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Methodological framework for materials discovery using machine learning
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Traditionally, materials discovery has been guided by basic physical rules, and such rules embody the basic
understanding of the physical characteristics of interest of the material. However, the discovery of physical rules
remains a challenging task due to the inherent difficulty in recognizing patterns in the high-dimensional and
highly nonuniform distributed materials space. The standard data analytics approach using machine learning
(ML) may fall short in producing meaningful results due to fundamental differences between the underlying
assumptions and goals of ML vs materials discovery. ML is mainly focused on estimating complex black-box
predictive models (that are nonlinear and multivariate), whereas in materials discovery, the goal is to come up
with interpretable data-driven physical rules. Here, we attempt to tackle this problem by proposing a robust data
analytics framework that allows us to derive basic physical rules from data. We introduce the concept of global
and local modeling, utilizing both supervised and unsupervised learning, for highly nonuniformly distributed
materials data. To enhance the model interpretation, we also introduce a model-independent interpretation
technique to assist human experts in extracting useful physical rules. The proposed framework for extracting
data-derived physical rules at the global and local level is illustrated using two case studies: (1) classification
of van der Waals (vdW) and non-vdW (nvdW) materials and (2) classification of wide bandgap and non-wide
bandgap vdW materials.
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I. INTRODUCTION

Data analytic approach for materials discovery involves
application of machine learning (ML) methods to database
of materials with known properties [1–10]. These include
prediction of materials properties [11–18], searching for
optimal materials structures [19,20], finding new materials
compositions [21–23], and extraction of physically meaning-
ful representation of input features (also known as descriptors)
[24–32].

Next, we briefly review several representative studies.
Umehara et al. [16] perform gradient analysis as a postpro-
cessing step to extract local input feature importance from
convolutional neural network models for predicting photo-
electrochemical power of materials. Kunkel et al. [9] use an
active ML (AML) approach to explore the materials space
to discover organic semiconductor materials. At each itera-
tion, the AML finds the highly promising molecules based
on a fitness function (that balances model exploration and
exploitation), which is then validated via first-principles ab
initio simulation and then merged into the available data for
the next iteration. Similarly, Del Cueto and Troisi [10] intro-
duce an extrapolative search strategy that uses ML methods to
find materials with high figures of merit. However, we stress

*leex7132@umn.edu
†jiangw@bit.edu.cn
‡halsalma@umn.edu
§tlow@umn.edu
‖cherk001@umn.edu

that these studies are fundamentally different from this paper,
where our objective is to extract physical rules at the global
and local level.

On the other hand, many methodological aspects of this
data-driven discovery process are not clearly understood
due to different methodological assumptions made in ML
and materials discovery. We argue that understanding these
differences is critical for successful application of ML meth-
ods. Moreover, these differences (in underlying assumptions)
should be formalized before data analytics modeling. That
is, different assumptions and goals (of modeling) should be
properly reflected in a modeling procedure. In contrast, many
existing papers point out some of these differences and at-
tempt to address them in an ad hoc manner, by suggesting
heuristic modifications of existing ML algorithms [17,18].
For instance, Sutton et al. [17] identifies a subclass of ma-
terials using domains of applicability method to predict the
formation energy of transparent conducting oxide materials
with high accuracy, even though the overall accuracy for all
available materials is poor. This method attempts to overcome
an important difference between underlying assumptions used
in ML (that training and test data have similar statistical
distributions) and materials discovery, where future (test)
data may be different from past data. Ward et al. [11] and
Kailkhura et al. [18] propose a general-purpose ML pipeline
aimed at achieving both high predictability and interpretabil-
ity. The ML pipeline is designed to deal with the problem of
imbalanced and nonuniform distribution data and allows inter-
pretation at the model and decision levels. Their approach is
to partition the target output into several subregions (based on
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domain knowledge) and then perform ML modeling for each
corresponding subregion. However, ML modeling and inter-
pretation of models for subregions (formed by this method)
may not be meaningful when a subregion contains materials
from several different classes.

In materials discovery, available data are a set of materials
with known properties, and the goal is to discover mate-
rial(s) with useful target properties. Each known material (in
a database) is represented as a set of values (x, y), where
input vector x is a set of physical parameters, and an output
y encodes some (desired) target property. It is assumed that
input characteristics (or x values) determine the output (tar-
get) property, and this unknown dependency y = f (x) can be
estimated from an available dataset using ML methods. The
estimated dependency is then used to predict materials with
useful properties. The notion of a useful target property is
formalized as a set (or range) of y values that are specified
a priori. For real-valued outputs, target outputs correspond to
a range of y values, and estimation of dependency y = f (x) is
known as a regression problem. For categorical outputs, dif-
ferent types of materials (i.e., useful vs not useful) correspond
to different classes, under classification formulation.

For both classification and regression estimation prob-
lems, the goal is to estimate a model that provides small
prediction error (for new test inputs), where an error is the
discrepancy between y values predicted by the model and
true outputs for test inputs. This discrepancy is quantified via
some loss function, given a priori. For regression problems,
the typical loss is squared error, and for classification, it is
misclassification error or the number of mispredictions for
test inputs.

Even though both ML and materials discovery attempt
to estimate unknown mapping x → y from labeled training
samples (x, y), there are certain differences in underlying
assumptions. These differences are discussed next.

(1) Similarity between training and test data distributions.
This assumption is common in ML [33], but it may not hold in
materials discovery. That is, training and test data distributions
are nonuniform and may not be similar.

(2) Goal of modeling and causality. Under the ML setting,
the goal of modeling is good prediction, i.e., minimization of
average prediction error (for test data). In materials discovery,
the goal is finding a good set of x values, i.e., regions in the
input x space with desired properties (y values). Further, in
materials discovery, an estimated model f (x) is interpreted
as causal dependency between input characteristics (x values)
and output properties. However, there is no assumption of
causality in ML. Hence, there is a growing realization that
data analytics models can be used for prediction but not for
estimation of causal dependencies [34–36]. Note that, in most
ML applications, a data analytics model is always conditioned
on underlying distribution of observational data, whereas true
causal models do not depend on the distribution of (x, y) data.
Therefore, ML methods can estimate, at best, causal models
only in the regions (in x space) where the training data (x, y)
is available.

(3) Quality of estimated ML model. Note that most ML
methods adopt standard loss functions, such as the mean
squared error or classification error. However, such loss func-
tions may not be the best choice in materials discovery.

(4) Interpretation vs prediction. An important requirement
for materials discovery using ML is good interpretability
of estimated models. This contrasts with most ML meth-
ods, where the main goal is prediction, and interpretation is
sometimes a secondary consideration. Good interpretability
is difficult for two reasons. First, ML models are usually
nonlinear and high dimensional, but good interpretability is
typically possible only for low-dimensional problems (with
just a few input variables). The second problem is that data
analytics modeling depends on distribution of observational
data, so such models cannot be regarded as interpretable
causal models, as discussed in Point (2) above. Therefore,
interpretation of ML models is also data dependent.

II. GLOBAL AND LOCAL MODELING APPROACHES
FOR MATERIALS DISCOVERY USING ML

For materials discovery, available data are a set of materials
with known properties, represented as a set of values (x,
y), and the goal is to discover material(s) with useful target
properties (output y). Examples of such useful target proper-
ties could be: Does the material belong to a van der Waals
(vdW) or non-vdW (nvdW) class, or is it wide or non-wide
bandgap? As discussed earlier, there are two goals of model-
ing, i.e., prediction and interpretation. For interpretation, the
goal is to derive simple interpretable rules for the estimated
model f (x). Note that achieving both objectives is (usually)
not possible. For example, complex black box ML models,
such as neural networks and support vector machines [33,37],
lack good interpretation. Thus, the main point here is that
data analytics modeling in material discovery usually involves
a tradeoff between prediction and interpretation, whereas in
most traditional ML applications, the main goal is prediction.

In materials discovery, estimating dependency y = f (x)
should also reflect highly nonuniform distribution of materials
data. That is, nonuniform distribution of x values often results
in several distinct data clusters in a multivariate input space,
so that different clusters may exhibit different (local) depen-
dencies y = f (x). Such different local models will also have
different interpretation. Considering nonuniform distribution
of materials data leads to the following local modeling strat-
egy: first, partition available training data into several clusters,
based on similarity of x values only, and second, estimate
a local model y = f (x) for each cluster, using only (x, y)
samples from that cluster.

Note that estimated clusters effectively partition the input
space into several disjoint regions (where each region corre-
sponds to one cluster). For this partitioning, samples in each
region can be further analyzed regarding their output property
(y value), resulting in several local models. Using ML termi-
nology, the first (clustering) step is known as unsupervised
learning, and second step corresponds to a supervised learning
task (such as classification or regression).

In contrast to local modeling, it is also possible to estimate
a single global model using all available training data. Note
that for the same training data, global and local modeling
result in different estimated models. In terms of interpretation,
global modeling results in a set of rules describing a single
model (for all possible input values). In contrast, local
modeling, based on unsupervised learning approach, yields
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FIG. 1. General overview. (a) Problem formalization as binary classification of van der Waals (vdW) vs non-vdW (nvdW) materials. (b)
Each material is represented using five features (selected based on domain knowledge). (c) General flowchart of applying machine learning
(ML) for global and local modeling and interpretation.

several local models (for different regions of the input space).
Then each local model is interpreted as a set of rules. Notably,
local and global approaches result in two different types of
interpretations—both of which may be useful for materials
discovery. In other words, global and local modeling represent
two different views (and interpretations) of the same data.
Arguably, large discrepancy between these two views can be
expected if characteristically different materials classes are
present in a dataset. Qualitatively speaking, local modeling
enables discovering higher resolution knowledge hidden in
the data.

Next, we present two case studies to demonstrate the pro-
posed global and local modeling framework.

III. CASE STUDY 1: MODELING OF VDW VS NVDW
MATERIALS

Materials discovery is usually an ad hoc process guided
by physical intuition, physical rules of thumb, and experi-
mental data, among many other factors. For example, when
designing the bandgap of binary semiconducting systems, one
can be guided by Vegard’s law [38], which says that the
bandgap of the binary semiconductor alloy can be linearly
interpolated between that of its constituent bandgaps; when
designing magnetic materials, the magnetic ground state can
be estimated using Hund’s rule [39], which states that the
valence electrons arrange to maximize the total spin and an-
gular momentum quantum number; when searching for flat
band materials, one typically seeks high-symmetric geometric
structures, e.g., kagome or Lieb lattice [40–42].

Here, we develop a framework for deriving the input fea-
ture importance for discriminating between vdW and nvdW
materials [43]. Several input features that represent key defin-
ing features of vdW materials are discussed later in the
Feature selection subsection.

Global and local modeling of vdW and nvdW materi-
als includes several methodological steps, shown in Fig. 1.
Specifically, the problem of estimating a mapping between
physical characteristics of materials (or input features x) and
the target property y (vdW vs nvdW) is formalized as a binary
classification problem, shown in Fig. 1(a). The data encoding
step is shown in Fig. 1(b). This step also involves several other
preprocessing steps, as detailed later. The data modeling step

includes global or local modeling, as well as model interpre-
tation, shown in Fig. 1(c).

Next, we describe application of global and local modeling
approaches to a dataset of materials obtained from the Materi-
als Project database [44]. This section is organized as follows.
First, we introduce ML methods used for global and local
modeling. Second, we describe the data preprocessing step.
Finally, we present and discuss modeling results, including
physical interpretation of estimated data analytics models.

A. ML methods

The following ML methods are used in this study: de-
cision tree methods for supervised learning [45,46] and
self-organizing maps (SOMs) for clustering [47]. Next, we
provide a brief description and the motivation for using these
methods.

Decision tree methods allow simple interpretation in the
form of decision rules for partitioning the input space into
regions corresponding to different classes. The classification
and regression tree (CART) method [45] results in a single
decision tree model which is highly interpretable. However,
CART is not robust with respect to small variations in the
training data. Thus, in this paper, we use the random forest
(RF) method [46], which first estimates many different deci-
sion trees (of the same size) and then forms the final model by
their averaging.

Local modeling includes a clustering step followed by
estimation of a local model (for each cluster). Clustering is
performed using only x values of the training data, and it
results in partitioning of all materials into several clusters
corresponding to materials with similar input properties. Note
that the number of clusters (or regions in the input space)
should be small for good interpretability. Then materials in
each cluster are analyzed to estimate the relationship between
materials with similar input properties and their target prop-
erties (output class labels). In this paper, the SOM method
is used for clustering due to its advantages over traditional
clustering methods [33,37]. That is, the SOM method not
only performs clustering of multivariate data but also shows
similarity between clusters in a low-dimensional structure.
The SOM representation is particularly useful for interpreta-
tion of clusters formed by high-dimensional data. Typically,
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the SOM method is a set of units (clusters) arranged in a
two-dimensional (2D) map topology.

B. Data preprocessing step

The raw materials data obtained from the Materials Project
database [44] undergo extensive preprocessing steps before
modeling using ML methods. These steps include data en-
coding and selection of input features, data filtering, and
removing artificial (or heterostructure) materials from avail-
able data. These steps are discussed next.

1. Data encoding and feature selection

This includes proper encoding of inputs (physical parame-
ters) and outputs (target properties) as real valued, categorical,
or ordinal variables and selection of input features (usually
a subset of all possible inputs) used for ML modeling. For
this study, the goal of modeling is to estimate a predictive
model for classifying a given material (with known physical
properties) as vdW or nvdW. For this purpose, we first deter-
mine the dimensionality of the materials using the modified
breadth-first-search algorithm [48]. Then we label a material
as vdW if it is either zero dimensional (0D), one dimensional
(1D), or 2D and nvdW if it is three dimensional (3D), as shown
in Fig. 1(a).

Feature selection is an important part of the modeling
process because chosen features need to be informative for
discriminating between different target outputs (y) and pro-
vide meaningful interpretation of the estimated model. In
this study, it means that the input features should con-
tain macroscopic information about the material properties
(e.g., bandgap, formation energy (FE) per atom) rather than
microscopic information (e.g., distance between two atoms)
that leads to ambiguous model interpretation. We selected five
macroscopic properties encoded as real-valued input features:
FE per atom, unit cell density (denoted as density), bandgap,
unit cell volume (denoted as volume), and maximum lattice
constant (Max ABC) of a unit cell lattice (with parameters
a, b, and c). These features form the five-dimensional (5D)
input vector x. Additional motivation for selecting these input
features is based on physical understanding of vdW and nvdW
materials, as explained next:

(1) Higher FE per atom for vdW. vdW materials tend to
have a smaller number of chemical bonds than nvdW materi-
als because of the larger ratio of surface atoms mediated by
vdW forces, which leads to overall higher FE per atom. We
note that FE per atom is negative for stable materials, so the
term higher FE per atom denotes less negative values.

(2) Higher bandgap for vdW. vdW materials have reduced
dimensionality, hence stronger quantum confinement effect,
which leads to generally larger bandgaps.

(3) Higher Max ABC, lower density, higher volume for
vdW. In vdW materials, due to weak vdW interaction, the
lattice constant should be larger than in nvdW materials with
mostly strong covalent bond lengths. This automatically leads
to higher Max ABC, lower density, and higher volume of vdW
materials.

2. Data filtering

Following Cheon et al. [49], we removed any metastable
materials by filtering them out with formation enthalpy energy
above the convex hull > 0.1 eV/atom. Next, we removed
materials containing elements from the lanthanoid and acti-
noid series of the periodic table since these elements are not
commonly found in nature. Further, we removed materials
containing elements from the noble gases group, as such
material compounds are not likely to exist in nature. Finally,
we removed potential organic materials that contain O-H and
N-H clusters.

3. Removing artificially designed (heterostructure) materials

The available materials dataset contains many artificial
materials. They are 2D heterostructure materials designed by
researchers and uploaded into the Materials Project database.
Such materials will be classified as vdW, but they are not
relevant to our problem, as they do not represent naturally
occurring vdW materials. It is difficult to remove these arti-
ficial heterostructure materials from the dataset automatically
unless one exhaustively performs manual screening to filter
them out. Fortunately, these artificial heterostructure materi-
als contain similar lattice cell structure that is different from
most vdW materials. This is because the atomic model con-
struction of these artificial materials is represented in the
so-called supercell, where a vacuum layer is added to the
out-of-plane direction [50]. Therefore, we can apply a data an-
alytics approach for identifying artificial materials, under the
assumption that statistical distribution of five input features
for such materials is different from distribution in natural vdW
materials.

Based on this assumption, we performed clustering of all
vdW materials (using 3 × 3 SOM modeling) followed by
analysis of univariate histograms of input feature values in
each cluster. Visual analysis of histograms of feature values
shows that distribution of feature values in one SOM unit is
very different from all other units. This outlier unit is likely to
contain mostly artificial materials, and it has been confirmed
by additional examination of materials from this cluster. Fig-
ure 2(a) shows the result of SOM modeling along with the
number of vdW materials in each unit. The unit with distinctly
different histograms of feature values is circled in red, and
it contains 677 vdW materials identified as artificial. These
materials are removed from the dataset. Some examples of the
identified artificial materials are also presented in Fig. 2(b).
Later, we also found out that most of the artificial materials
identified here are in fact generated from Ref. [19].

The final number of materials used for modeling is 55 792.

C. Modeling results

This section describes data analytics modeling of the ma-
terials dataset. Application of ML methods using global and
local modeling approaches results in different interpretation
of available materials data. For example, interpretation of a
global model may help to understand (relative) importance of
input parameters for discovering vdW materials, whereas lo-
cal modeling may help to identify important input parameters
specific to local regions of the input space.
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FIG. 2. (Self-organizing map SOM) method for removing artifi-
cial materials. (a) 3 × 3 SOM model trained on all vdW data. Visual
analysis of feature histograms indicates that distribution of features
for materials in unit (2, 3), marked in red, is significantly different
from distribution in other units. (b) Examples of artificial materials
from this cluster.

1. Global modeling using the RF method

The RF algorithm is applied to preprocessed data to es-
timate the classification model where binary class labels
indicate vdW vs nvdW materials. This dataset is unbalanced,
and the percentage of vdW and nvdW samples (materials) data
is 8 and 92%, respectively. To address this class imbalance
problem, we use unequal misclassification costs during train-
ing [33,37], so that misclassification errors for the minority
class (vdW) are penalized more heavily than errors for the
majority class (nvdW). These two types of errors are false
negative (FN) and false positive (FP) errors, and their relative
importance is specified by a predefined parameter R, or the
ratio of misclassification costs [33,37]. For unbalanced data,
the value of R is commonly defined by the class imbalance
ratio, e.g.,

R = nnvdW

nvdW
, (1)

where nnvdW and nvdW denote the number of nvdW and vdW
samples in the training data.

Further, prediction performance or prediction accuracy
should be also properly adjusted or normalized to account
for unbalanced data [33,37,51]. The normalized prediction
accuracy (for test data) is defined as

Anorm = (TP × R) + TN

(TP + FN) × R + TN + FP
, (2)

where TP/TN denote true positive/negative accuracy, and
FP/FN denote false positive/negative accuracy. According
to Eq. (2), Anorm = 0.5 corresponds to a random guess, and
Anorm = 1 corresponds to a 100% accurate prediction.

The procedure for training the RF model is discussed
in Appendix A. The final estimated RF model has optimal
maxDepth = 9 and maxFeatures = 4. For this model, pre-
diction accuracy for test data is Anorm = 0.751, and its feature
importance ranking is shown in Fig. 3(a). Based on RF mod-
eling, the most important feature is FE per atom, followed by
Max ABC, bandgap, density, and volume.

FIG. 3. Analysis of important features based on global modeling.
(a) Ranking of feature importance using the random forest (RF)
method. (b) Histogram of formation energy (FE) per atom from
estimated model. Note that the histogram [for van der Waals (vdW)
and non-vdW (nvdW)] are shown in the same scale (on the y axis)
to account for class imbalance. From this histogram, we extract a
simple rule: FE per atom > − 2 eV for vdW materials.

Next, we describe a simple technique to extract physical
rules of thumb for input features using the estimated ML
model. This technique is model independent (can be used
for any ML model), and it yields a qualitative relationship
between input features and the classification decision (vdW vs
nvdW) predicted by a model. This procedure is illustrated next
using the RF model shown in Fig. 3: (1) estimate RF model
from training data and (2) plot univariate histograms for in-
put feature values (of training samples) separately for each
output class predicted by the model. For example, Fig. 3(b)
shows the histograms of FE per atom (most important feature)
for two output classes predicted by the global RF model.
These histograms effectively reflect different distribution (of
feature values) for two output classes. (3) Visual analysis of
histograms [estimated in Step (2)] can be used for deriving
simple IF-THEN-ELSE rules that qualitatively describe the
effect of an input feature on classification decision. For exam-
ple, from the histogram in Fig. 3(b), we can extract the rule:
FE per atom > − 2 eV for vdW materials (or equivalently, FE
per atom < − 2 eV for nvdW materials).

Further, it may be possible to relate these data analyt-
ics rules to first-principles knowledge. For example, the rule
shown above agrees with physical knowledge that vdW ma-
terials tend to have relatively higher FE energies (vs nvdW
materials) because of the weak vdW interactions. The more
negative FE values indicate stronger chemical bonds formed
in the materials. Therefore, FE per atom is the most important
feature in the overall materials database, and it is found to be
more important than the structural feature Max ABC.

Note that, for some (nonimportant) input features, it is
possible that the two histograms (for two output classes) in
Step (3) may be highly overlapping. This indicates that such
features are not important, and the rules of thumb cannot be
derived.

Finally, we point out several critical issues for interpreta-
tion of global models. All global models estimated by ML
methods are optimized for average prediction performance;
that is, performance index is averaged over (unknown) dis-
tribution of input features. As discussed in the Introduction
section, such average prediction performance may not be a
suitable index for materials discovery, where the goal is to
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FIG. 4. Trained 5 × 5 self-organizing map (SOM) model show-
ing 25 local regions (units) in five-dimensional feature space. The
size of each unit corresponds to the number of materials in this unit,
and the percentage of van der Waals (vdW) and non-vdW (nvdW)
materials is represented as a pie chart. The units highlighted by green
dashed circles contain more than 8% of the vdW samples, and they
are selected for local modeling.

understand and/or predict materials in a local region of the
input parameter space. For example, in this case study, the
distribution of five input features is highly nonuniform, and all
features have (unknown) nonlinear correlations. In addition,
the target class distribution is unbalanced, i.e., there is only a
small number of vdW materials relative to other (nvdW) ma-
terials. Moreover, the available materials dataset is collected
from the public Materials Project database, with no restriction
on the types of materials uploaded into the database. Hence,
the global model trained on the whole dataset is biased by
statistical properties of uploaded data. In this project, we
partially overcome this bias by removing heterostructure ma-
terials from the dataset. However, many of these issues can be
alleviated by local modeling, that is, estimating ML models
for subsets of available data. This local modeling approach
results in estimating local models for different (local) regions
of the input feature space.

2. Local modeling using SOM and RF

Local modeling relies on partitioning of available data
into several subsets (or clusters) based on similarity of input
feature values or input (x) values of the training data. In this
study, we use the SOM method for clustering and RF for
estimating local classifiers for each cluster.

Before SOM modeling, the available data are normalized
so that each real-valued input is prescaled to a similar range
(zero mean and unit standard deviation). Such prescaling of
input features (to the same range) is necessary to ensure
that all inputs contribute equally to distance calculation dur-
ing clustering. (Recall that the raw input feature represents
different physical variables that may have vastly different
ranges of values.) Details of SOM modeling are discussed in
Appendix B.

Clustering is performed using a 5 × 5 SOM so that the
trained SOM divides the 5D input space into 25 local regions
represented by SOM units. Figure 4 displays the trained SOM

model in a graphical form as a collection of units (clusters).
These SOM units are arranged in a 2D structure so that
adjacent units in this structure indicate most similar clusters
[33,51]. Each local region or cluster contains a subset of the
materials data, and their statistics are represented as a pie chart
in Fig. 4. The size of a pie chart corresponds to the number
of samples in a cluster (unit), and the pie chart displays the
percentage of vdW and nvdW materials in that cluster. Note
high variability of cluster sizes in Fig. 4, reflecting highly
nonuniform distribution of data samples (materials) in 5D
feature space. In this study, we are interested in clusters where
their percentage of vdW samples is higher than the percentage
of vdW in the whole materials dataset. Clusters with a green
dashed circle contain at least 8% of the vdW samples, and
these nine clusters are selected for local modeling, as dis-
cussed next.

Local modeling is performed by training the RF classifier
using labeled materials data for each of the nine selected
clusters. Then each local classifier can be used for predicting
the output class (vdW vs nvdW) for test inputs that fall into
one of these clusters. Note that the labeled dataset within each
cluster is highly unbalanced, as evident from Fig. 4. This class
imbalance is handled using different misclassification costs,
in the same manner as discussed earlier for global modeling
using RF.

Figure 5(a) shows the results of local modeling for each
selected cluster. Each cluster in Fig. 5(a) shows the label
indicating the position of the corresponding SOM unit in the
5 × 5 map shown in Fig. 4 and summary statistics of a local
classifier, including its prediction accuracy (for test data) and
the top three input features. The relative importance of input
features (for predicting vdW material) is shown in parenthe-
ses. Note that different local models in Fig. 5(a) may have
different important features; that is, local modeling results
in different rules of thumb for different local regions of the
input space. This confirms our earlier discussion about the
limitations of global modeling.

To understand these results better, we include additional
analysis on their elemental distributions (also known as pe-
riodic table heatmap) and the number of 0D, 1D, and 2D
materials in each of the nine clusters, shown in Figs. 5(b) and
5(c), respectively. Figure 5(d) show the histogram of the top
two important features from all estimated local models. This
additional information is used, along with the local modeling
results in Fig. 5(a), to identify similar local models that de-
scribe the same type of materials. Then combining such local
models into a small number of groups will improve model
interpretation.

First, note that clusters (2,3), (2,4), (2,5), and (3,3) consist
mostly of 0D materials, which may explain the finding that all
four local models (for these clusters) have the same important
features, i.e., FE per atom, bandgap, and density, albeit with
different ordering of importance [note that volume is ranked
fourth in the cluster (3,3) and is not shown in Fig. 5(a)].
Therefore, these three features are key characteristic features
of 0D vdW materials. From the periodic table heatmap anal-
ysis, we find a high percentage of the chlorine element in all
these clusters (roughly 40% of materials contain the chlorine
element in each cluster). One possible explanation is that
halogen atoms can react with metals to form metal halides,
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FIG. 5. Results of local modeling using the random forest (RF) method. (a) Summary statistics for local classification models estimated
for each of the nine clusters. Each square box represents a unit (or cluster) of a 5 × 5 self-organizing map (SOM) model (shown in Fig. 4).
Similarity between clusters is indicated by links connecting neighboring units. (b) Periodic table heatmap for interpretation of local models.
(c) The number (and percentage) of zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) materials in each SOM unit
(cluster). (d) The histograms of the two most important feature values in each cluster.

and this helps to passivate unpaired electrons. They form one
of the largest discrete molecules in addition to the organic
molecules [52].

In what follows, we focus our attention on the 2D vdW
materials instead since these materials are most important for
device applications. We note that clusters (3,4), (3,5), and
(4,5) contain 62, 77, and 87% of 2D metal chalcogenides
(MX , M = metallic element, X = O, S, Se, or Te element),
respectively. On top of that, roughly 23% of all 2D metal
chalcogenide materials in cluster (4,5) contain the Bi element,
which forms one of the most intensively studied topological
insulators, such as Bi2Se3 [53] and WSe2 [54], and most
of them have much larger bandgap values than those nvdW
materials in the same cluster. On the other hand, we notice
that both clusters (3,4) and (3,5) have volume as the most
important feature. By checking the materials within those
clusters, we find most of these transition metal chalcogenide
vdW materials contain either elongated or primitive lattice cell
structure with no vacuum layer in the out-of-plane direction

[see example materials in Fig. 6(a)], leading to very small
in-plane area and thus a relatively smaller total volume. This
is evident from the Fig. 5(d), where the volume (the most
important feature) for vdW materials is much smaller than the
nvdW materials counterpart. Based on this analysis, we can
provide the same interpretation for clusters (3,4), (3,5), and
(4,5).

In addition, we found that clusters (3,3) and (4,3) contain
33 and 21% metal halides (MX , M = metal, X = F, Cl, Br, or
I) respectively, followed by 7 and 13% MXene, respectively.
In cluster (4,3), the vdW materials have more negative FE per
atom than the nvdW materials, as shown in Fig. 5(d). This
is reasonable, as halogen atoms form much stronger covalent
bonds, which tend to lower the FE. On the other hand, though
it contains a substantial amount of metal halides and MXene,
most materials in cluster (3,3) are 0D materials, as previously
stated. Therefore, the density becomes the most important
feature due to the lower dimension of those materials. This is
also consistent with the histogram analysis shown in Fig. 5(d).
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FIG. 6. Interpretation of local models as known classes of materials. (a) Examples of the transition metal chalcogenide van der Waals
(vdW) materials found in cluster (3,4) and (3,5). (b) Interpretation of self-organizing map (SOM) units (shown in blue) containing different
groups of materials.

Hence, we can provide the same interpretation for clusters
(3,3) and (4,3).

Finally, we note that the SOM unit (3,1) has no neighboring
SOM units in Fig. 5(a). Therefore, we conclude that its materi-
als are not similar to other units in terms of their input feature
values. This may lead to conjecture that it has target properties
different from all other local models. Detailed analysis of the
local model for cluster (3,1) shows that it has 82% of 2D
materials, and among them, 88% of the 2D materials are oxide
materials, which explains why FE per atom is identified as the
most important feature. Additionally, within these majority
oxides materials, there are negligible halide elements, which
form even stronger bonds than oxygen atoms. Thus, the FE per
atoms for vdW materials are less negative than those nvdW
materials, which is mostly due to the weak vdW interaction
of those vdW materials. This is consistent with the histogram
analysis shown in Fig. 5(d).

Groups of clusters with the same interpretation are shown
in Fig. 6(b). Note that each group includes clusters cor-
responding to neighboring SOM units. This observation
confirms the hypothesis that materials with similar input fea-
tures have similar target properties.

Comparison of the top three features for global and local
models (for the same dataset) clearly shows their similarities
and differences. For all local models, the FE per atom and
bandgap are most likely to be selected among the three most
important features (for classification of vdW materials). This
agrees well with the global model interpretation, based on
general physical properties of vdW materials, as discussed
earlier, see Fig. 3(a). On the other hand, for different types
of vdW materials, e.g., metal chalcogenide materials, layered
topological materials, and oxide materials, the most important
features selected by local modeling are quite different. These
results demonstrate how the local modeling approach can
extract higher resolution physical rules of thumb for different
material families and differentiate the nuances in interpretabil-
ity of these rules. In contrast, the global modeling approach is
not capable of estimating specific models and rules of thumb
for different materials families.

IV. CASE STUDY 2: MODELING OF WIDE VS NON-WIDE
BANDGAP VDW MATERIALS

To further illustrate interpretation of global and local
modeling approaches, we present another case study, using
modeling of wide bandgap vs non-wide bandgap vdW semi-
conductor materials. Materials that exhibit large bandgaps are
essential for high-temperate and high-power device applica-
tions due to their ability to maintain electronic functionalities
at high ambient temperature environments [55–58]. Further-
more, multiple studies of vdW materials in the past decade
have led to a recent surge of interest in wide bandgap vdW
materials for next-generation electronic devices [59–64]. Like
our previous vdW vs nvdW study, our goal is to demonstrate
the ability of the global/local modeling framework to de-
rive important features for discovery of wide bandgap vdW
materials. This case study follows the same methodological
approach as Case Study 1 and applies the same ML methods
(RF and SOM) and the same techniques for deriving rules of
thumb from data analytics models.

A. Data preprocessing step

The dataset of wide and non-wide bandgap vdW semi-
conductor materials is extracted from the Materials Project
database, following the same preprocessing steps (as in the
vdW vs nvdW case study). This includes removing irrelevant
materials (such as metastable materials, materials containing
lanthanoid and actinoids elements, etc.), as well as remov-
ing artificial vdW materials and the nvdW materials. The
encoding of target output is described next. In the litera-
ture, the term wide bandgap usually refers to bandgap values
>2–3 eV. However, the exact threshold is not well defined.
In this study, the threshold value 3 eV is used to define
wide bandgap materials, which is chosen based on the en-
ergy spectrum of the ultraviolet light. There are four input
features used for modeling, i.e., FE per atom, density, vol-
ume, and Max ABC. In summary, the final dataset contains
4493 vdW materials, including 858 wide bandgap materials.
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FIG. 7. Global modeling results using random forest (RF) methods for classification of wide vs non-wide bandgap van der Waals (vdW)
materials. (a) Feature importance for the RF method. (b) Histogram of the two most important input features, the density and formation energy
(FE) per atom, for each output class.

For this dataset, we estimate a binary classifier (for predicting
wide bandgap materials), using global and local modeling, as
described next.

B. Modeling results

1. Global modeling results

Global modeling for estimating a classifier (from the 4493
available vdW materials) is performed using the RF learning
method. Like the earlier study of vdW vs non-VdW materials,
we address the class imbalance during training using Eq. (1)
and the performance index for test data as in Eq. (2). The
training procedure is detailed in Appendix A. The predic-
tion accuracy of the final model (estimated using test data)
is 0.782, and its feature importance ranking is shown in
Fig. 7(a). Based on Fig. 7(a), the two most important fea-
tures are density and FE per atom (as both have very similar
feature importance), followed by less important features vol-
ume and Max ABC. The physical basis for the importance
of these features to wide bandgap materials can be under-
stood from materials science. The first scenario corresponds
to the case of 0D materials, where molecular orbitals are
energetically isolated. One typical feature of 0D materials
is their small density. The second scenario corresponds to
strongly bonded materials that contain elements with high
electronegativity, which is usually manifested as a stronger
FE (more negative). The global modeling results show that
density and FE per atom are almost equally important, indi-
cating that the global database contains large portions of 0D
materials and high electronegativity-element based materials.
Further, Fig. 7(b) shows the histogram of density and FE
per atom features for the global model. We can clearly see
that smaller density values correspond to wide bandgap vdW
materials. Similarly, we can see that more negative FE per
atom corresponds to wide bandgap vdW materials. From the
figures, we can extract a simple rule of thumb, i.e., density <

4 g/cm3 and FE per atom < − 1.5 eV for wide bandgap vdW
materials for the global modeling. However, as we demon-
strated in the first case study, variations in rules of thumb
can arise across different local materials clusters, which are
explored next.

2. Local modeling results

For local modeling, we use SOM modeling to partition the
available dataset into several clusters. The preprocessing and
training procedure for SOM modeling is the same as described
in the vdW vs nvdW case study, except that a 3 × 3 SOM
is chosen (due to smaller sample size in this study). Hence,
SOM modeling results in nine local regions (SOM units) in
the four-dimensional input space, and these local regions are
represented as pie charts that display the percentage of wide
bandgap and non-wide bandgap materials in each unit, as
shown in Fig. 8(a). For each unit, we estimate a classifier using
the RF learning method. Note that unit (3,3) contains only
non-wide bandgap materials, and therefore, applying local
modeling to this unit is not necessary. Since this study focuses
on discovering wide bandgap materials, any unit containing
only non-wide bandgap materials can be discarded and not
used for further analysis. Figure 8(b) shows the results of
local modeling for each of eight units. Based on these results,
we can combine neighboring units that have similar feature
importance in their local models. Specifically, we identified
the following groups of similar units: (a) groups containing
units (1,2) and (1,3); (b) groups containing units (2,1) and
(3,1); (c) groups containing units (2,2), (2,3), and (3,2); and
(d) groups containing units (1,1), as highlighted by colored
ellipses in Fig. 8.

Additional analysis of local models like the analysis pre-
sented for the vdW vs nvdW case study includes the periodic
table heatmap, the number of 0D, 1D, and 2D materials,
and the histogram of input features obtained from estimated
local models. This analysis, not presented here due to space
constraints, indicates that most of the wide bandgap materials
in groups (a) and (b) are 0D materials. This can be explained
by the fact that the most important feature in these four groups
of units is density, as 0D materials tend to have smaller density
due to weak vdW interaction between molecules in the unit
cell. Indeed, the histogram of density for wide bandgap vdW
materials has much smaller values than for non-wide bandgap
vdW materials. This is consistent with our global model anal-
ysis that indicates large concentration of 0D materials.

For group (c), units (2,2), (2,3), and (3,2) have 90, 80,
and 53% 2D metal oxides, respectively; the most important
feature is FE per atom. Also, the histograms of FE per atom
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FIG. 8. Local modeling results on the classification of wide vs non-wide bandgap van der Waals (vdW) materials. (a) 3 × 3 self-organizing
map (SOM) modeling to partition the dataset into nine clusters, represented as pie charts. (b) Summary statistics for local classification models
using the random forest (RF) method.

for all units indicate that FE per atom for wide bandgap vdW
materials is much smaller (more negative) than for non-wide
bandgap materials. This can be explained by the fact that these
materials tend to have higher electronegativity, due to the large
electronegativity of oxygen and its tendency to form strong
covalent bond, which results in larger bandgap.

Finally, unlike all other units that show a single dominant
important feature, for unit (1,1), all four features have very
similar importance, i.e., volume: 0.28, FE per atom: 0.26,
density: 0.25, and Max ABC: 0.21. This suggests that this unit
contains different types of materials. Indeed, further analysis
of unit (1,1) shows that it contains 34% of 0D and 44%
of 2D materials. In addition, it also contains 44% of metal
oxide, 53% of metal fluoride, and 14% of metal oxide fluoride
materials.

V. SUMMARY

This paper described methodological issues arising in
application of ML for materials discovery. This includes sim-
ilarities and differences between modeling assumptions used
in ML and the objectives of materials discovery. ML modeling
depends on underlying (unknown) distribution of observa-
tional data, whereas in materials discovery, the ultimate goal
is to find causal relationships that can be related (interpreted)
to first-principles physical laws.

We presented a framework for materials discovery, using
local modeling, where all available data are first partitioned
into several subsets of similar materials (via some clustering
algorithm), and then a local model is estimated for each sub-
set of the data. We argue that, for materials discovery, local
modeling is more effective than the global modeling approach
(when a single ML model is estimated for all available data).
Local modeling enables better interpretation, as there may
be different models (and their interpretations) for different
families of materials. On the other hand, a global approach
tends to suffer from the arbitrariness of the different weights
from materials classes, which is more subjective to the current

trends in materials research which populate the database than
the true representation of their material sizes in nature.

The advantages of local modeling are demonstrated using
two case studies: a classification model for vdW vs nvdW ma-
terials, and classification of wide vs non-wide bandgap vdW
materials. Both case studies follow the same methodological
approach and demonstrate the advantage of local modeling
for modeling and interpretation of data analytics models. For
both case studies, the problem is formalized as binary classifi-
cation, and local modeling involves clustering using the SOM
method followed by estimation of local classification models
(for each cluster) using the RF method. We also introduced
two techniques for interpretation of local models estimated
from data. The first one is selection (ranking) of input fea-
tures, according to their importance for discovering materials
with desired target properties. This ranking of important fea-
tures is specific to the RF method. The second technique
enables derivation of simple rules of thumb (extracted from
histograms of feature values) that describe the effect of an in-
put feature on classification decision. The proposed approach
for extracting rules of thumb (from the ML model) can be used
with any ML method.

Case studies presented in this paper demonstrate that
meaningful interpretation of data analytics models depends
on both: (1) properties of estimated data analytics models,
reflecting ML aspects of modeling, and (2) physical properties
of materials data, reflecting first-principles knowledge.
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APPENDIX A: RF IMPLEMENTATION

To implement RF, we use the CART algorithm from the
SCIKIT-LEARN library [65] with modifications to account for
the class imbalance. For both global and local modeling, the
same RF algorithm is used, as described next. The parameter
numTrees (number of trees) is set to 200 and 500 for global
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and local modeling, respectively. There are two tuning param-
eters that control the complexity of individual CART trees:
maxFeatures, the maximum number of randomly selected
input features, and maxDepth, the maximum depth of tree
for each CART tree during model training. For the vdW vs
nvdW materials case study, the range of possible values for
maxFeatures is set to [2,3,4] for both local and global RF
modeling, while the range of maxDepth is set to [7, 9, . . ., 15]
and [3, 4, . . ., 8] for global and local modeling, respectively.
Similarly, for the wide vs non-wide bandgap vdW materials
case study, maxFeatures and maxDepth are set to [2,3] and
[1, 2, . . ., 10], respectively, for both global and local modeling.
Optimal tuning of these parameters (aka model selection) is
performed via tenfold cross-validation (of the training data)
for both studies.

For both global and local modeling, prediction accuracy is
estimated via stratified resampling technique. That is, avail-
able data are randomly split into 80% training and 20% test
data. Model estimation (training) is performed using train-
ing data, and then prediction performance is evaluated using

test data. Stratification is used to ensure that each (randomly
chosen) training and test dataset has the same class imbalance
as the original data [66].

APPENDIX B: SOM IMPLEMENTATION

In this paper, we used the batch version of the SOM al-
gorithm [33]. We use the 2D topological map, and its size is
chosen loosely based on the number of training samples. An-
other factor is that a smaller map size tends to be more suitable
for interpretation (of local models) because it may be difficult
to interpret many local models. On the other hand, using just
one unit (or one cluster) is not a good choice because it results
in a single global model for all available data.

In this paper, a small 3 × 3 map size is selected for the
artificial materials removal step and the local modeling step
in the wide vs non-wide bandgap vdW materials case study,
where only the vdW samples were used (∼4000 vdW mate-
rials). For the local modeling step in the vdW vs nvdW case
study, a larger 5 × 5 map was used for training using all data
(∼50 000 materials).
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