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Introducing density variation and pressure in thermodynamically self-consistent
continuum phase-change models including phase-field
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We present a thermodynamically self-consistent method to introduce dilation/density variation in continuum-
scale phase-change models. Dilation incurs a pressure response via a hyperelastic contribution to the free energy
that generalizes the lattice constraint. The dilation is represented entirely by species concentrations and permits
composition, temperature, and phase-dependent specific volumes in a robust form. The impact of this approach
is compared with the common assumption of the lattice constraint through demonstrative Stefan and phase-field
models applied to the equilibrium of a Ni-Cu nanoparticle in equilibrium with its melt. Furthermore, the effect
of phase and composition-dependent specific volume is explored in free dendritic growth behavior.

DOI: 10.1103/PhysRevMaterials.6.043805

I. INTRODUCTION

Computational simulation of phase-change and mi-
crostructure evolution on the continuum scale is a powerful
and versatile tool to robustly capture complex interface
morphologies, kinetic effects, and the perturbation of bulk
thermodynamics by interface energy. Advanced computa-
tional resources have led to the application of these tools
across a range of fields from climate modeling [1] to biology
[2,3] and material science [4–8]. Despite their pervasiveness,
these models typically assume the density of phases to be con-
stant, a troubling assumption considering a key phenomenon
is the emergence of capillary pressure/elastic dilation and
the ensuing departure from bulk thermodynamic equilibrium
[9–14]. The extension of constant density to multiple coexist-
ing phases is more troublesome still, as this is generally not
the case, and likewise the assumption that all species have
equivalent specific volumes.

In this paper, we develop a relatively simple approach suit-
able for sharp and diffuse interface models such that density
change and capillary pressure emerge naturally. The model
couples phase change with mass transport while relaxing the
lattice constraint and expressing the model in an Eulerian
frame of reference. Unknown variables are concentrations of
all species in the Eulerian frame, i.e., with respect to a refer-
ence volume. The total concentration of species, weighted by
their specific volumes, is equated to the local state of elastic
dilation/compression. This dilation is associated with a hy-
drostatic pressure which replaces the lattice constraint while
permitting variation in density. Further, the pressure is directly
related to thermodynamic driving forces for mass transport
and phase change, e.g., via the Grand potential formulation.
This paper is an expanded discussion of the companion letter
[15].

*Michael.Welland@cnl.ca

Alternative methods of including density variation during
phase change, notably in Stefan models, generally assume di-
lute systems in which the density of the phase is approximated
to not rely on the concentration of the dilute, diffusing species
[16]. This paper does not require a dilute limit for diffusing
species nor any restrictions on composition-dependent densi-
fication. This is an approach to introducing density variation
in phase-field models with clear thermodynamic implications.

This model employs hydrostatic pressure to drive mass
transport with diffusive dynamics and does not consider either
bulk flow or shear stresses. As such, it applies to quasistatic
fluid-fluid simulations or a solid with a high creep rate. How-
ever, the representation of dilation is fundamental to fluid
dynamics and full elastic treatment, and so this paper may
underpin developments in future work. The Grand potential
formulation for coexisting phases is employed to control im-
plicit interfacial energy contributions from the bulk phases
[10,17].

The model applies to a range of continuum-scale sim-
ulations, including sharp interface models [16], level-set
methods, and phase-field models [8,18,19]. The sharp in-
terface application results in a generalization of the Stefan
model, increasing its range of applicability.

The use of an elastic response to generalize the lattice
constraint has been preliminarily explored in the context of
phase-field models in previous works [17,19–21]. In this pa-
per, we formalize, expand, and examine the model and its
predictions in detail. Reformulation of the approach using the
chemical potential as the dependent variable is also presented.
The approach is compared with formulations based on the
lattice constraint theoretically, identifying additional terms
and their interpretation, and quantitatively through numerical
experimentation. The model is shown to expand on the lattice
constraint case even in the simple case of constant phase
volumes and specific volumes due to the additional degree of
freedom introduced.

This paper proceeds by first establishing the thermody-
namic model for a single phase in the material frame, followed
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FIG. 1. The total dilation is envisioned as occurring via an inter-
mediate stress-free configuration. The shaded box dilates from V 0,
the discretization volume, to the real volume V . The hatched box
undergoes approximately the same dilations starting from V ref to
V 0. The concentration of particles in V 0 in the real configuration is
related to the total dilation.

by the expression in the Eulerian frame. The multiphase
model is then established and compared with models that
employ the lattice constraint and classical theory. Discus-
sion is facilitated by demonstrative potentials; however, the
underpinning theory is generally applicable to arbitrary ther-
modynamic potential and conducive to expression in software
that can exploit symbolic logic to derive thermodynamic
quantities for less programming overhead.

II. MODEL DEVELOPMENT

In the ensuing discussion, brackets are used to group
terms, and parentheses denote function arguments. A prime
superscript denotes quantities without consideration of elastic
effects such as those used in models which rely on the lattice
constraint.

A. Representation of dilation through concentration

The proposed approach links local species concentration
to an elastic dilation which necessitates separating elastic di-
lation from other phenomena which incur eigenstrains (stress
free). This is accomplished through multiplicative decompo-
sition in which the deformation of the material is envisaged as
a sequence of transformations from a reference configuration
discretized by the volume element V 0 to the current config-
urations via an intermediate step, as shown schematically in
Fig. 1 [22]. The reference configuration is the material without
any dilations, while the real configuration is the observable
state of the material in which simulations occur. The inter-
mediate stress-free configuration is envisioned as the result of
elastic destressing from the real configuration. Thus, any phe-
nomena which incur stress-free strains, such as interdiffusion
of species with differing specific volumes, thermal expan-
sion, or piezoeffects, but excluding phase change, deform the

material from the reference to the stress-free configuration
which is then elastically stressed to its real configuration.
Multiplicative decomposition then states that the total dilation
� = �el�sf is the product of the stress-free �sf and elastic
�el dilations. In Fig. 1, the material (Lagrangian) frame is
indicated by the array of dots and the Eulerian frame by the
grid.

Two infinitesimal parcels of material are considered un-
dergoing the same deformation. The shaded region deforms
according to

V 0 → V sf → V, (1)

while the hatched region, a subset of the shaded one, follows

V ref → V̄ sf → V 0. (2)

The shaded parcel encloses ni particles. Since the volume
is a homogenous function of species abundance, one can
define the specific volume vi = ∂V

∂ni
, such that V = ∑

ivini,
and similarly for the stress-free volume V sf = ∑

i niv
sf
i and

the reference volume V 0 = ∑
i niv

0
i , with specific volumes vsf

i
and v0

i defined similarly.
The hatched parcel is supposed to contain ňi particles.

Since the hatched parcel is a subset of the shaded one, which is
itself arbitrarily small, it is reasonable to assume the dilations
and specific volumes are approximately equal. From this, we
can identify the dynamic variable of concentration ci = ňi

V 0 ≈
ni
V . Since V ref ≈ ∑

i ňiv
0
i , we can write the dilations

� = V

V 0
≈ V 0

V ref
= 1∑

i civ
0
i

, (3)

�el = V

V sf
≈ V 0

V̄ sf
= 1∑

i civ
sf
i

, (4)

where it is noted that ňi does not appear and is subsequently
disregarded from the remainder of this paper.

The limits of the assumption of equal dilations may be
explored by considering the shaded region is dilated as V =
V 0�, while the hatched region dilates by a slightly different
factor V 0 = V ref [� + d�]. The requirement V

V 0 ≈ V 0

V ref is true
if 1 ≈ 1 + d�

�
, and therefore, d�

�
� 1. In turn, this may be

related to the gradient of dilation d� ≈ ∇�V 0, such that the
condition becomes ∇�

�
V 0 � 1. The validity of this assump-

tion is therefore related to the gradient of the deformation
rather than its magnitude; however, large gradients can be han-
dled by shrinking the discretization volume, which is likely
already small to resolve the gradient.

The expressions in Eqs. (3) and (4) are worthy of further
discussion, as they are the keys to this paper. These equations
imply that the state of dilation may be entirely represented
by the specific volumes and concentrations of species de-
fined by an Eulerian frame of reference. The explicit volume
has not been eliminated from the system and indeed plays a
critical role in the ensuing thermodynamic discussion. Rather,
this derivation shows that the instantaneous value of dilation
may be approximated by the concentration of all species.
The approximation is appropriate for typical dilations since
the control volumes are arbitrarily small but may fail under
extreme strain rates/gradients where thermodynamic equili-
bration within the control volume is not appropriate.
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Initially, it may appear that information about the system
has been lost, for example, if the total system expands in
size. However, in the Eulerian frame, it is instead represented
by the extent of the material over the Eulerian mesh, i.e.,
whereas in the material frame dilation of a parcel of material
is represented by a change in V , dilation in an Eulerian frame
implies the movement of mass from the element to adjacent
elements or through the boundary of the domain.

B. Thermodynamic model

Ideally, the volume/pressure dependence of a thermody-
namic potential would be available. However, typically, only
the Gibbs free energy as a function of the composition
G′(ni, P = P0) is available. One may add elastic dependence
to consider G′ to be the thermochemical contribution to the
Helmholtz energy and add a hyperelastic material with a ho-
mogenous strain energy function Ael(ni,V ):

A(ni,V ) = G′(ni ) + Ael(ni,V ), (5)

which is a homogenous function in ni and V . Several such
functions are available and generally depend on �el, ex-
pressed in one of the configuration volumes in Fig. 1 [22].
By definition, one has

P ≡ − ∂A

∂V
= −∂Ael

∂V
, (6)

and

μi ≡ δA

δni
= μ′

i + ∂Ael

∂ni
, (7)

and the Maxwell relation ∂μi

∂P = vi.
To facilitate discussion in a means useful for small defor-

mations, in this paper, we employ a simplified dilation-only
strain energy function expressed in the stress-free configura-
tion:

Ael = V sf κ

2
ln2�el, (8)

where κ is the isothermal bulk modulus such that

P = − 1

�el
κ ln �el. (9)

The chemical potential is

μi = μ′
i + P�elvsf

i [1 − 0.5 ln �el]

= μ′
i + Pvi[1 − 0.5 ln �el], (10)

where μ′
i(ni ) ≡ ∂G′

∂ni
is the chemical potential at P0, and

the last line relies on the reasonable assumption that vi =
�elvsf

i . Equation (10) is a vector equation of vsf
i operating on

P�el[1 − 0.5 ln �el]. Since
∑

i v
sf2

i is a scalar and therefore
invertible, the Moore-Penrose pseudoinverse may be found,
and

P = 1

�el[1 − 0.5 ln �el]

∑
i v

sf
i [μi − μ′

i]∑
i v

sf
i

2 , (11)

such that the pressure may be related to the change in chemical
potential.

For infinitesimal deformations, �el ≈ 1, such that vsf
i ≈ vi

and is a constant

μi = μ′
i + Pvi, (12)

P = −κ ln �el =
∑

vi[μi − μ′
i]∑

vi
2

≈ κ

[∑
i

civ
sf
i − 1

]
, (13)

where the last line is a first-order expansion about the point
�el−1 → 1.

C. Expression in the Eulerian frame of reference

Having established the thermodynamic model, we now
consider the system in an Eulerian frame of reference dis-
cretizing space with a constant volume which for simplicity is
taken to be V 0. The Helmholtz energy density a(ci,�) = A

V 0

is thus defined with respect to the reference volume, the dila-
tion, and concentration having been defined above. Since A is
homogenous in ni and V, A = −PV + ∑

μini, and

a = −P� +
∑

μici. (14)

The Gibbs g = G
V 0 and Grand ψ = �

V 0 potential densities
are likewise defined.

The Helmholtz energy density, therefore, becomes from
Eq. (5)

a = g′(ci ) + ael(ci,�
el )

=
∑

ciμ
′
i + 1

�el

κ

2
ln2�el

=
∑

ciμi − �

�el
κ ln �el, (15)

where the last line follows directly from Eq. (14) with
Eq. (9) due to homogeneity. In the absence of stress-free
dilations, v0

i = vsf
i , � = �el, and therefore, a = ∑

ciμi +
κ ln �el. Note, in this paper, that the total and elastic di-
lations depend only on concentrations weighted by their
specific volumes, as defined in Eqs. (3) and (4). Therefore, the
Helmholtz energy density in the Eulerian frame of reference
is only a function of the concentrations in the same frame,
a(ci,�

el(ci )) = a(ci ).
The Grand potential density may be calculated using

Eq. (11):

ψ (μ,�) = − �

�el[1 − 0.5 ln �el]

∑
i v

sf
i [μi − μ′

i]∑
i v

sf
i

2 . (16)

In infinitesimal dilation, �el → 1 and � → 1 such that

ψ = −
∑

i vi[μi−μ
′
i ]∑

i v
2
i

.
As an illustration of this approach, consider the following.

The model may be nondimensionalized with a natural energy
scale RTρ0, pressure P0, and density ρ0 = ∑

ci at P = P0.
Scaled quantities c̃i = ci

ρ0 and P̃ = P
P0 are the scaled concen-

trations and pressure and are on the order of unity. Equation
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FIG. 2. Demonstrated free energy surface for an ideal binary
solution showing the (a) scaled Gibbs energy density at P = P0 as
is commonly available in the literature. (b) Scaled Helmholtz and (c)
Grand potential densities, derived using the model described above,
where the green curve corresponds to P = P0 in (a).

(15) becomes

ã =
∑

c̃i
μi

RT0
− �

�el
κ̃ ln �el, (17)

where κ̃ = κ
RTρ0 is a scaled bulk modulus in which, for exam-

ple, water at room temperature is ∼15. The scaled Helmholtz
energy is ã = a

RTρ0 , and g̃ and ψ̃ are similarly defined. Fur-

ther, �el−1 = ∑
ṽsf

i c̃i, where ṽsf
i = vsf

i ρ0 is the scaled specific
volume and is on the order of unity. An illustration of
this approach is presented in Fig. 2 with g̃(c̃1, c̃2, P̃ = 1) =
c̃1[1 + ln c̃1

c̃1+c̃2
] + c̃2 ln c̃2

c̃1+c̃2
, vsf

i = 〈1, 2〉, and κ̃ = 1.

Incompressible materials and the lattice constraint

For incompressible materials, κ → ∞, �el = 1, and from
Eq. (4) becomes an equality constraint

∑
i civi = 1. The pres-

sure may no longer be determined by Eq. (9) but may be
determined as the Lagrange multiplier affecting the constraint
when forming the multiphase potential, as described below in
the context of Eq. (29).

Alternately and commonly, incompressibility is interpreted
to be a lattice constraint and is used to eliminate one of
the species. In such a case, diffusion of species i implies
counterdiffusion of j such that the local volume is unchanged
viJi = −v jJ j . Assuming equal mobilities and no spacial vari-
ation in specific volume, the interdiffusion potential is

μi − v j

vi
μ j = μ′

i − v j

vi
μ′

j + P

[
1 − v j

vi

]
, (18)

and in the case where vi = v j simply becomes μi − μ j =
μ′

i − μ′
j regardless of the pressure. This implies that diffusion

is not directly affected by the pressure, although the pressure
may still play a role in other aspects of system evolution.

D. Linearization of state variable dependences
via quadratic potentials

In the ensuing discussion, the ability to invert the func-
tional form of μi(c j ) to find ci(μ j ) will be important
[10,17,23]. Since μi(c j ) is generally nonlinear, inversion may
be facilitated by forming a quadratic potential as a series
expansion of the free energy about a known point denoted by
an asterisk superscript, from which one linearizes the

μi − μ∗
i = ∂μi

∂c j
[c j − c∗

j ] (19)

relationship [10,17]. It is noted that the approximation as a
quadratic potential breaks the homogeneity condition.

The pressure in Eq. (9) may be expanded in terms of �el−1

and with Eq. (4) becomes

P − P∗ =
[
κ + P∗

�el∗

] ∑
i

vsf
i [ci − c∗

i ]

=
[
κ + P∗

�el∗

] ∑
i

vsf
i

∂μi

∂c j

−1[μ j − μ∗
j ], (20)

or if the expansion point is at P∗ = 0, P =
κ

∑
i v

sf
i [ci − c∗

i ] = κ
∑

i v
sf
i ( ∂μi

∂c j
)−1[μ j − μ∗

j ]. This form
is useful, as it defines a linear relationship between unknown
variables ci or μi in terms of a known pressure that can be
used to impose constraints on the system of interest.

Examining the form of ∂μi

∂c j
,

∂μi

∂c j
= ∂μ′

i

∂c j
+ ∂2ael

∂c j
2

= ∂μ′
i

∂c j
+ vi

∂P

∂c j

= ∂μ′
i

∂c j
+ κ∑

civ
0
i

v0
i v

0
j [1 − ln �el], (21)

where we have first used the Maxwell relation ∂μi

∂P = vi. For
infinitesimal displacement, this becomes

∂μi

∂c j
− ∂μ′

i

∂c j
= κviv j . (22)

The introduction of the elastic energy thus changes the
linearization by terms related to the specific volumes and
the bulk modulus. The case of interdiffusion, i.e., a constant
volume, Eq. (22) implies an increase in local pressure which
would be dissipated via diffusion and the applied boundary
conditions.

The matrix ∂μi

∂c j
= ∂2a

∂ci∂c j
is necessarily symmetric, and

similarly for ∂μ
′
i

∂c j
= ∂2a′

∂ci∂c j
. However, since a′ is a first-order

homogenous function in ci,
∂μ

′
i

∂c j
has rank k − 1 due to the

Gibbs-Duhem relation and is therefore singular. This singular-
ity is resolved through the application of the lattice constraint
which breaks the homogeneity of the potential, e.g., ideal
mixing where μ

′
i = μ0

i + RT ln ci∑
c j

, imposition of a dilute
approximation or the lattice constraint breaks the homogene-
ity of the function through removal of the term

∑
i ci. In

contrast, in this paper, ∂μi

∂c j
is not in general singular since the

differentiation is not with respect to all extrinsic variables due
to the introduction of � [17]. In Eq. (21), this dependence
is captured by the second term which is symmetric, positive
semidefinite, and rank 1. The addition of this term makes ∂μi

∂c j

full rank and invertible either through numerical or analytical
means [17].
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III. MULTIPHASE COMPOSITE POTENTIAL

We now expand the single-phase model above to a multi-
phase material. In the ensuing derivation, properties are phase
independent unless indexed by a superscript Greek letter.

Consider a multiphase material that is undergoing a phase
change. The extent of the phase change may be parameterized
by the extrinsic quantity V 0 pπ , where pπ is the dimensionless
volume fraction of the material in phase π and varies from 0 to
1. This parameterization may be envisaged as an element with
a sharp interface that is progressing or a homogenous material
in a superposition of pure phase states. The corresponding
fundamental equation is [24]

dU = −PdV +
∑

μidni −
∑

Bπd (V 0 pπ )

du = −Pd� +
∑

μidci −
∑

Bπd pπ , (23)

which defines the driving force for the phase change in terms
of the characteristic thermodynamic potentials:

−Bπ ≡ ∂a

∂ pπ

∣∣∣∣
�,ci

= ∂ψ

∂ pπ

∣∣∣∣
�,μi

. (24)

We further assume the local equilibrium approximation,
i.e., the relaxation of internal degrees of freedom of coexisting
phases at the interface to a local equilibrium such that μπ

i =
μi, and the equilibrium partitioning of nπ

i in their respective
phases [24]. Equivalence of μi in coexisting phases implies a
multiphase composite potential may be defined in terms of the
sum of single-phase Grand potentials weighted by the phase
parameterization:

ψ (μi,�
π, pπ ) =

∑
π

ψπ (μi,�
π )pπ . (25)

This formulation is popular in phase-field literature, as
it has been shown to decouple states of coexisting bulk
phases from the interface such that no implicit contributions
to interfacial energy occur [10,20,25]. Since ∂ψ

∂μi
= −ci, the

phase-specific concentrations follow the intuitive relation:∑
π

cπ
i pπ = ci. (26)

It is at this point that this approach differentiates itself.
Since the definition of the phase parameterization V 0 pπ in-
volves volume change of phase π , we cannot specify (or
expect in general) Pπ to be equal. Rather, the equilibrium
between the variation of the phase volumes defines the dis-
continuous value of Pπ [26]. This pressure is a new degree
of freedom in this approach which needs not to be explic-
itly calculated but rather emerges from the requirement that
all μπ

i are equal. This formulation then naturally permits
the model to account for pressure/dilation variation between
phases which affords the freedom to capture curvature and
kinetic effects.

The Grand potential density of each phase is

ψπ = aπ −
∑

i

μic
π
i (27)

= −�πPπ . (28)

In this paper, ψπ is readily expressed through Eq. (28),
through Eq. (3), and with pressure from Eq. (9) or with a
Lagrange multiplier as discussed below. Other models rely on
Eq. (27), as discussed in the model formulations section below
[10].

A. Incompressible materials and connection
to the lattice constraint

We now briefly return to the calculation of pressure in the
incompressible case. Equation (25) implies a minimization
which including the incompressibility constraint reads [19]

a(ci, �π, pπ ) = min
∑
π

aπ (cπ
i ,�π )pπ

subject to

∑
π cπ

i pπ = ci∑
i v

sf
i

π
cπ

i = �π
. (29)

Forming the Lagrangian L = ∑
π aπ (cπ

i ,�π )pπ +∑
μi[ci − ∑

cπ
i pπ ] − Pπ [�π − vsfπ

i cπ
i ], where the Lagrange

multipliers are identified as the dual variables of the parameter
in the constraint. This is most easily seen via the envelope
theorem ∂a

∂�π = ∂L
∂�π = −Pπ and likewise for μi. Therefore,

the pressure in each phase may be calculated uniquely in the
incompressible case while forming the composite potential.

B. Governing equations

The governing equations may be derived from the theory
of irreversible processes, sometimes referred to as nonequilib-
rium thermodynamics, to generate entropy locally [27]. Mass
transport in each phase is given as

ċπ
i = −∇ · Jπ

i + Qπ
i , (30)

where Qπ
i is the volumetric mass sources/sinks. The mass

fluxes are derived from linear phenomenological theory
assuming no interdiffusion cross-terms Jπ

i = −cπ
i Mπ

i ∇μi

[28,29], where Mπ
i is the mobility coefficient. Notably, the

definition of the mass flux permits Mπ
i = Mπ

j in general.
Equation (30) is useful to implement in sharp interface models
which consider phases as separate computational domains
[16]. Alternately, the total rate of change of ci, useful in
phase-field models, can be expressed via Eq. (26):

ċi = −∇ ·
∑
π

pπJπ
i +

∑
π

pπ Qπ
i

= −∇ ·
[∑

π

pπ cπ
i Mπ

i

]
∇μi +

∑
π

pπ Qπ
i , (31)

or if the diffusivity of species is equal in all phases, Mi = Mπ
i :

ċi = −∇ · ciM∇μi +
∑
π

pπQπ
i . (32)

The local state of composition and evolution via Eq. (32)
may be described by either variable of the μi-ci conjugate pair.
The chemical potential benefits from being constant across
an interface in equilibrium, whereas the concentration typi-
cally varies either in relative composition or density between
equilibrium states, requiring suitable numerical discretization.
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However, material properties are often expressed as nonlinear
functions of nominally extrinsic variables, e.g., μi(c j ).

The rate of phase change depends on the method of repre-
senting phase but is proportional to Bπ , with proportionality
constant Mφ , which may be related to interface attachment
kinetics [17]. When interfacial effects are relevant or in phase-
field models, an interfacial energy term fint is included which
contributes to the phase change [30]:

ṗ = Mφ

[
Bπ + ∂ fint

∂ p

]
. (33)

The expression of Bπ via Eq. (24) corresponds to the po-
tential for which the choice of state variables representing
composition are the natural variables. Thus, Bπ = − δψ

δpπ |μi

or Bπ = − δa
δpπ |ci for the choice of μi [10,23] or ci [17,21],

respectively.

IV. COMPARISON OF MODELS

To compare the implications of the current model with
models which invoke the lattice constraint, we consider a set
of four models probing quadratic approximations and diffuse
vs sharp interface models. These models are applied to the
well-established case of a spherical nanoparticle to show re-
covery of classical theory followed by free dendritic growth
to elucidate the importance of this paper in future research on
microstructure growth.

To explore the implications of this paper on simulation
results, four models are compared using the sharp and diffuse
interface representations with choices for ci or μi as dynamic
variables, identified as A–D:

A. Sharp interface in ci, implementing the current ap-
proach with an exact potential;

B. Phase-field in μi, implementing the current approach
with a quadratic potential;

C. Phase-field in μi, implementing the lattice constraint
with a quadratic potential; and

D. Phase-field in μi, implementing the lattice constraint
with an exact potential.

All models were solved in one dimension (1D) using the
finite element method. Model A was implemented in COMSOL

Multiphysics v5.5 [31]. Models B–D were implemented in
the FENICS package [32–35]. Since this model formulation
requires an additional field variable as compared with the
lattice constraint, the computational burden increases accord-
ingly. For a binary scenario, this implies doubling the vector
of unknowns and the dimensions of the (sparse) Jacobian.
For these cases, a direct solver was used which nominally
would imply an increase in computational complexity/wall
time of a maximum factor of 8. In practice, however, the
additional computational cost was observed to be significantly
less which implies the solution of the Newton step was not
the rate-controlling step. For increasingly multicomponent
systems, this incremental burden decreases.

In preliminary investigations of iterative methods for the
solution of the Newton step, it was also noted that models
in the current formulation appear stiffer. This is likely due
to the relative magnitude of the elastic response as compared
with the chemical response, e.g., the factor of bulk modulus

appearing in the pressure and its effect on μi per Eq. (21).
This implies an eigenvector of the Jacobian in the vector 〈vici〉
and that a suitable preconditioner should be employed. The
efficient implementation of this method is left for subsequent
work.

A. Model A: Sharp interface approach with this paper

The sharp interface model consisted of two 1D domains
on a moving mesh with a shared boundary. Each domain
represents a phase in which ci is the dynamic variable, and
μi = ∂a

∂ci
. The shared boundary represents the phase boundary

at which Js
i = Jl

i , and local equilibrium μl
i = μs

i is applied
via a Lagrange multiplier. Note this is a generalization of the
Stefan model, as will be discussed elsewhere. The position
zint of the interface can be related to the phase fraction p.
The velocity of the interface corresponds to the rate of phase
change in Eq. (33), and since the chemical potential is held
constant, Bπ = − ∂ψ

∂ p . The interfacial energy is fint = σ 4πz2
int,

and therefore,

żint = ṗ = Mφ

[
ψ l − ψ s − 2σ

r

]
, (34)

with pressure calculated by Eq. (9):

ψπ =
∑

i

cπ
i · κπ ln

∑
i

cπ
i . (35)

A constraint of Pl = 0 is applied at the outer boundary as
a Dirichlet condition.

For phase-field models, a phase-indicator φ is introduced
as the arguments to p(φ) and fint (φ,∇φ). The governing
equations become

φ̇ = Bπ ∂ pπ

∂φπ
+ δ fint

δφ

= [ψ s − ψ l ]
∂ p

∂φ
− σ

[
6d∇2φ − 3

d

∂φ2[1 − φ]2

∂φ

]
. (36)

The mass transport is assumed to be quasistatic with equal
mobilities, however, and therefore, from Eq. (32):

ċ = ∇ · ciMi∇μ j,

μ̇i
∂c j

∂μi
+ φ̇

∂c j

∂φ
= ∇ · ciMi∇μ j,

φ̇
∂c j

∂φ
= ∇ · ciMi∇μ j . (37)

B. Model B: Phase-field model with this paper
and quadratic potential

Expanding a quadratic about a point c∗
i , f − f 0 =

1
2

∑
[ci − c∗

i ][μi + μ0
i ], where the relationship between μi

and ci is via Eq. (20) with Pl = 0, and Grand potential via
Eq. (28):

ψ − ψ∗ = −κ
∑

i

∂ci

∂μ j
[μ j − μ∗

j ]. (38)
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FIG. 3. Displacement of Gibbs free energy curves by Ps with
vi = 1. The tie line indicating equilibrium is shown in green for the
three equilibria.

C. Model C: Phase-field model with lattice constraint
and quadratic potential

Like Model B, the quadratic lattice approach uses the re-
lationship between μi and ci given in Eq. (19). The Grand
potential can then be found by similarly expanding Eq. (27):

ψ − ψ∗ = −1

2

∑
i

[μi − μ∗
i ][ci + c∗

i ], (39)

for both phases. Since the lattice constraint is assumed, this
model only considers a single species.

D. Model D: Phase-field model with lattice constraint
and an analytical potential

The ideal case takes advantage of the invertible form of
an ideal binary solution. Considering an ideal binary solution,
f = c[a + ln c] + [1 − c][b + ln(1 − c)], one calculates μ =
∂ f
∂c = (a − b) + ln c

1−c , which may be inverted analytically to
find c(μ) = [1 + exp(a − b − μ)]−1. The Grand potential is
then calculated by Eq. (27):

ψ = f − μc

= b + ln (1 − c)

= b + ln

(
1 − 1

1 + exp (a − b − μ)

)
. (40)

The free energies used in this demonstration correspond to
the Ni-Cu system given by

g′s(cNi, cCu) = xNiLNi
T − T m

Ni

T m
Ni

+ xs
CuLCu

T − T m
Cu

T m
Cu

+ RT

vm
[xNi ln xNi + xCu ln xCu], (41)

g′l (cNi, cCu) = RT

vm
[xNi ln xNi + xCu ln xCu], (42)

with the mole fractions xNi = cNi
cNi+cCu

and xCu = cCu
cNi+cCu

and
properties listed in Table I.

The equilibrium at T = 1400 K and Pl = 0 (GPa) is de-
picted as tie lines in the Gibbs free energy plot in Fig. 3,

TABLE I. Parameters for the Ni-Cu system demonstrative model
from Refs. [9,37,38]. Bulk moduli, κπ and the interfacial energy σ

are representative. The specific volumes are at 1400 K, and vm is
the assumed average specific volume for cases neglecting density
variation.

Symbol Value Unit

T m
Ni 1728 K

T m
Cu 1358 K

LNi 2350 J cm−3

LCu 1748 J cm−3

σ 1.0 J m−2

κ s 100 GPa
κ l 1 GPa
vm 7.42 cm3 mol−1

vs
Ni 6.99 cm3 mol−1

vl
Ni 7.29 cm3 mol−1

vs
Cu 7.72 cm3 mol−1

vl
Cu 8.12 cm3 mol−1

wherein the energy of the solid phase is raised vertically by
Ps since specific volumes of species are assumed equal. The
tie lines are determined through the equilibrium partitioning
xs∗

Ni and xl∗
Ni, requiring μs

i (x
s∗
Ni) = μl

i (x
l∗
Ni), or equivalently the

geometric lowest common tangent approach:

∂gs

∂xNi
(xs∗

Ni) = ∂gl

∂xNi

(
xl∗

Ni

)
,

gs(xs∗
Ni) + Ps = gl

(
xl∗

Ni

) + [
xs

Ni − xl∗
Ni

] ∂gl

∂xNi

(
xl∗

Ni

)
. (43)

The maximal pressure attainable is calculated as �Pmax =
gs(xNi → 1) − gl (xNi → 1) = LCu

T −T m
Cu

T m
Cu

= 0.446 GPa.

E. Spherical nanoparticle equilibria

We first consider the equilibrium of a solid nanoparticle
with radius r in a liquid. Equilibrium is described by the
classical Young-Laplace relation:

Ps
r − Pl = 2σ

r
, (44)

such that, as r → ∞, the flat interface is approached with
Ps = Pl , which represents bulk equilibrium. The chemical
potentials at equilibrium are constant throughout the system
but are shifted by the pressure in the enclosed phase and
compositional change. It will be demonstrated that, while both
formulations produce Eq. (44), the extra degree of freedom
afforded by this paper allows for explicit control of Pl , which
may be relevant to experimental conditions and necessary for
future inclusion of structural mechanics/fluid flow. Equation
(44) implies a critical radius of 4.484 nm in the construction
of Fig. 3 as the smallest embryo which can be stable with the
melt.

A simple classical solution occurs when the composition of
the solid phase does not vary, possibly due to high curvature
in the energy potential approaching the stoichiometric case.
If vs

i is not a strong function of pressure (therefore, �el → 1)
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FIG. 4. Simulation results of mole fraction (above) and inter-
diffusion potential (below) at the interface, plotted along with the
Young-Laplace equations. The solid line represents the analytical
solution; models A and B are implementations of this paper, and
models C and D implement the lattice constraint.

[26],

μir − μi∞ ≈ vs
i

2σ

r
. (45)

In this approach, Eq. (18) readily shows that, for equal
specific volumes, pressure does not require a compositional
change since the pressure is reflected either by the Lagrange
multiplier or a change in �el corresponding to all species
being multiplied by a factor cs

i,r = cs
i,∞ exp( Ps

r −Ps
∞

κβ ). Equation
(45) is then recovered directly from Eq. (10) when �el → 1
since μ′

i only depends on the relative concentrations. The term
1 − 1

2 ln �el,- which depends on the form of the pressure in
Eq. (9), can therefore be seen to modify this relation in the
general case of compressible materials. Since the pressure of
the surrounding liquid remains at Pl

r , the chemical potential
variation is accommodated by a change in relative composi-
tions.

The general case of a two-component system with com-
positions in which both phases can vary is investigated with
models A–D. To aid in comparison, dilation is infinitesimal,
all v0π

i = 1, and we are only concerned with stationary, i.e.,
equilibrium solutions with ċi = 0. This approach affords the
degree of freedom to fix pl = 0 at the outer boundary which
is done where possible. The case is contrived to correspond to
the discussion in Refs. [24,36].

The equilibrium mole fractions in the solid and liquid
phases and interdiffusion potential are plotted in Fig. 4 along
with the simulation results. Analytics results are obtained
through iterative methods to solve Eq. (43) in the same manner
as to determine tie lines in Fig. 3.

Figure 4(a) shows that models A and D both follow the
analytical calculations of solubility well as the logarithmic be-
havior of the potential, and therefore μi(ci ) is preserved. Both
quadratic models B and C show roughly linear trends after a
slight curvature in the lattice model at small �P. Model B,
however, brackets the analytical result, while C underpredicts
the solubility curve as pressure increases. Models B and C
also differ in the magnitude of the partitioning cl

i−cs
i .

Models A and D predict �μi accurately for a large range
of pressures, again due to their capturing of the logarithmic

FIG. 5. Comparison of the chemical potentials of species 1
(solid line) and 2 (broken line) for models A and B based on this
paper, showing the effect of linearization vs the sharp interface
implementation.

dependence which models B and C disregard. Models B and
C produce linear trends, as expected by Eq. (15); however,
here, the impact of this approach is noted via Eq. (22) which
causes the trends to separate. Figure 5 shows how Model B
follows a linear approximation of μi(�P) at �P = 0 which
deviates from the analytical solution rapidly.

The predicted pressures are shown in Fig. 6. Models A
and B can be seen to maintain Pl = 0 using the degree of
freedom afforded by the current approach, while models C
and D overpredict the pressures in both phases. Nonetheless,
all simulations show good agreement between �P(r) and
Eq. (44).

Densification is also predicted in models A and B and
shown in Fig. 7. The concentrations of species in the solid
phase shown in Fig. 7 (above) are the combined dependence

FIG. 6. Predicted pressures as a function of radius. Open and
closed symbols above correspond to liquid and solid phases,
respectively.
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FIG. 7. Solid-phase concentrations with Ps predicted from the
sharp interface and quadratic pressure models. The top plot shows
the individual species concentrations scaled by vm, showing c̃s

Cu < 0
at high pressure, which is permissible in the quadratic expansion
but prevented in the sharp interface by the asymptotic behavior of
μi. The bottom plot shows the total concentration in the solid phase
which exceeds 1, reflecting elastic compression linearly related to the
pressure. Since κ s is large,

∑
cs

i ≈ 1, and therefore, �el ≈ 1, which
justifies the linear expansion in Eq (20).

of the shift in solubility with Ps and densification of the solid
phase. Densification of the solid phase is more clearly seen
in Fig. 7 (below) which shows the total concentration in the
solid phase as it increases with Ps approximately linearly as
per Eq. (13) due to infinitesimal dilation.

Figure 6 shows that all four models accurately reproduce
the dependence of the relative pressure on particle radius
described in Eq. (44), which is expected as the equilibrium
of the phase evolution Eq. (33). Likewise, the balance of
chemical potentials/interdiffusion potentials is assured by Eq.
(30) and their dependence on the relative pressure governed
by the construction shown in Fig. 3. Thus, the good agree-
ment between simulation and analytical results shown for
all models in Fig. 4 is anticipated. The difference between
this approach and lattice-constrained models, therefore, falls
on the interpretation of the pressure and its calculation via
Eqs. (35) and (38)–(40) for the sharp interface, ideal lattice,
quadratic lattice, and quadratic pressure, respectively.

This approach introduces an elastic term to form the
Helmholtz free energy in Eq. (5). Since A(ni,V ) is homoge-
nous in ni and V , one is assured that A(ni,V ) = ∑

i niμi − PV
with the conjugate variables defined in Eqs. (9) and (10) from
which the Grand potential is � = A− ∑

i niμi = −PV . The
equivalence between the Grand potential and the pressure

defined in Eq. (9) therefore relies on the homogeneity of
the free energy, which is broken by the assumption of the
lattice constraint or approximation with a quadratic potential.
More precisely, the difference is the inhomogeneity of the free
energy which implicitly contributes to �. For this reason, the
quadratic expansion of the current model relies on the lin-
earization of P in Eq. (20). The result is a good approximation
of the solubility change in Fig. 4 (top) by the quadratic expan-
sion of this approach. Auxiliary calculations relying instead
on Eq. (9) for the driving force showed equivalent predictions
to the quadratic lattice case.

When one approximates the potentials with quadratic ex-
pansions, it is expected that the equilibrium composition
and potentials be modified, as seen in Fig. 4 in both cases.
The apparently poor prediction of interdiffusion potential
by the quadratic pressure model is shown to be a consequence
of the linearization of μNi and μCu individually in Fig. 5,
whereas the quadratic lattice model expands μNi − μCu di-
rectly.

F. Free dendritic growth

The demonstrations we have presented thus far have shown
the quantitativeness of our model formulation in exhibiting
pressure and density variations. These were performed, for
convenience, under the constraint all v0

i = 1. However, real
materials have variable specific volumes across species and
phases. To further highlight the capabilities of the model,
we now demonstrate it for free dendrite growth using Model
B. Note this paper excludes shear strains/stresses which are
clearly present in crystalline systems such as this, and bulk
motion in the liquid phase is also ignored as a simplifica-
tion. However, the application of this model to free dendritic
growth serves to highlight the importance of variable specific
volume and is therefore nonetheless informative.

For this demonstration, we contrast our model under con-
ditions where we impose the constraint that all v0

i = 1 with
that where we utilize realistic phase-specific volumes which
vary between species and phase listed in Table I. We addi-
tionally set Ml = 10−8/RT m2 s−1 as representative [39] and
the phase-field interface width d = 10 nm. Together with the
interfacial energy, these collectively set the energy scale, time
scale, and length scale of the problem. For spatial discretiza-
tion, these simulations are performed using an adaptive mesh
refinement algorithm, where the smallest element size is set
to �x = 0.4 d . A heuristic adaptive time stepper, based on
the number of Newton iterations needed for the solution to
converge in a given timestep, is used such that 10−3τ0 � �t �
10τ0, where τ0 = d2

Dl
.

Simulations are compared in terms of the applied driving
force for phase change. This is controlled in the model through
supersaturation:

� = cavg
i − cl∗

i

cs∗
i − cl∗

i

, (46)

which determines the average concentration cavg
i with cπ∗

i as
the bulk equilibrium for T = 1400 K. Zero-flux conditions are
implemented on all boundaries to maintain the supersatura-
tion. The domain is initialized with a circular solid seed of
radius r = 200 nm, with composition cs∗

i and the liquid with
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FIG. 8. Comparison of (a) solidification fraction and (b) dendrite
tip velocity for three supersaturations vs dimensionless time. Data
series are truncated when the tip velocity departs from the steady-
state regime. Note that filled symbols showcase simulations where
the constraint vπ

i = 1, and empty symbols correspond to Model B
with the specific volumes listed in Table I.

composition cavg
i . Note that this approach does not guarantee

Pl = 0 due to cl∗
i = cavg

i in general and particularly in the case
below.

We include anisotropy in the standard fashion by including
an order parameter dependence in the surface energy gradi-
ent term [40]. Simulations are performed in two dimensions,
where a quarter of the growing crystal is simulated due to the
cubic fourfold symmetry. We restrict our analysis to the initial
transient after initialization and the free growth steady-state
regime of the equiaxed single dendritic growth.

The change in solid fraction and dendrite tip velocity vs
time are the two measures we use to examine the growth
rate. The solid fraction is calculated by integrating the order
parameter over the domain. The tip velocity is calculated by
determining the interface position through order parameter
contour, i.e., φ = 0.5, as a function of time, fitting the result
to a cubic spline, and taking the derivative. Both measures
are presented in Fig. 8 for different supersaturations. The top
panel in the figure displays the solid fraction, where filled
symbols represent the simulations with vπ

i = 1, while the
empty symbols represent variable specific volumes according
to Table I. It is expected that larger supersaturation would
correlate with faster growth rates; however, we also observe
faster rates for the case of variable volumes. The bottom panel
shows the tip velocity, where we observe results consistent
with the solid fraction data, faster steady-state velocities for
increasing supersaturation, but also the case of variable spe-
cific volume. The possible reasons leading to this behavior
when using variable-specific volumes can be attributed to the
change in volume affecting the driving force, altering the
shape of the growing crystal, or a combination of both. To
get a better understanding, we examine the crystal shape and
microsegregation next.

To examine the effect of variable specific volumes on den-
drite shape, we examine snapshots in three stages of growth
for each supersaturation and each set of specific volumes im-
posed. The results are presented in Fig. 9, where the interface
contours are plotted. For each supersaturation, we compare
the same time for each volume constraint, while across su-
persaturations, we have attempted to extract representative
cases of early time, i.e., when the crystal begins to assume
some anisotropy, intermediate time, when the primary den-
drite arms start to establish themselves, and late time, when
the crystal has reached the end of the steady-state regime.
What is interesting here is the clear differences in the shapes
of the growing crystal. Specifically, in the cases of variable
volume, the dendrite arms appear thicker and broader for the
same time and have progressed further along the primary axes.
Other interesting features can be found in the grooves of the
primary arms which also exhibit differences as a function of
volume such that higher curvature appears with the variable
volume case. The structure of the grooves, like the growing
tip, is a function of solute segregation, which we consider
next.

Solute rejection at the growing interface not only maintains
interfacial equilibrium but helps determine the final dendrite
shape. In the present formulation, we can also determine the
dilation in the phases caused by density variations and the
resultant pressure. According to Eq. (13), elastic dilatation can
be determined by considering the term

∑
vπ

i cπ
i − 1, where the

phase is in elastic compression (tension) when the resultant
sum is positive (negative). As a demonstrative showcase of
the segregation dilation and pressure behavior, we show only
a single supersaturation � = 0.5 in Fig. 10. The top panel
displays segregation, where we observe an initial spike of so-
lute due to the adjustment of the system to the initial capillary
pressure increasing local density and redistributing solute per
the logic behind Eq. (45). There appears to be a slightly lower
concentration in the solid for the case of variable volume for
all time, while in the intermediate regime where the crystal
has reached steady state, we find that the variable volume case
has rejected more solute in the liquid ahead of the front, a
quantitative indication of the differing behavior.

When we examine the dilation and pressure in Fig. 10, we
note that the choice of controlling � and the consequent initial
conditions discussed above have created a positive pressure in
the liquid. In the early stage of growth, we notice a similar
behavior of the initial adjustment leading to a spike in density
followed by a tapering off in the solid. This is because the
solid is denser than the liquid, creating negative pressure as
the solid grows into the liquid. What is notable is that, even
though the segregation showed only slight differences, those
differences are clear and amplified in the dilation and pressure
metrics.

Pressure gradients that appear in Fig. 10 nominally would
dissipate through elastic and/or plastic deformation or fluid
flow; however, such bulk motion is not included in this paper.
Pressure gradients in Fig. 10 in the solid would likely dissi-
pate and equilibrate to a degree via elastic deformation. The
dissipation in the liquid is less clear, however, as viscous flow
through the dendrite branches would have to occur.

We now discuss the driving force change upon con-
sideration of variable specific volumes. In permitting
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FIG. 9. Interface contour plots for each supersaturation. (a) � = 0.5, (b) � = 0.6, and (c) � = 0.7. In each grid, contours are plotted
showing early, mid, and late stages of the free growth regime for the v0

i = 1 and variable volume cases shown in solid and dash-dot lines,
respectively.

pressure/density change, one must consider the tie line for
equilibrium between phases to be a tangent surface in cCu, Ni

spanned by the set of possible tie lines. The shape of this
surface is affected by the specific volumes, although one
would expect from Eq (10) that, for Ps = Pl = 0, one would
find the same mole fractions which also correspond to the
lattice constrained case. The zero pressure equilibrium con-
centrations are cs

Ni, Cu = 0.122825, 0.877175 and cl
Ni, Cu =

0.092425, 0.907575 for the case of vπ
i = 1 and cs

Ni, Cu =
0.119404, 0.852744 and cl

Ni, Cu = 0.0853511, 0.838109 for
the variable volume case. Note that the mole fractions are
equivalent. This is an indication that the tangent surface that
determines the equilibrium solutions for the respective system
has also changed. For the same simulation conditions then, we
have each system effectively operating in two different phase
spaces, as dictated by the tangent surface, that contribute

FIG. 10. Mole fraction, dilation, and pressure profiles along the
primary lobe for � = 0.05, showing early, intermediate, and late
stages of the free growth regime for the v0

i = 1 and variable vol-
ume cases shown in solid and dash-dot lines, respectively. Time
progresses as the profiles shift to the right.

to their kinetic path during growth. The evidence we have
presented above then necessarily translates to an increase of
the driving force of the variable volume case because of the
difference in tie lines and curvatures of the free energies. This
can also conversely be interpreted as a change in effective
pressure.

Inclusion of the variable volumes also affects the depen-
dence of the driving force and local chemical potential on
local curvature, as made explicit in Eq. (45) to a first ap-
proximation. This contributes to the change in dendrite shape
shown in Fig. 9.

It is abundantly clear that the change in specific volume is
a factor in determining the shape, segregation, and pressure
of the solidifying crystal. Solidification is the initial stage for
most industrial materials, particularly with recent technolo-
gies such as additive manufacturing and other near-net-shape
manufacturing technologies. The results we have presented in
this section, though we have not accounted for all phenom-
ena, suggest that to adequately predict the microstructures of
these initial system requires model formulations that consider
density variations.

As a final note, we remark on the conditions used in this
section. In designing the conditions for dendritic growth, we
opted here to use the supersaturation as a measure of our
driving force and implemented zero-flux boundary condi-
tions accordingly and not according to the Gibbs formulation
shown in Fig. 3. However, we note that these conditions
lead to an initial liquid state that is pressurized (see bottom
panel Fig. 10), specifically in the case of variable volume.
Applying Pl = 0 Dirichlet conditions on the liquid sides of the
simulation domain would help alleviate this initial pressurized
state in the liquid. While the magnitude of the data we have
presented here will change under these conditions, we do not
expect the trends that we have observed here because of the
variable volume to be altered.

V. DISCUSSION AND CONCLUSIONS

Through this paper, homogenous elastic compression is
captured, as shown in Fig. 7 according to Eq. (20). Further-
more, the formulation is general enough to input phase and
composition-dependent specific volumes which more faith-
fully reflect real systems with accurate accounting for total
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species and strains evolving with composition, as shown in
Fig. 10. Variable specific volumes will impact the chemical
potentials separately per Eq. (9), such that the construction in
Fig. 3 will feature a skew in the potential of the pressurized
phase with increasing pressure. Even in the special case of
vπ

i = 1, the lattice constraint is not recovered, unless an in-
compressible material is assumed.

The inclusion of all species in this paper introduces a new
degree of freedom compared with the lattice models, which
may be used to control the absolute pressure and chemical
potentials of a phase, illustrated in Figs. 6 and 5, respectively.
Often, the relative pressure and interdiffusion potential are
sufficient outputs when interpreted correctly and the lattice
model suffices. However, these factors may become more im-
portant with further advances in elastically coupled diffusion
where the absolute pressure/state of strain of phases is an
important quantity [21].

A key feature of this paper is that the volumetric strain
may be described by its local composition per Eq. (15). The
representation of the composition is a user choice if the whole
composition space is spanned, with the driving force for phase
change reflecting the appropriate thermodynamic potential,
viz Eq. (24). This presents the possibility of mixed represen-
tations, e.g., a combination of concentrations and chemical
potentials, N-1 concentrations/chemical potentials combined
with the total concentration. This may present a more nat-
ural integration with other modeling techniques such as the
phase-field crystal method where the total density and N-1
concentrations are considered [41–44].

The model currently only includes homogenous pres-
sure/dilation and incurs stress-driven diffusive flow. Shear
stress is an avenue of future development, as is bulk motion
driven by deformation or flow which must be recast into an
Eulerian frame of reference. Nonetheless, the methodology to
represent the homogenous component in a thermodynamically
self-consistent fashion is established via the strain energy
density in Eq. (8). Therefore, this paper may form a basis for
such future efforts.

Here, we have demonstrated the present formulation using
free dendritic growth and indeed have shown quantitative
differences, particularly in considering constant and variable
specific volumes, i.e., variable density. Unfortunately, system-
atic experimental investigations of free dendritic growth are
exceedingly rare. Examples include Refs. [45,46], where the
former are experiments done on organic alloys [pivalic acid
(PVA)] and the latter on Al-Ge. While the results of the latter
contain multiple dendrites and are therefore difficult to com-
pare here, the former on PVA was done in a benchmark study
in a microgravity environment to make it convection free and
hence effectively eliminate any variation in density. The pur-
pose there was to study the theory of dendritic growth in terms
of interface stability and diffusion independently. Such a study
with the present formulation is indeed outside the scope here.
In that study, they also found, in measuring steady-state tip
velocity, those of convection free, i.e., no density variation, to
be on average lower than the cases of diffusion-convection
transport for all undercooling (Fig. 3 in [45]). This result
mirrors what we have found here as well when one looks at
the steady-state velocity reached as a function of driving force
for constant and variable volume, Fig. 8(b).

Due to the rarity with which such systematic experiments
are done, we consider numerical and other theoretical formu-
lations where density/pressure variation is considered during
phase transitions to better contextualize the results we have
presented and their possible meaning and implications. Such
formulations for solidification exist mostly when considering
convective fluid flow in examining dendrite settling, mo-
tion, or other microstructural effects [47–51]. For example,
in Ref. [52], where the kinetics of solute-driven solidifica-
tion and melting were examined, the authors found that the
interface velocity increases due to convection (i.e., variable
density) along with changes in segregation. Qi et al. [50], in
modeling equiaxed dendritic growth coupled to fluid flow and
motion, found variation in the steady-state tip velocities of
each equiaxed dendrite arm as a function of the different local
flow velocities at each encounter (Fig. 4(a) in [50]). Here,
the changes in flow velocity leading to the different steady-
state tip velocities are aided by the steepness of concentration
gradients as determined by pressure and density variations.
Finally, in a flow problem examining shrinkage due to density
variation, Bhattacharya [49], using an enthalpy-based method,
found that shrinkage due to flow generally reduces both steady
tip velocities and accumulation of solute ahead of the front,
leading to shallower gradients. The results we have just dis-
cussed, in terms of physical phenomena, mirror what we
have presented here, namely, accounting for density/pressure
variation leads to changes in growth rates and accumulation
of solute ahead of the growing front. Though we have not
accounted for fluid flow, we find that our present model is
capable of accounting for and predicting the interesting phys-
ical results that up until now were regulated for the involved
formulations of flow models. A more thorough examination
of free dendritic growth is planned for future work.

In summary, the benefits of the current formulation are
(1) density change via the Helmholtz potential and clear

identification of the pressure and Grand potential for the driv-
ing force for phase change,

(2) composition- and phase-dependent densification facil-
itated through inputted specific volumes,

(3) explicit control/calculation of the absolute chemical
potential/pressure in phases,

(4) ready generalization to multicomponent systems,
(5) implementation with either ci or μi as dynamic vari-

ables,
(6) elimination of implicit contributions to interfacial en-

ergies through the Grand potential formulation, and
(7) a point of connection with elastic/fluid models via

identification of homogenous dilation/pressure.
Thus, it is shown that, through a proper description of

the Helmholtz potential and considering all species compo-
sitions in an Eulerian frame of reference, one may capture
densification and homogenous elastic stresses in continuum-
scale phase-change models. Densification and the flexibility
to include phase-dependent specific volumes generalizes the
lattice constraint common in other models and fits naturally
in the thermodynamic treatment. This approach is derived
for isothermal conditions, but an extension to temperature
dependence is straightforward. If the interface is also repre-
sented with associated interfacial energies, capillary pressure
naturally emerges in a general fashion without the need to
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alter the composition of coexisting phases. Comparison of this
approach with conventional phase-field formulations demon-
strates that, while both formulations predict the interdiffusion
potential and variation in pressure following classical theory,
this approach additionally directly determines the individual
quantities and provides a means for user-imposed controls,
e.g., the direct control of the pressure of a surrounding phase.
The model readily generalizes to multicomponent systems,
and the emergence of homogenous dilation/pressure may

form a natural point of intersection with elastic/viscoplastic
treatments which both identify such a quantity in their
description.
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