD simulations.

Firstly, the numerically fitted Ei
g(ρ, M), V i

g (ρ, M), and
Ki

g(ρ, M) using Eq. (5) from DFT are analyzed by means of
the magnetic moment. Their variation with M can be seen
in Fig. 4, where the colors displayed for different lines fit to
the Ei

0(ρ), V i
0 (ρ), and Ki

0(ρ) colors, respectively, as shown in
Fig. 3.

From the figure, each crystal lattice 〈b/a, c/a〉 behaves
differently with respect to the magnetic moment, although
they have similarities. In the case of Ei

g(ρ, M), all lattices have
a minimum value at magnetic moments in the range of 2–3 μB

for both magnetic configurations, while V i
g (ρ, M) increases

monotonically with the magnetic moment. On the other hand,
Ki

g(ρ, M) displays a very different behavior for the FM and
AFM configurations.

In any case, their behavior, far from being random or
chaotic, follows clear functional forms. Such mathematical
expressions are unknown, but the fitted data can be used to
approximate the functions by means of polynomials in the
form of a Taylor expansion series. The following expressions
are considered:

Ei
g(ρ, M) = Ei

0(ρ) + Ei
2(ρ)M2 + Ei

4(ρ)M4

+ Ei
6(ρ)M6 + O(M8)

V i
g (ρ, M) = V i

0 (ρ) + V i
2 (ρ)M2 + V i

4 (ρ)M4

+ V i
6 (ρ)M6 + O(M8)

V i
g (ρ, M) = Ki

0(ρ) + Ki
2(ρ)M2 + Ki

4(ρ)M4

+ Ki
6(ρ)M6 + O(M8), (13)

where additional terms Ei
n(ρ)Mn, V (ρ)Mn, and Ki

n(ρ)Mn,
with n = 8, 10, 12 . . . can be added for a more accurate fitting
of the curves shown in Fig. 4.
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FIG. 4. Evolution with respect to the magnitude of the magnetic moment M of fitted values of (a) Ei
g(ρ, M) ferromagnetic (FM), (b)

V i
g (ρ, M) FM, (c) Ki

g(ρ, M) FM, (d) Ei
g(ρ, M) antiferromagnetic (AFM), (e) V i

g (ρ, M) AFM, and (f) Ki
g(ρ, M) AFM. The colors correspond to

the Ei
0(ρ), V i

0 (ρ), and Ki
0(ρ) contour values, respectively, as shown in Fig. 3. The face-centered cubic (FCC) and body-centered cubic (BCC)

corresponding curves are marked and indicated in each figure.

The reason behind the selection of polynomials with
even exponents is because the mathematical expression of
Ei

g(ρ, M), V i
g (ρ, M), and V i

g (ρ, M) must be even functions
to fulfill the Ginzburg-Landau approximation [51], which
describes the energy dependence of the magnetic moment
as an even polynomial. For a description of the relationship
between the GUES and the Ginzburg-Landau approximation,
see Sec. I in the Supplemental Material [77], where the
behavior of both the FM and AFM cases is presented for
different polynomial orders. The conclusion is that, only in
certain cases (mostly close to BCC FM), order 4 is sufficient
to describe the energy variation by means of the magnetic
moment, as proposed by the Ginzburg-Landau approximation.
Most 〈b/a, c/a〉 crystal lattices need from the higher order
even polynomials, and importantly, this applies to both FM
and AFM configurations. The first consequence of this anal-
ysis is that the AFM behavior is not described by odd and
even polynomials, and only even polynomials are needed. The
second consequence is that a common formulation can be pro-
posed for both magnetic configurations to cover all possible
lattices.

The procedure to build the polynomials of Eq. (13) is
simple and involves the least square method to fit the Ei

n(ρ),
V i

n (ρ), and Ki
n(ρ) terms (n = 2, 4, 6, 8, . . .) to the curves

displayed in Fig. 4 corresponding to the numerically fitted
Ei

g(ρ, M), V i
g (ρ, M), and Ki

g(ρ, M). The results are shown in
Fig. 5 for the FM configuration and Fig. 6 for the AFM con-
figuration, where the parameters are displayed as a function of
the 〈b/a, c/a〉 ratios.

Like in the case of Ei
0(ρ), V i

0 (ρ), and Ki
0(ρ), there is

an unexpected similar behavior between all Ei
n(ρ), V i

n (ρ),
and Ki

n(ρ) parameters (n = 2, 4, 6, . . .). They behave indeed
different to the Ei

0(ρ), V i
0 (ρ), and Ki

0(ρ) parameters, but a
common shape can be seen for the Ei

n(ρ), V i
n (ρ), and Ki

n(ρ) in
the FM configuration, as well as a common shape for the cor-
responding parameters in the AFM configuration, with small
variations attributed to the fitting inaccuracies, around the
BCC structure and in the scaling parameters Ki

n(ρ). Extreme
values occur for the BCC case 〈b/a = 1, c/a = 1〉 and for
the FCC case 〈b/a = 1, c/a = √

2〉 (which for the symmetry
of 〈a, b, c〉 cell parameters, they are equivalent to 〈b/a =√

2, c/a = 1〉 and 〈b/a =
√

2
2 , c/a =

√
2

2 〉). The sequence is
nevertheless inverted as the order increases. In other words,
the maximum for Ei

2(ρ) is minimum in Ei
4(ρ), and maximum

again in Ei
6(ρ), and inversely. The same effect happens for

V i
2 (ρ), V i

4 (ρ), and V i
6 (ρ) as well as for Ki

2(ρ), Ki
4(ρ), and

Ki
6(ρ). This behavior resembles the relationships of the co-

efficients of a Taylor expansion series, suggesting that closed
expressions for Ei

g(ρ, M ), V i
g (ρ, M ), and Ki

g(ρ, M ) functions
exist. Although these closed expressions remain unknown,
this opens the possibility to reduce dramatically the com-
plexity of predicting such functions (and thus the energy of
cubic structures at any magnetic moment) since, in the same
way as proposed for the NM contribution, a unique distance-
dependent function ωFM

M (ρi j ) for the FM configuration and a
unique distance-dependent function ωAFM

M (ρi j ) for the AFM
configuration can be proposed to reproduce all Ei

n(ρ), V i
n (ρ),
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FIG. 5. Behavior of the fitted parameters (a) Ei
2(ρ), (b) Ei

4(ρ), (c) Ei
6(ρ), (d) V i

2 (ρ), (e) V i
4 (ρ), (f) V i

6 (ρ), (g) Ki
2(ρ), (h) Ki

4(ρ), and (i) Ki
6(ρ)

with respect to 〈b/a, c/a〉 for the ferromagnetic configuration.

and Ki
n(ρ) behaviors. For the sake of clarity and to propose

a unified notation, we will use ωM (ρi j ) to denote correspond-
ingly ωFM

M (ρi j ) or ωAFM
M (ρi j ). The proposed expressions for

Ei
g(ρ, M ), V i

g (ρ, M ), and Ki
g(ρ, M ) then read

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ei
n(ρ) = εn,0 + εn,1

∑
j �=i

ωM (ρi j )

V i
n (ρ) = υn,0 + υn,1

∑
j �=i

ωM (ρi j )

Ki
n(ρ) = κ2,0 + κ2,1

∑
j �=i

ωM (ρi j )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

for n = 2, 4, 6, . . . ,

(14)
where the parameters εn,1 (n = 2, 4, 6, 8, . . .) alternate signs
to fit with the behavior observed in Fig. 5 as well as the υn,1

and κn,1 [except in the case of AFM Ki
n(ρ)].

The consequence of this observed behavior is of paramount
importance and motivates the existence of the functions �E ,
�V , �K , �E , �V , and �K as they have been proposed in
Eq. (6). When applying Eq. (14) into Eq. (13), the terms can
be easily rearranged and form the following expressions:

�E (M ) = ε2,0M2 + ε4,0M4 + ε6,0M6 + . . .

�V (M ) = ν2,0M2 + ν4,0M4 + ν6,0M6 + . . .

�K (M ) = κ2,0M2 + κ4,0M4 + κ6,0M6 + . . .

ψE (M ) = ε2,1 M2 + ε4,1 M4 + ε6,1 M6 + . . .

ψV (M ) = ν2,1 M2 + ν4,1 M4 + ν6,1 M6 + . . .

ψK (M ) = κ2,1 M2 + κ4,1 M4 + κ6,1 M6 + . . . . (15)

The values of εn,0, εn,1, νn,0, νn,1, κn,0, and κn,1 (n = 2,4,6,
8 …) fitted from the procedure described allow the approx-
imation of the functions �E , �V , �K , ψE , ψV , and ψK .
These must be understood as unknown functional forms of the
magnetic moments, which are approximated via the numerical
evaluation of their Taylor expansion coefficients. The predic-
tion of the DFT calculated energy by using this approximation
is presented in the following section, where these magneti-
cally dependent functions are introduced.

C. Fitted distance and magnetically dependent functions

To display the common functions that describe Ei
0(ρ, M),

V i
0 (ρ, M), and Ki

0(ρ, M) and Ei
g(ρ, M), V i

g (ρ, M), and
Ki

g(ρ, M) for both FM and AFM configurations, we define the
following functions, which depend only on the crystal lattice
via 〈b/a, c/a〉:

�0(ρ) =
∑
j �=i

ω0(ρi j )

�FM
M (ρ) =

∑
j �=i

ωFM
M (ρi j )

�AFM
M (ρ) =

∑
j �=i

ωAFM
M (ρi j ), (16)
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FIG. 6. Behavior of the fitted parameters (a) Ei
2(ρ), (b) Ei

4(ρ), (c) Ei
6(ρ), (d) V i

2 (ρ), (e) V i
4 (ρ), (f) V i

6 (ρ), (g) Ki
2(ρ), (h) Ki

4(ρ), and (i) Ki
6(ρ)

with respect to 〈b/a, c/a〉 for the antiferromagnetic configuration.

where the notation ρ represents the sequence of interatomic
distances for a certain 〈b/a, c/a〉 lattice.

The fitted parameters for Eqs. (7) and (15) can be seen in
Table I for both magnetic configurations, where order 8 of the
series expansion has been selected since it provides a good
fitting to the DFT calculated energy.

The proposed �0(ρ), �FM
M (ρ), and �AFM

M (ρ) functions can
be seen in Figs. 7(a)–7(c), respectively. The functions are
selected to display the same behavior seen in Figs. 3, 5, and 6,
respectively. It is worth noting that the range of values selected
for these functions is arbitrary since the parameters ε0,0, ε0,1

ν0,0, ν0,1 κ0,0, and κ0,1 will be selected consequently to obtain
Ei

0(ρ), V i
0 (ρ), and Ki

0(ρ). Similarly, the parameters εn,0, εn,1,
υn,0, υn,1, κn,0, and κn,1 for n = 2, 4, 6, 8, . . . are fitted to
provide �E (Mi ), �V (Mi ), �K (Mi), �E (Mi, Mj ), �V (Mi, Mj ),
and �K (Mi, Mj ) functions. These magnetically dependent
functions can be seen in Fig. 7(d) for the FM configuration
and Fig. 7(e) for the AFM configuration. In these figures, a
double y axis is used to display the magnetic functions, where
the �V (Mi ), �K (Mi ), �V (Mi, Mj ), and �K (Mi, Mj ) functions
correspond to the left axis, while �E (Mi ) and �E (Mi, Mj )
correspond to the right axis. As it happens with the distance-
dependent ωFM

M and ωAFM
M functions, which provide �FM

M and
�AFM

M , the magnetic functions are different in the FM and
AFM configuration. It is worth noting that the (arbitrary)
ranges of the functions �FM

M and �AFM
M are selected to have

similar � and � functions.

Finally, the use of all these functions in Eq. (5) and (6)
provides the energy predictions, which are compared with the
DFT corresponding ones in Fig. 7(f), where the RMSE of the
fitting is 2 × 10−2 eV for the FM case and 9 × 10−2 eV for
the AFM case. The errors are indeed larger than the errors
obtained when numerically fitting the Eg, Vg, and Kg parame-
ters, as shown in Fig. 2(d). The difference is especially larger
in the AFM data. On one hand, this can be attributed to the
larger complexity of the magnetic configuration, where spins
alternate signs. On the other hand, the computation of the
energies at the magnetic moment magnitudes (0, 0.5, 1, 1.5,
1.75, 2, 2.25, 2.5, 2.75, and 3.25 μB) in DFT are approxi-
mated. This was described in Sec. III, where a constrained
magnitude of the magnetic moments was performed by adding
a penalty contribution to the Hamiltonian, providing magni-
tude moments in the AFM configuration close but not exactly
to the targeted ones. The interpolation used is needed to
calculate the variation of the Eg, Vg, and Kg parameters as a
function of the magnetic moment in a consistent manner as it
was done in the FM case. This procedure may affect the DFT
calculations and the corresponding distance- and magnetically
dependent functions obtained.

Despite these results, we conclude that the predictions are
well in line with the DFT calculations and that common func-
tions exist to provide accurate predictions of the FM and AFM
configurations by means of the proposed interatomic potential
formulation.
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TABLE I. Fitted parameters of Eqs. (7) and (15) for the FM and AFM configurations.

Function Parameter Value Parameter Value Parameter Value

Eq. (7) ε0,0 −5.055 (eV) υ0,0 10.171 (Å3) κ0,0 5.677 (Å3)

ε0,1 3.386 × 10−1 (eV) υ0,1 5.562 × 10−1 (Å3) κ0,1 −8.842 × 10−3 (Å3)

FM �E , �V , �K ε2,0 3.168 × 10−2(eV/μ2
B) υ2,0 4.569 × 10−1 (Å3/μ2

B) κ2,0 1.705 × 10−1 (Å3/μ2
B)

Eq. (15) ε4,0 −7.339 × 10−3 (eV/μ4
B) υ4,0 −6.619 × 10−2 (Å3/μ4

B) κ4,0 −2.838 × 10−2 (Å3/μ4
B)

ε6,0 −1.574 × 10−4 (eV/μ6
B) υ6,0 7.881 × 10−3 (Å3/μ6

B) κ6,0 3.829 × 10−3 (Å3/μ6
B)

ε8,0 7.965 × 10−5 (eV/μ8
B) υ8,0 −3.270 × 10−4 (Å3/μ8

B) κ8,0 −2.044 × 10−4 (Å3/μ8
B)

�E , �V , �K ε2,1 −2.762 × 10−1 (eV/μ2
B) υ2,1 −3.982 × 10−1 (Å3/μ2

B) κ2,1 3.836 × 10−2 (Å3/μ2
B)

Eq. (15) ε4,1 5.438 × 10−2 (eV/μ4
B) υ4,1 1.026 × 10−1 (Å3/μ4

B) κ4,1 −7.062 × 10−3 (Å3/μ4
B)

ε6,1 −4.478 × 10−3 (eV/μ6
B) υ6,1 −1.203 × 10−2 (Å3/μ6

B) κ6,1 4.287 × 10−4 (Å3/μ6
B)

ε8,1 1.367 × 10−4 (eV/μ8
B) υ8,1 5.016 × 10−4 (Å3/μ8

B) κ8,1 −6.796 × 10−6 (Å3/μ8
B)

AFM �E , �V , �K ε2,0 −9.419 × 10−3 (eV/μ2
B) υ2,0 2.763 × 10−1 (Å3/μ2

B) κ2,0 6.545 × 10−2 (Å3/μ2
B)

Eq. (15) ε4,0 9.212 × 10−3 (eV/μ4
B) υ4,0 −3.935 × 10−3 (Å3/μ4

B) κ4,0 −4.924 × 10−3 (Å3/μ4
B)

ε6,0 −9.630 × 10−4 (eV/μ6
B) υ6,0 4.055 × 10−4 (Å3/μ6

B) κ6,0 −6.294 × 10−4 (Å3/μ6
B)

ε8,0 6.852 × 10−5 (eV/μ8
B) υ8,0 5.321 × 10−6 (Å3/μ8

B) κ8,0 3.826 × 10−5 (Å3/μ8
B)

�E , �V , �K ε2,1 −1.905 × 10−1 (eV/μ2
B) υ2,1 −1.824 × 10−1 (Å3/μ2

B) κ2,1 1.248 × 10−1 (Å3/μ2
B)

Eq. (15) ε4,1 1.457 × 10−2 (eV/μ4
B) υ4,1 1.532 × 10−2 (Å3/μ4

B) κ4,1 −5.217 × 10−2 (Å3/μ4
B)

ε6,1 −6.354 × 10−4 (eV/μ6
B) υ6,1 −2.616 × 10−4 (Å3/μ6

B) κ6,1 6.791 × 10−3 (Å3/μ6
B)

ε8,1 6.161 × 10−5 (eV/μ8
B) υ8,1 3.162 × 10−7 (Å3/μ8

B) κ8,1 −3.333 × 10−4 (Å3/μ8
B)

D. MIP definition

In this subsection, the definition of the MIP for FM con-
figuration is presented. It is worth noting that the GUES, as
introduced in Sec. II, is the proposed formalism to describe
the energy of a system and has been validated in Sec. IV C,

where the ω0 and ωM distance-dependent functions are intro-
duced in Eq. (16) but not defined yet. Only the �0 and �M

functions in Eq. (16) (displayed in Fig. 7 for the FM and AFM
configurations) are defined so far, which are a consequence of
evaluating ω0 and ωM in a certain lattice with ideal positions

FIG. 7. (a) Functional form of �0, (b) functional form of �FM
M , (c) functional form of �AFM

M as a function of 〈 b
a , c

a 〉, (d) �E (M ), �E (M ),
�V (M ), �V (M ), �K (M ), and �K (M ) for the ferromagnetic (FM) configuration, (e) �E (M ), �E (M ), �V (M ), �V (M ), �K (M ), and �K (M )
for the antiferromagnetic (AFM) configuration, and (f) corresponding energy calculated by using ω0(ρ), ωM (ρ), �E (M), �E (M), �V (M),
�V (M), �K (M), and �K (M) into Eqs. (5), (7), and (12) for both FM and AFM configurations.
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(and therefore constant for all atoms in such lattice). For this
reason, the �0 and �M functions are unusable to perform MD
simulations, where the atoms move from ideal positions.

Consequently, atom-atom distance-dependent interaction
functions ω0 and ωM must be defined explicitly. Also impor-
tant to note, the �M has been seen to be different for the
FM and AFM configurations. Correspondingly, ωM is also
different for each magnetic configuration. For this reason, in
this paper, we have focused only on describing the FM case,
which represents the most relevant magnetic configuration in
Fe.

Concerning the development of the FM potential, special
attention must be paid to the definition of the magnetically
dependent functions. The �E (Mi ), �V (Mi ), and �K (Mi ) func-

tions correspond to the Landau-Ginsburg formulation for the
magnetic self-energy terms, while �E (Mi, Mj ), �E (Mi, Mj ),
and �E (Mi, Mj ), scaled by ωM (ρi j ), represent the lattice
magnetic configuration described by the intersite Heisenberg
magnetic interaction parameters. These latter ones involved
the magnetic moment of two different atoms Mi and Mj by
multiplication of their magnitudes Mi × Mj . In this paper, and
to be consistent with both the even polynomials introduced
in Eq. (13) for the � functions and the Heisenberg-Landau
Hamiltonian, the equivalent polynomial expansion can also be
applied for magnetic moment quantity

√
MiMj . Therefore, the

magnetic functions, expressed as a function of the magnetic
moments of two different atoms Mi and Mj , are now approxi-
mated by

�E (Mi ) = ε2,0Mi
2 + ε4,0Mi

4 + ε6,0Mi
6 + ε8,0Mi

8

�V (Mi ) = ν2,0Mi
2 + ν4,0Mi

4 + ν6,0Mi
6 + ν8,0Mi

8

�K (Mi ) = κ2,0Mi
2 + κ4,0Mi

4 + κ6,0Mi
6 + κ8,0Mi

8

�E (Mi, Mj ) = ε2,1 MiMj + ε4,1 (MiMj )
2 + ε6,1 (MiMj )

3 + ε8,1 (MiMj )
4

�V (Mi, Mj ) = ν2,1 MiMj + ν4,1 (MiMj )
2 + ν6,1 (MiMj )

3 + ν8,1 (MiMj )
4

�K (Mi, Mj ) = κ2,1 MiMj + κ4,1 (MiMj )
2 + κ6,1 (MiMj )

3 + κ8,1 (MiMj )
4. (17)

It is worth noting that order 8 in the polynomial expressions
of Mi, and equivalently order 4 for Mi × Mj , has been seen to
provide a good prediction of the magnetic influence in the FM
configuration using the proposed formulation. Higher poly-
nomials do not offer significant improvements in accuracy,
while order 6 (equivalent order 3 for Mi × Mj) or smaller
fails at predicting the energy behavior correctly. This is con-
sistent with the Heisenberg-Landau Hamiltonian formulation
proposed in Ref. [28] concerning the Landau coefficients for
the magnetic self-energy terms, which shows also order 8 in
its polynomial expansion but extends the polynomial order
defined in the interlattice-site Heisenberg magnetic interac-
tion parameters, which was defined to be a function only of
Mi × Mj .

Once the expressions for the FM interatomic potential
are defined, the fitted expressions are presented hereinafter.
Attractive-repulsive pairwise functions are considered for
ω0(ρi j ) and ωM (ρi j ). Most known interatomic potentials use
this type of function since they capture the nature of atomic
forces. Simple forms like the classical Lennard-Jones poten-
tials or Morse potential have close functions that describe
independently the attractive and repulsive forces. On the other
hand, the EAM methodology is based on density-dependent
potentials derived from DFT, where the atom is assumed to be
embedded in an electron cloud, originated by its surrounding
atoms. The repulsive term is described by means of a pair
potential on the distance between atoms, while the attrac-
tive term depends on a functional describing the energy of
embedding an atom in the bulk density. EAM being con-
sistent with the UES by Vinet et al. [56] and Rose et al.
[55] used here to describe the energy-volume relationship
[78,79], attractive-repulsive functions are used similarly to

describe the atom-atom distance interaction [80]. No simple
closed functions have been found to describe these attractive-
repulsive functions, and in this paper, a combination of several
Gaussian functions have been employed to build a function
capable of fitting all DFT data along the crystal structures
considered. The selection of Gaussians is not arbitrary since
they provide differentiability along with simplicity. A sum of
several Gaussians, ∼80, with their centers spaced 0.1 between
ρi j = 0 and 8, is used, with a standard deviation equal to 1,
where their height is optimized to obtain ω0(ρi j ) and ωM (ρi j ).
The proposed functions of ω0(ρi j ) and ωM (ρi j ) have been
fitting using a least squared method to approximate the �0

and �M functions defined in Figs. 7(a) and 7(b), respectively.
A visualization of the obtained functions is displayed in Fig. 8.

The magnetically dependent � and � functions have been
refitted from those proposed in Fig. 7(c) to maximize the
accuracy of the MIP once ω0(ρi j ) and ωM (ρi j ) are defined.
The predicted �0 and �M using the fitted ω0(ρi j ) and ωM (ρi j )
functions have minor differences with respect to the original
�0 and �M functions, and consequently, the magnetically
dependent functions are very similar to those originally pro-
posed. Their fitted behavior is displayed in Fig. 8(b), where
the � functions are expressed via the equivalent-combined
magnetic moment M = √

MiMj .
See Sec. III of the Supplemental Material [77] for the tab-

ulated expressions for ω0(ρi j ) and ωM (ρi j ), �E (Mi ), �V (Mi ),
�K (Mi ), �E (Mi, Mj ), �E (Mi, Mj ), and �E (Mi, Mj ). Note
that the � functions are tabulated via M = √

MiMj . It is
important to note that this potential has eight functions to
be evaluated for each simulation step. This represents indeed
a larger computational effort than other potentials proposed,
such as the EAM, where only two functions are used, one
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FIG. 8. Functions of the magnetic interatomic potential for the
ferromagnetic Fe case, (a) distance-dependent functions ω0(ρi j ) and
ωM (ρi j ) of Eqs. (6) and (7) and (b) magnetically dependent � and �

functions of Eq. (6).

for the contribution to the electron charge density between
two atoms and another corresponding to the pairwise po-
tential. This difference is logically due to the incorporation
of magnetism in the formulation since seven of the func-
tions of the MIP are related to magnetism. Nevertheless, the
MIP still allows for computational speed comparable with
other interatomic potentials, being much lower than the DFT
method.

Finally, the fitted parameters which defines Ei
0(ρ), V i

0 (ρ),
Ki

0(ρ), Ei
g(ρ, M), V i

g (ρ, M), and Ki
g(ρ, M) as functions shown

in Eqs. (7) and (17) are displayed in Table II:

V. VALIDATION OF THE POTENTIAL AND ITS
PREDICTABILITY

The performance of the GUES was validated in Sec. IV C,
whereas now the fitted interatomic potential based on the
GUES needs to be validated once the ω0 and ωM have been ex-
plicitly proposed. The validation is performed in the database
employed and computed by DFT, as described in Sec. III,
which is also employed here to check the predictability of the
MIP. It is important to note that the GUES is the proposed
formalist that allows developing the MIP. In this regard, the
GUES was validated once the Eg, Vg, and Kg parameters
were fitted, directly from DFT calculations. The ω0 and ωM

distance-dependent functions are not deducted from this fit-
ting, and only the � and � magnetically dependent functions
were defined. Therefore, once the ω0 and ωM are proposed
(and � and � refitted with minor differences to the ones
used in the GUES), an initial analysis in the same database
employed for the developing GUES is needed. Later in this
section, the use of the MIP to analyze its predictability outside
the limits of the DFT database is treated.

Starting from the validation of the MIP, the behavior of
the fitted ω0(ρi j ) functions with respect to 〈b/a, c/a〉 can be
seen in Fig. 9(a), showing a similar behavior with respect to
the �0 function in Fig. 7(a). The parameters to reproduce
the behavior E0

g (ρ), V 0
g (ρ), and K0

g (ρ) in Eq. (7), as shown
in Fig. 3, are displayed in Table II. Similarly, the behavior
of ωM (ρi j ) is shown in Fig. 9(b), where �M is calculated,
also showing a similar behavior to �M proposed in Fig. 7.
The value of the parameters to obtain Ei

n(ρ), V i
n (ρ), and

Ki
n(ρ) (n = 2, 4, 6, and 8) in Eq. (14) are also displayed in

Table II. These parameters are used to build the �E (Mi ),
�V (Mi ), �K (Mi ), �E (Mi, Mj ), �E (Mi, Mj ), and �E (Mi, Mj )
magnetic functions of Eq. (17) and displayed in Fig. 8(b).

The ω0(ρi j ) and ωM (ρi j ) functions can be considered to
represent a short-range potential. To illustrate this and taking
the case of iron in the BCC structure with the cell parameter at
equilibrium a = 2.86 Å, the corresponding ρi j of the second
nearest neighbor equals 2, which is interpreted as two atoms
per unit cell. Similarly, the first, second, third, and fourth

TABLE II. Parameters for the functions Ei
0(ρ), V i

0 (ρ), Ki
0(ρ), Ei

g(ρ, M), V i
g (ρ, M), and Ki

g(ρ, M) defined in Eqs. (7) and (17).

Function Parameter Value Parameter Value Parameter Value

Eq. (7) ε0,0 −5.057 (eV) υ0,0 1.017 (Å3) κ0,0 5.659 (Å3)
ε0,1 3.326 × 10−1 (eV) υ0,1 5.460 × 10−1 (Å3) κ0,1 1.376 × 10−2 (Å3)

�E , �V , �K ε2,0 2.819 × 10−2 (eV/μ2
B) υ2,0 4.405 × 10−1 (Å3/μ2

B) κ2,0 1.978 × 10−1 (Å3/μ2
B)

Eq. (17) ε4,0 −5.250 × 10−3 (eV/μ4
B) υ4,0 −5.950 × 10−2 (Å3/μ4

B) κ4,0 −3.864 × 10−2 (Å3/μ4
B)

ε6,0 −4.833 × 10−4 (eV/μ6
B) υ6,0 6.954 × 10−3 (Å3/μ6

B) κ6,0 5.235 × 10−3 (Å3/μ6
B)

ε8,0 9.505 × 10−5 (eV/μ8
B) υ8,0 −2.855 × 10−4 (Å3/μ8

B) κ8,0 −2.672 × 10−4 (Å3/μ8
B)

�E , �V , �K ε2,1 −2.585 × 10−1 (eV/μ2
B) υ2,1 −3.706 × 10−1 (Å3/μ2

B) κ2,1 −2.762 × 10−2 (Å3/μ2
B)

Eq. (17) ε4,1 4.736 × 10−2 (eV/μ4
B) υ4,1 9.217 × 10−2 (Å3/μ4

B) κ4,1 1.744 × 10−2 (Å3/μ4
B)

ε6,1 −3.505 × 10−3 (eV/μ6
B) υ6,1 −1.061 × 10−2(Å3/μ6

B) κ6,1 −2.910 × 10−3 (Å3/μ6
B)

ε8,1 9.307 × 10−5 (eV/μ8
B) υ8,1 4.387 × 10−4 (Å3/μ8

B) κ8,1 1.418 × 10−4 (Å3/μ8
B)
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FIG. 9. (a) Obtained �0 using the ω0(ρ) function as a function
of 〈 b

a , c
a 〉. (b) Obtained �M using the ωM (ρ) function as a function of

〈 b
a , c

a 〉. (c) Comparison between the density functional theory (DFT)
calculations and predicted energy by using the magnetic interatomic
potential (MIP) in the 9600 energies calculated (960 nonmagnetic
and 8640 ferromagnetic).

nearest atoms in the cited BCC structure corresponding to
ri j = 2.47, 2.86, 4.04, and 4.74 Å take the values ρi j = 1.299,
2, 5.65, and 9.12, respectively. Following the functions dis-
played in Fig. 8(a), this implies that the most relevant atoms
correspond to the first, second, and third nearest neighbors.
It is important to note that this result also applies to any cell

parameter of such a BCC structure. In other words, a constant
cutoff interatomic distance cannot be considered since, for a
BCC structure with a cell parameter of 2.7 Å (as opposed to
the previous example), its corresponding first, second, third,
and fourth nearest atoms occur now at ri j = 2.34, 2.7, 3.82,
and 4.47 Å, but the same values of ρi j apply as for the case
with a = 2.86 Å. The cutoff, if applied to optimize the com-
putational cost, is on the variable ρi j and not in the interatomic
distance r.

With this potential, the corresponding energy calcula-
tion on the 9600 DFT energy points has now a RMSE of
1.9 × 10−2 eV. The comparison between the DFT computed
energies and those predicted by the MIP can be seen in
Fig. 9(c), where a good fitting is observed. This proves that
two distance-dependent functions and two magnetically de-
pendent functions are needed to calculate Eg, Vg, and Kg for
all crystal configurations and magnetic moments.

The cohesive energy, volume, and magnetic moment at the
BCC ground state using the MIP correspond to −5.208 eV,
11.659 Å3/atom, and 2.39 μB 2.39 μB, respectively, while
the DFT calculations predict −5.21 eV, 11.35 Å3/atom, and
2.199 μB [29]. For comparison purposes, the experimen-
tal observation of the BCC ground state is an equilibrium
volume of 11.692 Å3/atom [81] and magnetic moment 2.22
μB [82], showing that the theoretical computations are
correct.

From the energy predictions of both the DFT calculations
and the MIP, a calculation of the minimum energy obtained for
each (〈b/a, c/a〉, V ) configuration can be performed, select-
ing from the different M considered those most energetically
favorable. For the case b/a = 1, the results can be seen in
Figs. 10(a) and 10(b), where the MIP predictions of the energy
and corresponding magnetic moment providing the ground
state for each c/a and volume considered (with b/a = 1) are
displayed, respectively. In these figures, the regions where the
minimum energy is reached without magnetic contribution are
indicated with NM. These figures should be compared with
Figs. 1(a) and 1(b), where a similar analysis is depicted from
the DFT computed energies and magnetic moments. Despite
the small differences obtained, the MIP successfully predicts
the energy and corresponding magnetic state when varying
c/a and V .

Along with the contour plots shown in Figs. 10(a) and
10(b), in Fig. 10(c), for some representative c/a cases (c/a =
0.8, 1, 1.2,

√
2, and 1.6), energy curves (blue lines) and the

corresponding magnetic moment variations (orange lines) are
shown. This figure should be compared with Fig. 1(c), where
the same analysis is carried out for the DFT computations. The
results show a high degree of consistency of the MIP predic-
tion in both energy and magnetic moment. We conclude that,
in general, not only the energy is correctly calculated but also
the magnetic moment which provides such energy. Impor-
tantly, the variation of the energy by means of the volume for
the FCC crystal lattice [see Fig. 10(c) case c/a = √

2] shows
two minima, a known result in FM iron [83] and shown also
in Fig. 1(c) for the DFT prediction. In both simulations, the
NM configuration occurs at low volumes, followed by a LS
state as the volume increases, and finally, a HS state provides
the second minimum. Nevertheless, it is worth noting that the
minimum corresponding to low volumes occurs in DFT for
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FIG. 10. (a) Ground state energy calculated by the magnetic interatomic potential (MIP) for ferromagnetic (FM) configuration and (b)
corresponding magnetic moment, both as a function of atomic volume and c/a (with b/a = 1). The corresponding curves for the energy and
magnetic moments are displayed in (c) on representative cases of c/a ratio (c/a = 0.8, 1, 1.2,

√
2, and 1.6), where the blue lines represent the

energy in FM configuration and the orange lines the corresponding magnetic moment. (d) Comparison of the energies calculated by density
functional theory (DFT) and the MIP at the local ground state for each (〈b/a, c/a〉,V ) configuration and (e) corresponding comparison of the
magnetic moments calculated by DFT and MIP at the local ground state for each (〈b/a, c/a〉,V ) configuration.

the LS state, whereas the MIP predicts the NM configuration.
However, the MIP energy prediction at the first minimum is
−5.056 eV, while the corresponding value of MIP energy at a
LS state is −5.027, a variation <0.03 eV. Additionally, the
DFT energy at the first minimum is −5.048, very close to
the DFT energy with a NM contribution which is −5.045
and an energy difference of 0.003 eV. Even though the MIP
fails at predicting that the first minimum occurs with a LS
state, the energy differences in DFT and the MIP to obtain
LS or NM configuration are significantly small, and although
there is room for improvement, the general performance of the
potential is good.

The calculation of the ground state is of paramount im-
portance in the development of interatomic potentials since
it provides the right configuration and energy of a system in
equilibrium (or para-equilibrium) rather than the prediction of
energies in different (〈b/a, c/a〉,V, M ) configurations. Such
configurations are considered very useful in the scope of de-
velopment and fitting of the potential as well as to prove the
generalization of the UES proposed but remain less important
in the application of the MIP developed, as many of these
configurations are never reached in a real system. There-
fore, additionally to the analysis shown in Figs. 10(a)–10(c),
the magnetic moment is optimized to obtain the minimum
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energy for a given (〈b/a, c/a〉,V ). This extends the prelim-
inary comparison performed and provides the first test of the
MIP predictability outside the energy calculations when fixing
(〈b/a, c/a〉,V, M ). Therefore, for each (〈b/a, c/a〉,V ), both
DFT and the MIP are used to calculate the corresponding
local ground state, where the values of magnetic moments are
not fixed but optimized. The results of the energies obtained
are displayed in Fig. 10(d), where the points are depicted
in different colors according to the volume considered. The
MIP provides a RMSE = 0.025 eV compared with the DFT
energies, where the larger errors, in the range of 0.07–0.09
eV, correspond to the extreme values of 〈b/a, c/a〉 and lower
atomic volumes. Figure 10(e) shows the corresponding opti-
mized magnetic moment. The behavior of the MIP there is,
in general, in agreement with the DFT calculations, where
the MIP predictions show the NM configuration in lattices
and DFT shows a LS state at low atomic volumes. This ex-
plains the issue explained above concerning the first minimum
when fixing c/a = 1 and c/a = √

2, where DFT predicts
a LS state and the MIP predicts a NM configuration. It is
worth remembering that, even though the MIP predicted mag-
netic configuration differs from the DFT calculations at these
low volumes, the energy is correctly calculated. For higher
volumes, the MIP performance is good in both energy and
magnetic moment.

A. Predictability of the potential

From the results in the previous section concerning the
validation of the potential into the original database, we con-
clude that the calculation of the energy for the 9600 cubic
deformed structures at different volumes and magnetic con-
figurations provided an excellent fitting with respect to DFT
calculations. Itself, this is already a good result since no other
type of interatomic potential has been capable of predicting
this large variety of crystal structures, magnetic moments,
and volumes. It is nevertheless important to put to the test
the MIP in other crystal structures, atomic configurations
and parameters and compare the results to test its predictive
capabilities.

Therefore, the intention of this section is to perform a series
of validations on key situations not included in the database
used for the fitting and test the applicability of the proposed
potential. The number of tests to which a potential can be put
is vast and could cover an immense and unmanageable piece
of work. We have selected a few of them which, to our un-
derstanding, cover key properties. Firstly, elastic constants of
magnetic α-iron, simple parameters but of great relevance, as
well as stresses in all the lattices and volumes of the database
will be considered, as well as forces compared with ab initio
MD (AIMD) simulations at different temperatures. Then the
deformation of the BCC structure toward other lattices will be
analyzed by means of transformation paths. Following that,
the A15 and C15 crystal structures represent the simplest com-
plex structures, where the magnetic moments are not constant
along with their atoms. Increasing complexity, point defects
in the way of vacancies and interstitial atoms (corresponding
to dumbbell structures) cover the following steps, while the
last step is the calculation of γ surfaces which are relevant for
the mechanical behavior.

1. Elastic constants

Elastic constants represent the first mandatory validation
test for an interatomic potential. The calculation is made on
the ground state configuration, magnetic α-iron, where C11,
C12, and C44 are constants. For the MIP calculation, small
strain steps of 0.005% are used to analyze small deformations.
For each step, the magnetic moment is optimized to obtain
the corresponding ground state. The results are displayed
in Table III, along with the bulk modulus, shear modulus,
Young’s modulus, and Poisson’s ratio computed by the Voigt-
Reuss-Hill method [84,85], and compared with experimental
values from the literature as well as other DFT calculations,
modified EAM (MEAM), linear machine learning (LML), and
quadratic noise machine learning (QNML).

The results show that the C11, C12, and C44 constants are
predicted, all with an error <15 GPa with respect to the DFT
calculations in this paper. The corresponding bulk modulus is
accurately predicted since this parameter is indirectly involved
in the MIP formulation, as shown in Eq (11). Shear modu-
lus, Young’s modulus, and Poisson’s ratio predictions lie in
reasonable error limits, where the worst prediction occurs for
Young’s modulus, which is overestimated as compared with
the DFT calculations in this paper. The comparison with ex-
perimental and other DFT calculations lies within reasonable
limits. On the other hand, there is an overestimation, espe-
cially in the C11 and C12 cases, in all DFT calculations (both
from literature and reported here), which is consequently in-
herited by the MIP, as can be observed in the data shown in
Table III.

2. Atomic stresses and forces in the lattice

The calculation of the atomic stresses on the lattices con-
sidered is now under investigation. Each of these lattices has
nonzero forces acting on their respective atoms since only
one crystal lattice corresponds to the α-iron ground state.
These forces are good indicators of the behavior of the MIP
to predict the evolution of the system in a simulation. The
atomic stresses in DFT and MIP approaches are calculated by
computing the energy E when applying a strain εα on each of
the three spatial coordinates (α = x, y, z) and approximating
the energy variation by means of a quartic polynomial, from
which the first derivative permits the calculation of the atomic
stresses in the lattice. The following equation is therefore used
to account for the energy variation:

E = E0 + �1 εα + 1
2�2εα

2 + . . . , (18)

where the linear term �1 = V σα accounts for the total stress
of the system, V is the atomic volume, and σα corresponds
to the atomic stress at straining over coordinates α = x, y, z.
The strain step considered for this calculation is 0.01% of the
corresponding lattice parameter.

The comparison of the stresses between the DFT and
MIP calculations can be seen in Fig. 11, showing a good
fitting, where each color is associated with each of the
three spatial coordinates. Some outliers can be observed,
and the fitting of the larger stress values is slightly worse
than the lower values. These larger errors correspond again
to the extreme values of 〈b/a, c/a〉, which are the lattices
least stable of all. The corresponding RSME is 1.4 eV/Å3,
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TABLE III. Comparison between the elastic constants from DFT and MIP in this paper and experimental values, MEAM, LML, QNML,
and other DFT calculations. C11, C12, C44, bulk modulus, shear modulus and Young’s modulus are expressed in GPa.

Approach Experimental MEAM LML QNML DFT MIP

Ref. [86] [87] [88] [89] [90] [91] [92] [92] [92] [93] [94] (This paper) (This paper)

C11 239.5 243.1 230 232 231.3 265.7 287.7 293.6 292.2 296.8 234.4 277.3 272.5
C12 135.9 138.1 135 136 134.6 127.5 148.5 144.0 144.3 142.06 119.1 151.9 159.7
C44 120.7 121.9 117 117 116.2 122.6. 120.5 102.3 102.1 106.03 88.5 96.9 106.1
Bulk modulus 170.3 173.1 167 168 166.8 173.6 194.9 193.8 193.6 193.6 157.5 181.8 197.3
Shear modulus 86.06 87.5 – 81.8 – – – – – 93.9 74.2 71.1 82.3
Young’s modulus 222.7 224.7 – 211.4 – – – – – 242.5 191.8 188.7 216.8
Poisson’s ratio 0.289 0.284 – 0.29 – – – – – 0.291 0.297 0.330 0.329

which represents a good fitting for the stresses in the lattices
considered.

Additionally, the forces in a distorted lattice are considered.
Several AIMD simulations at different temperatures have
been performed for the 4 × 4 × 4 supercells of the conven-
tional BCC structure of Fe. The temperatures computed are
400, 600, 800, 1000, and 1200 K. Each of these tempera-
tures induces a different distortion of the lattice, and once the
structures are relaxed, a snapshot of the atomic positions and
magnetic moments at arbitrary times is then used in the MIP
to calculate the corresponding forces. The calculated forces
by AIMD and the MIP are then compared and can be seen in
Fig. 12. In that figure, each color corresponds to a different
spatial direction (x, y, and z), where Eqs. (8) and (9) are
used with ξ = x, y, and z, respectively, where the horizontal
axis corresponds to AIMD calculations, and the vertical axis
represents the MIP predictions.

The behavior shown by the MIP predictions is in concor-
dance to the AIMD calculations at each temperature, where
the RMSE for each direction (RMSEx, RMSEy, and RMSEz)
are displayed in Table IV. There is a slight increase of the error
when increasing the temperature, suggesting a small deviation
of the cell parameter (atomic volume) and magnetic moment
at the relaxation of the MIP with respect to AIMD. The errors
are nevertheless in reasonable limits. We conclude that the

FIG. 11. Comparison of the computed stresses by density func-
tional theory (DFT) and magnetic interatomic potential (MIP).

MIP is accurate enough to represent the behavior of distorted
lattices in FM Fe, with atomic positions and magnetic mo-
ments deviating from their ideal positions.

3. Transformation paths

For this section, several transformation paths are consid-
ered. DFT calculations are extracted from Ref. [47], where
the spin-polarized DFT calculations were performed using
the VASP code, as described elsewhere [71,72,95], with the
constant magnetic moment corresponding to the BCC ground
state. The transformations considered are the hexagonal, trig-
onal, tetragonal, and orthorhombic paths, as described in
Refs. [96,97], where the parameter p is continuously varying
to drive the transformation, and it can be used to characterize

FIG. 12. Comparison of the computed forces by ab initio molec-
ular dynamics (AIMD) and the magnetic interatomic potential (MIP)
at different temperatures.
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TABLE IV. Calculated RMSE of the force predictions of
MIP compared with AIMD for each spatial direction at different
temperatures.

Temperature RMSEx RMSEy RMSEz

(K) (eV/Å) (eV/Å) (eV/Å)

400 K 0.1455 0.1305 0.1522
600 K 0.1750 0.1764 0.1654
800 K 0.1722 0.1717 0.1741
1000 K 0.2188 0.2121 0.2330
1200 K 0.2418 0.2191 0.2081

it. The value p = 1 corresponds in all cases to the BCC
structure. The trigonal transformation produces a simple cubic
(SC) structure at p = 2 and FCC at p = 4. The hexagonal
path displays a HCP structure at p = √

2. In the tetragonal
transformation, the FCC lattice is also reached at p = √

2 and
body-centered tetragonal (BCT) around p = 1.7, where in the
orthorhombic, the transformation starts and finishes in BCC,
passing through the BCT structure around p = 1.4.

The results are shown in Fig. 13, where the MIP predic-
tions are depicted as blue solid lines and compared with the
DFT (black dots) and BOP calculations (red solid lines), both
extracted from Ref. [47]. The figure displays the different
obtained structures obtained as the transformation occurs.

FIG. 13. Transformation paths computed with magnetic inter-
atomic potential (MIP) and compared with density functional theory
(DFT) and bond order potential (BOP) from Ref. [47]. Black dots
correspond to DFT calculation, red solid line represents the BOP
predictions, while the blue solid line corresponds to the MIP calcu-
lated transformation paths. Larger black dots represent the different
structures obtained with the transformations. � Energy refers to the
difference in energy with respect to the energy of the ground state of
body-centered cubic (BCC) iron.

The behavior of the predictions is correct in general, al-
though there is a clear underestimation of the energy in the
hexagonal transformation paths with respect to DFT predic-
tions in the HCP crystal lattice. This result is shared with
BOP [47], where a similar underestimation in the HCP is also
displayed. Nevertheless, BOP also shows a sensible underes-
timation of the FCC energy (with magnetic contribution), as
seen in tetragonal and trigonal transformation paths, whereas
the MIP represents these transformations more faithfully. This
is a consequence of the correct prediction of the MIP (as
shown in previous sections) in the large database employed,
which contains the FCC crystal lattice at different magnetic
moments.

4. A15 and C15 crystal structures

The analysis of C15 Laves crystal structure is especially
relevant for iron since clusters with C15 crystal lattice form
under irradiation or after migration of SIAs [98,99]. The de-
velopment of potentials to predict their behavior is especially
important since the experimental observation of small clusters
has not been yet achieved, and simulation seems to be the only
option available [98,99].

On the other hand, A15 is a metastable structure in BCC
metals [100] due to its small energy difference with the ground
state. It is considered the simplest complex structure [101].
Therefore, its analysis is the first inevitable step for more
complex structures. In other transition metals, this structure is
related to superconductivity, its study being full of relevance
[102].

In both A15 and C15 structures, there are two positions of
atoms that are nonequivalent from the point of view of crys-
tallographic space group symmetry. Nevertheless, the lattice
symmetry concept concerning atomic distances must be mod-
ified when magnetic moments, which are oriented to a specific
coordinate, are introduced. That implies that, in the eight
lattice coordinates of the A15 structure (6 + 2 nonequivalent
symmetry coordinates), five different nonequivalent symme-
try magnetic coordinates (2 + 2 + 2 + 1 + 1) can be obtained.
This can be visualized in Fig. 14(b), where the atoms in red,
green, and dark blue belong to the same coordinate symmetry
but not to the same magnetic coordinate symmetry, as they
lie in x-y, x-z, and y-z planes. This also applies to the C15
symmetry, where the 4 + 2 nonequivalent atomic coordinates
have 1 + 1 + 1 + 1 + 2 magnetic coordinate symmetry, as
observed in Fig. 14(b).

A set of DFT simulations has been carried out at different
atomic volumes, ranging from 8 to 15 Å3/atom in steps of 0.2
Å3/atom. This refers to lattice parameters between 4.00 and
4.93 Å for the A15 structure and between 5.77 and 7.11 Å
for the C15 structure. This range broadly covers the BCC
ground state volume and allows analyzing the response of
the potential to these structures. For each volume considered,
the atoms keep in their ideal positions, while the magnetic
moments are relaxed until the ground state is reached. For
the case of DFT calculations, the magnitudes of magnetic
moments of all atoms are optimized using self-consistent DFT
calculations.

The corresponding simulation using the MIP can be seen
along with the DFT calculations in Fig. 14(a). The fitting
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FIG. 14. (a) Density functional theory (DFT) and magnetic in-
teratomic potential (MIP) calculated energy of A15 and C15 with
various fixed volumes and relaxed magnetic moments. (b) Variation
of the magnetic moment of each atom in the A15 crystal lattice as
a function of the volume (the colors correspond to the colors of the
atoms in the displayed crystal lattice). (c) Variation of the magnetic
moment of each atom in the C15 crystal lattice as a function of
the volume (the colors correspond to the colors of the atoms in the
displayed crystal lattice).

is reasonably accurate, especially in the vicinities of both
the A15 and C15 ground states. The minimum of energy
calculated for the C15 lies between 12 and 12.2 Å3/atom (no

interpolation has been made), and it has an energy difference
with the Fe ground state �E = E − E0 ≈ 0.148 eV/atom,
where E represents the corresponding energy and E0 the
BCC ground state energy, like the one obtained in Ref. [99],
which predicts 0.15 eV/atom. Calculation by the MIP pro-
vides a minimum energy between 12.2 and 12.4 Å3/atom
with �E ≈ 0.159 eV/atom, providing an error in volume
<0.2Å3/atom and an error in energy ∼0.01 eV. Also in
Ref. [99], the corresponding prediction using ABOP is of
0.14 eV/atom, showing a similar error to the DFT. On the
other hand, the DFT calculations of the A15 crystal lattice
predict a minimum energy between 11.6 and 11.8 Å3/atom
and �E ≈ 0.088 eV, while the MIP provides a minimum
∼11.8–12 Å3/atom and �E ≈ 0.042 eV, which corresponds
to an error in volume <0.2 Å3/atom and an error in energy
∼0.04 eV.

There is a clear step in the curve shape in all DFT and MIP
calculations between 9 and 10 Å3/atom. The magnitude of the
step is definitely larger in MIP calculations and corresponds
to the transition of the magnitudes of the magnetic moment
in the simulations by means of the volume. This variation can
be observed in Fig. 14(b) for the A15 case and in Fig. 14(c)
for the C15 case. The colors correspond to different atoms in
the structure, where a label with these colors is depicted in the
form of a crystal lattice for each case. In this step and from
these atomic volumes toward smaller values, the prediction
decreases in accuracy. It is worth noting nevertheless that the
range of volumes used in the potential fitting lies between 9.25
and 12.75 Å3/atom, which is close to the limit at which the
prediction is less accurate.

In both the C15 and A15 simulations, the magnitude of
the magnetic moment increases with the volume. This is, in
general, a common result for iron, and it is a consequence of
the V i

g (ρ, M) function depicted in Fig. 4(b). As a reminder,
V i

g (ρ, M) represents the volume at which the energy is min-
imum, given a crystal lattice. Therefore, the simultaneous
increase of the volume and the magnetic moment occurs nat-
urally.

5. Vacancy

In this section, we will consider a vacancy simulation with
relaxed atomic coordinates, volume, and magnetic moments.
The simulation is performed with both DFT and MIP meth-
ods for comparison purposes, using the same configuration,
a structure of 4 × 4 × 4 supercells of the conventional BCC
structure of Fe with one vacancy, containing 127 atomic sites.
As in the case of calculations for the A15 and C15 structures,
for the case of DFT calculations, the magnitudes of magnetic
moments of all atoms are optimized using self-consistent
DFT calculations. For the case of the MIP, molecular static
simulations using the proposed equations of motion for the
MIP in Eq. (8) allow obtaining the corresponding minimum
configuration energy.

After relaxation, the obtained energy of formation for 127
atoms using DFT is 2.14 eV, which is in accordance with
the formation energy of vacancy reported [22,103,104] using
also DFT. The corresponding value for the MIP is 1.65 eV,
being moderately lower. This may be because the second
nearest neighbors of the vacancy are the only atoms displaying

043806-22



GENERALIZED UNIVERSAL EQUATION OF STATES FOR … PHYSICAL REVIEW MATERIALS 6, 043806 (2022)

TABLE V. Comparison of the energy of formation of vacancy E f
v

with MIP and DFT (this paper) and other obtained E f
v in the literature

by different approaches.

Method Ref. E f
v (eV)

MIP This paper 1.65
DFT This paper 2.14

[22] 1.95, 1.93, 2.07
[103] 2.12, 1.93
[104] 2.18, 2.26

Empirical potential [17,105] 1.37/1.70
[21] 1.63/1.95
[106] 1.57/1.63

LML [91] 2.14
QNML [91] 2.18
Experiment [107] 1.6

[108] 1.8

a significant increase of energy with respect to the BCC
equilibrium, about �E ≈ 0.1 eV per atom, as compared with
the equilibrium, while the following neighbor atoms in the
distance to the vacancy have a �E in the range of 0.01 eV.
This increase of energy is slightly underestimated as com-
pared with the DFT calculations. A summary of both DFT
and MIP results are compared in Table V with others reported
in the literature using atomistic simulations and obtained by
experiment.

The results of the crystal lattices obtained by DFT and the
MIP in this paper are displayed in Fig. 15, showing a similar
behavior. The first nearest neighbors of the vacancy in the
DFT are displaced toward the vacancy 0.085 Å along with an
increase of magnetic moment of ∼ 0.2 μB, while in the case
of the MIP, the displacement is 0.06 Å along with an increase
of 0.1 μB. These correspond to the atoms displayed in red. On
the other side, the second nearest neighbors of the vacancy
move away from the vacancy 0.03 Å and suffer a decrease
of the magnetic moment of ∼0.2 μB, while in the simulation
with the MIP, the atom is similarly displaced away from the
vacancy 0.04 Å along with a decrease of 0.1 μB, with respect
to the magnetic moment at the ground state. The third nearest
neighbors have negligible variations with respect to both the
ideal atomic coordinates and ground state magnetic moments.

FIG. 15. Atomic coordinates of relaxed vacancy simulation with
density functional theory (DFT) and magnetic interatomic potential
(MIP). The colors of the atoms correspond to the magnetic moment
as displayed by the legends.

With the MIP formulation, the variation on the magnetic
moment magnitude observed in the first and second nearest
neighbors, compared with the rest of the atoms, can be ex-
plained. Firstly, we should focus our attention to the functions
ω0(ρi j ) and ωM (ρi j ) displayed in Fig. 8(a). As a reminder,
the values of ρi j for the first and second nearest atoms in a
BCC structure are 1.299 and 2, respectively. In consequence,
an atom in the position of the first nearest neighbor of the
vacancy is missing a positive term at evaluating ω0(ρi j) and
ωM(ρi j) (at a distance ρi j = 1.299) in the whole sum of atoms.
Therefore, the corresponding values of Ei

g(ρ, M ), V i
g (ρ, M ),

and V i
g (ρ, M ) are smaller than in the perfect BCC crystal

lattice, in the range of 0.005 eV, 0.1 Å3, and 0.01 Å3, re-
spectively. Inversely, the value of the Ei

g(ρ, M ), V i
g (ρ, M ),

and V i
g (ρ, M ) parameters for the second nearest neighbors of

the vacancy are larger than in the perfect BCC crystal lattice,
in the range of 0.02 eV, 0.1 Å3, and 0.01 Å3, respectively,
since, in this case, a term (at a distance ρi j = 2) is missing
when evaluating ω0(ρi j ) and ωM(ρi j). The evaluation of these

parameters and the corresponding values of
dEi

g

dMi
,

dV i
g

dMi
, and

dKi
g

dMi

[see Eq.(9)] for a constant magnetic moment across all atoms
show positive magnetic forces for the first nearest neighbor
of the vacancy and negative magnetic forces for the second
nearest neighbor of the vacancy, explaining the variation of
the magnetic moments observed.

6. Dumbbell configurations

An analysis of the performance of the MIP with respect
to 〈110〉, 〈111〉, and 〈100〉 dumbbell configurations has been
done and compared with the DFT calculations. The self-
consistent DFT calculations were performed with a relaxation
of atomic positions for eight different volumes with lattice pa-
rameters ranging from 2.6448 to 2.9434 Å. Using a 4 × 4 × 4
BCC simulation box with 129 atoms, different cell parameters
have been considered to cover the dumbbell ground state.
For each volume, both the atomic coordinates and magnetic
moments are relaxed.

The results are displayed in Fig. 16, where the 〈110〉 con-
figuration is shown in black color, the 〈111〉 configuration is
plotted in blue color, while the 〈100〉 is finally depicted in red
color. The DFT calculations correspond to dashed lines with
solid squares, and the MIP predictions are shown with solid
lines and circles.

In both simulations, the 〈110〉 dumbbell configuration is
the most stable of all, followed by the 〈111〉 configuration.
The 〈100〉 case is, therefore, the least energetically favorable.
The equilibrium cell parameter of the MIP is slightly larger
than in DFT calculations, in correspondence to the larger unit
cell parameter of BCC iron calculated by the MIP.

The formation energies and equilibrium cell parameters for
both types of calculations can be seen in Table VI along with
others reported in the literature. The DFT formation energies
in this paper are like the corresponding ones computed also
by DFT in Ref, [22], with a slightly larger difference in the
〈100〉 dumbbell configuration. Minor differences are found
with MEAM and empirical potential predictions, although it
is worth noting that some works predict that the 〈111〉 dumb-
bell has lower formation energy than the 〈110〉 dumbbell, in
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FIG. 16. Formation energy of the dumbbell 〈110〉, 〈111〉, and
〈100〉 configurations in a 4 × 4 × 4 body-centered cubic (BCC) sim-
ulation box as a function of the unit cell parameter. For each cell
parameter considered, both the atomic coordinates and magnetic
moments are relaxed.

contradiction to the DFT calculations reported here and others
(both DFT and empirical potentials). With respect to the MIP
predictions, the formation energy is in the range of 1–1.5 eV
as compared with the DFT ones, and the equilibrium sequence
is correctly computed. Additionally, the MIP prediction of the
ground state (GS) unit cell parameter is of the order of 0.025 Å
larger than the corresponding DFT calculations.

A visualization of the relaxed lattice is also helpful in
validating the MIP performance at predicting SIAs. In the fol-
lowing figures, a comparison of the relaxed structures at their
respective GS is shown. Figure 17(a) shows the comparison
of the 〈110〉 dumbbell configuration, Fig. 17(b) corresponds
to the 〈111〉 case, while Fig. 17(c) represents the 〈100〉 case.
Each figure shows the different perspectives of the simulation
box, avoiding the plotting of the equivalent perspectives [for
instance, perspectives (x, z) and (y, z) are equivalent in the

TABLE VI. Formation energies, corresponding relaxation vol-
ume of 〈110〉, 〈111〉, and 〈100〉 dumbbell configurations using DFT
and MIP in this paper. The relaxation volume stands for the differ-
ence in a 4 × 4 × 4 BCC simulation box. The formation energies are
compared with others reported in the literature.

Method and reference 〈110〉 〈111〉 〈100〉
Relaxation volume (Å3) MIP (this paper) 12.8 15.9 22.2

DFT (this paper) 19.3 18.9 21.3
Formation energies (eV) MIP (this paper) 5.5 6.0 6.5

DFT (this paper) 3.9 4.6 5.5
DFT [22] 3.64 4.34 4.64
DFT [47] 3.93 4.61 5.05
BOP [47] 3.87 4.22 4.44

MEAM [109] 4.2 4.3 5.5
Empirical potential [101] 3.93 3.98 –
Empirical potential [110] 4.06 3.92 –
Empirical potential [111] 4.85 – –
Empirical potential [17] 4.87 5 6.1

Empirical potential [106] 4.15 4.34 –

FIG. 17. (a) Atomic configuration of 〈110〉 dumbbell configura-
tion at the volume corresponding to the ground state. Perspectives
(x, z) and (y, z) are equivalent. (b) Atomic configuration of 〈111〉
dumbbell configuration at the volume corresponding to the ground
state. Perspectives (x, y), (x, z), and (y, z) are equivalent. (c) Atomic
configuration of 〈100〉 dumbbell configuration at the volume cor-
responding to the ground state. Perspectives (x, y) and (x, z) are
equivalent.

〈110〉 configuration]. The colors of each atom correspond to
the magnitude of its magnetic moment.

The results show that the atoms accommodate in the
available space, displacing neighboring atoms outside the in-
terstitial positions. As a rule, the MIP and DFT simulations
display minor differences with respect to the relaxed atomic
coordinates. Concerning the magnetic moments, the overall
behavior is the same, showing a decrease in the values of the
SIAs. The lower the atomic volume, the lower the magnitude
of the magnetic moment. The SIAs display therefore the low-
est magnetic moments, followed by the displaced surrounding
atoms. The effect on the third and forthcoming nearest
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neighbors is minimum. The main difference between the DFT
and MIP calculations is the magnitude of that variation of the
magnetic moment. In all cases, the reduction of the magnetic
moment in DFT is much more pronounced, reaching values
∼0.2–0.6 μB, while in the MIP case, the minimum values lie
∼1.9 μB. The reason for that difference could be the fact that
the original fitting data do not have atoms so close nor lattices
with strong differences in magnetic moments along with their
atoms. This does not demerit the prediction made by the MIP,
which is considered correct in general, although there is room
for improvement.

7. γ surfaces

Generalized stacking faults, or γ surfaces, in BCC mate-
rials are closely related to the dislocation core fields [112].
The {110} and {211} γ surfaces represent initial simple cal-
culations to obtain information about the dislocation predicted
behavior [38].

For this section, no particular DFT calculation has been
performed in this paper since data are available from previous
publications [38,47,113]. The MIP simulations have been per-
formed using a bicrystal geometry, dividing the crystal along
the z direction. The upper crystal is displaced along the x and
y directions, and only atomic coordinate relaxation in the z
direction is allowed as well as the magnitudes of the magnetic
moment per atom. The {110} γ surface is created when dis-
placed toward the 〈11̄0〉 and 〈001〉 directions, and the {211} γ

surface corresponds to translations toward the 〈111〉 and 〈110〉
directions. For the {110} γ -surface simulations, the x × y × z
box size is 6 × 4

√
2 × 36

√
2 in units of the cell parameter

(∼17.15 × 16.17 × 145.58 Å3) corresponding to 3456 atoms
in 72 atomic layers in the z direction, while in the {211}
γ -surface simulations, the box size is 4

√
3 × 4

√
2 × 18

√
6

in units of the cell parameter (∼19.81 × 16.17 × 126.08 Å3),
corresponding also to 3456 atoms in 108 atomic layers in
the z direction. In both simulations, a few top and bottom
atomic layers are frozen. The simulations are large enough
to avoid size effects since a few dozens of atomic layers are
allowed to relax. Nevertheless, the size of the simulation box
is substantially larger than in DFT simulations, and hence,
there is probably more room for relaxation, and lower energies
may be expected.

Before the analysis of both the {110} and {112} γ -
surfaces, the 1

2 〈111〉 screw dislocation is under consideration
due to its importance in controlling the BCC plastic behav-
ior. The energy variation along the [110] direction can be
extracted from the {110} γ surface easily, and the results
can be seen in Fig. 18 compared with DFT [113] and BOP
[47]. The results show a similar behavior of the MIP com-
pared with both DFT and BOP methodologies, although an
underestimation of the energy ∼25 meV/Å2 with respect to
DFT prediction is observed. This difference can be attributed
to the size of the simulation box, although an inherent error
from the MIP cannot be discarded.

The results of the {110} and {112} γ surfaces are shown in
Fig. 19. The MIP predictions correctly display the dependence
of the energy in both the {110} and {211} γ surfaces, both in
shape and in magnitude in comparison with the DFT results
shown [38]. In the {110} γ surface, the maximum value

FIG. 18. [110] cross-section of the relaxed {110} γ surface using
density functional theory (DFT), bond order potential (BOP), and
magnetic interatomic potential (MIP) relaxed calculations.

occurs at 0.5b of both the 〈11̄0〉 and 〈001〉 vectors, where
b represents the Burgers vector, with a value ∼ 90 meV/Å2.
For the case of DFT calculations, this maximum is slightly
>100 meV/Å2, suggesting a small underestimation of the
predicted energy. A similar underestimation seems to occur in
the {211} γ surface simulations, where the maximum occurs
at b/2 of 〈110〉 and b/3 of 〈111〉.

In the MIP simulations obtained, there is a clear correlation
between the volume of the atomic layers and the corre-
sponding magnetic moment. A visualization of this effect can
be seen in Fig. 20 for both {110} and {211} γ surfaces.
The horizontal axis corresponds to the distance along the z
direction between stacking planes (only the nearest to the

FIG. 19. (a) Relaxed {110} γ surface using magnetic interatomic
potential (MIP). (b) Relaxed {112} γ surface using MIP. The x and
y axes are given in reduced units. The results can be compared with
figs. 4(a) and 4(b) of Ref. [38].
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FIG. 20. Relation between the distance between faulted stacking
planes in the {110} and {211} γ -surface magnetic interatomic po-
tential (MIP) simulations and the corresponding magnetic moment
variation per layer.

fault). The vertical axis represents the associated magnetic
moment of the atomic layers. Two main things must be noted
before interpreting this figure: firstly, the staking distance in
the {110} γ surface (blue dots) is larger than in the {211} γ

surface (red dots); and secondly, although the distance along
the z direction between stacking planes is not the atomic
volume, they are indeed correlated. The larger the stacking
distance, the larger the atomic volume. Considering this, the
main behavior is a linear increase of the magnetic moment
along with the volume. This correlates well with the V i

g (ρ, M )
behavior, as plotted in Fig. 4(b). The behavior of the BCC
lattice, as indicated in the figure, V i

g (ρ, M ) increases linearly
as a function of the volume, especially around the magnetic
moment between 1 and 3.25 μB. This upper limit is the
maximum value considered in the original data, and the MD
simulations do not allow larger values. This maximum value
is clearly seen in the {211} γ -surface red dots in Fig. 20 and
suggests that larger values of the magnetic moment must be
included if larger volumes are considered. This is reflected
in Fig. 19(d), where the {211} γ surface calculated by the
MIP displays a rough surface in the vicinities of the maximum
values (corresponding to 0.5b of 〈110〉 and b/3 of 〈111〉), as
a consequence of the larger volumes and magnetic moments
needed to converge property.

Another consequence of this analysis is the larger energy
obtained in the {211} γ surface than in the {110} γ sur-
face. The wider variation in volume must be accompanied
by a wider variation in energy. This is because Ei

g(ρ, M) and
V i

g (ρ, M) are related, as in Figs. 4(a) and 4(b). Therefore,
those BCC layers that need more space to accommodate in-
crease their magnetic moment, corresponding to an increase
of the contribution to the energy of those layers.

It is important to note that this analysis is possible thanks
to the behavior observed when studying the behavior of the
parameters that define the UES. This analysis is indeed dif-
ficult to perform in previously reported potentials with the
magnetic contribution. In the current proposed potential, the
overall behavior of a lattice can be anticipated at a certain level
thanks to the interrelationship of the UES parameters.

VI. CONCLUSIONS

In this paper, we have generalized the UES defined by
Vinet et al. [56] and Rose et al. [55] to include the effect
of magnetism. For a certain lattice and fixed magnetic con-
figuration, the behavior of the energy by means of volume
variations is captured with good accuracy by this GUES. This
result extends the predictive capabilities of the original UES
and allows the exploration of formulations to describe the be-
havior of the GUES parameters, namely, Ei

g(ρ, M), V i
g (ρ, M),

and Ki
g(ρ, M), related to the energy and volume at the local

ground state and dependent on the interatomic distances and
magnetic configuration.

When examining their behavior for the NM case, we have
found a surprising result since they behave identically once
they are properly scaled to the quantities they represent. For
an increase of Ei

g(ρ, M ), which represents the ground state
energy at each configuration, an increase of V i

g (ρ, M ) follows,
its respective volume at this ground state, and a similar in-
crease of Ki

g(ρ, M ), the scale volume. This allowed defining
a unique function ω0(ρi j ) to describe them all with respect to
the interatomic atomic distances.

The behavior of the Ei
g(ρ, M ), V i

g (ρ, M ), and V i
g (ρ, M )

functions with respect to the magnetic moment has shown that
an additional and common function, ωFM

M (ρi j ) and ωAFM
M (ρi j )

for the FM and AFM, respectively, dependent also on the
interatomic distances is needed to include the magnetic in-
fluence on the potential. The magnetic influence on the GUES
is introduced by two magnetic functions per parameter. When
evaluating the contribution of atom i to the energy, the first
ones denoted �E (Mi ), �V (Mi ), and �K (Mi) depend only on
the magnetic moment Mi of this atom. Being dependent on
the magnetic moment of the atom isolated, their contribu-
tion to the energy is logically independent of the interatomic
distances to other atoms in the lattice. On the other hand,
the second set of functions depends on the interaction of
the magnetic moment of atom i and the magnetic moment
of its neighboring atoms �E (Mi, × Mj ), �V (Mi, × Mj ), and
�K (Mi, × Mj ). These in turn are scaled by a unique distance-
dependent function ωM (ρi j ) [correspondingly ωFM

M (ρi j ) or
ωAFM

M (ρi j )] to account for the decreasing influence of the
atoms when increasing the interatomic distance. Both � and
� magnetically dependent functions are described by even
polynomials for both the FM and AFM cases.

These magnetic functions have been fitted to describe the
energy calculations using DFT data for the case of FM and
AFM iron, and the formulation has been proved to provide
good predictability of the energy on all DFT data calculated,
incorporating both magnetic configurations.

Although the formulation in its current state demands
different distance and magnetically dependent functions for
different magnetic configurations, the novel approach paves
the way to developing interatomic potentials to predict DFT
calculations with magnetic contribution and is consistent with
previous approaches for describing magnetism, as the Stoner
model of band magnetism and the approximation proposed
by the Ginzburg-Landau model. Also, to be consistent with
interlattice-site Heisenberg magnetic interaction parameters
of the Heisenberg-Landau Hamiltonian, the dependence of
the �E (Mi, Mj ), �V (Mi, Mj ), and �K (Mi, Mj ) functions are
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defined so that the magnetic moments of different atoms Mi

and Mj are introduced by multiplication of their magnitudes
MiMj .

A FM MIP has been finally developed after the defi-
nition of the explicit expressions of ω0(ρi j ) and ωM (ρi j )
distance-dependent functions. This demonstrates that ω0(ρi j )
and ωM (ρi j ) functions exist, and they can be used for describ-
ing the energy of the system along with the corresponding
magnetically dependent functions. The prediction of the LS
and HS states has also been studied and provides similar
results as the ones reflected by DFT calculations, with minor
differences.

The dependence of the �E (Mi, Mj ), �V (Mi, Mj ), and
�K (Mi, Mj ) functions as a function of the multiplication of
the magnetic moments has allowed assessing the predictabil-
ity of the potential outside the database employed for its
development in structures with a larger degree of complex-
ity. The potential has been applied to perform simulations in
different lattices, prediction of elastic constants, vacancies,
interstitials, and transformation paths as well as γ surfaces
with good accuracy and exceptional predictability, not only
in the energy but in the behavior of the atomic coordinates
and magnetic moment at relaxing. The MIP cannot replace
the DFT method, but it can incorporate magnetism in a novel
approach, providing a tool for accelerating large-scale atom-
istic simulations with reasonable precision.

The use of the GUES as a source for the development
of potentials has shown clear advantages since it generalizes
and incorporates the use of magnetism into the calculation of
the energy of a system. There are nevertheless many aspects
that claim attention, and further investigation is needed. To
be consistent with other forms of magnetism, the formula-
tions must be adapted or completed to include, among others,
AFM configurations so that an interatomic potential can be
developed with this magnetic configuration. The implementa-
tion into the MD approach induces a revision of the way in
which the atomic coordinates, magnetic moment, and volume
vary with the time since they work at different levels. The
variation of the magnetic moment may occur much faster
than the displacement of the atoms, but they are connected
in this formulation, and one cannot be conceived without the
other.

Another aspect that requires attention is the possible exis-
tence of unique distance-dependent ω0 and ωM functions as
well as � and � magnetically dependent functions for other
magnetic elements and lattices. An initial analysis in Cr, Ni,
Co, and Mn with FM and AFM configurations showed that
the GUES is also applicable to other elements, which may
open the door to complex systems such as steels and HEAs
containing magnetic elements. The physical understanding of
these functions passes through a deep analysis of the behavior
of the atoms from the electronic point of view. This in turn
could pave the way to simulating different atomic species in
the same lattice, which is the ultimate purpose of an atomistic
simulation.

ACKNOWLEDGMENTS

I.T.C. is grateful for financial support of the fellow-
ship 2016-T2/IND-1693, from the Programme Atracción de
talento investigador (Consejería de Educación, Juventud y
Deporte, Comunidad de Madrid) and the project AFORMAR
from the Spanish National Programme—call 2019 «Proyec-
tos de I+D+i» (Ministerio de Ciencia e Innovación). The
work of J.S.W. and D.S.M. has been carried out within the
framework of the EUROfusion Consortium, funded by the
European Union via the Euratom Research and Training Pro-
gramme (Grant Agreement No 101052200—EUROfusion).
Views and opinions expressed are, however, those of the
author(s) only and do not necessarily reflect those of the
European Union or the European Commission. Neither the
European Union nor the European Commission can be held
responsible for them. D.N.M. work is also supported by the
UK Engineering and Physical Sciences Research Council
Grant No. EP/W006839/1. The work at WUT has been carried
out as a part of an international project cofinanced from the
funds of the program of the Polish Minister of Science and
Higher Education entitled “PMW” in 2019; Agreement No.
5018/H2020-Euratom/2020/2. J.S.W. and D.N.M. acknowl-
edge the support from high-performing computing facility
MARCONI (Bologna, Italy) provided by EUROfusion. The
simulations were also carried out with the support of the
Poznan Supercomputing and Networking Center PCSS under
Grant No. 274.

[1] M. S. Daw and M. I. Baskes, Semiempirical, Quantum Me-
chanical Calculation of Hydrogen Embrittlement in Metals,
Phys. Rev. Lett. 50, 1285 (1983).

[2] M. S. Daw and M. I. Baskes, Embedded-atom method: deriva-
tion and application to impurities, surfaces, and other defects
in metals, Phys. Rev. B 29, 6443 (1984).

[3] F. Ercolessi and E. Tosatti, Au (100) Surface Reconstruction,
Phys. Rev. Lett. 57, 719 (1986).

[4] F. Ercolessi, M. Parrinello, and E. Tosatti, Simulation
of gold in the glue model, Philos. Mag. A 58, 213
(1988).

[5] F. Ercolesi and J. B. Adams, Interatomic potentials from first-
principles calculations: the force-matching method, EPL 26,
583 (1994).

[6] R. Zivieri, G. Santoro, and V. Bortolani, Multiphonon effects
in the one-phonon cross section of Al, Phys. Rev. B 58, 5429
(1998).

[7] R. Zivieri, G. Santoro, and V. Bortolani, Anharmonicity
on Al(100) and Al(111) surfaces, Phys. Rev. B 59, 15959
(1999).

[8] R. Zivieri, G. Santoro, and V. Bortolani, Premelting of the
Al(110) surface from a local perspective, Phys. Rev. B 62,
9985 (2000).

[9] M. W. Finnis and J. E. Sinclair, A simple empirical N-body
potential for transition metals, Philos. Mag. A 50, 45 (1984).

[10] X. D. Dai, Y. Kong, J. H. Li, and B. X. Liu, Extended Finnis-
Sinclair potential for bcc and fcc metals and alloys, J. Phys.
Condens. Matter 18, 4527 (2006).

043806-27

https://doi.org/10.1103/PhysRevLett.50.1285
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1103/PhysRevLett.57.719
https://doi.org/10.1080/01418618808205184
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1103/PhysRevB.58.5429
https://doi.org/10.1103/PhysRevB.59.15959
https://doi.org/10.1103/PhysRevB.62.9985
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1088/0953-8984/18/19/008


TODA-CARABALLO, WRÓBEL, AND NGUYEN-MANH PHYSICAL REVIEW MATERIALS 6, 043806 (2022)

[11] L. Malerba, M. C. Marinica, N. Anento, C. Björkas, H.
Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund,
A. Serra, D. Terentyev, F. Willaime, and C. S. Becquart, Com-
parison of empirical interatomic potentials for iron applied to
radiation damage studies, J. Nucl. Mater. 406, 19 (2010).

[12] M. I. Mendelev, M. J. Kramer, C. A. Becker, and M. Asta,
Analysis of semi-empirical interatomic potentials appropriate
for simulation of crystalline and liquid Al and Cu, Philos. Mag.
88, 1723 (2008).

[13] C. P. Chui, W. Liu, Y. Xu, and Y. Zhou, Molecular dynamics
simulation of iron—a review, Spin 5, 1540007 (2015).

[14] X. Zhou, M. E. Foster, J. A. Ronevich, and C. W. San Marchi,
Review and construction of interatomic potentials for molecu-
lar dynamics studies of hydrogen embrittlement in Fe-C based
steels, J. Comput. Chem. 41, 1299 (2020).

[15] M. I. Baskes, Modified Embedded Atom Method Calculations
of Interfaces (Sandia National Lab, Livermore, 1996).

[16] B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim,
G. J. Wagner, A. Moitra, and M. I. Baskes, Modified embed-
ded atom method potential for Al, Si, Mg, Cu, and Fe alloys,
Phys. Rev. B 85, 245102 (2012).

[17] G. J. Ackland, D. J. Bacon, A. F. Calder, and T. Harry, Com-
puter simulation of point defect properties in dilute Fe-Cu
alloy using a many-body interatomic potential, Philos. Mag.
A 75, 713 (1997).

[18] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y.
Sun, and M. Asta, Development of new interatomic potentials
appropriate for crystalline and liquid iron, Philos. Mag. 83,
3977 (2003).

[19] C. S. Becquart, J. M. Raulot, G. Bencteux, C. Domain, M.
Perez, S. Garruchet, and H. Nguyen, Atomistic modeling of
an Fe system with a small concentration of C, Comput. Mater.
Sci. 40, 119 (2007).

[20] H. C. Herper, E. Hoffmann, and P. Entel, Ab initio full-
potential study of the structural and magnetic phase stability
of iron, Phys. Rev. B 60, 3839 (1999).

[21] C. Domain and C. S. Becquart, Ab initio calculations of de-
fects in Fe and dilute Fe-Cu alloys, Phys. Rev. B 65, 024103
(2002).

[22] C. C. Fu, F. Willaime, and P. Ordejón, Stability and Mobility
of Mono- and Di-Interstitials in A-Fe, Phys. Rev. Lett. 92,
175503 (2004).

[23] D. Nguyen-Manh, V. Vitek, and A. P. Horsfield, Environ-
mental dependence of bonding: a challenge for modelling of
intermetallics and fusion materials, Prog. Mater. Sci. 52, 255
(2007).

[24] D. Nguyen-Manh, M. Y. Lavrentiev, and S. L. Dudarev, Mag-
netic origin of nano-clustering and point defect interaction in
Fe-Cr alloys: an ab-initio study, J. Comput. Mater. Des. 14,
159 (2007).

[25] M. Y. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev, Mag-
netic cluster expansion model for bcc-fcc transitions in Fe and
Fe-Cr alloys, Phys. Rev. B 81, 184202 (2010).

[26] D. Nguyen-Manh, M. Y. Lavrentiev, M. Muzyk, and S.
L. Dudarev, First-principles models for phase stability and
radiation defects in structural materials for future fusion
power-plant applications, J. Mater. Sci. 47, 7385 (2012).

[27] D. Nguyen-Manh, P. W. Ma, M. Y. Lavrentiev, and S. L.
Dudarev, Constrained non-collinear magnetism in disordered
Fe and Fe-Cr alloys, Ann. Nucl. Energy 77, 246 (2015).

[28] M. Y. Lavrentiev, J. S. Wróbel, D. Nguyen-Manh, and S. L.
Dudarev, Magnetic and thermodynamic properties of face-
centered cubic Fe-Ni alloys, Phys. Chem. Chem. Phys. 16,
16049 (2014).

[29] J. S. Wróbel, D. Nguyen-Manh, M. Y. Lavrentiev, M.
Muzyk, and S. L. Dudarev, Phase stability of ternary
fcc and bcc Fe-Cr-Ni alloys, Phys. Rev. B 91, 024108
(2015).

[30] Z. Leong, S. L. Dudarev, R. Goodall, I. Todd, and D. Nguyen-
manh, The effect of electronic structure on the phases present
in high entropy alloys, Sci. Rep. 7, 39803 (2017).

[31] M. Fedorov, J. S. Wróbel, A. Fernández-Caballero, K. J.
Kurzydłowski, and D. Nguyen-Manh, Phase stability and
magnetic properties in fcc Fe-Cr-Mn-Ni alloys from first-
principles modeling, Phys. Rev. B 101, 174416 (2020).

[32] J. S. Wróbel, M. R. Zemla, D. Nguyen-Manh, P. Olsson, L.
Messina, C. Domain, T. Wejrzanowski, and S. L. Dudarev,
Elastic dipole tensors and relaxation volumes of point defects
in concentrated random magnetic Fe-Cr alloys, Comp. Mater.
Sci. 194, 110435 (2021).

[33] D. Nguyen-Manh, S. L. Dudarev, and A. P. Horsfield, System-
atic group-specific trends for point defects in bcc transition
metals: an ab initio study, J. Nucl. Mater. 367–370, 257
(2007).

[34] G. Liu, D. Nguyen-Manh, B. G. Liu, and D. G. Pettifor,
Magnetic properties of point defects in iron within the
tight-binding-bond Stoner model, Phys. Rev. B 71, 174115
(2005).

[35] D. Nguyen-Manh and S. L. Dudarev, Model many-body
Stoner Hamiltonian for binary FeCr alloys, Phys. Rev. B 80,
104440 (2009).

[36] P. Soin, A. P. Horsfield, and D. Nguyen-Manh, Efficient
self-consistency for magnetic tight binding, Comput. Phys.
Commun. 182, 1350 (2011).

[37] M. Mrovec, D. Nguyen-Manh, C. Elsässer, and P. Gumbsch,
Magnetic Bond-Order Potential for Iron, Phys. Rev. Lett. 106,
246402 (2011).

[38] L. Ventelon and F. Willaime, Generalized stacking-faults and
screw-dislocation core-structure in bcc iron: a comparison be-
tween ab initio calculations and empirical potentials, Philos.
Mag. 90, 1063 (2010).

[39] V. L. Moruzzi and P. M. Marcus, Magnetovolume instabilities
and ferromagnetism versus antiferromagnetism in bulk fcc
iron and manganese, Phys. Rev. B 39, 6957 (1989).

[40] P. W. Ma, S. L. Dudarev, and J. S. Wróbel, Dynamic simula-
tion of structural phase transitions in magnetic iron, Phys. Rev.
B 96, 094418 (2017).

[41] J. Q. Zhao, H. Tian, Z. Wang, X. J. Wang, and J. W.
Qiao, FCC-to-HCP phase transformation in CoCrNix medium-
entropy alloys, Acta Metall. Sin. (Engl. Lett.) 33, 1151 (2020).

[42] H. Ge and F. Tian, A review of ab initio calculation on lattice
distortion in high-entropy alloys, JOM 71, 4225 (2019).

[43] T. Zuo, M. C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng,
S. Chen, P. K. Liaw, J. A. Hawk, and Y. Zhang, Tailoring
magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn)
high entropy alloys by metal doping, Acta Mater. 130, 10
(2017).

[44] I. Toda-Caraballo, J. S. Wróbel, D. Nguyen-Manh, P. Pérez,
and P. E. J. Rivera-Díaz-del-Castillo, Simulation and modeling
in high entropy alloys, JOM 69, 2137 (2017).

043806-28

https://doi.org/10.1016/j.jnucmat.2010.05.017
https://doi.org/10.1080/14786430802206482
https://doi.org/10.1142/S201032471540007X
https://doi.org/10.1002/jcc.26176
https://doi.org/10.1103/PhysRevB.85.245102
https://doi.org/10.1080/01418619708207198
https://doi.org/10.1080/14786430310001613264
https://doi.org/10.1016/j.commatsci.2006.11.005
https://doi.org/10.1103/PhysRevB.60.3839
https://doi.org/10.1103/PhysRevB.65.024103
https://doi.org/10.1103/PhysRevLett.92.175503
https://doi.org/10.1016/j.pmatsci.2006.10.010
https://doi.org/10.1007/s10820-007-9079-4
https://doi.org/10.1103/PhysRevB.81.184202
https://doi.org/10.1007/s10853-012-6657-y
https://doi.org/10.1016/j.anucene.2014.10.042
https://doi.org/10.1039/C4CP01366B
https://doi.org/10.1103/PhysRevB.91.024108
https://doi.org/10.1038/srep39803
https://doi.org/10.1103/PhysRevB.101.174416
https://doi.org/10.1016/j.commatsci.2021.110435
https://doi.org/10.1016/j.jnucmat.2007.03.006
https://doi.org/10.1103/PhysRevB.71.174115
https://doi.org/10.1103/PhysRevB.80.104440
https://doi.org/10.1016/j.cpc.2011.01.030
https://doi.org/10.1103/PhysRevLett.106.246402
https://doi.org/10.1080/14786431003668793
https://doi.org/10.1103/PhysRevB.39.6957
https://doi.org/10.1103/PhysRevB.96.094418
https://doi.org/10.1007/s40195-020-01080-6
https://doi.org/10.1007/s11837-019-03777-1
https://doi.org/10.1016/j.actamat.2017.03.013
https://doi.org/10.1007/s11837-017-2524-2


GENERALIZED UNIVERSAL EQUATION OF STATES FOR … PHYSICAL REVIEW MATERIALS 6, 043806 (2022)

[45] S. Chiesa, P. M. Derlet, S. L. Dudarev, H. Van Swygenhoven,
and H. Van Swygenhoven, Optimization of the magnetic po-
tential for α-Fe, J. Phys. Condens. Matter 23, 206001 (2011).

[46] M. Müller, P. Erhart, and K. Albe, Analytic bond-order po-
tential for bcc and fcc iron—comparison with established
embedded-atom method potentials, J. Phys. Condens. Matter
19, 326220 (2007).

[47] Y. S. Lin, M. Mrovec, and V. Vitek, Bond-order potential
for magnetic body-centered-cubic iron and its transferability,
Phys. Rev. B 93, 214107 (2016).

[48] S. L. Dudarev and P. M. Derlet, A ‘magnetic’ interatomic po-
tential for molecular dynamics simulations, J. Phys. Condens.
Matter 17, 7097 (2005).

[49] P. M. Derlet and S. L. Dudarev, Million-atom molecular dy-
namics simulations of magnetic iron, Prog. Mater. Sci. 52, 299
(2007).

[50] E. C. Stoner, Collective electron ferromagnetism II. Energy
and specific heat, Proc. R. Soc. Lond. A 169, 339 (1939).

[51] L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed.
(Pergamon Press, London, 1976).

[52] P. W. Ma, C. H. Woo, and S. L. Dudarev, High-temperature
dynamics of surface magnetism in iron thin films, Philos. Mag.
89, 2921 (2009).

[53] T. Mueller, A. Hernandez, and C. Wang, Machine learning
for interatomic potential models, J. Chem. Phys. 152, 050902
(2020).

[54] I. Novikov, B. Grabowski, F. Kormann, and A. Shapeev, Mag-
netic moment tensor potentials for collinear spin-polarized
materials reproduce different magnetic states of bcc Fe, npj
Comp. Mater. 8, 13 (2022).

[55] J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Universal
features of the equation of state of metals, Phys. Rev. B 29,
2963 (1984).

[56] P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, Universal
features of the equation of state of solids, J. Phys. Condens.
Matter 1, 1941 (1989).

[57] P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills,
and O. Eriksson, Density functional theory for calculation
of elastic properties of orthorhombic crystals: application to
TiSi2, J. Appl. Phys. 84, 4891 (1998).

[58] A. Togo and I. Tanaka, First principles phonon calculations in
materials science, Scr. Mater. 108, 1 (2015).

[59] H. Geng, N. Chen, and M. Sluiter, First-principles equation
of state and phase stability for the Ni-Al system under high
pressures, Phys. Rev. B 70, 094203 (2004).

[60] H. Fujihisa and K. Takemura, Stability and the equation of
state of alpha-manganese under ultrahigh pressure, Phys. Rev.
B 52, 13257 (1995).

[61] X. Sha and R. E. Cohen, First-principles thermal equation of
state and thermoelasticity of hcp Fe at high pressures, Phys.
Rev. B 81, 094105 (2010).

[62] O. Gülseren, O. Gülseren, O. Gülseren, and R. E. Cohen,
High-pressure thermoelasticity of body-centered-cubic tanta-
lum, Phys. Rev. B 65, 064103 (2002).

[63] Y. Mishin, M. Mehl, D. Papaconstantopoulos, A. Voter, and
J. Kress, Structural stability and lattice defects in copper: ab
initio, tight-binding, and embedded-atom calculations, Phys.
Rev. B 63, 224106 (2001).

[64] P. B. Roy and S. B. Roy, Applicability of three-parameter
equation of state of solids: compatibility with first principles

approaches and application to solids, J. Phys. Condens. Matter
15, 1643 (2003).

[65] Y. K. Huang and C. Y. Chow, The generalized compressibility
equation of Tait for dense matter, J. Phys. D. Appl. Phys. 7,
2021 (1974).

[66] N. H. Mao, Empirical equation of state for high compression,
J. Geophys. Res. 75, 7508 (1970).

[67] M. Kumari and N. Dass, An equation of state applied to
sodium chloride and caesium chloride at high pressures and
high temperatures, J. Phys. Condens. Matter 2, 3219 (1990).

[68] J. Freund and R. Ingalls, Inverted isothermal equations of state
and determination of B0, B′

0 and B′′
0, J. Phys. Chem. Solids

50, 263 (1989).
[69] V. A. Lubarda, On the effective lattice parameter of binary

alloys, Mech. Mater. 35, 53 (2003).
[70] N. Saunders and A. P. Miodownik, CALPHAD (Calculation of

Phase Diagrams): A Comprehensive Guide (Pergamon Press,
London, 1998), Vol. 1.

[71] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[72] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[73] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[74] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gra-
dient Approximation Made Simple, Phys. Rev. Lett. 77, 3865
(1996).

[75] H. J. Monkhorst and J. D. Pack, Special points for Brillonin-
zone integrations, Phys. Rev. B 13, 5188 (1976).

[76] O. Hegde, M. Grabowski, X. Zhang, O. Waseda, T. Hickel, C.
Freysoldt, and J. Neugebauer, Atomic relaxation around de-
fects in magnetically disordered materials computed by atomic
spin constraints within an efficient Lagrange formalism, Phys.
Rev. B 102, 144101 (2020).

[77] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevMaterials.6.043806 for the relationship
between the MIP and the magnetic description of the
Ginzburg–Landau approximation, the local ground state
computed by DFT for the FM and AFM configurations at
different b/a ratios and the tabulated expressions of the MIP
for ferromagnetic iron.

[78] K. Wang, W. Zhu, S. Xiao, J. Chen, and W. Hu, A new
embedded-atom method approach based on the pth mo-
ment approximation, J. Phys. Condens. Matter 28, 505201
(2016).

[79] R. Ravelo, T. C. Germann, O. Guerrero, Q. An, and B. L.
Holian, Shock-induced plasticity in tantalum single crystals:
Interatomic potentials and large-scale molecular-dynamics
simulations, Phys. Rev. B 88, 134101 (2013).

[80] S. M. Foiles, M. I. Baskes, and M. S. Daw, Embedded-atom-
method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt,
and their alloys, Phys. Rev. B 33, 7983 (1986).

[81] M. Acet, H. Zähres, E. F. Wassermann, and W. Pepperhoff,
High-temperature moment-volume instability and anti-Invar
of γ -Fe, Phys. Rev. B 49, 6012 (1997).

[82] J. Crangle and G. C. Hallam, The magnetization of face-
centred cubic and body-centred cubic iron + nickel alloys,
Proc. R. Soc. Lond. A 272, 119 (1963).

043806-29

https://doi.org/10.1088/0953-8984/23/20/206001
https://doi.org/10.1088/0953-8984/19/32/326220
https://doi.org/10.1103/PhysRevB.93.214107
https://doi.org/10.1088/0953-8984/17/44/003
https://doi.org/10.1016/j.pmatsci.2006.10.011
https://doi.org/10.1098/rspa.1939.0003
https://doi.org/10.1080/14786430903130854
https://doi.org/10.1063/1.5126336
https://doi.org/10.1038/s41524-022-00696-9
https://doi.org/10.1103/PhysRevB.29.2963
https://doi.org/10.1088/0953-8984/1/11/002
https://doi.org/10.1063/1.368733
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1103/PhysRevB.70.094203
https://doi.org/10.1103/PhysRevB.52.13257
https://doi.org/10.1103/PhysRevB.81.094105
https://doi.org/10.1103/PhysRevB.65.064103
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1088/0953-8984/15/10/313
https://doi.org/10.1088/0022-3727/7/15/305
https://doi.org/10.1029/JB075i035p07508
https://doi.org/10.1088/0953-8984/2/14/006
https://doi.org/10.1016/0022-3697(89)90486-1
https://doi.org/10.1016/S0167-6636(02)00196-5
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.102.144101
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.6.043806
https://doi.org/10.1088/0953-8984/28/50/505201
https://doi.org/10.1103/PhysRevB.88.134101
https://doi.org/10.1103/PhysRevB.33.7983
https://doi.org/10.1103/PhysRevB.49.6012
https://doi.org/10.1098/rspa.1963.0045


TODA-CARABALLO, WRÓBEL, AND NGUYEN-MANH PHYSICAL REVIEW MATERIALS 6, 043806 (2022)
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